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ABSTRACT 
The vapour and gas phase conservation equations are analytically solved in a spheroidal coordinate systems, yielding the drop 
surface vapour flux under steady-state conditions, for oblate and prolate drops. The drop evaporation rate can be defined as 
function of drop spheroid shape and drop surface. The solution is easily implementable to the case of prolate/oblate oscillating 
drops, under quasi-steady assumption, which is found to be valid under the range of operating conditions typical of spray 
combustion applications.  

INTRODUCTION  

The majority of liquid spray numerical models requires 
information on the behaviour of an individual liquid drop in 
a gaseous flow [1]. Simplified models for predicting the 
drop phenomena in a spray (aerodynamic forces, 
evaporation, collision, break-up) have been developed 
through analytic, experimental, and numerical studies of 
individual liquid drops. These models usually assume a 
spherical shape for the liquid drop; for example the 
modelling of drop evaporation in most commercial CFD 
code for spray numerical simulations is generally based on 
this assumption [2]. On the other hand, a spray consists of 
liquid drops that undergo significant shape deformations 
while interacting with the carrier phase [3]. More generally, 
dispersed fluid particles (bubbles and drops, away from 
walls) can deform based on the interaction of surface 
tension and the fluid-dynamic stresses on the particle 
surface [4]. The surface tension forces will always drive a 
free particle towards a spherical shape, whereas initial 
conditions and/or fluid-dynamic forces are the primary 
sources of non-sphericity. 

Examining the deformation response, three competing 
effects are found responsible  of drop deformation [1]. The 
first one is a convective effect in the gas phase which tends 
to generate oblate drops. The second one is a convective 
effect in the liquid phase, which induces the deformation 
towards the prolate shape. The third one is a combined 
effect of gas-phase viscous and convective forces; this is 
considered important in large Ohnesorge number cases and 
tends to cause dimpled shapes [1]. 

The drop deformation could have significant effects on 
inter-phase transfer phenomenon, thus resulting in some 
modifications in the existing correlations valid for spherical 
drops [3]. The numerical treatment of this effect should take 
into account the continuously evolving interface that is very 
closely coupled to the heat and mass transfer occurring in 
the drop. Previous studies concluded that the dynamics of 
the drop deformation is basically unaffected by 
vaporization, however, the evaporation rates (per unit area) 
are greater for deformed drops [5]. 

Several studies available in the literature found that heat 
and mass transfer between liquid particles and the 
surrounding gas can be enhanced by drop oscillations [6, 7]. 
Particle oscillation can be achieved by a variety of methods, 

including acoustic oscillation, electric field oscillation for 
charged particles, and magnetic field oscillation for 
magnetic particles [6]. 

Furthermore, drop-gas interaction activates many drop 
oscillation modes and actually no drop in a gaseous stream 
can be steadily spherical. Haywood et al. [8] show that 
circulation inside the drop is responsible for the strong 
damping and promotes the formation of prolate shapes for 
drops. They also found that effect of liquid viscosity and 
finite amplitude oscillation reduces the drop oscillation 
frequencies up to 25% of the theoretical natural frequency 
predicted by Lamb [9]. Moreover, the results from [3] show 
that the mass flux varies along the surface of the deformed 
drop, due to modifications of the isotherms near the 
interface. 

Drop oscillations can become important in atomization 
systems, where the liquid is first disintegrated into small 
ligaments, which then oscillate towards the attainment of an 
equilibrium spherical shape. If these ligaments/drops are 
exposed to a hot gas then the heat and mass transfer could 
be affected by oscillations. The rate of evaporation of an 
oscillating drop varies in time, but it is always greater than 
or equal to the rate of evaporation of the equivalent 
spherical drop [5].  

