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ABSTRACT

The vapour and gas phase conservation equatioranatgically solved in a spheroidal coordinateteys, yielding the drop
surface vapour flux under steady-state conditiémspblate and prolate drops. The drop evaporatite can be defined as
function of drop spheroid shape and drop surfabe. Solution is easily implementable to the caggroffate/oblate oscillating
drops, under quasi-steady assumption, which isddonbe valid under the range of operating cond#itypical of spray

combustion applications.

INTRODUCTION

The majority of liquid spray numerical models raqsi
information on the behaviour of an individual liudrop in
a gaseous flow [1]. Simplified models for predigtithe
drop phenomena in a spray (aerodynamic forces,
evaporation, collision, break-up) have been dewop
through analytic, experimental, and numerical ssdof
individual liquid drops. These models usually assua
spherical shape for the liquid drop; for examplee th
modelling of drop evaporation in most commercialDCF
code for spray numerical simulations is generafigdal on
this assumption [2]. On the other hand, a spraists of
liquid drops that undergo significant shape defdioms
while interacting with the carrier phase [3]. Marenerally,
dispersed fluid particles (bubbles and drops, afaymn
walls) can deform based on the interaction of serfa
tension and the fluid-dynamic stresses on the garti
surface [4]. The surface tension forces will alwdyive a
free particle towards a spherical shape, wheredmlin
conditions and/or fluid-dynamic forces are the puiyn
sources of non-sphericity.

Examining the deformation response, three competing
effects are found responsible of drop deformafignThe
first one is a convective effect in the gas phabkiEhkvtends
to generate oblate drops. The second one is a ctivere
effect in the liquid phase, which induces the defation
towards the prolate shape. The third one is a cosdbi
effect of gas-phase viscous and convective forttgs;is
considered important in large Ohnesorge numberscaise
tends to cause dimpled shapes [1].

The drop deformation could have significant effeats
inter-phase transfer phenomenon, thus resultingoime
modifications in the existing correlations valid &pherical
drops [3]. The numerical treatment of this effduidd take
into account the continuously evolving interfacattis very
closely coupled to the heat and mass transfer goguin
the drop. Previous studies concluded that the digsaof
the drop deformation is basically unaffected by
vaporization, however, the evaporation rates (jnédrarea)
are greater for deformed drops [5].

Several studies available in the literature foumat heat
and mass transfer between liquid particles and the
surrounding gas can be enhanced by drop oscilaf@n7].
Particle oscillation can be achieved by a variétynethods,
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including acoustic oscillation, electric field oéafion for
charged particles, and magnetic field oscillatioor f
magnetic particles [6].

Furthermore, drop-gas interaction activates margp dr
oscillation modes and actually no drop in a gasestigsam
can be steadily spherical. Haywood et al. [8] shbwat
circulation inside the drop is responsible for tsieong
damping and promotes the formation of prolate shdpe
drops. They also found that effect of liquid vistpsand
finite amplitude oscillation reduces the drop datibn
frequencies up to 25% of the theoretical naturadjdiency
predicted by Lamb [9]. Moreover, the results fradhghow
that the mass flux varies along the surface ofdifermed
drop, due to modifications of the isotherms neag th
interface.

Drop oscillations can become important in atomaati
systems, where the liquid is first disintegratetb ismall
ligaments, which then oscillate towards the att@niof an
equilibrium spherical shape. If these ligamentgidrare
exposed to a hot gas then the heat and mass traosfiel
be affected by oscillations. The rate of evaporatid an
oscillating drop varies in time, but it is alwaysgter than
or equal to the rate of evaporation of the equivale
spherical drop [5].

Mashayek [3] suggested a correction in the evajoorat
rate of a deformed drop, derived from the resuitsaioed
by numerical simulations. The model, valid for suod
deformation up to 10% of the drop radius, predibts the
rate of evaporation increases with the increasethef
amplitude of the surface deformation and varies
significantly along the surface of the drop. Themsaauthor
in [10] proposed an application of the correctiorihte case
of free oscillating drops, showing that the inceeds the
evaporation rate results to be proportional tostyeare of
the surface disturbance amplitude and larger fgheri
oscillating modes [10].

