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OPTIMIZED SCHWARZ METHODS FOR THE

DIFFUSION-REACTION PROBLEM WITH CYLINDRICAL

INTERFACES ∗

GIACOMO GIGANTE† , MATTEO POZZOLI‡ , AND CHRISTIAN VERGARA§

Abstract. In this work we consider the Optimized Schwarz Method for the three-dimensional
(3D) diffusion-reaction problem. In particular, we treat the case of cylindrical interfaces between the
subdomains, and we provide for such case a convergence analysis of the Schwarz method, both in
the case of Dirichlet interface conditions and in that of general transmission conditions. This allows
to recover, for the latter case, optimal symbols for the interface conditions, which are supposed to
work well for geometries which feature cylindrical interfaces. Moreover, starting from these optimal
symbols, we propose effective and easily computable constant interface parameters, to be used in
the numerical simulations. We finally present several 3D numerical results aiming at validating the
theoretical findings.

Key words. Optimized Schwarz Method, Robin interface conditions, cylindrical coordinates,
Fourier transform.

AMS subject classifications. 65N12, 65N30, 42B37

1. Introduction. The classical Schwarz method for the numerical solution of a
partial differential equation consists in the splitting of the computational domain in
two (or even more) subdomains, with or without overlap, and in the solution of the
equation at hand in such subdomains in an iterative framework, through the exchange
at the interface of the trace of the solution. It is known that this method features a
slow convergence in general and does not converge without overlap [4, 22, 24], unless
a non-conforming discretization is employed [2, 3, 7]. For this reason, Lions intro-
duced different transmission conditions, of Robin type, which allowed to improve the
convergence properties and to reach converge also without overlap [16]. Successively,
this method has been generalized by considering general, more performing interface
conditions, involving non-local transmission operators (generalized Schwarz method,
see, e.g., [5, 19]).

The choice of suitable parameters in such operators is crucial to guarantee good
convergence properties. This is usually driven by the minimization of the reduction
factor related to the iterations (Optimized Schwarz Method). To obtain the reduction
factor usually the Fourier transform is applied to some variables leading to ordinary
differential equations [13]. This optimization strategy has been applied to a great
variety of problems. We cite, for example, the advection-reaction-diffusion problem
[8, 14], the Helmholtz equation [11, 18], the coupling of heterogeneous media [9, 10,
17], the shallow-water equations [21], the Maxwell’s equations [6], the fluid-structure
interaction (FSI) problem [12] and the scattering problem [23].

∗This work has been partially supported by the ERC Advanced Grant N.227058 MATHCARD
and by the Italian MIUR PRIN09 project n. 2009Y4RC3B 001. The numerical simulations have
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2 G. GIGANTE, M. POZZOLI, C. VERGARA

The convergence and optimization analyses performed in such works have been
obtained mainly for two-dimensional (2D) domains. In [6] a three-dimensional (3D)
optimization procedure has been proposed for the Maxwell’s equations. In any case,
to the best of the authors’ knowledge, all these analyses have been performed for
flat interfaces among subdomains. Although the optimized parameters derived from
such optimization procedures have been shown to be effective in some context also
for numerical simulations with curve interfaces (see for example [20] for FSI), a 3D
optimization procedure which exploits the particular configuration of the computa-
tional domain could allow to compute more efficient parameters, speeding up the
convergence of the numerical scheme.

The goal of this paper is to perform, for the diffusion-reaction problem, new
3D convergence analyses and optimization procedures for parameters involved in the
transmission conditions. We firstly consider the case of the whole space R

3 divided in
two overlapping subdomains, with the overlapping region delimited by two flat paral-
lel surfaces (used in [6] for the Maxwell’s equations). For this reason, we refer to these
cases as “flat” analysis and “flat” optimization procedure. Then, we move towards
a different case, where the interfaces delimiting the overlapping region are curve and
the problem features a cylindrical symmetry. We perform for this case a convergence
analysis of the classical and of the generalized Schwarz methods (“cylindrical” analy-

sis), which show that without overlap the classical Schwarz method does not converge,
while the generalized Schwarz method converges. Moreover, such analyses show that
in the case with overlap, the generalized Schwarz method converges faster than the
classical one, provided that the symbols in the transmission conditions are suitably
chosen.

For the generalized Schwarz method, we look also for optimal values of the pa-
rameters involved in the transmission conditions (flat and cylindrical optimizations).
The hope is to find optimal parameters which could be effective for problems solved
in domains characterized by a cylindrical symmetry. The optimization procedures
show that in the “flat” case the same parameters of the 2D analysis are recovered.
Viceversa, for curve interfaces the optimization procedure leads to new optimized
parameters, which are supposed to work better in presence of a cylindrical symme-
try. To prove this, we performed several numerical experiments which confirmed the
theoretical findings.

The outline of the paper is as follows. In Section 2 we present the 3D “flat”
optimization procedure. In Section 3.1 we show the 3D convergence analysis of the
classical Schwarz method for the case of cylindrical interfaces, while in Section 3.2
we do the same for the generalized Schwarz algorithm. In Section 4 we perform the
optimization procedure based on the minimization of the reduction factor found in
Section 3.2. Finally, in Section 5 we show the numerical results obtained by 3D
numerical experiments.

2. A flat 3D convergence analysis and optimization. In this paper, we
consider the diffusion-reaction model problem

−4u+ ηu = f x ∈ Ω ≡ R
3, η > 0, (2.1)

for a given function f and where the solution u is required to be continuous and to
decay at infinity.

