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EXACT AND INEXACT PARTITIONED ALGORITHMS FOR
FLUID-STRUCTURE INTERACTION PROBLEMS WITH FINITE

ELASTICITY IN HAEMODYNAMICS

FABIO NOBILE∗, MATTEO POZZOLI† , AND CHRISTIAN VERGARA‡

Abstract. In this paper we consider the numerical solution of the three-dimensional (3D) fluid-
structure interaction problem in haemodynamics, in the case of physiological geometries and data,
and finite elasticity vessel deformations. We introduce new partitioned algorithms and compare their
efficiency with that of existing ones. We also study some new inexact variants, obtained from semi-
implicit approximations, and show that they allow to improve the efficiency while preserving the
accuracy of the related exact (implicit) scheme.

Key words. Fluid-structure Interaction, finite elasticity, partitioned algorithms, Robin trans-
mission conditions, haemodynamics.

1. Introduction. To obtain predictive accurate information about the blood
fluid-dynamics in the arteries of the cardiovascular tree, it is necessary to solve in
three-dimensional (3D) realistic geometries a fluid-structure interaction (FSI) prob-
lem, that arises from the interaction between blood and vascular vessel [41, 7, 14, 44,
12, 3, 16, 17].

To capture the complex dynamics, non-linear fluid and structure models have to
be taken into account. This leads to the solution of a complex non-linear coupled
problem, formed by the fluid and the structure subproblems, together with the fluid
domain subproblem when the fluid equations are written in Arbitrary Lagrangian-

Eulerian (ALE) formulation [25, 11]. Efficient numerical strategies are mandatory to
solve such non-linear FSI problem in 3D real geometries and with physiological data.
Only few works have focused on this aspect. We mention [7, 34] among the monolithic

schemes, which build the whole non-linear system, and [30, 21] among the partitioned

schemes, which consist in the successive solution of the subproblems in an iterative
framework (see also [12, 5, 4, 9] in the case of infinitesimal elasticity).

In this work, we focus on the numerical solution of the FSI problem with par-
titioned strategies in haemodynamics, when non-linear sub-problems and 3D real
computational domains and physiological data are considered. This problem is very
complex, the main difficulties being:

1. The high added mass effect, due to the similar fluid and structure densities,
which makes very difficult the solution of the FSI problem with partitioned
strategies [8, 20, 40];

2. The treatment of the physical interface conditions, which enforce the conti-
nuity of velocities and normal stresses at the fluid-structure (FS) interface
between the fluid and the structure subproblems;

3. The treatment of the geometrical interface condition, which enforces the conti-
nuity of displacements at the FS interface between the fluid and the structure
domains;
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4. The treatment of the constitutive non-linearities in the fluid and the structure
models.

Regarding points 1 and 2, it has been clearly highlighted in several works that
the physical conditions have to be treated implicitly in haemodynamics, due to the
high added mass effect [8, 20, 3, 40]. In particular, in this work we consider parti-
tioned algorithms based on Robin interface conditions, which have good convergence
properties, independent of the added-mass effect [3, 4, 1, 22, 38].

For what concerns point 3, we can distinguish between exact and inexact algo-
rithms. The first group consists in those schemes that satisfy exactly the geometrical
interface condition (geometrical exact schemes [23, 7, 13]). On the contrary, in the
geometrical inexact schemes this condition is not satisfied, due to an explicit treat-
ment of the interface position by extrapolation from previous time steps (the so-called
semi-implicit schemes [12, 6, 39]), or to an a priori fixed number of “fixed-point” it-
erations performed over the interface position [38]. The semi-implicit schemes have
been shown to be stable [37, 43, 12, 39] and accurate [36, 2] in the case of the linear
infinitesimal elasticity.

Regarding point 4, we have to consider the fluid and the structure constitutive
non-linearities. We focus here on partitioned strategies, obtained by the application of
a suitable linearization of the monolithic system. A first approach of this type consists
in solving the non-linear fluid and structure subproblems in an iterative framework
until convergence of the physical continuity conditions (think for example to the clas-
sical Dirichlet-Neumann scheme) [29, 31, 24, 27, 40]. At each iteration two non-linear
subproblems have to be solved, for example with the Newton method. In this case,
the constitutive non-linearities are treated in an inner loop with respect to both the
physical and the geometrical interface conditions. We refer to these schemes as “clas-
sical” partitioned algorithms. A second strategy considered so far consists in applying
the Newton or the approximate-Newton method (the latter obtained by approximat-
ing the tangent operator) to the monolithic non-linear system (approximate-Newton-

based algorithms). In [23], the author proposed a block-diagonal approximation of
the Jacobian, leading to a partitioned algorithm where all the interface conditions and
non-linearities are treated in the same loop (see also [33, 24, 30, 10, 45]). In [38], the
authors considered alternative approximations of the Jacobian, leading to different,
most efficient partitioned algorithms. The general structure of such schemes consists
in an external loop to manage the geometrical interface condition and the constitutive
non-linearities and in an internal one to prescribe the physical interface conditions.

