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Partitioned algorithms for fluid-structure in-
teraction problems in haemodynamics

Fabio Nobile and Christian Vergara

Abstract. We consider the fluid-structure interaction problem arising in
haemodynamic applications. The finite elasticity equations for the vessel
are written in Lagrangian form, while the Navier-Stokes equations for
the blood in Arbitrary Lagrangian Eulerian form. The resulting three
fields problem (fluid/ structure/ fluid domain) is formalized via the in-
troduction of three Lagrange multipliers and consistently discretized by
p-th order backward differentiation formulae (BDFp).

We focus on partitioned algorithms for its numerical solution,
which consist in the successive solution of the three subproblems. We
review several strategies that all rely on the exchange of Robin inter-
face conditions and review their performances reported recently in the
literature.

We also analyze the stability of explicit partitioned procedures
and convergence of iterative implicit partitioned procedures on a simple
linear FSI problem for a general BDFp temporal discretizations.

Mathematics Subject Classification (2010). Primary 65N30; Secondary
76D07.

Keywords. Fluid-structure interaction, incompressible fluids, finite elas-
ticity, haemodynamics, partitioned algorithms, added mass effect.

1. Introduction

The fluid-structure interaction (FSI) problem in large vessels haemodynam-
ics is characterized by a considerable amount of energy exchanged between
blood and arterial wall in each cardiac beat [36, 6, 13, 39, 12, 2, 14]. This
makes its numerical simulation particularly challenging. Due to the relatively
large deformations involved, the structure dynamics is correctly described by
non-linear finite elasticity equations. On the other hand, the fluid-dynamics
equations to describe blood flow have to be solved in a moving domain.

This work has been (partially) supported by the ERC Advanced Grant N.227058 MATH-
CARD and by the Italian MIUR PRIN09 project n. 2009Y4RC3B 001.
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A quite popular approach consists in introducing a so-called Arbitrary La-

grangian Eulerian (ALE) formulation [25, 11] that allows to track the moving
interface between fluid and solid in a Lagrangian way, while keeping the rest
of the domain boundary fixed, by introducing a reference configuration and
an arbitrary ALE mapping.

The overall FSI problem consists then in three subproblems: the non-
linear fluid equations written in ALE formulation in the current moving con-
figuration; the non-linear solid equations written in the reference configura-
tion (Lagrangian formulation); the fluid domain problem to reconstruct the
ALE map at each time written in the reference configuration. Such problems
are coupled through the physical interface conditions, which guarantee the
continuity of the velocity and of the normal stresses between fluid and struc-
ture, and the geometrical interface condition, which guarantees the continuity
of displacements between the fluid and the structure domains.

We are here interested in partitioned algorithms for the numerical solu-
tion of the FSI problem, which consist in the successive solution of the three
subproblems [37, 7, 9, 2, 3, 1]. This allows to use separate (pre-existing)
solvers for the three subproblems, a feature that is very appealing, since one
avoids to construct ex-novo a FSI solver and exploits the best solvers available
for the ALE-Navier-Stokes and non-linear elasticity equations.

The first aim of this work is to review some recent partitioned algorithms
developed in the framework of haemodynamic applications. In particular, we
first describe a naive approach, based on the successive solution of non-linear
fluid and structure problems, until satisfaction of the interface conditions
[27, 29, 26]. We then report two schemes based on the application of the
quasi-Newton method to the monolithic FSI system. The first one leads to
the Single-Loop algorithm where both the interface conditions and the con-
stitutive (fluid and structure) non-linearities are treated in the same loop
[31, 22, 28, 10, 40, 35]. The second one, introduced in [35], in based on two
nested loops, an external one that iterates on the geometrical interface con-
ditions and the constitutive non-linearities, and an internal one that iterates
of the physical interface conditions. All these three strategies are presented
with Robin interface conditions both for the fluid and for the structure sub-
problems, leading to the so-called Robin-Robin procedures, which generalize
the classical Dirichlet-Neumann (DN) ones and have been shown to deliver
more efficient algorithms [2, 35] with respect to DN approaches. In the case
of the double loop algorithm, we review also a strategy to solve the internal
linearized FSI problem, by reformulating it as an interface equation [3, 9].

The second aim of this work is to discuss the so called added mass effect,
which is responsible for the instability of classical explicit DN schemes and
for the slow convergence of implicit DN schemes in typical haemodynamic
applications. To highlight this phenomenon, we present a stability analysis of
the explicit scheme and a convergence analysis of the implicit scheme carried
out on a model problem describing the interaction between a potential fluid
and a rigid piston with only one degree of freedom. In particular, we extend
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here the results presented in [7] to a general p-th order temporal discretization
of fluid and structure equations, based on Backward Differentiation Formulae

(BDF).

The outline of the paper is as follows. In Section 2 we describe the fluid
and structure subproblems appearing in haemodynamic applications, while
in Section 3 we present the coupled problem, its time discretization and a
formulation based on Lagrange multipliers. In Section 4 we review the three
partitioned algorithms and in Section 4.3 we present the FS interface problem.
In Section 5 we discuss the added mass effect and present the stability and
convergence analysis. Finally, in Section 6 we discuss and collect recent results
on the numerical performances of the presented schemes.

2. Mathematical models for vascular dynamics

2.1. The fluid subproblem in a moving domain

Blood is a concentrated suspension of cellular elements (red blood cells, white
blood cells, leukocytes and platelets) in an aqueous polymer solution, the
plasma. The latter represents 55% of the blood volume, 92% of which is
water with the rest being made up of proteins, small molecules and ions.

While plasma is nearly Newtonian in behavior, whole blood exhibits
marked non-Newtonian characteristics at low shear rates due to the deforma-
bility of red blood cells and their tendency to form aggregates. In large ves-
sels, however, where shear rate is usually high, the Newtonian rheology is
considered acceptable [14] and will be assumed hereafter.

We describe blood dynamics by the Navier-Stokes equations for incom-
pressible, Newtonian fluids, which in Eulerian form read:

{
ρf

∂uf

∂t
+ ρf (uf · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f .

(2.1)

Here uf and pf represent the fluid velocity and pressure, respectively, ρf is
the fluid density, ff some external forces and T f is the Cauchy stress tensor,

which for Newtonian fluids reads T f (uf , pf ) = ν(∇uf +∇
T uf )− pfI.

Since the domain Ωt
f changes with time due to the interaction with the

arterial wall, from the computational point of view it is convenient to intro-
duce a reference configuration Ω0f , typically the diastolic configuration, which
can be reconstructed more easily from medical images, and an arbitrary map-
ping At : Ω0f → Ωt

f , called Arbitrary Lagrangian Eulerian map. In particular,

referring to Figure 1, the inflow and outflow sections Σt
f,i will remain un-

changed by the mapping, while the reference interface Σ0 will be tracked in a
Lagrangian way and mapped into the deformed interface Σt. For any function
gf defined in the current domain Ωt

f , we denote by g̃f = gf ◦ A
t its coun-

terpart in the reference domain Ω0f . We also introduce the domain velocity

ũm = ∂At

∂t and its counterpart um = ũm ◦ (A
t)−1. Then, the Navier-Stokes



4 F. Nobile and C. Vergara

equations written in ALE form in the current configuration read:




ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

(2.2)

where we have used the ALE time derivative
DAuf

Dt =
∂euf

∂t ◦ (At)−1. Sev-
eral strategies can be adopted to practically compute the ALE map for a
given displacement of the moving interface Σt. In what follows, we consider
a simple procedure based on the computation of a harmonic extension of
the boundary displacement inside the fluid domain. Although this procedure
does not guarantee the map to be invertible, numerical evidence shows that
it is robust enough for the applications at hand.

