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Prescription of general defective boundary
conditions in fluid-dynamics

Luca Formaggia and Christian Vergara

Abstract. This work reviews and extends to a more general setting some
strategies to impose defective boundary conditions to fluid-dynamic
problems investigated by the authors in the last years. We focus here
to the steady Stokes problem as a paradigm for the unsteady and non-
linear cases. We show the well posedness of the proposed approaches
and discuss their relative benefits.

Mathematics Subject Classification (2010). Primary 65N30; Secondary
76D07 .

Keywords. Defective boundary conditions, flow rate, mean pressure, in-
compressible fluids, finite elements.

1. Introduction and motivation

A major attention has been paid lately to computational tools to give answers
to medical doctors and bio-engineers on the behavior of the cardiovascular
environment (see, e.g., [10, 12, 13]). These tools usually need to compute the
blood flow in major arteries. To obtain significant patient-specific results,
two are the crucial points: i) the reconstruction of the real geometry of the
artery at hand, to build a patient-specific computational domain, and ii) the
prescription of suitable boundary conditions at the artificial sections that are
necessarily introduced when selecting the domain of interest.

This work is motivated by the second aspect, namely the problem of
the prescription of appropriate boundary conditions. Indeed, in this type
of applications usually one has at disposal only ”defective” data, typically
flow rates or mean pressure, coming either from measurements or from the
coupling with reduced models (see, for instance [12]). This leads to the need

This work has been (partially) supported by the ERC Advanced Grant N.227058 MATH-
CARD and by the Italian MIUR PRIN09 project n. 2009Y4RC3B 001.
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of prescribing on one or more sections Σ ⊂ ∂Ω a condition of the type

αρf

∫

Σ

u · n dσ +
1 − α

|Σ|

∫

Σ

(−p+ δµ (∇u n) · n) dσ = M, (1.1)

where α ∈ [0, 1] and M are given data and ρf is the fluid density, whilst δ can
assume the values 0 or 1. The first integral on (1.1) is the flow rate. As for
the second term, for δ = 0 we have the mean pressure, whilst for δ = 1 the
mean normal component of the normal stress (in the following we indicate
it simply by mean normal stress). The parameter α has been introduced to
consider a general defective boundary condition, which includes two classical
defective conditions, namely the flow rate (α = 1) and the mean pressure
or normal stress condition (α = 0). These cases have been tackled in the
context of Navier-Stokes equations in [17, 7, 3, 16] (even with fluid-structure
interaction, see [5]) and also applied to practical haemodynamic problems,
like in [19].

Here, we consider the general condition (1.1) for steady Stokes flow, since
the main characteristics of the problem may already be put into evidence in
this simplified setting. For the sake of simplicity, we also consider (1.1) applied
only on a single section of the boundary, the extension to multiple sections
being immediate.

Remark 1.1. As observed in [17, 21] for the case of the flow rate, a vecto-
rial defective boundary condition could be also considered. For the general
case, this is obtained by considering, together with condition (1.1), also the
tangential conditions

αj ρf

∫

Σ

u · τj dσ +
1 − αj

|Σ|

∫

Σ

δµ (∇u n) · τj dσ = Mj , j = 1, 2,

for suitable αj andMj . This could be the case, for example, of a coupling with
a reduced 1D model where also information about the tangential velocity is
included. However, for the sake of exposition, in what follows we focus just
on condition (1.1).

The meaning of an 0 < α < 1 is manifold. For instance in the case of
coupling with reduced models of the cardiovascular system, like the classical
Windkessel model, α may be related to the resistance R of the peripheral
flow, by the relation α = R

R+1 . Another interpretation of α could be related
to the reliability of flow rate and pressure measurements obtained on the
same section Σ. If we have both measurement at disposal we can take this
into account by weighting them in a different manner.