The study of the effectiveness and accuracy of different partitioned schemes to
treat the structure non-linearity for a full non-linear FSI problem in haemodynamics
is far to be exhaustive nowadays. The present work aims at providing some answers
in this direction.

The first goal of this paper consists in comparing the performance of differ-
ent partitioned algorithms, to understand which are the most effective for 3D real
haemodynamic applications. In particular, we considered three families of schemes:
the “classical” algorithms, the approximate-Newton-based algorithms, a new class of
schemes, obtained by considering fixed point iterations over the geometrical inter-
face condition (fixed-point-based schemes). For all the three families, we considered
several alternatives, all based on the exchange of Robin conditions to prescribe the
physical interface conditions. We ran each of the considered scheme on a real 3D
geometry with physiological data, with the aim of studying the efficiency of such
schemes for practical purposes. The reported numerical results show that the double
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loop approximate-Newton-based schemes are the most performing, while the classical
ones are the slowest.

All the algorithms considered so far solve “exactly” (i.e. up to a given small
tolerance) the non-linear FSI problem. As already mentioned earlier, in the context
of linear elasticity, semi-implicit approaches which treat explicitly the geometrical
coupling have been proven to be stable and accurate. It is therefore worth asking if in
haemodynamic applications with finite elasticity one really needs to solve exactly also
the structure non-linearity, or if the latter can be linearized around a state suitably
extrapolated from previous time steps. In particular, here we propose to solve at each
time step a linearized elasticity problem, coupled with the fluid in a fixed domain, with
both the structure linearization point and the fluid domain extrapolated from previous
time steps. This approach would correspond to perform just one approximate-Newton
iteration on the monolithic FSI problem, starting from a well-chosen initial guess.
Alternatively, we propose to run just few Newton iterations at each time step, with
the aim of improving the accuracy. We also consider the inexact variants of the fixed-
point-based schemes, obtained by performing one or few external iterations, where
again both the structure linearization point and the fluid domain are extrapolated
from previous time steps.

The second goal of this work consists in studying the accuracy of such inexact
schemes. When a globally third order accurate time discretization of the FSI problem
is considered, we show numerically on a simple test case that performing at least
two Newton iterations allows to recover a third order convergence in time even when
starting from a first order extrapolation, while one Newton iteration is enough when
starting form a third order extrapolation. We also show that such schemes are very ac-
curate in the case of a real 3D case, and that they allow to improve the computational
efficiency up to three times.

The outline of the work is as follows. In Section 2 we present the global FSI
problem, its time discretization and a Lagrange multipliers formulation useful to derive
the numerical schemes. In Section 3 we present the exact schemes. In particular, in
Section 3.1 we introduce the classical partitioned algorithms, in Section 3.2 those
based on the approximate-Newton method, and in Section 3.3 the new family based
on a fixed-point reformulation of the global FSI problem. In Section 3.5 we study
the efficiency of such schemes by considering a real case in haemodynamics. Then,
in Section 4 we introduce the inexact schemes, both those derived by approximate-
Newton-based methods (Section 4.1) and those derived by fixed-point-based methods
(Section 4.2). Finally, in Section 4.3 we provide the convergence rates of inexact
methods used to solve an analytical test case, and in Section 4.4 we provide a study
on the accuracy and efficiency of such schemes applied to a real haemodynamic case.