2.2. The structure subproblem

Arterial walls are made of three circumferential layers: intima, media and
adventitia. From the mechanical perspective, the media is the most significant
layer in healthy arteries and is made primarily by elastin and collagen fibers.
The elastic tissue can make up more than 50% of the dry weight of the large
arteries. The collagen fibres are oriented in a roughly helical form around the
artery and are generally tortuous under normal conditions. As the artery is
distended, the collagen fibres straighten and, because of their large tensile
strength, bear more and more of the load.

Since the deformation of large arteries during a cardiac beat is quite
large, the correct framework to describe its dynamics is given by the finite
elasticity equations. Let Ω0s be the reference configuration for the arterial wall.
We describe the arterial motion by the displacement field η̃s = η̃s(x

0
s, t) of

each material x0s ∈ Ω0s in time. The deformed configuration is denoted by
Ωt

s and the current position on each material point is individuated by the

Lagrangian map xt
s = L

t(x0s) = x0s + η̃
0
s(x

0
s, t). For each function f : Ωt

s → R

defined on the current configuration we denote by f̃ = f ◦ Lt its counterpart
in the reference configuration.

The deformation of the tissue is measured in terms of the deformation
gradient tensor F = I +∇η̃s and the right Cauchy-Green tensor C = F T F .
The Cauchy stress tensor is denoted by T s in the current configuration
whereas the corresponding stress tensor in the reference configuration (first

Piola-Kirchhoff tensor) is denoted by T̃ s = JT sF
−T , with J = det(F ).

Then, the dynamics of the arterial tissue is governed, in Lagrangian
form, by the equation

ρs
∂2η̃s

∂t2
−∇ · T̃ s(η̃s) = f̃s in Ω0s, t > 0,

where ρs is the tissue density and f̃s external forces acting on the system.

Soft biological tissues can be regarded as elastic under relatively large
deformations, so it is common to derive the Cauchy stress tensor from a strain
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energy functionW =W(C), i.e. T̃ s = 2F ∂W
∂C

. Several models have been pro-
posed for the strain energy function. We point to [24] for a recent review. We
consider here nearly incompressible models where the strain energy function
is decomposed into an isochoric and a volumetric part

W =Wiso(C̄) +Wvol(J), with C̄ = J−
2
3 C.

The volumetric part penalizes the changes of volume. A possible expression
is given by Wvol =

κ
4 [(J − 1)2 + (log J)2]. For the isochoric strain energy

function, a widely used model is the exponential one [17, 23, 42]

Wiso =
α

2γ

(
exp{γ(tr(C̄)− 3)} − 1

)

which describes the strong stiffening effect of the tissue observed at higher
loadings due to collagen fibres. More sophisticated models [24] take into ac-
count the preferential direction of the collagen fibers, characterized by a unit
vector field M in the reference configuration. They combine a neo-Hookean
model to describe elastin behavior, with an exponential model along the pref-
erential direction (or multiple directions) of the collagen fibers. For a single
direction the strain energy function proposed in [23] reads:

Wiso =
µ

2
(tr(C̄)− 3) +

α

2γ

(
exp{γ(MT C̄M − 3)2} − 1

)
.

We point out, however, that in patient specific simulations and geome-
tries reconstructed from medical images, it is very difficult to date to extract
the information on the fibers direction.

3. The coupled fluid-structure interaction problem

3.1. Continuous formulation

We consider a coupled system obtained by the interaction between a fluid
and a structure, whose separate description has been given in the previous
section. Again, Ωt

f and Ω
t
s represent the current fluid and structure domains,

respectively, while Σt indicates the fluid-structure interface, see Figure 1. The
same quantities with superscript 0 refer instead to the reference configuration
and functions defined therein are denoted with a tilde. Moreover, by nf (resp.
ns) we denote the unit outward normal vector to ∂Ωt

f (resp. ∂Ω
t
s). The strong

formulation of the FSI problem, including the computation of the ALE map
reads then as follows

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity
um and fluid domain Ωt

f , find, at each time t ∈ (0, T ], the fluid velocity
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Figure 1. Representation of the domain of the FSI prob-
lem: fluid domain on the left, structure domain on the right.

uf , pressure pf and structure displacement ηs such that




ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

ρs
∂2η̃s

∂t2
−∇ · T̃ s(η̃s) = f̃s in Ω0s,

uf =
∂ηs

∂t
on Σt,

T s(ηs)ns + T f (uf , pf )nf = 0 on Σt,

αeη̃s + T̃ s(η̃s) ñs = Pextñ, on Σ0out.
(3.1)

2. Geometry problem. Given the (unknown) interface structure displace-
ment η̃s|Σ0 , find the displacement of the points of the fluid domain ηm

such that {
−4η̃m = 0 on Ω0f ,

η̃m = η̃s on Σ0,
(3.2)

and then find accordingly the fluid domain velocity ũm := ∂eηm

∂t , and

the new points xt
f of the fluid domain by moving the points x0f of the

reference domain Ω0f : xt
f = x0f + η̃m.

The two matching conditions enforced at the FS interface are the conti-

nuity of velocities (3.1)4 and the continuity of normal stresses (3.1)5 (physical
interface conditions), while condition (3.2)2 enforces that the fluid domain
remains at all time in contact with the solid (geometrical interface condi-
tion). Equations (3.1) and (3.2) have to be endowed with suitable boundary
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conditions on Ωt
f \ Σ

t and Ω0s \ (Σ
0 ∪ Σ0out), and with suitable initial condi-

tions. The Robin boundary condition (3.1)6 on Σ
0
out models the presence of

a surrounding tissue around the vessel. This choice corresponds to model the
tissue as a perfectly elastic body, with αe the corresponding elastic coefficient
(see [33, 30]).

3.2. Temporal discretization

For the temporal discretization we consider here BDF schemes (see e.g. [20])
applied to both the fluid and the structure subproblems. In particular, let
∆t be the time discretization parameter and tn := n∆t, n = 0, 1, . . .. For a
generic function z, we denote with zn the approximation of z(tn). We consider
general discretizations of order p (BDFp) of the form

Dpv
n+1

∆t
:=

1

∆t

(
β0 vn+1 −

p∑

i=1

βi vn+1−i

)
=

∂v

∂t
(tn+1) +O(∆tp),

D2
pvn+1

∆t2
:=

1

∆t2

(
ξ0 vn+1 −

p+1∑

i=1

ξi vn+1−i

)
=

∂2v

∂t2
(tn+1) +O(∆tp),

(3.3)
for suitable coefficients βi and ξi. In Table 1 we report the values of such
parameters for p = 1, 2, 3, 4.

β0 β1 β2 β3 β4 ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

1 1 1 – – – 1 2 -1 – – –
2 3/2 2 -1/2 – – 2 5 -4 1 – –
3 11/6 3 -3/2 1/3 – 35/12 26/3 -19/2 14/3 -11/12 –
4 25/12 4 -3 4/3 -1/4 15/4 77/6 -107/6 13 -61/12 5/6

Table 1. Values of parameters βi and ξi for BDFp schemes
involved in the discretization of first (left) and second (right)
derivatives - p = 1, 2, 3, 4.