In this section we consider Ω subdivided into the two overlapping subdomains [6]

Ω1 = (−∞, L)× R
2, Ω2 = (0,∞)× R

2,



OPTIMIZED SCHWARZ METHODS FOR CURVE INTERFACES 3

for L ≥ 0, and we consider the 3D extension of the 2D analyses performed so far in the
context of the Optimized Schwarz Methods [8]. We consider directly the generalized
Schwarz method, where the transmission interface conditions are of type

(
Sj +

∂

∂x

)
uj(x̃, y, z) = Pj(x̃, y, z), j = 1, 2,

for suitable linear operators Sj , j = 1, 2, along the interfaces x = x̃, with x̃ = L and
x̃ = 0, respectively, and suitable right hand sides Pj , j = 1, 2. Then, the generalized
Gauss-Seidel-Schwarz method at iteration n reads as follows

{
(η −∆)un

1 = f in Ω1,(
S1 + ∂

∂x

)
un

1 (L, y, z) =
(
S1 + ∂

∂x

)
un−1

2 (L, y, z) (y, z) ∈ R
2,

{
(η −∆)un

2 = f in Ω2,(
S2 + ∂

∂x

)
un

2 (0, y, z) =
(
S2 + ∂

∂x

)
un

1 (0, y, z) (y, z) ∈ R
2,

(2.2)

and we require the iterates to decay at infinity.
The convergence analysis of the previous algorithm is performed in the homoge-

neous case due to the linearity of the problem. Therefore, we set, here and elsewhere,
f = 0. The analysis is based on the Fourier transform F in the variables y and z,

ĝ (x, s, k) = F(g) :=

∫ +∞

−∞

∫ +∞

−∞
g (x, y, z) e−isy e−ikz dy dz, (2.3)

where s, k ∈ R are the coordinates in the frequency domain.
We have the following result.
Proposition 1. The reduction factor ρflat related to iterations (2.2) is given by

ρflat (s, k) =
(σ1 − β) (σ2 + β)

(σ1 + β) (σ2 − β)
e−2βL, (2.4)

where β =
√

(s2 + k2) + η and σj(s, k), j = 1, 2, denote the symbols of Sj , j = 1, 2.
Proof. Applying the Fourier transform (2.3) to iterations (2.2), we obtain





β2û1
n − ∂2

∂x2 û1
n

= 0 in Ω1,

(
σ1 + ∂

∂x

)
û1

n
(L, s, k) =

(
σ1 + ∂

∂x

)
û2

n−1
(L, s, k) (s, k) ∈ R

2,





β2û2
n − ∂2

∂x2 û2
n

= 0 in Ω2,

(
σ2 + ∂

∂x

)
û2

n
(0, s, k) =

(
σ2 + ∂

∂x

)
û2

n
(0, s, k) (s, k) ∈ R

2.

The solutions of these ordinary differential equations (ODE’s) in the variable x are of
type

Aeβx +Be−βx.

Now, by using the conditions at infinity, the transmission conditions and by proceeding
as in the 2D case (see, e.g., [8]), we obtain precisely (2.4).

We observe that the expression of the reduction factor (2.4) has exactly the same
expression as in the 2D case, where k2 is replaced by s2 + k2. This means that when
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Fig. 3.1. Computational overlapping subdomains Ω1 and Ω2.

the interface is flat, the usual optimized choices of the symbols σ1 and σ2 derived by
a 2D analysis [8] should work just as well in the 3D case as they do in the 2D case.
In particular, in 3D the optimal values are

σflat
1,opt =

√
(s2 + k2) + η, σflat

2,opt = −
√

(s2 + k2) + η,

which annihilate ρflat independently of the overlap L and of the frequencies s and k.

3. Convergence of the Schwarz algorithm for cylindrical interfaces. Due
to the result of the previous section, it is reasonable to ask whether an optimization
procedure related to different interface configurations could lead to different optimal
values of σj , j = 1, 2.

With this aim, in this section we discuss the case where the interfaces are con-
centric cylindrical surfaces and we exploit the cylindrical symmetry (see Figure 3.1).
Therefore, we consider again problem (2.1), but Ω in this case is decomposed into the
two overlapping subdomains

Ω1 := {r < b, ϕ ∈ [0, 2π), z ∈ R}, Ω2 := {r > a, ϕ ∈ [0, 2π), z ∈ R},
where 0 < a ≤ b are two given scalars. Due to the cylindrical symmetry of the
subdomains, we have introduced the cylindrical coordinates (r, ϕ, z), representing the
distance from the z−axis, the angle and the height, respectively, and such that





x = r cosϕ
y = r sinϕ
z = z,

(see Figure 3.1). We then rewrite the Laplacian with respect to these coordinates as
follows

∆cyl =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r

∂2

∂ϕ2
+

∂2

∂z2
.
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In the next subsection, we discuss the case of the classical Schwarz method, while
in subsection 3.2 we discuss the generalized Schwarz method.

3.1. The classical Schwarz algorithm. The classical Gauss-Seidel-Schwarz
method for the problem at hand at iteration n is given by





(η −∆cyl)u
n
1 = f in Ω1,

un
1 (b, ϕ, z) = un−1

2 (b, ϕ, z) (ϕ, z) ∈ [0, 2π)× R,∫∞
−∞

∫ 2π

0
|un

1 (r, ϕ, z)|dϕdz bounded as r → 0+,

un
1 = 0 in {z = ±∞, r ≤ b} ;





(η −∆cyl)u
n
2 = f in Ω2,

un
2 (a, ϕ, z) = un

1 (a, ϕ, z) (ϕ, z) ∈ [0, 2π)× R,
un

2 = 0 in {r = +∞} ∪ {z = ±∞, r ≥ a} .