Since the early work of Lamb [8], drop oscillatioras
the subject of many investigations, and the opendliure is
rich of works on this important phenomenon. Lindegory
was widely used to obtain results for small ampiu
oscillation, perturbation theory and non-linearlgsia were
used to extend the results to moderate and largditade
oscillation and effect of viscosity was shown toicily
damp the highest modes, then living only the ohbpaitdate
mode to survive and, among many other results,as w
observed that drops, which are released from diallyi
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two-lobed configuration spend less time in prolétem
than in oblate one [11].

The necessity to include such complex behaviour in
spray numerical simulations, prompts the continuous
request of relatively simple sub-models for pradgtthe
inter-phase phenomena taking place during the spray
evolution. The present work proposes a rather tmsy-
implement analytical expression of the instantaseou
evaporation rate from oblate and prolate spherijdid
drops and a possible application to the calculatidn
evaporation enhancement in oscillating drops. The
derivation of the mathematical model is briefly ggpted in
the following section, followed by the descriptiof the
model application to oscillating drops. Finally tiheain
conclusions are briefly summarised.

MATHEMATICAL MODEL
Specietransport equations

For a liquid drop made of a single component flogin
a gaseous atmosphere, the specie conservationicetuat
can be written as [12]:
AJ,0,x, =0,(pD,0 X, ) @
where a =v,g refers to the vapour and gaseous phases

Pa

respectively, whiley, = is the mass fraction.

The boundary conditions (B.C.) set to constant eslthe
vapour mass fraction at drop surfa@g,ys) and at infinite

distance from the drofy,.,) .

Integrating equations (1), the specie fluxes aleutated
as:
VQZWJXa_pDVD]Xy )(2
with the first term representing the Stefan flowmpmnent
[12] and the second being the diffusive component.

Evaporation rate of spheroid drop

To find an analytical solution for spheroidal drpps
equation (1) must be written in a proper system of
coordinates, and the natural choice are spheroidal
coordinates, that for the oblate and prolate cases
defined as follows:
Oblate
X =acoshé sirg cog
y =acosh¢é sirg sip
z=asinhé cod

Prolate
x = asinhé sind co®
y =asinhé sind sing
z=acoshé co®

In these coordinate systems, the spheroid surfgaatien
is simply & &, and the B.C. are then:
X, (6.6.8) = X, X, (2.0,8) = X, (3)
A steady state analytical solution of the balangaations
(1) and B.C. (3) exists under the form:

arctar(e‘t)— arctaf <(“)
1—XV,00 J g—arctar(efo)

Oblate: x, :1_(1_XV’S)[1—X
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In(e" +1)—In(e‘r —1)
1- Xv’m u In(e"o +l)—|n(e‘(° —1)
1-Xus

From these solutions, the evaporation rate canakdye
calculated by integrating equation (2) over thepdsarface,
yielding, in non-dimensional form:

Prolate: x, :1‘(1‘Xv,s)[

1_
f, == (g)In e (@)
AR, pD, 1=Xs
where the parameter is defined as:
Y
a

anda, anda, are respectively the axial and radial spheroid
axes, see Figure 1 for reference.
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Figure 1. Oblate (left) and prolate (right) sphdsoiand
definition of axial &,) and radial &) spheroid axes.

The parameterC(e) in equation (4) is defined as

follows:
2

i , £<1, Oblate
e 77—2arctar1f1+—£
( ) 1-¢
Cle)=
." 2_
_ £ -1 , £€>1, Prolate
&2l [E || [ET14
-1 e-1

and C =1 for a spherg e =1).