In this work, we review and compare four possible treatment of condition
(1.1). In particular, in Section 2, we introduce the problem, whilst in Section
3, we present four different strategies for its numerical treatment. Section 4
gives a critical comparison of the various methodologies.
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2. Preliminaries

Let Ω ⊂ R
d, d = 2, 3, be an open bounded domain with Lipschitz boundary,

and let Σ ⊂ ∂Ω a measurable and connected portion of its boundary. We
consider the following steady-Stokes problem:

Given the scalars α ∈ [0, 1] and M and the function f ∈ L2(Ω), find u ∈
V ⊂ H1(Ω) and p ∈ Q = L2(Ω), such that





µ△u + ∇p = f a.e. in Ω,
∇ · u = 0 a.e. in Ω,
u = 0 on ΓD,

µ∇un = 0 on ΓN ,

α ρf

∫
Σ

u · n dσ + 1−α
|Σ|

∫
Σ
(−p+ δµ (∇u n) · n) dσ = M,

(2.1)
where µ > 0 is the constant viscosity and ΓN and ΓD two non overlapping
portions of boundary, such that ΓN ∪ΓD ∪Σ ≡ ∂Ω. The Neumann portion of
the boundary is required to give meaning to the problem since the divergence
free constraints leads to ∫

∂Ω

u · n dσ = 0,

and the absence of a Neumann boundary would reduce (1.1) to a mean stress
condition for any value of α > 0 and would lead to a non solvable problem
for α = 1 and M 6= 0. For this reason we require here that |ΓN | > 0. This
condition is not necessary anymore if we consider more than one artificial
section where a defective condition of the type (1.1) is imposed.

Of course, problem (2.1) has not a unique solution. Among all possible
solutions, we focus on those obtained by making the following hypothesis.

Assumption 1. The normal stress on Σ is aligned with the normal direction
and it is constant over the section, that is

−pn + µ∇u n = cn on Σ, (2.2)

for a suitable c = c(α) ∈ R.

We have the following result

Lemma 2.1. Under Assumption 1, there exists a unique scalar c such that
problem (2.1) admits a unique solution, for δ = 1.

Proof. In [7] and [15] the authors have demonstrated the well posedness for
the mean stress and the flow rate condition problems, respectively (both
satisfying Assumption 1). We consider then just the case 0 < α < 1. We can
construct the two problems





−µ△u0 + ∇p0 = f a.e. in Ω,
∇ · u0 = 0 a.e. in Ω,
u0 = 0 on ΓD,

µ∇u0 n = 0 on Σ ∪ ΓN ,

(2.3)
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and 



−µ△u1 + ∇p1 = 0 a.e. in Ω,
∇ · u1 = 0 a.e. in Ω,
u1 = 0 on ΓD,

µ∇u1 n = 0 on ΓN ,

−p1n + δµ (∇u1 n) = n on Σ.

(2.4)

The solution (u, p) of (1.1) may be build by (u, p) = (u0, p0) + γ(u1, p1),

where γ =
M + (α− 1)s0 − αq0

α(q1 − 1) + 1
, having set, for i = 0, 1,

qi =

∫

Σ

ui · n dσ, and si = |Σ|−1

∫

Σ

(−pi + δµ (∇ui n) · n) dσ.

Indeed, we may verify easily that (u, p) satisfies the given problem. We only
need to ensure that α(q1−1)+1 6= 0. To do this, we write the weak formulation
of (2.4) and we take u1 as test function. We obtain

µ

∫

Ω

∇u2
1 dx −

∫

Σ

(−p1n + δµ (∇u1 n)) · u1 dσ = µ‖∇u1‖
2 −

∫

Σ

u1 · n dσ,

which leads to q1 = µ‖∇u1‖
2 > 0. This, together with 0 < α < 1, implies

α(q1 − 1) + 1 6= 0.