For the sake of notation in what follows we will omit the index of the
current time step n+1. Then, the discretized-in-time FSI problems at time
tn+1 is obtained by (3.1) − (3.2) where the time derivative operators are
replaced by approximations (3.3).

3.3. A three field formulation by Lagrange multipliers

The FSI monolithic system (3.1) − (3.2) and its discretized-in-time version
consist of three partial differential equations coupled through three interface
conditions: the fluid and the structure subproblems share the same velocity
and the same normal stress (physical conditions), while the fluid domain and
the structure domain share the same displacement (geometrical condition).

In order to highlight the coupled structure of the problem, we report
here an equivalent formulation introduced in [35] based on the introduction
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of three Lagrange multipliers defined on the FS interface, representing the
fluid and structure normal stresses λf = −T f nf and λs = −T s ns, and the
normal derivative of the fluid mesh displacement λm = −∇ηm ·nf . This will
be useful also for the derivation of partitioned algorithms for the numerical
solution of the coupled problem. In particular, with ΣD

f , ΣD,0
s and ΣD

m we
denote the parts of the boundary where Dirichlet boundary conditions are
prescribed. To lighten the notation, we drop hereafter the superscript n + 1
also for domains and spaces, so that, if not otherwise specified, they have to
be intended at time tn+1. Then, we define the following functional spaces

Vf := {v ∈ H1(Ωf ) : v|ΣD
f
= 0}, Q := L2(Ωf )

Vs := {v ∈ H1(Ω0s) : v|ΣD,0
s

= 0}, Vm := {v ∈ H1(Ω0f ) : v|ΣD,0
m

= 0},

where the conditions imposed on the boundaries have to be intended in the
sense of traces. Let vf := (uf , pf ) collect the fluid unknowns and F : V f ×
Q×V m → (V f ×Q)′ be the discretized-in-time fluid operator. Analogously,
for the structure subproblem we define the discretized-in-time operator S :
V s → (V s)

′, and for the harmonic extension we introduce the operator
H : V m → (V m)

′. We also define the following trace operators

γ̃f : V f ×Q→H1/2(Σ0), γ̃f (v, q) := ṽ|Σ0 ,

γf : V f ×Q→H1/2(Σ), γf (v, q) := v|Σ ,

γ̃s : V s → H1/2(Σ0), γ̃sµ̃ := µ̃|Σ0 ,

γs : V s → H1/2(Σ), γsµ̃ := µ|Σ ,

γ̃m : V m →H1/2(Σ0), γ̃mz̃ := z̃|Σ0 .

We then rewrite the time discrete version of problem (3.1)-(3.2) as follows




H η̃m + γ̃∗mλ̃m = 0 in (V m)
′
,

γ̃mη̃m = γ̃sη̃s on Σ0,

F(vf ,um) + γ∗fλf = Gf in (V f ×Q)
′
,

γ̃fvf = γ̃s
Dpeηs

∆t on Σ0,

λ̃s = −λ̃f on Σ0,

S(η̃s) + γ̃∗s λ̃s = Gs in (V s)
′
,

(3.4)

where um =
Dpηm

∆t and where γ∗ denotes the adjoint of the trace operator,
Gs and Gf accounting for the right hand sides. See [35] for more details.

4. Partitioned algorithms based on Robin interface conditions

Among the strategies which could be considered for the numerical solution
of the FSI problem, a particular attention has been devoted to partitioned
algorithms. These strategies are based on the successive solution of the three
subproblems and allows one to reuse existing codes. They could be explicit

(staggered), in which case the fluid and structure subproblems are solved only
once (or few times) for time steps, or implicit, in which case the subproblems
are solved iteratively until the interface conditions are satisfied [37, 7, 9, 12,
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5, 2]. Recently, also semi-implicit algorithms have been proposed, in which
the ALE-geometry problem is solved only once per time step, whereas the
fluid and structure problems are iterated [12, 5, 35]. In this case, the interface
physical conditions (3.4)4−5 are enforced exactly at each time step, whereas
the interface geometrical condition (3.4)2 is enforced only in an approximate
way.

In haemodynamics, the use of explicit partitioned algorithms turns out
to be extremely problematic for stability reasons, because of the large added-
mass of the fluid on the structure. This issue is discussed thoroughly in Sec-
tion 5 (see also [7, 16]). Implicit partitioned algorithms are also affected by
the added mass effect as they feature very slow convergence, unless special
treatments of the interface conditions are considered. We focus here on pro-
cedures in which the fluid and structure subproblems are solved enforcing
Robin interface conditions [2, 3, 1, 8, 43]. The use of Robin-Robin interface
conditions can significantly alleviate the added mass effect if the coefficients
in the Robin conditions are properly chosen, as shown in [2, 19].

To derive such algorithms in a general framework, we consider system
(3.4) where the two physical interface conditions (3.4)4−5 are replaced by
linear combinations of them:





αf γ̃fvf + λ̃f = αf γ̃s
Dpeηs

∆t − λ̃s on Σ0,

αsγ̃s
Dpη̃s

∆t
+ λ̃s = αsγ̃fvf − λ̃f on Σ0.

(4.1)

If αf 6= αs then these new physical interface conditions are equivalent to
(3.4)4−5. In the following sections, we present some Robin-Robin formula-
tions adapted to the case of the finite elasticity. In any case, the Lagrange
multipliers have been introduced just to simplify the expression of the three
interface continuity conditions and the derivation of the partitioned algo-
rithms. However, there is no actual need to introduce them in practical im-
plementations of the algorithms to avoid extra costs. We also observe that
the classical Dirichlet-Neumann (DN) formulations are recovered from the
Robin-Robin ones by setting αf →∞ and αs = 0.

4.1. Robin-Robin standard iterations

The first strategy corresponds to simple iterations at each time step between
the fluid and the structure subproblems with Robin boundary conditions (see
[27, 29, 26] for the DN case). It corresponds to a block-Gauss-Seidel method
applied to system (3.4) where conditions (3.4)4−5 are replaced by (4.1). We
have the following

Algorithm 1.

Given the solution at iteration k, solve until convergence
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1. The (non-linear) fluid problem in ALE configuration with Robin inter-
face condition and the geometry problem





H η̃
k+1
m + γ̃∗mλ̃

k+1

m = 0 in (V m)
′
,

γ̃mη̃
k+1
m = γ̃sη̃

k
s on Σ0,

F(vk+1
f ,uk+1

m ) + γ̃∗f λ̃
k+1

f = Gf in
(
V f (η

k
s)×Q(ηk

s)
)′

,

αf γfvk+1
f + λk+1

f = αfγs
Dpηk

s

∆t − λk
s on Σk+1;

(4.2)
2. The (non-linear) structure problem with Robin interface condition

{
S(η̃k+1

s ) + γ̃∗s λ̃
k+1

s = Gs in (V s)
′
,

αs γ̃s
Dpeηk+1

s

∆t + λ̃
k+1

s = αsγ̃fvk+1
f − λ̃

k+1

f on Σ0.

We monitor the residuals of equations (4.2)2 and (4.2)4 and stop the itera-
tions when such residuals are below a prescribed tolerance. In problem (4.2),
we have denoted by V f (ξ) and Q(ξ) the spaces defined on the domain Ωf

obtained by the harmonic extension of the datum ξ. We also observe that
the solution of the geometry problem does not depend on the fluid solu-
tion, therefore at each Robin-Robin iteration the harmonic extension could
be solved separately. Then, Algorithm 1 consists in the successive solution
of a harmonic extension, a non-linear fluid problem in a known domain and
a non-linear structure problem. The last two subproblems have to be solved
with a proper strategy to handle the non-linearities, such as with Picard
iterations for the fluid and Newton iterations for the structure.