(3.1)

The analysis is based on the Fourier transform Fcyl in the cylindrical variables ϕ and
z, given by

ĝ (r,m, k) = Fcyl(g) :=

∫ +∞

−∞

∫ 2π

0

g (r, ϕ, z) e−imϕ dϕ e−izk dz, (3.2)

where m ∈ Z and k ∈ R are the coordinates in the frequency domain. We observe
that hypothesis (3.1)3 has been made in order to guarantee that the Fourier transform
û1 is bounded for any m and k as r → 0+.

We have the following result.
Proposition 2. The reduction factor ρcyl

cla related to iterations (3.1) is given by

ρcyl
cla(m, k) =

Im(αa)

Im(αb)

Km(αb)

Km(αa)
, (3.3)

where

α =
√
k2 + η, (3.4)

and Im and Km are the Bessel functions of imaginary argument (modified Bessel
functions, see the Appendix).

Proof. Applying the Fourier transform (3.2) to iterations (3.1), we obtain the
following ODE’s

η ûj
n − 1

r

∂

∂r

(
r
∂ûj

n

∂r

)
+

1

r2
m2ûj

n + k2ûj
n = 0 j = 1, 2,

where ûj = ûj (r,m, k) , j = 1, 2, are the Fourier transforms of uj (r, ϕ, z) , j = 1, 2, in
the variables ϕ, z as in (3.2). Therefore, each of the two equations in (3.1) becomes

(
r2
∂2

∂r2
+ r

∂

∂r
−

(
m2 + r2(k2 + η)

))
ûj

n = 0.

These are essentially modified Bessel equations (see (5.1)), whose solutions in (0,+∞)
are

AIm (αr) +BKm (αr) ,
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for suitable coefficients A and B and where α is given by (3.4).
Our assumptions on the behaviour of un

1 (r, ϕ, z) as r → 0+ and of un
2 (r, ϕ, z) as

r → +∞, and the monotonicity of the modified Bessel functions (see Figure 5.4), give

û1
n

(r,m, k) = An (m, k) Im (αr) ,

û2
n

(r,m, k) = Bn (m, k)Km (αr) ,

for suitable functions An and Bn, which are determined by the interface conditions

û1
n
(b, ·, ·) = û2

n−1
(b, ·, ·),

û2
n
(a, ·, ·) = û1

n
(a, ·, ·). (3.5)

From the first of (3.5) we obtain

An (m, k) Im (αb) = û2
n−1

(b,m, k).

Therefore, we have

An (m, k) =
û2

n−1
(b,m, k)

Im (αb)
,

and the solution û1
n

is then given by

û1
n
(r,m, k) =

Im (αr)

Im (αb)
û2

n−1
(b,m, k).

Analogously, we obtain

û2
n
(r,m, k) =

Km (αr)

Km (αa)
û1

n
(a,m, k).

Therefore, by evaluating û1
n
(r,m, k) for r = a and û2

n
(r,m, k) for r = b, we obtain

û2
n
(b,m, k) =

Im (αa)

Im (αb)

Km (αb)

Km (αa)
û2

n−1
(b,m, k),

which concludes the proof.
Remark 1. In the case of a vanishing overlap (a = b), from (3.3) we obtain

ρcyl
cla = 1, that is the classical Schwarz method does not converge. Viceversa, by ex-

ploiting the properties of the modified Bessel functions (see Figure 5.4), for a < b

we obtain Im(a) < Im(b) and Km(a) > Km(b), ∀m, so that ρcyl
cla < 1. Therefore,

the classical Schwarz method converges in presence of an overlap, and the conver-
gence is faster for increasing overlaps. These observations confirm qualitatively the
convergence properties of the classical Schwarz algorithm for the “flat” case.

3.2. The generalized Schwarz algorithm. We consider here the generalized
Gauss-Seidel-Schwarz algorithm, given by




(η −∆cyl)u
n
1 = f in Ω1,(

S1 + ∂
∂r

)
un

1 (b, ϕ, z) =
(
S1 + ∂

∂r

)
un−1

2 (b, ϕ, z) (ϕ, z) ∈ [0, 2π)× R,∫∞
−∞

∫ 2π

0
|un

1 (r, ϕ, z)|dϕdz bounded as r → 0+,

un
1 = 0 in {z = ±∞, r ≤ b} ;





(η −∆cyl)u
n
2 = f in Ω2,(

S2 + ∂
∂r

)
un

2 (a, ϕ, z) =
(
S2 + ∂

∂r

)
un

1 (a, ϕ, z) (ϕ, z) ∈ [0, 2π)× R,
un

2 = 0 in {r = +∞} ∪ {z = ±∞, r ≥ a} .
(3.6)
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We have the following result.
Proposition 3. The reduction factor ρcyl related to iterations (3.6) is given by

ρcyl(m, k) =
I2 (a,m, k)

K2 (a,m, k)

K1 (b,m, k)