2. The FSI problem and its time discretization. Referring to the fluid
domain Ωt

f like the one represented in Figure 2.1, left, we denote, for any function v
living in the current fluid configuration, by ṽ := v ◦A its counterpart in the reference
configuration Ω0

f , where A is the ALE map. By considering instead the structure

domain Ωt
s like the one represented in Figure 2.1, right, we denote, for any function

g defined in the current solid configuration, by g̃ := g ◦ L its counterpart in the
reference domain Ω0

s, where L is the Lagrangian map. The strong formulation of the
FSI problem, including the computation of the ALE map reads then as follows:

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity um and
fluid domain Ωt

f , find, at each time t ∈ (0, T ], fluid velocity uf , pressure pf
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Fig. 2.1. Representation of the domain of the FSI problem: fluid domain on the left, structure
domain on the right.

and structure displacement ηs such that





ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

uf =
∂ηs

∂t
on Σt,

T s(ηs)n − T f (uf , pf )n = 0 on Σt,

ρs
∂2η̃s

∂t2
−∇ · T̃ s(η̃s) = f̃s in Ω0

s,

(2.1)
where ρf and ρs are the fluid and structure densities, µ is the constant blood
viscosity, ff and fs the forcing terms, n the unit normal exiting from the

structure domain, and DA

Dt denotes the ALE derivative;
2. Geometry problem. Given the (unknown) interface structure displacement

η̃s|Σ0 , find the displacement of the points of the fluid domain ηm such that

{
−△η̃m = 0 on Ω0

f ,

η̃m = η̃s on Σ0,
(2.2)

and then find accordingly the fluid domain velocity ũm := ∂eηm

∂t , the ALE
map and the new points xt

f of the fluid domain by moving the points x0
f of

the reference domain Ω0
f :

A(x0
f ) = xt

f = x0
f + η̃m.

In the previous problem, T f (uf , pf ) is the Cauchy stress tensor related to a ho-

mogeneous, Newtonian, incompressible fluid, whilst T̃ s(η̃s) and T s(ηs) are the first
Piola-Kirchhoff and the Cauchy stress tensors of the solid, respectively, describing the
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structure problem. The two matching conditions enforced at the FS interface are the
continuity of velocities (2.1)4 and the continuity of normal stresses (2.1)5 (physical
interface conditions), whilst condition (2.2)2 enforces the continuity at the FS inter-
face of displacements of the fluid and structure subdomains (geometrical interface
condition). Equations (2.1) and (2.2) have to be endowed with suitable boundary
conditions on Ωt

f \ Σt and Ω0
s \ Σ0, and with suitable initial conditions.

Let ∆t be the time discretization parameter and tn := n∆t, n = 0, 1, . . .. For
a generic function z, we denote with zn the approximation of z(tn). We consider
Backward Differentiation Formulae of order p (BDFp) of the form

Dpv
n+1

∆t
:=

1

∆t

(
β0 vn+1 −

p∑

i=1

βi vn+1−i

)
=

∂v

∂t
(tn+1) + O(∆tp),

D2
pvn+1

∆t2
:=

1

∆t2

(
ξ0 vn+1 −

p+1∑

i=1

ξi vn+1−i

)
=

∂2v

∂t2
(tn+1) + O(∆tp),

for suitable coefficients βi and ξi [38, 40]. We report here the formulation of the time
discretization of order p of problem (2.1)-(2.2).

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity un+1
m

and the fluid domain Ωn+1
f and the solution at previous time steps, find the

fluid velocity un+1
f , the pressure pn+1

f and the structure displacement ηn+1
s

such that





ρf

Dp un+1
f

∆t
+ ρf ((un+1

f − un+1
m ) · ∇)un+1

f −∇ · T f (un+1
f , pn+1

f ) = fn+1
f in Ωn+1

f ,

∇ · un+1
f = 0 in Ωn+1

f ,

un+1
f = un+1

s on Σn+1,

T s(η
n+1
s )n − T f (un+1

f , pn+1
f )n = 0 on Σn+1,

ρs

D2
p η̃

n+1
s

∆t2
−∇ · T̃ s(η̃

n+1
s ) = f̃

n+1

s in Ω0
s.

(2.3)

In problem (2.3) we have also introduced the structure velocity un
s :=

Dpηn
s

∆t .
2. Geometry problem. Given the (unknown) interface structure displacement

η̃
n+1
s |Σ0 , solve a harmonic extension problem

{
−△η̃

n+1
m = 0 in Ω0

f ,

η̃
n+1
m = η̃

n+1
s on Σ0,

(2.4)

and then find accordingly the discrete fluid domain velocity ũ
n+1
m and the points xn+1

f

of the new fluid domain by

ũ
n+1
m :=

Dp η̃
n+1
m

∆t
, xn+1

f = x0
f + η̃

n+1
m . (2.5)

We consider here an equivalent formulation of (2.3) and (2.4) based on the in-
troduction of three Lagrange multipliers living at the FS interface, representing the
fluid and structure normal stresses λf and λs, and the normal derivative of the fluid
mesh displacement λm [38]. For the sake of notation we remove the temporal index
n+1. With ΣD

f , ΣD,0
s and ΣD

m we denote the parts of the boundary where Dirichlet
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boundary conditions are prescribed. Then, we define the following spaces

Vf := {v ∈ H1(Ωf ) : v|ΣD
f

= 0}, Q := L2(Ωf )1,

Vs := {v ∈ H1(Ω0
s) : v|ΣD,0

s
= 0}, Vm := {v ∈ H1(Ω0

f ) : v|ΣD,0
m

= 0}.