Algorithm 1 is particularly suited when one has at disposal two black-

box solvers for the fluid problem in ALE formulation and for the structure,
since it needs just to implement suitable routines for the transfer of the
interface conditions between the two codes.

4.2. Quasi-Newton methods

We rewrite system (3.4) where conditions (3.4)4−5 are replaced by (4.1) in a

compact form as G(y) = 0, where y := [η̃m, λ̃m,vf , λ̃f , λ̃s, η̃s] denotes the
FSI solution. A second strategy to solve the FSI problem with partitioned
algorithms consists in writing quasi-Newton iterations applied to G(y) = 0,
that is

Ĵ(yk) δyk+1 = −G(yk), (4.3)

where Ĵ is a suitable approximation of the Jacobian [21, 31, 28, 35]

∇G =




H γ̃∗m
γ̃m −γ̃s

∇ηm
F ∇vf

F γ̃∗f
αf γ̃f I I −αf

β0eγs

∆t

−αsγ̃f I I αs
β0eγs

∆t
γ̃∗s ∇ηs

S




.
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The partitioned algorithms we investigate in this work are all derived by

(4.3) by a proper choice of Ĵ . In all cases, the approximation of the Jacobian
is chosen such that

1. The term ∇ηm
F representing the shape derivative is neglected;

2. The tangent fluid problem ∇vf
F is replaced by an Oseen problem

∇̂vf
F δvf :=

{
ρf

β0
∆t

δuf + ρf ((uf − um) · ∇)δuf −∇ · T f (δuf , δpf )

∇ · δuf ,

with a known convective term extrapolated from previous time steps.
In order to make clearer its expression, we will indicate explicitly the

convective term in the Oseen operator as ∇̂vf
F(w).

The residual Ĵ(yk) δyk+1+G(yk+1) is used to monitor the convergence
of the iterations, leading case by case to different stopping criteria [35].

4.2.1. Single-loop algorithm. We consider a three blocks diagonal approxi-
mation of the Jacobian [31, 22, 28, 10, 40, 35], that is

ĴSL =




H γ̃∗m
γ̃m

∇̂vf
F γ̃∗f

αf γ̃f I

−αsγ̃f I I αs
β0eγs

∆t
γ̃∗s ∇ηs

S




,

which leads to the following

Algorithm 2.

Given the solution at iteration k, solve until convergence

1. The harmonic extension
{
H η̃

k+1
m + γ̃∗mλ̃

k+1

m = 0 in (V m)
′
,

γ̃mη̃
k+1
m = γ̃sη̃

k
s on Σ0,

obtaining the new fluid domain Ωk+1
f and the domain velocity uk+1

m .
2. The fluid subproblem with a Robin condition at the FS interface
{
∇̂vf

F(uk
f − uk+1

m )vk+1
f + γ̃∗f λ̃

k+1

f = Gf in
(
V f (η

k
s)×Q(ηk

s)
)′

,

αfγfvk+1
f + λk+1

f = αfγs
Dpηk

s

∆t − λk
s on Σk+1,

(4.4)
3. The structure subproblem with a Robin condition at the FS interface

{
∇ηs

S(η̃k
s) δη̃

k+1
s + γ̃∗s δλ̃

k+1

s = Gs − S(η̃
k
s)− γ̃∗s λ̃

k

s in (V s)
′
,

αsγ̃s
Dpeηk+1

s

∆t − λ̃
k+1

s = αsγ̃f ṽ
k+1
f − λ̃

k+1

f on Σ0.
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We observe that with this choice we obtain again a partitioned algorithm cor-
responding to the sequential solution of the harmonic extension, fluid sub-
problem and structure subproblem. However, in this case, differently from
Algorithm 1, the fluid and the structure subproblems are linear at each iter-
ation. Indeed, in this case, the geometrical and physical interface conditions
and the constitutive non-linearities are all treated in the same loop.

This algorithm can be implemented in a modular way provided one has
access to an Oseen-ALE solver and to a tangent structure solver, both with
the possibility of prescribing Robin boundary conditions.

4.2.2. Double-loop algorithm. We consider here a two blocks diagonal ap-
proximation of the Jacobian [35], that is

ĴDL =




H γ̃∗m
γ̃m

∇̂vf
F γ̃∗f

αf γ̃f I I −αf
β0eγs

∆t

−αsγ̃f I I αs
β0eγs

∆t
γ̃∗s ∇ηs

S




,

which corresponds to the sequential solution of the harmonic extension and of
a linearized FSI problem. For the solution of the latter, since we are interested
in partitioned algorithms, we use the following RR preconditioner

P̂RR =




∇̂vf
F γ̃∗f

αf γ̃f I

−αsγ̃f I I αs
β0

∆t γ̃s

γ̃∗s ∇ηs
S


 .

We obtain the following:

Algorithm 3.

Given the solution at iteration k, solve until convergence

1. The harmonic extension
{
H η̃

k+1
m + γ̃∗mλ̃

k+1

m = 0 in (V m)
′
,

γ̃mη̃
k+1
m = γ̃sη̃

k
s on Σ0,

obtaining the new fluid domain and fluid domain velocity.
2. The linearized FSI problem. For its solution, we consider the following

partitioned algorithm: Given the solution at subiteration l− 1, solve at
the current subiteration l until convergence
(a) The fluid subproblem with Robin condition at the FS interface




∇̂vf

F(uk
f,l − uk+1

m )vk+1
f,l + γ̃∗f λ̃

k+1

f,l = Gf in
(
V f (η

k
s)×Q(ηk

s)
)′

,

αfγfvk+1
f,l + λk+1

f,l = αfγs
Dpηk

s,l−1

∆t − λk
s,l−1 on Σk+1,
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(b) The structure subproblem with Robin condition at the FS interface
{
∇ηS(η̃

k
s,l) δη̃

k+1
s,l + γ̃∗s δλ̃

k+1

s,l = Gs − S(η̃
k
s)− γ̃∗s λ̃

k

s in (V s)
′
,

αsγ̃s
Dpeη

k+1

s,l

∆t − λ̃
k+1

s,l = αsγ̃f ṽ
k+1
f,l − λ̃

k+1

f,l on Σ0.

This algorithm contains two nested loops, an external one for the pre-
scription of the geometrical continuity condition and for the treatment of the
constitutive non-linearities, and an internal one for the prescription of the
physical interface continuity conditions.