I1 (b,m, k)
, (3.7)

where

I1 (r,m, k) := σ1 (m, k) Im (αr) + αI ′m (αr) ,

I2 (r,m, k) := σ2 (m, k) Im (αr) + αI ′m (αr) ,

K1 (r,m, k) := σ1 (m, k)Km (αr) + αK ′m (αr) ,

K2 (r,m, k) := σ2 (m, k)Km (αr) + αK ′m (αr) ,

and α is given by (3.4).
Proof. By applying the Fourier transform (3.2) to iterations (3.6) we obtain again

solutions of type

û1
n

(r,m, k) = An (m, k) Im (αr) ,

û2
n

(r,m, k) = Bn (m, k)Km (αr) ,

for suitable functions An and Bn, which, in this case, are determined by the interface
conditions





(
σ1 + ∂

∂r

)
û1

n
(b, ·, ·) =

(
σ1 + ∂

∂r

)
û2

n−1
(b, ·, ·) ,

(
σ2 + ∂

∂r

)
û2

n
(a, ·, ·) =

(
σ2 + ∂

∂r

)
û1

n
(a, ·, ·) .

(3.8)

By observing that

∂û1
n

∂r
= AnαI

′
m(αr),

∂û2
n

∂r
= BnαK

′
m(αr),

we obtain from the interface condition (3.8)1

σ1AnIm(αb) +AnαI
′
m(αb) = σ1Bn−1Km(αb) +Bn−1αK

′
m(αb),

and then

An =
σ1Km(αb) + αK ′m(αb)

σ1Im(αb) + αI ′m(αb)
Bn−1.

Analogously, from the second of (3.8), we obtain

Bn =
σ2Im(αa) + αI ′m(αa)

σ2Km(αa) + αK ′m(αa)
An,

so that we find a recursive formula for Bn which reads

Bn = ρcylBn−1,

with ρcyl given by (3.7). This concludes the proof.
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We have the following result, which is the counterpart for cylindrical interfaces of
that in Theorem 4.1 in [8] for flat interfaces.

Proposition 4. The generalized Schwarz method (3.6) converges faster than the
classical Schwarz method (3.1), provided that

σ1 > − 1
2α

(
I′

m
(αb)

Im(αb) +
K′

m
(αb)

Km(αb)

)
,

σ2 < − 1
2α

(
I′

m
(αa)

Im(αa) +
K′

m
(αa)

Km(αa)

)
.

(3.9)

Proof. The reduction factor (3.7) reads

ρcyl (m, k) =
σ1Km(αb) + αK ′m(αb)

σ1Im(αb) + αI ′m(αb)

σ2Im(αa) + αI ′m(αa)

σ2Km(αa) + αK ′m(αa)
=

=
σ1 +

αK′

m
(αb)

Km(αb)

σ1 +
αI′

m
(αb)

Im(αb)

σ2 +
αI′

m
(αa)

Im(αa)

σ2 +
αK′

m
(αa)

Km(αa)

· Km(αb) Im(αa)

Im(αb)Km(αa)
=

=
σ1 +

αK′

m
(αb)

Km(αb)

σ1 +
αI′

m
(αb)

Im(αb)

σ2 +
αI′

m
(αa)

Im(αa)

σ2 +
αK′

m
(αa)

Km(αa)

· ρcyl
cla (m, k) ,

where in the last equality we have exploited the definition of the convergence factor
(3.3) of the classical Schwarz method. We have than to prove that

∣∣∣∣∣∣

σ1 +
αK′

m
(αb)

Km(αb)

σ1 +
αI′

m
(αb)

Im(αb)

σ2 +
αI′

m
(αa)

Im(αa)

σ2 +
αK′

m
(αa)

Km(αa)

∣∣∣∣∣∣
< 1, (3.10)

for any m, k. Condition (3.10) follows for example if the two factors are both less
than 1, that is for

∣∣∣∣∣∣

σ1 +
αK′

m
(αb)

Km(αb)

σ1 +
αI′

m
(αb)

Im(αb)

∣∣∣∣∣∣
< 1 and

∣∣∣∣∣∣

σ2 +
αI′

m
(αa)

Im(αa)

σ2 +
αK′

m
(αa)

Km(αa)

∣∣∣∣∣∣
< 1.

Since −αI′

m
(αb)

Im(αb) < 0 < −αK′

m
(αb)

Km(αb) , the first inequality follows when condition (3.9)1
holds. Analogous arguments hold for the second factor in (3.10), which is less than 1
when condition (3.9)2 holds. This concludes the proof.

4. 3D Optimization for cylindrical interfaces. From the expression of the
reduction factor (3.7), we find that the optimal choices of σ1 and σ2 are those which
annihilate K1 (b,m, k) and I2 (a,m, k), and therefore ρcyl, that is

σcyl
1,opt (m, k) = −αK

′
m (αb)

Km (αb)
> 0,

σcyl
2,opt (m, k) = −αI

′
m (αa)

Im (αa)
< 0.

(4.1)

Obviously, such symbols satisfy hypotheses (3.9) which guarantee an improvement of
the performance with respect to the classical Schwarz algorithm.

Symbols (4.1) give operators S1 and S2 that are difficult to use numerically. Thus,
we assume, in this first analysis, that the frequencies of the solution are concentrated
close to k = k0 and m = m0, so that we can take symbols close to the above optimal
choice, but easier to handle.



OPTIMIZED SCHWARZ METHODS FOR CURVE INTERFACES 9

4.1. Constant approximations for localized frequencies. From the opti-
mal symbols (4.1), we easily obtain that suitable constant approximation values are
given by evaluating them for k = k0 and m = m0, obtaining

σcyl
1,T0(m0, k0) = −

√
k2
0 + η

K′

m0

“√
k2

0
+η b

”

Km0

“√
k2

0
+η b

” ,

σcyl
2,T0(m0, k0) = −

√
k2
0 + η

I′

m0

“√
k2

0
+η a

”

Im0

“√
k2

0
+η a

” .