It is of a certain interest to evaluate the surfatea
spheroid having the same volume of a sphere witliusa
R, . Defining with 8 the ratio between the spheroid surface

and the surface of an isovolumic sphere, it is éasshow
that a one-to-one relation exists between the patenne

andg:
52 In M
3
Ages 1 |IF——%— Oblate
B(e)= T J1-¢?
ere 2 I _
1+M1 Prolate

-1
The factor C(¢) can then be related to the spheroid

surface as in Figure 2. As expected, the evaporatite of
a spheroid is always larger than that of a sphaxén the
same volume, although that of a prolate spheroalvigys
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larger than that of an oblate spheroid having ltle¢hsame
volume and the same surface.
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Figure 2: Non-dimensional evaporation factor asfiam of
the spheroid surface ratio.

Oscillating drop

The oscillation modes of a liquid drop in gaseous
environment can be described (for small oscillation
amplitude) by the generalized Lamb equation [9].

n(n+1l)(n-(n+2
=M= (n+2) o -
(n+1)p, +no R
where p,, and p,, refer to the densities of the inner and

outer fluids respectively, and the index refers to the
various oscillation modes:n=0 stands for a pure
expansion (typical for bubblesj =1 refers to translation
mode, without a corresponding frequeneys 2 refers to
oblate-prolate mode, and finallyw>2 describes more
complex modes. It should be noticed that the lirtbaory
predicts for the moden=2 a shape that is only
approximately oblate or prolate spheroid, althoube
difference for small oscillation amplitude (i.er fine range
where the linear theory holds) is almost negligible

For a liquid drop oscillating in a gaseous envirenm
P, > P, » then the Lamb equation (3) yields:

e n(n+1)(n-1)o
’ AR

Considering the effect of liquid viscosity, accanglito
[2], the higher modes are quickly damped and the&leno
n=2 is the only long lasting ones. The oscillation
frequency then becomes:

80
a)n: ey
\ AR

As above mentioned, non linear theory [11] yieldsren
accurate (but more complex) results, among otherdact
that the time spent by a drop in the oblate shagarger
than the time spent in a prolate form, but thig fail not
be considered here.

The drop shape variation of an axis-symmetric
oscillating drop can be expressed through a peatimip

parametera, (t) =a’e”™" by the equation [13]:

[(6)=r; {1%;_(:)1 P (cosﬁ)j
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where Pn(x) are the Legendre polynomials. The drop

surface can then be calculated as a function of thi
parameter and to the third order &, it assumes the

following expression [13]:

(n+1)(n+2) ,
, 1+HZ:; 2n+1 &
Aspheroid = 47TRO 1 m,n,| =0 3
- i qigk
A LTI
i+j+k=2

where:
(myn,1) = L”Pm(cosﬁ)ﬁ( co®)R( co8) sifde
Considering only the mode =2, at the second order

accuracy, the dependence of the param@esn time
assumes the following expression:

ﬁ:%z“éaﬁsiﬁ(w) (©)

Quas steady-state assumption

To apply the above found analytical solution foe th
evaporation rate (4), valid for steady conditiots, an
oscillating drop, a quasi steady-state assumptien i
necessary. Such assumption may hold when the
characteristic time scale of the oscillation precssmuch
larger than that of the evaporation one. Whilefitst one
is easy to be defined as the inverse of the oSoilla
frequency:

. . |8R
oscill o

the evaporation time scale is not easily defined.
Evaporation is an overlapping of a diffusive
phenomenon (driven by the coefficienD,) and a

convective one (i.e. the Stefan flow, driven by a

characteristic velocity) | :LZ = E&). From these
parnRp B R

two parameters and the drop size, three charaotetisit

not independent, times (convective, diffusive and

convective-diffusive) can be defined:

t =

conv

diff

<U |O;U’" oc |d-U

2
— tconv

O

<

tcd

—

U(f diff
Rearranging the previous definitions, the following
correlation can be obtained:

~ ﬁ R02 - ﬂtdif‘f

conv ﬁ]eva I’TALV
~ ﬁz R32 - ﬁz tdiff

¥ MDD,

The quasi steady state assumption may be acceptable
when:
to <t

oscill
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where t,,, may be one of the three above mentioned

characteristic times. An inspection on the valuésuch
characteristic times shows that the inequality may
acceptably hold for small drops (few tenths of migrin

hot gaseous environment and for hydrocarbon didpsit
may be questionable for larger drops, for lower gas
temperature and for water drops.