We observe also that the solution is unique under Assumption 1. Indeed,
by supposing that there exist two solutions (u1, p1) and (u2, p2) of problem
(2.1), we obtain that the difference (w, π) := (u2 − u1, π2 − π1) solves the
following problem





−µ△w + ∇π = 0 a.e. in Ω,
∇ · w = 0 a.e. in Ω,
w = 0 on ΓD,

µ∇wn = 0 on ΓN ,

α
∫
Σ

w · n dσ + (1 − α)(c2 − c1) = 0,

(2.5)

where we have used (2.2) with c = c1 and c = c2, respectively. Then, by
multiplying (2.5)1 by w, integrating over Ω, integrating by parts and using
Assumption 1 and condition (2.5)5, we get

µ‖∇w‖2 = −(c2 − c1)
2 1 − α

α
,

which leads to w ≡ 0 and c2 = c1.

Remark 2.2. Even if the splitting given by (2.3) and (2.4) gives us a direct
way to solve problem (2.1), this construction may be computational expensive
when we apply defective boundary conditions on more than one boundary
section. Moreover, it is not trivially extensible to the time-dependent or non-
linear problems. This justifies the search of alternative strategies, which are
described in the following sections.
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3. Variational strategies

In this Section we review four strategies in view of the numerical solution of
system (2.1). To this aim, we set

V := {v ∈ H1(Ω) : v|ΓD
= 0},

and use the following notation for scalar functions v and w, vector functions
g and h, and tensor functions A and B

(v, w) :=

∫

Ω

v w dx, (g,h) :=
∑

j

∫

Ω

gjhj dx, (A,B) :=
∑

i,j

∫

Ω

AijBij dx,

‖v‖2
Σ :=

(∫

Σ

v dσ

)2

, ‖g‖2
Σ :=

(∫

Σ

g · n dσ

)2

,

and the L2(Ω)− norms ‖ · ‖ follow as usual. We introduce also the following
bilinear forms

a(v,w) := µ

∫

Ω

∇v : ∇w dσ, b(q,v) := −

∫

Ω

q∇ · v dσ.

In view of the algebraic setting, we introduce two inf-sup compatible
finite element spaces Vh ⊂ V and Qh ⊂ Q, whose basis functions are ϕi

and ψl, respectively. We use also the following algebraic variables: Aij :=
a(ϕj ,ϕi), Bil := b(ψl,ϕi), (MΣ)ij :=

∫
Σ

ϕj · n dσ
∫
Σ

ϕi · n dσ, Fi := (f ,ϕi)

and (FΣ)i :=
∫
Σ

ϕi ·n dσ. Finally, with Ui and Pi we indicate the components
of the unknown velocity and pressure vectors.

3.1. Classical variational approach

This strategy is based on writing the weak formulation of problem (2.1) and
by exploiting Assumption 1 (see [20]). We consider first the case δ = 1. We
observe that for α ∈ [0, 1), thanks to Assumption 1, from condition (1.1) we
have

c =
M

1 − α
−

αρf

1 − α

∫

Σ

u · n dσ. (3.1)

From the momentum equation, we have, for all v ∈ V,

(∇u,∇v) − (p,∇ · v) +

∫

Σ

(pn − µ∇u n) · v dσ = (f ,v),

where we have exploited the homogeneous boundary conditions on ∂Ω \ Σ.
Then, thanks to Assumption 1, we have

(∇u,∇v) − (p,∇ · v) − c

∫

Σ

v · n dσ = (f ,v),

which leads, owing to (3.1), to the following variational formulation, holding
for α ∈ [0, 1):
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Given two scalars α ∈ [0, 1) and M and f ∈ L2(Ω), find u ∈ V and p ∈ Q

such that{
a(u,v) + b(p,v) +

α ρf

1−α

∫
Σ

u · n dσ
∫
Σ

v · n dσ = (f ,v) + M
1−α

∫
Σ

v · n dσ,

b(q,u) = 0,
(3.2)

for all v ∈ V and q ∈ Q.

Theorem 3.1. Problem given by (3.2) admits a unique solution.

Proof. By choosing ‖v‖V := ‖∇v‖, the coercivity of the bilinear form at the
left hand side of (3.2) is trivially obtained by noticing that (

∫
Σ

v · n dσ)2 ≥
0, whilst the continuity of this form and of functional at the right hand
side follows directly from the trace inequality ‖v‖Σ . ‖∇v‖ (see, e.g., [14]).
The related inf-sup condition follows also immediately by means of classical
arguments.