(4.2)

It is reasonable to think that this choice of symbols gives a faster convergence for
initial data of the form g (ϕ, z) = y (z) eim0ϕ, where y has frequencies close to k0.
Indeed, notice that

ĝ (m, k) =

{
0 if m 6= m0

2πŷ (k) if m = m0.

The corresponding Optimized Schwarz Method has the following convergence factor

ρcyl
T0(m, k,m0, k0) =

−
√
k2
0 + η

I′

m0

“√
k2

0
+η a

”

Im0

“√
k2

0
+η a

”Im(αa) + α I ′m(αa)

−
√
k2
0 + η

I′

m0

“√
k2

0
+η a

”

Im0

“√
k2

0
+η a

”Km(αa) + αK ′m(αa)

× (4.3)

×
−
√
k2
0 + η

K′

m0

“√
k2

0
+η b

”

Km0

“√
k2

0
+η b

”Km(αb) + αK ′m(αb)

−
√
k2
0 + η

K′

m0

“√
k2

0
+η b

”

Km0

“√
k2

0
+η b

”Im(αb) + α I ′m(αb)

.

Remark 2. The constant optimal values (4.2) are different from those derived
by the “flat” analysis, that is

σflat
1,T0(s0, k0) =

√
(s20 + k2

0) + η, σflat
2,T0(s0, k0) = −

√
(s20 + k2

0) + η, (4.4)

for suitable s0 and k0. Then, the hope is that the new constant optimized values (4.2)
improve the convergence in those cases characterized by curve interfaces and by a
cylindrical symmetry.

We observe that, as for the flat case, after discretization the maximum frequency
k is π/h, where h is the space discretization parameter [8]. Assume that the overlap
in the classical Schwarz method is b− a = O(h). We have then the following result.

Proposition 5. Suppose that the solution is independent of ϕ, so that its only
non-vanishing frequencies are those with m = 0. Then the reduction factor (3.3) of
the classical Schwarz method, as h goes to zero, has the following asymptotic behaviour

max
|k|≤kmax

|ρcyl
cla(0, k)| = |ρcyl

cla(0, 0)| = 1−√η
(
K1(

√
ηa)

K0(
√
ηa)

+
I1(
√
ηa)

I0(
√
ηa)

)
h+O(h2). (4.5)

As for the Optimized Schwarz Method with constant approximations of the symbols in
the transmission conditions and without overlap, the reduction factor (4.3) computed
for k0 = m0 = 0, as h goes to zero, behaves as

max
|k|≤kmax

|ρcyl
T0 (0, k, 0, 0)| = |ρcyl

T0 (0, kmax, 0, 0)| = 1−2
√
η

π

(
K1(

√
ηa)

K0(
√
ηa)

+
I1(
√
ηa)

I0(
√
ηa)

)
h+O(h2).
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Proof. As for the first result, we start from (3.3) and we evaluate it for m = 0,
obtaining

ρcyl
cla(0, k) =

I0(αa)

I0(αb)

K0(αb)

K0(αa)
. (4.6)

We consider the first factor and we study when it is a decreasing function of k ≥ 0.
This happens when its derivative with respect to α is less than zero (remember that

α =
√
k2 + η), that is when

a I ′o(αa) Io(αb)− b Io(αa) I ′o(αb)
I2
0 (αb)

< 0.

This leads to condition

a I ′0(αa)

I0(αa)
<
b I ′0(αb)

I0(αb)
,

(remember that I0(x) > 0 for any x ≥ 0). The latter condition happens if and only if
the function ψ(z) := zI ′0(z)/I0(z) is increasing. Taking the derivative of ψ we obtain
condition

(
I ′0(z) + zI

′′

0 (z)
)
I0(z)− z(I ′0(z))2

I2
0 (z)

> 0. (4.7)

Recalling that I0 satisfies the modified Bessel equation (5.1)

u′′ +
1

z
u′ − u = 0,

we have

z I0(z)
′′ + I ′0(z) = z I0(z),

which, substituted in condition (4.7), gives

z

(
1−

(
I ′0(z)

I0(z)

)2
)
> 0.

Since 0 ≤ I ′0(z) = I1(z) < I0(z), we have that the last inequality is always satisfied,
and we conclude that the first factor in (4.6) is a decreasing function of α (and then
of k). A similar argument holds for the second factor, so that we obtain that the
reduction factor (4.6) is a decreasing function of k ≥ 0. Therefore, it attains its
maximum for k = 0. Then, by evaluating (4.6) for k = 0 and for b = a + h and by
using (5.3), the Taylor expansion for h small leads to (4.5).