Mashayek [3] suggested a correction in the evaporation 
rate of a deformed drop, derived from the results obtained 
by numerical simulations. The model, valid for surface 
deformation up to 10% of the drop radius, predicts that the 
rate of evaporation increases with the increase of the 
amplitude of the surface deformation and varies 
significantly along the surface of the drop. The same author 
in [10] proposed an application of the correction to the case 
of free oscillating drops, showing that the increase in the 
evaporation rate results to be proportional to the square of 
the surface disturbance amplitude and larger for higher 
oscillating modes [10]. 

Since the early work of Lamb [8], drop oscillation was 
the subject of many investigations, and the open literature is 
rich of works on this important phenomenon. Linear theory 
was widely used to obtain results for small amplitude 
oscillation, perturbation theory and non-linear analysis were 
used to extend the results to moderate and large amplitude 
oscillation and effect of viscosity was shown to quickly 
damp the highest modes, then living only the oblate-prolate 
mode to survive and, among many other results, it was 
observed that drops, which are released from an initially 
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two-lobed configuration spend less time in prolate form 
than in oblate one [11]. 

The necessity to include such complex behaviour in 
spray numerical simulations, prompts the continuous 
request of relatively simple sub-models for predicting the 
inter-phase phenomena taking place during the spray 
evolution. The present work proposes a rather easy-to-
implement analytical expression of the instantaneous 
evaporation rate from oblate and prolate spheroid liquid 
drops and a possible application to the calculation of 
evaporation enhancement in oscillating drops. The 
derivation of the mathematical model is briefly presented in 
the following section, followed by the description of the 
model application to oscillating drops. Finally the main 
conclusions are briefly summarised.   

MATHEMATICAL MODEL 

Specie transport equations 

For a liquid drop made of a single component floating in 
a gaseous atmosphere, the specie conservation equations 
can be written as [12]: 

( )j j j v jU Dα αρ χ ρ χ∇ = ∇ ∇                                    (1) 

where ,v gα =  refers to the vapour and gaseous phases 

respectively, while α
α

ρχ
ρ

=  is the mass fraction. 

The boundary conditions (B.C.) set to constant values the 

vapour mass fraction at drop surface ( ),v sχ  and at infinite 

distance from the drop ( ),vχ ∞ . 

Integrating equations (1), the specie fluxes are calculated 
as: 

j v jU Dα α αγ ρ χ ρ χ= − ∇                                                  (2)             

with the first term representing the Stefan flow component 
[12] and the second being the diffusive component. 

Evaporation rate of spheroid drop  

To find an analytical solution for spheroidal drops, 
equation (1) must be written in a proper system of 
coordinates, and the natural choice are spheroidal 
coordinates, that for the  oblate and prolate cases are 
defined as follows: 
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In these coordinate systems, the spheroid surface equation 
is simply ξ=ξ0  and the B.C. are then: 

( )0 ,, ,v v sχ ξ θ ϕ χ= ( ) ,, ,v vχ θ ϕ χ ∞∞ =                   (3)              

A steady state analytical solution of the balance equations 
(1) and B.C. (3) exists under the form: 
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From these solutions, the evaporation rate can be easily 
calculated by integrating equation (2) over the drop surface, 
yielding, in non-dimensional form: 

( ) ,
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ˆ ln

4 1
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ev
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R D
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π ρ χ
∞−

= =
−

                     (4)     

where the parameter ε  is defined as: 
 

z

r

a

a
ε =       

and az and ar are respectively the axial and radial spheroid 
axes, see Figure 1 for reference. 

Figure 1. Oblate (left) and prolate (right) spheroids and 
definition of  axial (az) and radial (ar) spheroid axes. 

The parameter ( )C ε  in equation (4) is defined as 

follows: 
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and 1C =  for a sphere ( )1ε = . 

It is of a certain interest to evaluate the surface of a 
spheroid having the same volume of a sphere with radius 

0R . Defining with β the ratio between the spheroid surface 

and the surface of an isovolumic sphere, it is easy to show 
that a one-to-one relation exists between the parameters ε
and β : 
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The factor ( )C ε  can then be related to the spheroid 

surface as in Figure 2. As expected, the evaporation rate of 
a spheroid is always larger than that of a sphere having the 
same volume, although that of a prolate spheroid is always 
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larger than that of an oblate spheroid having both the same 
volume and the same surface.  