In the case α = 0, from problem (3.2) we obtain the so-called do-nothing

formulation, proposed in [7] for the prescription of a mean pressure condition,
given by

1

|Σ|

∫

Σ

(−p+ δ µ(∇u n) · n) dσ = M,

with δ = 0. However, as pointed out in [18], this formulation is consistent just
for the case δ = 1. In general, we notice that the case δ = 0 can not be treated
for any value of α, since it would lead to a non consistent formulation. We
also observe that with this approach is not possible to treat the case α = 1
since (3.1) does not hold anymore.

From the algebraic point of view, we obtain the following linear system
[
A+ |Σ|

α ρf

1−α
MΣ BT

B 0

] [
U

P

]
=

[
F + |Σ|M

1−α
FΣ

0

]
.

This system has the classical form of a saddle-point problem and its resolv-
ability is guaranteed by the compatibility of spaces Vh and Qh.

3.2. Augmented approach

For α > 0, we consider the following augmented system

Given f ∈ L2(Ω) and two scalars M and R, find λ ∈ R, u ∈ V and p ∈ Q,
such that 




a(u,v) + b(p,v) + λ
∫
Σ

v · n dσ = (f ,v),
b(q,u) = 0,
ψ

∫
Σ

u · n dσ − ψ 1−α
αρf

λ = ψ M
αρf

,
(3.3)

for all v ∈ V, q ∈ Q and ψ ∈ R. We observe that we have added one scalar
equation and one scalar unknown to the weak formulation of the problem. In
the next result, we show the consistency and well-posedness of system (3.3).

Proposition 3.2. System (3.3) admits a unique solution [u, p, λ] for all α > 0.
Moreover, u and p are also solution of problem (2.1) in a distributional sense.
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Proof. Rewrite system (3.3) as follows




a(u,v) + b(p,v) + c(λ,v) = (f ,v)
b(q,u) = 0

c(ψ,u) + d(λ, ψ) = 1
αρf

ψM,

where c(ψ,v) := ψ
∫
Σ

v ·n dσ and d(ψ, ζ) := − 1−α
αρf

ψζ. It is known that form

b(·, ·) satisfies an inf-sup condition on Q×H1
0(Ω), that is there exists β1 > 0

such that for all q ∈ Q, there is a v∗ ∈ H1
0(Ω) such that

b(q,v∗) ≥ β1 ‖v
∗‖H1‖q‖.

Moreover, in [16] it has been shown that the bilinear form c(ψ,v) satisfies an
inf-sup condition when v is restricted to Vdiv = {w ∈ V : b(q,w) = 0, ∀w ∈
V}, that is there exists β2 > 0 such that for all ψ ∈ R, there is a ṽ ∈ Vdiv

such that

c(ψ, ṽ) ≥ β2 ‖ṽ‖H1 |ψ|.

Now, given any q ∈ Q and ψ ∈ R different from zero, we may take v := v∗+ṽ

to have

b(q,v) + c(ψ,v) ≥ β ‖v‖V (‖q‖ + |ψ|),

where β := min{β1, β2}.
Moreover, the bilinear form d(·, ·) is always non-positive, for all α > 0.

Therefore, the existence of a unique solution of system (3.3) follows from the
general theory of saddle-point problems (see, e.g., [1]).

Take now any v ∈ D(Ω) = C∞
0 (Ω). From (3.3)1, by contro-integrating

by parts, we obtain

< −µ△u + ∇p− f ,v >= 0

by which −µ△u+∇p−f = 0 a.e. in Ω. Analogously, (3.3)2 provides ∇·u = 0

a.e. in Ω. If we take now any v ∈ C∞
0 (Ω) with v|ΓD

= 0, and exploit the
previous results, we can write (formally) that

∫

Σ∪ΓN

(µ∇u · n − pn) · v dγ + λ

∫

Σ

v · ndγ = 0,

which, thanks to Assumption 1, implies necessarily that

λ = (pn − µ∇u n) · n on Σ. (3.4)

Equality (3.4) , together with the last of (3.3), tells us that (1.1) is satisfied.