As for the second result, we start from (4.3) with a = b and we compute it for
k0 = m0 = 0. By evaluating this function for m = 0, we obtain thanks to (5.3)

ρcyl
T0(0, k, 0, 0) =

−σ̃2I0(aα) + α I1(aα)

σ̃1I0(aα) + α I1(aα)

−σ̃1K0(aα) + αK1(aα)

σ̃2K0(aα) + αK1(aα)
, (4.8)
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where σ̃1 = σcyl
1,T0(0, 0) = −√η K′

0(a
√

η)
K0(a

√
η)
> 0 and σ̃2 = −σcyl

2,T0(0, 0) =
√
η

I′

0(a
√

η)
I0(a

√
η)
> 0

(see (4.2)). It is possible to see that function ρcyl
T0(0, k, 0, 0) is increasing in k. Indeed,

observe that the derivative with respect to α of the first factor

d

dα

(−σ̃2I0(aα) + αI1(aα)

σ̃1I0(aα) + αI1(aα)

)
=

(σ̃1 + σ̂2)(I0(aα))2

(σ̃1I0(aα) + αI1(aα))2
d

dα

(
αI1(aα)

I0(aα)

)

is positive, since the function αI1(aα)
I0(aα) =

αI′

0
(aα)

I0(aα) is increasing in α, as proved above.

A similar argument shows that the second factor in (4.8) is increasing in α too. It

follows that the maximum of ρcyl
T0(0, k, 0, 0) is reached for k = kmax = π/h. When h is

small, then αmax :=
√
η + k2

max =
√
η + π2/h2 = π/h+ O(h) is large and, from the

asymptotic behaviour near infinity of the modified Bessel functions [1, 15]

Im(x) =
ex

√
2πx

(
1− 4m2 − 1

8x
+O

(
1

x2

))
,

Km(x) =

√
π

2x
e−x

(
1 +

4m2 − 1

8x
+O

(
1

x2

))
,

as x→ +∞, it follows that

max|k|≤kmax
|ρcyl

T0 (0, k, 0, 0)| = |ρcyl
T0(0, kmax, 0, 0)| =

=

∣∣∣∣∣∣

−σ̃2

(
1 + 1

8aαmax

+O
(

1
α2

max

))
+ αmax

(
1− 3

8aαmax

+O
(

1
α2

max

))

σ̃1

(
1 + 1

8aαmax

+O
(

1
α2

max

))
+ αmax

(
1− 3

8aαmax

+O
(

1
α2

max

))

∣∣∣∣∣∣
×

×

∣∣∣∣∣∣

−σ̃1

(
1− 1

8aαmax

+O
(

1
α2

max

))
+ αmax

(
1 + 3

8aαmax

+O
(

1
α2

max

))

σ̃2

(
1− 1

8aαmax

+O
(

1
α2

max

))
+ αmax

(
1 + 3

8aαmax

+O
(

1
α2

max

))

∣∣∣∣∣∣
=

= 1− 2(σ̃1 + σ̃2)

αmax
+O

(
1

α2
max

)
=

= 1− 2(σ̃1 + σ̃2)

π
h+O

(
h2

)
, as h→ 0,

and the thesis follows.

The previous result shows that the asymptotic performance of the classical Schwarz
method with overlap of the order of the space discretization parameter is the same
of the generalized Schwarz method with optimized constant parameters in the trans-
mission conditions without overlap. This result could be seen as the counterpart for
cylindrical interfaces of that obtained for the flat case (see Theorem 4.2 in [8]).

4.2. Second order approximations. We look here for optimal second order
approximations of type

σcyl
1,app = p1 + q1k

2, σcyl
2,app = −p2 − q2k2,

for p1, p2, q1, q2 ∈ R
+. Such approximations come out for example from the Taylor

expansion with respect to k of σcyl
1,opt (m0, k) and σcyl

2,opt (m0, k) in (4.1) to the second
order and centered in k = k0. For simplicity reasons, let us take k0 = m0 = 0. We
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obtain the following values (see the Appendix for the calculations)

σcyl
1,T2 (k) =

√
η

K1(
√

ηb)
K0(

√
ηb)

+ b
2

((
K1(

√
ηb)

K0(
√

ηb)

)2

− 1

)
k2,

σcyl
2,T2 (k) = −√η I1(

√
ηa)

I0(
√

ηa)
− a

2

(
1−

(
I1(
√

ηa)
I0(
√

ηa)

)2
)
k2.

(4.9)

In Figures 4.1 we report the values of different reduction factors as a function of
the frequency k, for η = 1, a = 0.495 and b = 0.5. In particular, we have considered
the reduction factor (3.3) for the classical Schwarz method and the reduction factor
(4.3) for the generalized Schwarz method obtained with optimal constant choices of
the interface symbols. We observe that quantity (4.3) depends on the frequencies
k0 and m0 chosen to compute the constant optimal interface symbols. To highlight
the dependence of such quantity on this choice, we considered three cases, namely
m0 = 0 (figures at top), m0 = 1 (figure at middle), and m0 = 10 (figure at bottom).
Since we did not experience significant qualitative differences among different choices
of k0, in all the depicted figures we considered only the case k0 = 0. For the upper
case (m0 = 0) we considered also the reduction factor (3.7) with symbols given by
(4.9), corresponding to the optimal second order interface approximations. Moreover,
we observe that the reduction factors (3.3) and (4.3) are functions of the discrete
frequency m. For this reason, we considered, for each case, three values of m, namely
m = 0 (figures at the left), m = 1 (figure at the middle), and m = 10 (figures at the
right).

From these figures we observe that in all the cases the classical Schwarz method
is slower than the Optimized Schwarz Method, for any frequency k and m. Figures at
top highlighted also that the second order approximations (4.9) reduce significantly
the reduction factor with respect to the constant approximations.

Remark 3. In this work we considered second order optimized terms with respect
to the variable k solely. The investigation of second order approximations with respect
to the variable m too is under study, so that we do not consider this case here.