4.3. Interface equation and Robin-Robin-GMRes algorithm.

Consider the Double-Loop algorithm. At each external iteration, we have to
solve a fully-linearized FSI problem, in a given fluid geometry. The strategy
considered in the previous section to solve this problem, can also be seen as
a Richardson method applied to a preconditioned interface problem [3]. To
illustrate this, first consider the linearized problem with Dirichlet-Neumann
interface conditions (i.e. αf → ∞ and αs = 0). After spatial discretization,
e.g. by finite elements [38], this problem reads




Cff CfΣ 0 0 0 0
0 MΣ 0 0 −MΣ 0

CΣf CΣΣ M̂Σ 0 0 0

0 0 0 M̂Σ NΣΣ NΣs

0 0 M̂Σ M̂Σ 0 0
0 0 0 0 NsΣ Nss







Vf

VΣ

Λf

Λs

UΣ

Us



=




bf

0

bfΣ

bsΣ

0

bs




, (4.5)

where we have split the degrees of freedom associated to nodes interior to
the fluid and structure domains from those associated to the FSI interface
(denoted with the subscript Σ). Moreover, we have written the linearized
structure problem in terms of velocities instead of displacements. The vector
Vf contains interior velocity values and all the pressure values for the fluid,
Us contains interior velocity values for the structure problem, whereas VΣ

and UΣ contain the interface velocity values for the fluid and for the struc-
ture, respectively, while Λf and Λs are the approximations of the Lagrange
multipliers. Matrices C and N represent the algebraic counterpart of the lin-

earized Oseen operator ∇̂vf
F and of the linearized structure operator ∇ηs

S,
respectively. MΣ is the interface mass matrix, which is invertible, so that the
second equation is equivalent to the physical interface condition VΣ = UΣ.

M̂Σ could be different from the interface mass matrix MΣ, depending on the
discretization used for the Lagrange multipliers. We assume here this ma-
trix to be invertible. This is guaranteed, for instance, if one discretizes the
Lagrange multipliers in the space of traces of velocity functions. The 5-th
equation enforces the continuity of normal stresses at the FS interface. The
right hand sides follow accordingly to (3.4).

As suggested in [9, 32] the linearized FSI problem can also be understood
as an interface problem in which the only unknown is the velocity at the fluid-
structure interface. At the continuous level, the interface problem makes use
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of the fluid and structure Steklov-Poincaré operators (see e.g. [9]). Its fully
discrete counterpart makes use of the fluid and structure Schur complement
matrices (discrete versions of the Steklov-Poincaré operators, see [4]). System
(4.5) is equivalent to

(C̃Σ + ÑΣ)UΣ = b̃Σ (4.6)

where

C̃Σ = CΣΣ − CΣfC−1ff CfΣ, (4.7a)

ÑΣ = NΣΣ −NΣsN
−1
ss NsΣ (4.7b)

are the fluid and structure Schur complement matrices and

b̃Σ = bΣ − CΣfC−1ff bf −NΣsN
−1
ss bs

is the corresponding right hand side.

It has been shown in [3] that the Robin-Robin partitioned procedure
described in Algorithm 3, point 2, can be interpreted as a Richardson method
over the preconditioned system (RR-Richardson)

P̃−1RR(C̃Σ + ÑΣ)UΣ = P̃−1RRb̃Σ, (4.8)

the preconditioner being

P̃RR =
1

αf + αs

(
C̃Σ + αfMΣ

)
M−1
Σ

(
ÑΣ + αsMΣ

)
. (4.9)

Instead of a Richardson method, it is then possible to apply more per-
forming Krylov methods to (4.8)-(4.9), such as GMRes. In this way, we obtain
again a partitioned procedure, composed of successive solutions of Dirichlet-
structure problems, Robin-structure problems and Robin-fluid problems [3].
These procedures could be used alternatively to the RR-Richardson one at
step 2 in Algorithm 3.

5. The added mass effect

In this section we recall the concept of added mass and its role in the stability
of explicit (staggered) partitioned algorithms as well as in the convergence
properties of fixed point type iterations for implicit partitioned algorithms.

We study a very simple problem of an inviscid incompressible fluid in
a pipe pushed against an elastically supported rigid plate, with the eventual
introduction of a dumper (piston problem). The dynamics of the plate is
governed by a simple second order ordinary differential equation, whereas
the dynamics of the fluid can be described as a potential flow. Figure 2
illustrates the set up of the problem. We also assume small displacements,
so that the fluid domain is considered fixed, and small velocities, so that the
fluid equations could be linearized around the rest state uf = 0. In particular,
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Figure 2. Schematic representation of the piston problem.

we have the following coupled problem





ρf
∂uf

∂t
+∇pf = 0 in Ωf ,

∇ · uf = 0 in Ωf ,
uf · n = 0 on Γwall,
pf = g on Γin,
uf · n = η̇s on Γp,
mη̈s + cη̇s + kηs =

∫
Γp

pf dγ on Γp,

(5.1)

where g is a given datum and m, c, k are the mass, dumping and stiffness
parameters representing the piston system. The last two conditions represent
the continuity of the velocity and of the stress at the interface Γp.

By applying the divergence operator to the fluid momentum equation,
it is possible to write an equivalent coupled problem involving just the fluid
pressure and the piston displacement, as follows





4pf = 0 in Ωf ,
∂pf

∂n
= 0 on Γwall,

pf = g on Γin,
∂pf

∂n
= −ρf η̈s on Γp,

mη̈s + cη̇s + kηs =
∫
Γp

pf dγ on Γp,

where the velocity interface condition has been written in terms of normal
derivative of the pressure, since from the momentum equation projected in
the normal direction we have

n ·

(
ρf

∂uf

∂t
+∇pf

)
= 0 →

∂pf

∂n
= −ρf

∂(uf · n)

∂t
on Γp ∪ Γwall.
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Given ξ ∈ R, consider now the following problem in the unknown w




4w = 0 in Ωf ,
∂w

∂n
= 0 on Γwall,

w = 0 on Γin,
∂w

∂n
= ξ on Γp.

We introduce the added mass operator MA : R → R defined as follows

MA ξ := ρf

∫

Γp

w dγ.

In the specific setting considered here, the operator MA is just a positive
number with the units of a mass. It is easy to show that, for this example,
MA = ρf |Ωf |, and coincides with the total mass of the fluid contained in the
pipe. In the general case of a deformable structure, the added mass operator
is nothing but the Neumann-to-Dirichlet map related to the interface Γp

multiplied by the factor ρf (see [7] for a precise definition).

By exploiting the linearity of the fluid problem, we have that the force
exerted by the fluid on the piston can be written as

∫

Γp

pf dγ =

∫

Γp

pg dγ −MA η̈, (5.2)

for a suitable function pg which takes into account the non-homogeneous
boundary conditions on Γin and does not depend on the coupling with the
piston. Then, the effective piston dynamics reads

(m+MA)η̈s + cη̇s + kηs =

∫

Γp

pg dγ on Γp. (5.3)

This modified equation highlights that the effective mass of the piston in-
cludes the mass MA of the fluid that has to be displaced. We also observe
that the presence of the fluid alters the natural frequency of oscillation of the
piston, which decreases from ω =

√
k/m in air to ω =

√
k/(m+MA) in the

fluid.

We now focus on a BDFp discretization of equation (5.1). To lighten
the presentation, we omit to detail the boundary conditions on the fixed
boundaries of the pipe (inflow and wall). The discretized problem reads:





ρf
Dpu

n+1

f

∆t +∇pn+1
f = 0 in Ωf ,

∇ · un+1
f = 0 in Ωf ,

un+1
f · n =

Dpηn+1
s

∆t on Γp,

m
D2

pηn+1
s

∆t2 + c
Dpηn+1

s

∆t + kηn+1
s =

∫
Γp

pn+1
f dγ on Γp.

(5.4)

In the next sections we analyze several explicit and implicit partitioned pro-
cedures to solve numerically the coupled problem (5.4).
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5.1. Staggered Dirichlet-Neumann scheme

The first strategy we consider consists in extrapolating the force on the piston∫
Γp

pn+1
f in (5.4)4 with a q-th (q ≥ 1) order extrapolation formula that uses

the q previous evaluations (pn
f , pn−1

f , . . . , pn−q+1
f ), namely

Eq(p
n+1
f ) =

q∑

i=1

(−1)i+1
(

q

i

)
pn+1−i

f .