Remark 3.3. In the case α = 1 we obtain nothing but the Lagrange multipliers
approach proposed in [3] to manage a flow rate condition. In this case, the
Lagrange multiplier is λ.

Remark 3.4. By multiplying (3.3)3 by α and by taking α = 0, we obtain from
(3.3) two separate blocks, one involving [u, p] and one λ. Solving the last
equation, we obtain λ = M , which, substituted in the momentum equation,
leads to the do-nothing approach proposed in [7].
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From the algebraic point view, the augmented formulation with δ = 1
and α > 0 reads




A BT FT
Σ

B 0 0
FΣ 0 − 1−α

αρf







U

P

Λ


 =




F

0
1

αρf
M


 ,

where Λ is the approximation of λ.
In the case δ = 0, relation (3.4) still holds, so that system (3.3) for α > 0

becomes



a(u,v) + b(p,v) + λ
∫
Σ

v · n dσ = (f ,v)
b(q,u) = 0
ψ

∫
Σ

u · n dσ − ψ 1−α
|Σ|αρf

∫
Σ
µ(∇un) · n dσ − ψ 1−α

αρf
λ = ψ M

αρf
,

for all v ∈ V, q ∈ Q and ψ ∈ R, and the system looses its saddle point
structure. In this case the algebraic formulation becomes




A BT FT
Σ

B 0 0
FΣ − 1−α

αρf
G 0 − 1−α

αρf







U

P

Λ


 =




F

0
M

αρf


 ,

with Gi := 1
|Σ|

∫
Σ
µ(∇ϕi n) · n dσ.

3.3. Control-based approach

In this Section we propose to prescribe condition (1.1) through the minimiza-
tion of a suitable functional and the choice of a proper control variable, as
done in the optimal control approach for PDE’s. In particular, we generalize
here what done in [4] for the particular cases α = 0 and α = 1.

3.3.1. Minimization problem. The idea is based on Assumption 1, that is on
the existence on a unique (but unknown) scalar c which guarantees the sat-
isfaction of (1.1). Therefore, we can think to look for the constant Neumann
boundary condition k ∈ A, which plays the role of control variable, such that
the distance between the left hand side of (1.1) and the datum M is minimal
in some norm. Let A be the admissible set for the control variable, given
by A := {k ∈ R : |k| ≤ C}, for a given constant C > 0. We introduce the
following functional

J (v, q; k) :=
1

2

(
ρf α

∫

Σ

v · n dσ +
1 − α

|Σ|

∫

Σ

(−p+ δ µ(∇u n) · n)dσ −M

)2

,

and we consider the following minimization problem.

Problem 1. Given two scalars α ∈ [0, 1] and M and f ∈ L2(Ω), find u ∈
V, p ∈ Q and k ∈ A, which satisfy

min
v,q∈V×Q

J (v, q; k),

under the constraint given by the state problem
{
a(u,v) + b(p,v) + k

∫
Σ

v · n dσ = (f ,v),
b(q,u) = 0,

(3.5)
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for all v ∈ V and q ∈ Q.

We observe that functional J depends, through the solution of the state
problem, on the control variable k.

We have the following

Theorem 3.5. Under the assumption that u ∈ H2(Ω) ∩ V and p ∈ H1(Ω),
there exists at least a minimizer to the optimization Problem 1.

Proof. For a given k ∈ A, from f ∈ L2(Ω), the assumption u ∈ H2(Ω) ∩ V

and p ∈ H1(Ω) is satisfied under some restrictions on the regularity of ∂Ω,
see, e.g., [6]. In particular, the solution of the state problem depends with
continuity on the data (and in particular on k). Indeed, we have

‖u‖H2(Ω) + ‖p‖H1(Ω) . ‖f‖L2(Ω) + |k| ≤ ‖f‖L2(Ω) + C. (3.6)

Then, we can build two maps u : R → H2(Ω)∩V and p : R → H1(Ω) which,
given a scalar k, return u = u(k) and p = p(k) solutions of the state problem.
Thus we can set J (k) = J (u(k), p(k); k).