5. Numerical results. In this section we present some numerical results ob-
tained by two 3D numerical experiments, aiming at validating the theoretical results
of previous sections.

In all the simulations we have considered no overlap, we have denoted the common
interface by Σ and, if not otherwise specified, we have set η = 1. As stopping criterion
we considered

‖un
1 − un

2‖L2(Σ) +

∥∥∥∥
∂un

1

∂r
− ∂un

2

∂r

∥∥∥∥
L2(Σ)

< ε,

where ε = 10−5 is the given tolerance and where the regularity of the forcing terms
guarantees that the exact solution u ∈ H2(Ω), so that all the norms in the criterion
make sense.

All the numerical simulations have been performed by implementing the classical
and the generalized Schwarz methods in the parallel Finite Element library LIFEV

(www.lifev.org), developed at MOX, Politecnico di Milano, at CMCS, EPF de Lau-
sanne, at INRIA in Paris, at Emory University.
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Fig. 4.1. Different reduction factors ρ as a function of the frequency k. In all the cases k0 = 0
has been considered. The reduction factor (4.3) has been computed for m0 = 0, up, m0 = 1, middle,
and m0 = 10, bottom. For the discrete frequency we considered m = 0 (left), m = 1 (middle), and
m = 10 (right).

5.1. A test with flat interface. In the first numerical experiment, we want to
investigate the convergence behaviour of the optimal values obtained in the analysis
with cylindrical interfaces when applied to a case with a flat interface. To this aim, we
considered as computational subdomains the two cubes Ω1 = [−0.5, 0.5]×[−0.5, 0.5]×
[0, 1] and Ω2 = [−0.5, 0.5]×[−0.5, 0.5]×[1, 2], with interface given by Σ = Ω1∩{z = 1},
see Figure 5.1, and we investigated the effectiveness of the constant optimal interface
parameters (4.2) by varying the value of a. We set f = 0, so that the exact solution
is u = 0, and then we evaluated the constant parameters (4.2) for k0 = m0 = 0. As
initial guess, we set





u0
2 =

(
(1− 4x2)(1− 4y2)

)3
on Σ,

∂u0
2

∂n
= 0 on Σ.

In Table 5.1 we report the values of the constant parameters used in the numerical
simulations for different values of a, and the related number of iterations needed to
reach convergence. From these results, we observe that the best performance has been
obtained for a = +∞. This is not surprising, since in this test we are considering a
flat interface, so that the best optimal constant interface parameters are supposed to
be those obtained from the flat analysis. This is exactly the case a = b = +∞, for
which the optimal constant interface parameters (4.2) coincide with (4.4) for s0 = 0.

5.2. A test with curve interface and cylindrical symmetry. In the second
numerical test, we aimed at investigating the performance of the optimized parameters
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Fig. 5.1. Computational subdomains for the test with flat interface.

σ/a 0.1 1 10 +∞
σcyl

1,T0 4.06 1.43 1.05 1.00

σcyl
2,T0 -0.05 -0.45 -0.95 -1.00

# iter 203 91 86 81
Table 5.1

Values of the constant interface parameters for different values of a. η = 1.

derived by the cylindrical analysis for a case characterized by a cylindrical symmetry
and without overlap. In particular, the computational subdomains are given by Ω1 =
(r, ϕ, z) = [0, a] × [0, 2π) × [0, L] and Ω2 = (r, ϕ, z) = [a,R] × [0, 2π) × [0, L], with
a = 0.5, L = 5 and R = 1, see Figure 5.2. The values of the transmission conditions
are the constant optimized values given by (4.4) and (4.2).

5.2.1. Varying η. In the first simulation, we set again f = u = 0, and we
investigated the performance of (4.4) and (4.2) with k0 = s0 = m0 = 0 for different
values of η.

In Table 5.2 we reported the constant optimized values used in the numerical
simulations, while in Table 5.3 we reported the number of iterations needed to reach
convergence. In Figure 5.3 we plotted the discrepancy at the interface between the
traces and between the normal derivatives of u.

In this case, we observe a clear improvement in the convergence rate by choos-
ing the parameters coming from the cylindrical analysis. In particular, the perfor-
mance seems to improve for decreasing values of η. This shows the effectiveness of
the optimization values obtained by the new analysis when a cylindrical symmetry
characterizes the computational domain.
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Fig. 5.2. Computational subdomains for the test with curve interface.

σ/η 0.1 1 10

σflat
1,T0 0.32 1.00 3.16

σflat
2,T0 -0.32 -1.00 -3.16

σcyl
1,T0 0.98 1.79 4.06

σcyl
2,T0 -0.02 -0.24 -1.95

Table 5.2

Values of the constant optimized parameters used in the numerical experiments. Test with
cylindrical interface.

σ/η 0.1 1 10

σflat
T0 160 92 55

σcyl
T0 28 35 39

Table 5.3

Number of iterations for different values of η. Test with cylindrical interface.

5.2.2. Varying a. In the second experiment of this test, we want to study the
sensitivity of the convergence on the ratio between R, the external radius, and a the
internal radius. This is due to the fact that we expect that the convergence improves
by using the optimized parameters derived by the cylindrical analysis when this ratio
goes to infinity, since such analysis has been performed for R = ∞.

In Table 5.4 we reported the number of iterations needed to reach convergence
for three different values of the internal radius a and using the constant optimized
parameters (4.2) with k0 = m0 = 0.