The scheme reads:

m
D2

pηn+1
s

∆t2
+ c

Dpη
n+1
s

∆t
+ kηn+1

s = Eq

(∫

Γp

pn+1
f dγ

)
on Γp,





ρf
Dpu

n+1

f

∆t +∇pn+1
f = 0 in Ωf ,

∇ · un+1
f = 0 in Ωf ,

un+1
f · n =

Dpηn+1
s

∆t on Γp.

(5.5)

This strategy leads to a staggered Dirichlet-Neumann algorithm where, at
each time step, we can first solve the piston equation, using previous eval-
uations of the fluid pressure (“Neumann datum”), and then solve the fluid
equations once the piston displacement is know (“Dirichlet datum”). The
following result generalizes to BDFp schemes the one given in [7].

Lemma 5.1. Let β̄p = 2
∑bp/2c

i=0 β2i+1 and ξ̄p = 2
∑b(p+1)/2c

i=0 ξ2i+1. The stag-

gered Dirichlet-Neumann algorithm (5.5) is unstable if

MA >
1

(2q − 1)β̄2p

(
mξ̄p +∆tcβ̄p +∆t2k

)
. (5.6)

Proof. The pressure equation corresponding to (5.5) is




4pn+1
f = 0 in Ωf ,

∂pn+1
f

∂n
= −ρf

DpDpη
n+1
s

∆t2
on Γp,

(5.7)

so the equivalent discretized scheme for the effective piston dynamics reads:

m
D2

pηn+1
s

∆t2
+c

Dpη
n+1
s

∆t
+kηn+1

s = −
MA

∆t2
Eq

(
DpDpη

n+1
s

)
+Eq

(∫

Γp

pn+1
g dγ

)
.

(5.8)
The latter is a difference equation of order 2p+ q of the form

α0η
n+1
s +α1η

n
s +. . .+α2p+qη

n−(2p+q−1)
s =

q∑

j=1

(−1)j+1
(

q

j

)∫

Γp

pn−j+1
g , (5.9)

with α0 =
mβ0

∆t2 + cξ0

∆t + k > 0. Let us denote by r(s) its characteristic poly-
nomial of degree 2p + q and evaluate it in s = −1. Observe that this corre-
sponds to evaluating the left hand side of (5.9) for the sequence η̄k

s = (−1)k,
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k = 0, 1, . . ., i.e. r(−1) =
∑2p+q

i=0 αiη̄
2p+q−i
s . Recalling that by consistency of

the BDFp formulae it holds β0 =
∑p

i=1 βi and ξ0 =
∑p+1

i=1 ξi, we have:

Dpη̄
k
s = β0η̄

k
s −

p∑

i=1

βiη̄
k−i
s = (−1)k

(
β0 −

p∑

i=1

(−1)iβi

)
= β̄pη̄

k
s ,

Eq(η̄
k
s ) =

q∑

i=1

(−1)i+1
(

q

i

)
η̄k−i

s = (−1)k+1(2q − 1) = −(2q − 1)η̄k
s ,

D2
pη̄k

s = ξ0η̄
k
s −

p+1∑

i=1

ξiη̄
k−i
s = (−1)k

(
ξ0 −

p+1∑

i=1

(−1)iξi

)
= ξ̄pη̄

k
s .

Then, (5.8) with pn
g = 0, n = 0, 1, . . . , becomes

mξ̄p

∆t2
η̄n+1

s +
cβ̄p

∆t
η̄n+1

s + kη̄n+1
s =

MA(2
q − 1)β̄2p
∆t2

η̄n+1
s

and

r(−1) = (−1)2p+q

[
mξ̄p −MA(2

q − 1)β̄2p
∆t2

+
cβ̄p

∆t
+ k

]
.

We therefore see that for q even, r(−∞) = +∞ and under condition (5.6)
r(−1) < 0. Therefore the characteristic polynomial has a root s∗ < −1
which shows that the scheme is unstable. An analogous argument holds for
q odd. �

Remark 5.2. Observe that under the condition

MA >
mξ̄p

(2q − 1)β̄2p

even if the difference equation (5.8) might be stable for some ∆t large enough,
it becomes unstable in the limit ∆t → 0. Hence, the scheme is asymptotically
unstable and therefore not convergent.

If we take q = p in (5.8) the value of the added mass MA beyond
which the scheme is unstable becomes smaller and smaller as p increases. In
particular, for p = 1, . . . , 4 we have

p=1 p=2 p=3 p=4
MA/m > 1 1/4 3/35 1/32

Remark 5.3. The intuitive reason why algorithm (5.5) fails to be stable for
large added mass is that the presence of the fluid on the structure appears as
an extra inertia term. Any staggered procedure will treat that inertia term
explicitly in the effective structure equation. If the fluid inertia term turns
out to be larger than the structure inertia term, the staggered scheme is
unstable and there is no way to stabilize it by reducing the time step ∆t as
both inertia terms are multiplied by the same power of ∆t.
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5.2. Implicit scheme with Dirichlet-Neumann subiterations

If no extrapolation of the forcing term on the structure is performed, we have
to solve the coupled problem (5.4). For this, we consider Dirichlet-Neumann
subiterations. For a given quantity x, at time step n + 1 let {xn+1

k } be the

sequence {x0, x1, . . . , xn, xn+1,k} with xi, i = 0 . . . , n known from previous
time iterations and xn+1,k unknown, k denoting the subiteration counter.
Then, the Dirichlet-Neumann subiterations with relaxation read: given ηn+1

s,0 ,
compute for k = 1, . . .





ρf
Dpu

n+1

f,k

∆t +∇pn+1,k
f = 0 in Ωf ,

∇ · un+1,k
f = 0 in Ωf ,

u
n+1,k
f · n =

Dpηn+1

s,k−1

∆t on Γp,

m
D2

pη̃n+1
s,k

∆t2
+ c

Dpη̃
n+1
s,k

∆t
+ kη̃n+1,k

s =

∫

Γp

pn+1,k
f dγ on Γp,

ηn+1,k
s = ωη̃n+1,k

s + (1− ω)ηn+1,k−1
s .

(5.10)

The convergence of this fixed point algorithm can be easily analyzed
by looking at the equivalent fixed point algorithm on the effective piston
equation, and characterized by means of the asymptotic convergence factor

σ(ω) defined as the smallest positive number for which

|ηn+1,k
s − ηn+1

s | ≤ σ(ω)|ηn+1,k−1
s − ηn+1

s | ∀k = 1, 2, . . . ,

where ηn+1
s is the solution of the coupled problem (5.4). The result is sum-

marized in the following Lemma, which generalizes to BDFp discretizations
the result in [2].

Lemma 5.4. The algorithm (5.5) converges to the solution of (5.4) if the

relaxation parameter satisfies

ω ≤
2

1 +
MAβ2

0

mξ0+∆tcβ0+∆t2k

.

Moreover, the best choice of ω leads to an asymptotic convergence factor

σ(ωopt) =
1

1 +
MAβ2

0

mξ0+∆tcβ0+∆t2k

.

We see from this lemma that if the added mass of the fluid is large, i.e.
MA � mξ0/β20 , then a very strong relaxation is needed (ω � 1) and even
with optimal choice of the relaxation parameter, the convergence will be very
slow.