For k ∈ A, we observe that the fact that u ∈ H2(Ω) and p ∈ H1(Ω)
implies, in particular, u ·n|Σ ∈ L2(Σ), (∇un) ·n|Σ ∈ L2(Σ) and p|Σ ∈ L2(Σ).
Then J is bounded and infk∈A J (k) ∈ R, so that there exists a sequence
kn ∈ A (converging to k̄ ∈ A) such that limn→∞ J (kn) = infk∈A J (k). Since
the bound (3.6) on un := u(kn) and pn := p(kn) is independent of kn, there
exists two sub-sequences (denoted again with un and pn) weakly converging
to ū ∈ H2(Ω) in the H2 norm and to p̄ ∈ H1(Ω) in the H1 norm, respectively.
It is easy to see that ū and p̄ satisfy the state problem with k̄ as Neumann
condition on Σ.

Now, the weak convergence of un in H2(Ω) implies the strong conver-
gence in H1(Σ), which in particular implies that both un ·n and (∇un n) ·n
strongly converge in L2(Σ). In the same way, we observe that the weak con-
vergence of pn in H1(Ω) implies the strong convergence in L2(Σ). Then, we
have

J (k̄) = 1
2

(
ρf R

∫
Σ

ū · n dσ + 1
|Σ|

∫
Σ
(−p̄+ δ µ(∇ū n) · n)dσ −M

)2

=

= 1
2 limn→∞

(
ρfR

∫
Σ

u(kn) · n dσ + 1
|Σ|

∫
Σ
(−p(kn) + δµ(∇u(kn)n) · n)dσ −M

)2

≤

= limn→∞ J (kn) = infk∈A J (k),

which shows that k̄ realizes the infimum of J . This concludes the proof.

Remark 3.6. In [4], the authors provided, through a different proof, an ex-
istence result just for the case α = 0. Here we have provided a new result
which holds for all values of α.

3.3.2. First order optimality conditions. In view of the numerical solution of
Problem 1, we follow the standard Lagrange multiplier approach. By consid-
ering the Lagrangian functional, obtained by adding to J the state problem
(3.5) as a constraint, and by imposing that its gradient is zero, we obtain the
Karush-Kuhn-Tucker (KKT) conditions, formed by the state and the adjoint
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problems and by the optimality condition, as follows:

Given f ∈ L2(Ω) and two scalars M and α, find k ∈ A, u ∈ V, p ∈
L2(Ω), λu ∈ V and λp ∈ L2(Ω), such that

State pbl :

{
a(u,v) + b(p,v) + k

∫
Σ

v · n dσ = (f ,v),
b(q,u) = 0;

(3.7a)

Adj pbl :





a(v,λu) + b(λp,v)+

+
(
ρf α

∫
Σ

u · n dσ + 1−α
|Σ|

∫
Σ
δµ(∇u · n) · n dσ

)
×

×
(
ρf α

∫
Σ

v · n dσ + 1−α
|Σ|

∫
Σ
δµ(∇v · n) · n dσ

)
+

− 1−α
|Σ|

∫
Σ
p dσ

(
ρf α

∫
Σ

v · n dσ + 1−α
|Σ|

∫
Σ
δµ(∇v · n) · n dσ

)
=

= M
(
ρf α

∫
Σ

v · n dσ + 1−α
|Σ|

∫
Σ
δµ(∇v · n) · n dσ

)
,

b(q, λu)+

−
(
ρf α

∫
Σ

u · n dσ + 1−α
|Σ|

∫
Σ
δµ(∇u · n) · n dσ

)
1−α
|Σ|

∫
Σ
q dσ+

+ 1−α
|Σ|

∫
Σ
p dσ 1−α

|Σ|

∫
Σ
q dσ = −M 1−α

|Σ|

∫
Σ
q dσ;

(3.7b)

Opt. cond :

∫

Σ

λu · n dσ = 0, (3.7c)

for all v ∈ V and q ∈ Q, and where λu and λp are the Lagrange multipliers.
We remark that this formulation holds for all values of α ∈ [0, 1] and δ.