Figure 2: Non-dimensional evaporation factor as function of 
the spheroid surface ratio. 

Oscillating drop 

The oscillation modes of a liquid drop in gaseous 
environment can be described (for small oscillation 
amplitude) by the generalized Lamb equation [9]. 

( ) ( ) ( )
( )

2
3
0

1 1 2
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+ +
                                        (5) 

where inρ  and outρ  refer to the densities of the inner and 

outer fluids respectively, and the index n  refers to the 
various oscillation modes: 0n =  stands for a pure 
expansion (typical for bubbles), 1n =  refers to translation 
mode, without a corresponding frequency, 2n =  refers to 
oblate-prolate mode, and finally 2n >  describes more 
complex modes. It should be noticed that the linear theory 
predicts for the mode 2n =  a shape that is only 
approximately oblate or prolate spheroid, although the 
difference for small oscillation amplitude (i.e. for the range 
where the linear theory holds) is almost negligible.  

For a liquid drop oscillating in a gaseous environment 

in outρ ρ≫ , then the Lamb equation (3) yields: 
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Considering the effect of liquid viscosity, according to 
[2], the higher modes are quickly damped and the mode 

2n =  is the only long lasting ones. The oscillation 
frequency then becomes: 

3
0

8
n

l R

σω
ρ

=

As above mentioned, non linear theory [11] yields more 
accurate (but more complex) results, among others the fact 
that the time spent by a drop in the oblate shape is larger 
than the time spent in a prolate form, but this fact will not 
be considered here. 

The drop shape variation of an axis-symmetric 
oscillating drop can be expressed through a perturbation 

parameter  ( ) 0 ni t
n na t a e ϖ=  by the equation [13]: 
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where ( )nP x  are the Legendre polynomials. The drop 

surface can then be calculated as a function of this 
parameter and to the third order in na  it assumes the 

following expression [13]: 
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where: 
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Considering only the mode 2n = , at the second order 

accuracy, the dependence of the parameter β  on time 
assumes the following expression: 
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Quasi steady-state assumption 

To apply the above found analytical solution for the 
evaporation rate (4), valid for steady conditions, to an 
oscillating drop, a quasi steady-state assumption is 
necessary. Such assumption may hold when the 
characteristic time scale of the oscillation process is much 
larger than that of the evaporation one. While the first one 
is easy to be defined as the inverse of the oscillation 
frequency:  

3
0l

oscill

R
t

ρ
σ

≈

the evaporation time scale is not easily defined.  
Evaporation is an overlapping of a diffusive 

phenomenon (driven by the coefficient vD ) and a 

convective one (i.e. the Stefan flow, driven by a 

characteristic velocity 
0 2

0

ˆ

4
ev ev v

o
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= = ). From these 

two parameters and the drop size, three characteristic, but 
not independent, times (convective, diffusive and 
convective-diffusive) can be defined: 
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Rearranging the previous definitions, the following 
correlation can be obtained: 
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The quasi steady state assumption may be acceptable 
when: 

evap oscillt t≪
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where evapt  may be one of the three above mentioned 

characteristic times. An inspection on the values of such 
characteristic times shows that the inequality may 
acceptably hold for small drops (few tenths of micron) in 
hot gaseous environment and for hydrocarbon drops. But it 
may be questionable for larger drops, for lower gas 
temperature and for water drops.  

Under this assumption, the above developed model can 
be applied to an oscillating drop. The total evaporated mass 
from a single oscillating drop during an oscillating period 
(assuming the time spent in prolate state equal to that spent 
in oblate state) can be calculated as: 

( )( )
( )( ) ( )( )

,0 0

2 2

, 0 0

T T

ev ev sphere

T T

ev sphere oblate prolate

M m dt m C t dt

m C t dt C t dt
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∫ ∫

∫ ∫
    (7) 

where β(t) is given by equation (6).