As expected, the convergence properties of the generalized Schwarz method with
constant parameters derived by the cylindrical analysis improved for decreasing values
of a.
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Fig. 5.3. Discrepancy at the interface between the traces (left) and between the normal deriva-
tives (right) of u. Test with cylindrical interface.

a 0.1 0.5 0.9
# iter 30 35 66

Table 5.4

Number of iterations for different value of a. Test with cylindrical interface.

5.2.3. A case with a non-null localized angular frequency. In the third
simulation of this test, we aimed at investigating the efficiency of the optimal constant
interface parameters (4.2) when the solution features a dominant localized angular
frequency m0 6= 0, In particular, we considered as exact solution uex = (x2 − y2)z,
which is given by taking as right hand side f = η uex. This solution is characterized
by a single angular frequency, namely m0 = 2. As initial guess we took





u0
2 = 5(x2 − y2) sin(πz/5) on Σ,
∂u0

2

∂n
= 0 on Σ.

In Table 5.5 we reported the values of the optimized parameters used in the
numerical simulations (left, with σ(j) we meant that (4.2) has been computed for
m0 = j), and the number of iterations needed to reach convergence (right).

σ1 σ2 num iter

σflat
T0 1.00 -1.00 284

σcyl
T0 (0) 1.80 -0.24 283

σcyl
T0 (2) 4.22 -4.08 60

Table 5.5

Values of the constant parameters used in the numerical simulations (left) and number of iter-
ations to reach convergence (right). Test with cylindrical interface with localized angular frequency
m0 = 2.

These results highlighted that the knowledge a priori of the dominant angular fre-
quency featured by the solution is fundamental to obtain efficient constant parameters
in the transmission conditions. In particular, the convergence has been improved of
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Fig. 5.4. Modified Bessel functions of first (left) and second (right) kind, m = 0, 1, 2, 3.

a factor 4 with respect both to the value coming from the flat analysis and to that
obtained by the cylindrical analysis evaluated in m0 = 0.

Appendix.

Notes on the modified Bessel functions. We give here some details regarding
the modified Bessel’s functions. For further details the interested readers could see
[1, 15].

The modified Bessel’s functions of first Im(x) and of second Km(x) kind are
solutions to the modified Bessel’s equation

x2 d
2y

dx2
+ x

dy

dx
− (x2 +m2)y = 0. (5.1)

Their expressions for m ∈ N, are given by

Im(x) =
∞∑

j=0

(x/2)m+2j

j!(j +m)!
,

Km(x) = −1

2

(x
2

)2
∫ ∞

0

e−t−(x2/4t)t−1−m dt.

As shown by Figure 5.4, we observe that both Im and Km are non-negative
functions. Moreover, Im are increasing functions of x, going to infinity for x → ∞,
while Km are decreasing functions of x, going to infinity for x→ 0 and going to zero
for x → ∞. We have the following property for a fixed x > 0: Im(x) > Ip(x) and
Km(x) < Kp(x), for m > p. We also recall the following identities

I ′m(x) = 1
2 (Im+1(x) + Im−1(x)) > 0,

K ′m(x) = − 1
2 (Km+1(x) +Km−1(x)) < 0,

Im(x) = I−m(x),
Km(x) = K−m(x),

(5.2)

which lead in particular to

I ′0(x) = I1(x), K ′0(x) = −K1(x). (5.3)



18 G. GIGANTE, M. POZZOLI, C. VERGARA

From (5.2)1,2, it follows also that I ′m(x) < I ′m(y) and K ′m(x) < K ′m(y), for x < y and
for any m.

Another useful formula is the following [15]

d

dx
(xmKm(x)) = −xmKm−1(x). (5.4)

Computation of second order approximations in Section 4.2. Let us
begin with σcyl

1,T2. We have

σcyl
1,opt (0, k) = α

K1 (αb)

K0 (αb)
.

Thus

∂σcyl
1,opt

∂k
(0, k) =

∂

∂α

(
α
K1 (αb)

K0 (αb)

)
α′ (k) ,

∂2σcyl
1,opt

∂k2
(0, k) =

∂2

∂α2

(
α
K1 (αb)

K0 (αb)

)
(α′ (k))

2
+

∂

∂α

(
α
K1 (αb)

Kj (αb)

)
α′′ (k) .

Notice that α (0) =
√
η, α′ (0) = 0 and α′′ (0) = 1/

√
η, and therefore

∂σcyl
1,opt

∂k
(0, 0) = 0

∂2σcyl
1,opt

∂k2
(0, 0) =

1√
η

∂

∂α

(
α
K1 (αb)

K0 (αb)

)∣∣∣∣
α=
√

η

=
1√
η

[

K1 (αb)

K0 (αb)
+ αb

K ′1 (αb)K0 (αb)−K1 (αb)K ′0 (αb)

(K0 (αb))
2

]

α=
√

η

= b





(

K1

(√
ηb
)

K0

(√
ηb
)

)2

− 1



 ,

where in the last equality we have used relation (5.4) with m = 0 and the first of
(5.3). Thus, set

σcyl
1,T2 (k) =

√
η
K1

(√
ηb
)

K0

(√
ηb
) +

b

2





(

K1

(√
ηb
)

K0

(√
ηb
)

)2

− 1



 k2.

Similarly, from

σcyl
2,opt (0, k) = α

I1 (αa)

I0 (αa)
.

we obtain

σcyl
2,T2 (k) = −√η I1

(√
ηa
)

I0
(√
ηa
) − a

2



1−
(

I1
(√
ηa
)

I0
(√
ηa
)

)2


 k2.
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