From the algebraic point of view, system (3.7) becomes




A BT 0 0 FT
Σ

B 0 0 0 0
C D A BT 0

DT (1−α)2

|Σ|2 MP
Σ B 0 0

0 0 FΣ 0 0







U

P

Λu

Λp

K




=




F

0

M
(
ρfαFΣ − 1−α

|Σ| HΣ

)

M 1−α
|Σ| FP

Σ

0



,

(3.8)

where C = ρ2
fα

2MΣ + δ
ρf α(1−α)

|Σ| (TΣ + TT
Σ ) + δ2

(1−α)2

|Σ|2 KΣ,

D = −
ρf α(1−α)

|Σ| NΣ − δ
(1−α)2

|Σ|2 SΣ, (TΣ)ij :=
∫
Σ

ϕj · n dσ
∫
Σ
µ(∇ϕi n) · n dσ,

(KΣ)ij :=
∫
Σ
µ(∇ϕj n) · n dσ

∫
Σ
µ(∇ϕi n) · n dσ,

(NΣ)il :=
∫
Σ
ψl dσ

∫
Σ

ϕi · n dσ, (SΣ)il :=
∫
Σ
ψl dσ

∫
Σ
µ(∇ϕi n) · n dσ,

(MP
Σ )lm :=

∫
Σ
ψm dσ

∫
Σ
ψl dσ, (HΣ)i :=

∫
Σ
µ(∇ϕi n)·n dσ, (FP

Σ)l :=
∫
Σ
ψl dσ,

and where (Λu)i and (Λp)i are the components of the finite element approxi-
mations of the Lagrange multipliers, and K the approximation of the control
variable k.

3.4. Approach based on the Nitsche method

The last strategy we consider has been originally proposed in [18], and it is
based on the Nitsche method [9] for general boundary conditions (see [8, 11]).

Let h < 1 be a parameter, which in the finite element setting will be a
characteristic mesh size. We first consider the case δ = 1. Then, for a given
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penalization parameter γ > 0, we introduce the following bilinear forms:

aN (u,v) = a(u,v) +
ρf α

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ

u · n dσ

∫

Σ

v · n dσ+

−
ρfαγh

1 − α(1 − ρfγh)

1

|Σ|

[∫

Σ

µ(∇un) · n dσ

∫

Σ

v · n dσ +

∫

Σ

µ(∇vn) · n dσ

∫

Σ

u · n dσ

]
+

−
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ

µ(∇u n) · n dσ

∫

Σ

µ(∇v n) · n dσ,

bN (q,v) = b(q,v) +
ρfαγ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ

q dσ

∫

Σ

v · n dσ+

+
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ

q dσ

∫

Σ

µ(∇v n) · n dσ,

cN (p, q) = −
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|

∫

Σ

p dσ

∫

Σ

q dσ,

(3.9)
and the following linear functionals:

FN (v) =

∫

Ω

f · v dx +
1 − α

1 − α(1 − ρfγ h)

1

|Σ|
M

∫

Σ

v · n dσ+

−
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|
M

∫

Σ

µ(∇v n) · n dσ+

GN (q) =
(1 − α)γ h

1 − α(1 − ρfγ h)

1

|Σ|
M

∫

Σ

q dσ.

(3.10)

We consider the following discrete problem:

Problem 2. Given f ∈ L2(Ω) and M ∈ R, find uh ∈ Vh and ph ∈ Qh such
that 




aN (uh,vh) + bN (ph,vh) = F (vh) ∀vh ∈ Vh,

bN (qh,uh) + cN (ph, qh) = G(q) ∀qh ∈ Qh.