Under this assumption, the above developed model ca
be applied to an oscillating drop. The total evapest mass
from a single oscillating drop during an oscillgtiperiod
(assuming the time spent in prolate state equtdabspent
in oblate state) can be calculated as:

M= [ mdt=m, .. [ C(B(1)d=

= rnev,sphere |: K 2C:oblate (ﬁ(t)) dt + ;/ ZCPmlale ('B(t)) dt:l

where/f(t) is given by equation (6).

("

PRELIMINARY RESULTS

Considering a single oscillating drop, the temporal
evolution of instantaneous non-dimensional evapammat
rate (m, /m, qmee ) CaN be related to the deformation status,

as reported in Figure 3. The non-dimensional eatjmoT
rate is always greater than 1, confirming that for
oscillating liquid drop the evaporation rate is aj& higher
than that of the corresponding non-oscillating @axnic
spherical drop. Furthermore, when the drop is éngiolate
state, its evaporation rate reaches the highesesal
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Figure 3: Temporal evolution of spheroid eccentyigic)
and non-dimensional instantaneous evaporation
(M, /M., geere ) fOr @Ro= 10pm iso-octane drop.

rate

The comparison between the evaporated mass from an
oscillating drop and that from a spherical iso-voici drop
can be performed, for different values of the “esele
energy (defined as the kinetic energy associatedhéo
oscillation modes), that can be easily related he t
maximum drop surface area. The percentage differémc
the evaporated mass, defined as:

M _rnev.sphereT
rnev,theeT
where M is calculated from equation (7) can be related to

the percentage excess arfag  %=(f,,~1) 100 and

Figure 4 reports the results for a i@ iso-octane drop in a

Aev% = 100

max
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hot (700°C) gaseous environment. These prelimiresylts
show that a simple correction for evaporation from
oscillating drops could be implemented by assunang
approximate linear relation between the two pararset
where the proportionality coefficient may depend drop
and environment characteristics.
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Figure 4: Percentage relative difference of evagdranass
as function of the maximum drop surface area réitio

percentage).
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CONCLUSIONS

Vapour and gas transport equations are analytically
solved in oblate and prolate spheroidal coordisgitems,
yielding the vapour distribution around a spherbidiap
and the surface flux under steady state conditions.

The drop evaporation rate can be defined as fumatfo
drop spheroidal shape and drop surface. Compardd wi
iso-volumic spherical drop, spheroidal drops yitddger
evaporation rate, with the oblate shape yieldintpwaer
evaporation rate then the prolate one with the ssurkace
area.

Application to oscillating drop is possible undaragi
steady-state assumption, that may hold for small
hydrocarbon drops in hot gaseous environment, iyigld
rather easy-to-implement corrections to the stahdar
spherical case.
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NOMENCLATURE

Greek symbols
Species index -
Surface ratio -
Relative difference -
Spheroid eccentricity
Density

Mass fraction

Specie flux

Surface tension
Spheroid coordinates

kg/m

I;g/rﬁs
kdfs

NQAQXN™MD ™ DN®WQ

8
ASS
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Oscillation frequency 1/s

a Perturbation parameter -
a,, Radial and axial spheroidm
axes
C Evaporation rate factor
D, Diffusivity m?/s
M Mass kg
Mgy Evaporation rate kg/s
n Oscillation mode -
P Legendre polynomials -
R Drop radius m
t Time S
T Oscillating period S
U Velocity m/s
XY,z Cartesian coordinates -
Subscripts
conv Convective -
diff Diffusive -
cd convective-diffusive -
evap Evaporation -
g Gaseous -
I Liquid -
oscil Oscillation -
0,s Surface -
\Y Vapour -
) Infinity -

Superscripts
0

Non-dimensional -
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