5.3. Robin-Robin procedures and optimal choices of the Robin coefficients

We now turn to Robin-Robin algorithms, either explicit or implicit applied
to the coupled problem (5.4). Recalling the formulae (3.3) for the BDFp
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approximation of time derivatives, we can write:

un+1
f · n =

Dpη
n+1
s

∆t
=

β0
∆t

ηn+1
s − fn

s , (5.11)

D2
pηn+1

s

∆t2
=

ξ0
∆t2

ηn+1
s − gn

s =
ξ0

∆tβ0
un+1

f · n+
ξ0

∆tβ0
fn

s − gn
s , (5.12)

with fn
s = 1

∆t

∑p
i=1 βiη

n+1−i and gn
s = 1

∆t2

∑p+1
i=1 ξiη

n+1−i, known from pre-
vious time steps. Therefore, the coupled FSI problem (5.4) can be written in
the only unknowns un+1

f and pn+1
f as





ρf
Dpu

n+1

f

∆t +∇pn+1
f = 0 in Ωf ,

∇ · un+1
f = 0 in Ωf ,(

mξ0

∆tβ0
+ c+ k∆t

β0

)
un+1

f · n−
∫
Γp

pn+1
f dγ = f̃n

s on Γp,

un+1
f · n = const on Γp,

(5.13)

for a suitable right hand side f̃n
s and where with (5.13)4 we have highlighted

that in condition (5.13)3 the term un+1
f ·n has to be constant over Γp. Once

this fluid problem has been solved, the structure displacement is recovered
thanks to (5.11)1, that is ηn+1

s = ∆t
β0
(un+1

f ·n+ fn
s ). Equation (5.13)3−4 can

be seen as a defective Robin boundary condition and could be treated as
suggested in [41, 35, 15].

This derivation shows that the coupled FSI piston problem (5.4) can
be reinterpreted as just a fluid problem with a (defective) Robin boundary
condition. Therefore, the use of Robin boundary conditions allows us to incor-
porate the structure equation as a boundary condition for the fluid and solve
exactly the coupled problem without the need of extrapolating any term.
Equivalently, an iterative procedure as (5.10) that uses the Robin bound-
ary condition (5.13)3−4 instead of a Dirichlet one, will converge in just one
iteration.

This nice behavior is actually possible thanks to the very simple nature
of the structure problem. For more complex structural models, it will not
be possible to reduce exactly the FSI problem to just a fluid problem with
a Robin boundary condition. However, the argument used to derive (5.13)
suggests that a good Robin boundary condition for the fluid is given by

αf γ̃fvf + λ̃f = αf γ̃s
Dpη̃s

∆t
− λ̃s on Σ0, (5.14)

with

αf ≈
mξ0
∆tβ0

+ c+
k∆t

β0
, (5.15)

m, c, k being indicative mass, damping and elastic coefficients per unit area
of the structure. In the case of a thin linear elastic structure with membrane
deformation a quantitative formula for αf has been proposed in [2, 35]. Then,
an iterative procedure at each time step can be set up, in which the fluid
subproblem is solved with suitable Robin boundary conditions whereas the



Fluid-structure interaction in haemodynamics 21

structure problem is solved with Neumann boundary conditions. We name
this strategy Robin-Neumann (RN) algorithm.

The good convergence property of the RN scheme with (5.15) for FSI
problems has been confirmed by the analysis provided in [2], which high-
lights that for a model problem as the one presented in (5.1), but with a
one-dimensional elastic structure described by the generalized string model,
convergence is achieved without any relaxation (ω = 1) and with asymptotic
convergence factor σ(1) � 1 very insensitive to the ratio ρf/ρs (i.e. to the
added mass effect).

It is now possible to ask whether a Robin interface condition also for
the structure side could improve the convergence properties (Robin-Robin
scheme). Turning then our attention to Robin boundary conditions for the
structure problem and the choice of the parameter αs, a way to partially
include the fluid model as a boundary condition for the structure is provided
by equation (5.2). Indeed, from this relation and assuming negligible the
viscous fluid forces in the normal direction with respect to the pressure, we
obtain

T n+1
s ns · ns = −T n+1

f nf · ns ' −pn+1
f

'MA
DpDp

∆t2
ηn+1

s − pg =MA
β20
∆t

ηn+1
s −MAgn

s − pg,

which leads to the heuristic value αs =
β2
0

∆tMA.
However, this choice is not directly usable for complex FSI problems,

sinceMA is, in general, an operator and not just a number as in the piston
model problem. For this reason, a different strategy based on the minimiza-
tion of a reduction factor has been considered in [19]. In particular, in this
work the authors considered a two-dimensional coupled Stokes - Incompress-
ible Linear Elasticity problem defined in the whole plane and used Fourier
analysis to derive an optimized coefficient, in the spirit of the Optimized
Schwartz Methods [18]. The optimization leads to the following value

αs =
2

∆t k∗

√
ρf + µ∆t (k∗)2

(√
µ∆t k∗ +

√
ρf + µ∆t (k∗)2

)
, (5.16)

with k∗ =
√

β0ρf (
√
5−1)

2µ∆t .

6. Summary of the performances in numerical experiments

In this section, we review the performance featured by the partitioned pro-
cedures presented in this work in numerical experiments developed in some
recent works [9, 4, 2, 3, 19, 35, 34].

The naive approach presented in Algorithm 1 has shown to be slower
than the quasi-Newton methods of about 3 times [34]. However, it has shown
to be the easiest to implement in a modular way.

The Dirichlet-Neumann Richardson procedure has been usually imple-
mented with an Aitken procedure to estimate in itinere an optimal value for
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the relaxation parameter ω [9]. Experience shows that with this strategy the
convergence is always achieved both in 2D and in 3D applications. In typical
haemodynamic applications, where the density of the fluid and the structure
are comparable and the added mass of the fluid on the structure is large, the
convergence is however very slow even with the Aitken extrapolation proce-
dure. In 3D applications with real geometries, the DN-Richardson procedure
needs approximately 70 iterations per time step.

The DN-GMRes procedure introduced in [4] features a weaker sensitiv-
ity on the added mass effect than DN-Richardson iterations, and convergence
is achieved without any relaxation also in test cases on real geometries, with
about 20 iterations per time step.

Concerning the RN-Richardson procedure, 2D numerical results have
been presented in [2], where it has been highlighted that convergence is al-
ways achieved without any relaxation, independently of the ratio between
the fluid and structure densities. This performance has also been confirmed
in real 3D applications [35]. In this case, the number of coupling iterations is
approximately 10 per time step.

As for the RR-Richardson method, in [19] it has been shown that in
2D cases the use of (5.16) improves the numerical performance of about 50%
with respect to RN-Richardson (αs = 0). This procedure with such a value
of αs has shown better convergence properties also in 3D real cases [35].

The numerical results presented in [3] showed that the convergence of
the RR-GMRes strategy seems to be much less sensitive to the choice of
the Robin parameters αf and αs, than the corresponding RR-Richardson
iterations, where such parameters have to be properly tuned to obtain fast
convergence. This is a nice feature when real geometries are considered, since
the optimal value of αf for RR-Richardson should take into account the cur-
vature of the vessel, while with RR-GMRes a constant value obtained by
considering average quantities is enough to achieve good convergence prop-
erties.