(3.11)

We introduce the following norm

‖v‖2
h := ‖∇v‖2 +

ρfα

1 − α(1 − ρfγ h)
|v · n|2Σ, v ∈ H1(Ω). (3.12)

All the following analysis refers to norm (3.12) and to constants independent
of h and R.

Theorem 3.7. Suppose that an inf-sup condition holds for the classical Stokes
problem with the velocity field restricted to Vh ∩ H1

0(Ω), that is there exists
β > 0 such that for all q ∈ Qh, there is a v ∈ Vh ∩ H1

0(Ω) such that∫
Σ
q∇ · v dσ ≥ β‖q‖ ‖∇v‖ (this assumption holds true, for example for the

Taylor-Hood and the MINI elements, see [2]). Then, formulation (3.11) is
consistent with problem (2.1), and admits a unique solution. Moreover, the
convergence of the numerical solution towards the continuous one is optimal.
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A proof may be found in [18].
The corresponding algebraic formulation reads

[
AN (BN )T

BN CN

] [
U

P

]
=

[
FN

FP
Σ

]
,

where AN
ij := Aij +

ρf α

1−α(1−ρf γ h)
1
|Σ|MΣ,ij −

ρf α γ h

1−α(1−ρf γ h)
1
|Σ| (TΣ,ij + TΣ,ji) −

(1−α)γ h

1−α(1−ρf γ h)
1
|Σ|KΣ,ij ,

BN
il := Bil+

ρf α γ h

1−α(1−ρf γ h)
1
|Σ|NΣ,il+

(1−α)γ h

1−α(1−ρf γ h)
1
|Σ|SΣ,il, C

N
lm := − (1−α)γ h

1−α(1−ρf γ h)
1
|Σ|M

P
Σ,lm,

and
FN

i := Fi + 1−α
1−α(1−ρf γ h)

1
|Σ|MFΣ,i −

(1−α)γ h

1−α(1−ρf γ h)
1
|Σ|MHΣ,i.

In the case of δ = α = 0, in [18] it has been proposed to substitute form
aN (·, ·) and functional F (·) with

aP (u,v) := a(u,v) −
1

|Σ|

∫

Σ

µ(∇u n) · n dσ

∫

Σ

v · n dσ,

FP (v) =

∫

Σ

f · v dσ − P

∫

Σ

v · n dσ.

We observe that this formulation is consistent with problem (2.1) with δ = 0
and α = 0.

4. Conclusions

In this work we have presented different strategies to prescribe a general
defective boundary condition to the Stokes problem. In particular, we have
extended to a more general setting (α ∈ (0, 1)) the Lagrange multipliers
approach presented in [3] and the control-based approach introduced in [4].

All of such strategies have their advantages and disadvantages. First of
all, we have noticed that some of them cannot be applied in the whole range
of values of α and δ. In Table 1 we summarize the applicability of the four
different methodologies described in this work to the different cases.

α = 0 α = 0 0 < α < 1 0 < α < 1 α = 1
δ = 0 δ = 1 δ = 0 δ = 1

Classical OK OK
Augmented OK OK OK OK

Control OK OK OK OK OK
Nitsche OK OK OK OK

Table 1. Applicability of the different methods leading to
a consistent formulation.

We can notice that the control-based approach is most general but
generally is the most expensive one computationally. The Nitsche approach
is rather general and does not introduce any additional unknown, but the
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boundary condition is satisfied only approximately and needs the tuning of
the penalization parameter.

From the applicative point of view, it is also important to consider which
methods could be implemented using existing solvers without modifications
(modularity). We have not dealt this specific aspect in this work. Yet, from
our experience the Augmented and the Control approaches are the ones that
lend themselves better to a modular implementation than the others [16, 4].
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Bergamo
Viale Marconi 5
24044 Dalmine (BG)
Italy
e-mail: christian.vergara@unibg.it


	DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
	E METODI MATEMATICI°
	QUADERNI DEL DIPARTIMENTO
	COMITATO DI REDAZIONE§