PRELIMINARY RESULTS 

Considering a single oscillating drop, the temporal 
evolution of instantaneous non-dimensional evaporation 
rate ( ,ev ev speherem m ) can be related to the deformation status, 

as reported in Figure 3. The non-dimensional evaporation 
rate is always greater than 1, confirming that for an 
oscillating liquid drop the evaporation rate is always higher 
than that of the corresponding non-oscillating isovolumic 
spherical drop. Furthermore, when the drop is in the prolate 
state, its evaporation rate reaches the highest values.  

Figure 3: Temporal evolution of spheroid eccentricity (ε ) 
and non-dimensional instantaneous evaporation rate 
( ,ev ev speherem m ) for a R0 = 10 µm iso-octane drop.   

The comparison between the evaporated mass from an 
oscillating drop and that from a spherical iso-volumic drop 
can be performed, for different values of the “excess” 
energy (defined as the kinetic energy associated to the 
oscillation modes), that can be easily related to the 
maximum drop surface area. The percentage difference in 
the evaporated mass, defined as: 

,

,

% 100
ev sphere

ev sphere

M m T
ev

m T

−
∆ =

where M  is calculated from equation (7) can be related to 
the percentage excess area ( )( )max max% 1 100β β∆ = −  and 

Figure 4 reports the results for a 10 µm iso-octane drop in a 

hot (700°C) gaseous environment. These preliminary results 
show that a simple correction for evaporation from 
oscillating drops could be implemented by assuming an 
approximate linear relation between the two parameters, 
where the proportionality coefficient may depend on drop 
and environment characteristics.   

Figure 4: Percentage relative difference of evaporated mass 
as function of the maximum drop surface area ratio (in 
percentage).   

CONCLUSIONS 

Vapour and gas transport equations are analytically 
solved in oblate and prolate spheroidal coordinate systems, 
yielding the vapour distribution around a spheroidal drop 
and the surface flux under steady state conditions.

The drop evaporation rate can be defined as function of 
drop spheroidal shape and drop surface. Compared with 
iso-volumic spherical drop, spheroidal drops yield larger 
evaporation rate, with the oblate shape yielding a lower 
evaporation rate then the prolate one with the same surface 
area.  

Application to oscillating drop is possible under quasi 
steady-state assumption, that may hold for small 
hydrocarbon drops in hot gaseous environment, yielding 
rather easy-to-implement corrections to the standard 
spherical case. 
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NOMENCLATURE 

Greek symbols 
α Species index - 
β Surface ratio - 
∆ Relative difference - 
ε Spheroid eccentricity - 
ρ Density kg/m3

ξ Mass fraction - 
γ Specie flux kg/m2s 
σ Surface tension kg/s2

ζ, φ, ϕ Spheroid coordinates - 

14



DIPSI Workshop 2012 on Droplet Impact Phenomena & Spray Investigation 
May 18, 2012, Bergamo, Italy 

ω Oscillation frequency 1/s 
Roman symbols 
a Perturbation parameter - 
ar, az Radial and axial spheroid 

axes 
m 

C Evaporation rate factor  
Dv Diffusivity m2/s 
M Mass kg 
mev Evaporation rate kg/s 
n Oscillation mode - 
Pn Legendre polynomials - 
R Drop radius m 
t Time s 
T Oscillating period s 
U Velocity m/s 
x, y, z Cartesian coordinates - 
Subscripts 
conv Convective - 
diff Diffusive - 
cd convective-diffusive - 
evap Evaporation - 
g Gaseous - 
l Liquid - 
oscil Oscillation - 
0, s Surface - 
v Vapour - 
∞ Infinity - 
Superscripts  
∧ Non-dimensional - 
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