Another nice feature of RR procedures is that they allow to solve with-
out any complication an enclosed fluid problem, that is a FSI problem where
Dirichlet or flow rate boundary conditions are enforced on all portions of the
fluid domain except the FS interface. Indeed, in this case, DN procedures
fail to produce an accurate solution, since the conservation of mass is not
guaranteed at each iteration. Specific treatment, such as Lagrange multipli-
ers, have to be considered to solve such problems. On the contrary, with RR
procedures this kind of problems could be solved without any modification
of the standard partitioned algorithms [3].
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[10] W.G. Dettmer and D. Perić. On the coupling between fluid flow and mesh
motion in the modelling of fluidstructure interaction. Comp. Mech., 43:81–90,
2008.

[11] J. Donea. An arbitrary Lagrangian-Eulerian finite element method for tran-
sient dynamic fluid-structure interaction. Comput. Methods Appl. Mech. En-

grg., 33:689–723, 1982.

[12] M.A. Fernández, J.F. Gerbeau, and C. Grandmont. A projection semi-implicit
scheme for the coupling of an elastic structure with an incompressible fluid.
Int. J. Num. Methods Engrg., 69(4):794–821, 2007.

[13] C. Figueroa, I. Vignon-Clementel, K. Jansen, T. Hughes, and C. Taylor. A
coupled momentum method for modeling blood flow in three-dimensional de-
formable arteries. Comput. Methods Appl. Mech. Engrg., 195:5685–5706, 2006.

[14] L. Formaggia, A. Quarteroni, and A. Veneziani (Eds.). Cardiovascular Mathe-

matics - Modeling and simulation of the circulatory system. Springer, 2009.

[15] L. Formaggia and C. Vergara. Prescription of general defective boundary con-
ditions in fluid-dynamics. MOX-Report 18-2012, Department of Mathematics,
Politecnico di Milano, Italy, 2012. submitted.

[16] C. Forster, W. Wall, and E. Ramm. Artificial added mass instabilities in se-
quential staggered coupling of nonlinear structures and incompressible viscous
flow. Comput. Methods Appl. Mech. Engrg., 196(7):1278–1293, 2007.

[17] Y.C. Fung. Biomechanics. Mechanical Properties of Living Tissues. Springer,
2nd edition, 1993.



24 F. Nobile and C. Vergara

[18] M.J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):699–
731, 2006.

[19] L. Gerardo Giorda, F. Nobile, and C. Vergara. Analysis and optimization
of robin-robin partitioned procedures in fluid-structure interaction problems.
SIAM J. Numer. Anal., 48(6):2091–2116, 2010.

[20] E. Hairer, S.P. Nørsett, and G. Wanner. Solving ordinary differential equations:

Nonstiff problems. Springer Series in Comput. Math. Springer, 1993.

[21] M. Heil. An efficient solver for the fully coupled solution of large-displacement
fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg.,
193:1–23, 2004.

[22] M. Heil, A. Hazel, and J. Boyle. Solvers for large-displacement fluidstructure
interaction problems: segregated versus monolithic approaches. Comp. Mech.,
43(1):91–101, 2008.

[23] G.A. Holzapfel, T.C. Gasser, and R.W. Ogden. A new constitutive framework
for arterial wall mechanics and a comparative study of material models. J.

Elasticity, 61:1–48, 2000.

[24] G.A. Holzapfel and R.W. Ogden. Constitutive modelling of arteries. Proc. R.

Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466(2118):1551–1596, 2010.

[25] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian
finite element formulation for incompressible viscous flows. Comput. Methods

Appl. Mech. Engrg., 29(3):329–349, 1981.

[26] C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. Matthies. Nonlinear fluid-
structure interaction problem. part i: implicit partitioned algorithm, nonlinear
stability proof and validation examples. Comput. Mech., 47:305–323, 2011.

[27] R.M. Kirby, Z. Yosibash, and G.E. Karniadakis. Towards stable coupling meth-
ods for high-order discretization of fluid-structure interaction: Algorithms and
observations. J. Comput. Physics, 223:489–518, 2007.

[28] U. Kuttler, M. Gee, Ch Forster, A Comerford, and W.A. Wall. Coupling strate-
gies for biomedical fluid-structure interaction problems. Int. J. Num. Methods

Biomed. Engrg., 26:305–321, 2010.

[29] U. Kuttler and W.A. Wall. Fixed-point fluid-structure interaction solvers with
dynamic relaxation. Comput. Mech., 43:61–72, 2008.

[30] Y. Liu, C. Charles, M. Gracia, H. Gregersen, and G. S. Kassab. Surrounding
tissues affect the passive mechanics of the vessel wall: theory and experiment.
Am. J. Physiol. Heart Circ. Physiol., 293:H3290–H3300, 2007.

[31] H.G. Matthies, R. Niekamp, and J. Steindorf. Algorithms for strong coupling
procedures. Computers & Structures, 195:2028–2049, 2006.

[32] C. Michler, E. H. van Brummelen, and R. de Borst. An interface Newton-
Krylov solver for fluid-structure interaction. Int. J. Num. Methods Fluids,
47(10-11):1189–1195, 2005.

[33] P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Tay-
lor, and J.-F. Gerbeau. External tissue support and fluidstructure simulation
in blood flows. Biomechanics and Modeling in Mechanobiology, 11(1-2):1–18,
2012.

[34] F. Nobile, M. Pozzoli, and C. Vergara. Time accurate partitioned algorithms
for the solution of fluid-structure interaction problems in haemodynamics. part
ii: The finite elasticity case. In preparation.



Fluid-structure interaction in haemodynamics 25

[35] F. Nobile, M. Pozzoli, and C. Vergara. Time accurate partitioned algorithms for
the solution of fluid-structure interaction problems in haemodynamics. MOX-
Report 30-2011, Department of Mathematics, Politecnico di Milano, Italy,
2011. submitted.

[36] K. Perktold, E. Thurner, and T. Kenner. Flow and stress characteristics in rigid
walled and compliant carotid artery bifurcation models. Medical and Biological

Engineering and Computing, 32(1):19–26, 1994.

[37] S. Piperno and C. Farhat. Design of efficient partitioned procedures for tran-
sient solution of aerolastic problems. Rev. Eur. Elements Finis, 9(6-7):655–680,
2000.

[38] A. Quarteroni and A. Valli. Numerical approximation of partial differential

equations. Springer, 1994.

[39] T.E. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B.S. Conklin, J. Pausewang,
and M. Schwaab. Modelling of fluid-structure interactions with the space-time
finite elements: arterial fluid mechanics. Int. J. Num. Methods Fluids, 54:901–
922, 2007.

[40] T.E. Tezduyar, S. Sathe, and K. Stein. Solution techniques for the fully dis-
cretized equations in computation of fluidstructure interactions with the space-
time formulations. Comput. Methods Appl. Mech. Engrg., 195(41-43):57435753,
2006.

[41] C. Vergara. Nitsches method for defective boundary value problems in incom-
pressibile fluid-dynamics. J. Sci. Comp., 46(1):100–123, 2011.

[42] R. Wulandana and A.M. Robertson. An inelastic multi-mechanism constitutive
equation for cerebral arterial tissue. Biomechanics and Modeling in Mechanobi-

ology, 4(4):235–248, 2005.

[43] H. Yang. Partitioned solvers for the fluid-structure interaction problems with
a nearly incompressible elasticity model. Comput. Visual. Sci., pages 243–267,
2012.

Fabio Nobile
MOX, Dipartimento di Matematica, Politecnico di Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy
and
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