Let vf := (uf , pf ) collect the fluid unknowns and F : V f ×Q×V m → (V f ×Q)′ be
the fluid operator. Analogously, for the structure subproblem we define the operator
S : V s → (V s)

′, and for the harmonic extension we introduce the operator H : V m →
(V m)′. We then rewrite problem (2.3)-(2.4) as follows





H η̃m + γ̃∗
mλ̃m = 0 in (V m)

′
,

γ̃mη̃m = γ̃sη̃s on Σ0,

F(vf ,um) + γ̃∗
f λ̃f = Gf in (V f × Q)

′
,

αf γ̃fvf + λ̃f = αf γ̃s
Dp eηs

∆t − λ̃s on Σ0,

αsγ̃s
Dp eηs

∆t + λ̃s = αsγ̃fvf − λ̃f on Σ0,

S(η̃s) + γ̃∗
s λ̃s = Gs in (V s)

′
,

(2.6)

where γ̃f : V f × Q → H1/2(Σ0), γ̃s : V s → H1/2(Σ0), γ̃m : V m → H1/2(Σ0) are
trace operators and γ̃∗

f , γ̃∗
s , γ̃∗

m are their adjoints, Gs and Gf account for the right
hand sides, (2.6)2 is the geometrical interface condition, and the interface physical
conditions (2.6)3−4 are linear combinations of conditions (2.3)3−4 through coefficients
αf and αs. This will allow to obtain partitioned algorithms based on Robin interface
conditions, which have good convergence properties, independent of the added-mass
effect when the parameters αf and αs are suitably chosen [3, 4, 1, 22].

2.1. Outlook of iterative algorithms. As discussed above, we have to face
three sources of coupling and non-linearities, namely

(G) the geometrical interface condition;
(C) the constitutive non-linearities;
(P) the physical interface conditions.

We give here an outlook of the partitioned algorithms considered in the following
sections. In principle, our model algorithm will consist of three nested loops, one for
each of the three sources of coupling and non-linearities summarized above. Just to fix
the ideas, we suppose here that the external loop will manage the geometrical interface
condition, the intermediate one the constitutive non-linearities and the internal one
the physical interface conditions. Our model algorithm is then of the type
while (geometrical interface condition not satisfied) do

...

while (constitutive non-linearities not satisfied) do

...

while (physical interface conditions not satisfied) do

...

end

end

end

1Since we solve the FSI problem in a partitioned way with Robin conditions at the FS interface
(see (2.6)), the pressure is always defined and L

2(Ωf ) is the suitable pressure space for the weak
formulation.
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We call this algorithm G∞-C∞-P∞, where ∞ means that we let the iterations con-
tinue until convergence. Starting from this model scheme, we can obtain many other
algorithms as follows.

1. The order of the loops could be exchanged, leading to different schemes (G∞-
P∞-C∞, ...);

2. We can merge two or more loops. For example, starting from the model
algorithm G∞-C∞-P∞, we could decide to treat in the same loop the ge-
ometrical interface condition and the constitutive non-linearities, obtaining
the algorithm GC∞-P∞.

3. The external loop could be solved not until convergence, but performing just
few external iterations. In this case, such algorithms have to be intended
as inexact, since the external stopping criterion is not checked and satisfied.
For example, starting from our model scheme, we could decide to do just 2
external iterations, obtaining the algorithm I-G2-C∞-P∞, where we put a
letter I at the beginning to emphasize that such scheme is inexact.

4. In the case of inexact schemes where only few (even one) iterations are per-
formed in the external loop, we could consider starting the iterations from an
initial guess obtained by a p − th order extrapolation in time. In this case,
we add the letter E after the number of iterations of the loop involving the
extrapolation. For example, starting from the model algorithm with just 1
external iterations, if we decided to use an extrapolation of the interface po-
sition as initial guess, we name the corresponding scheme as I-G1E-C∞-P∞.
In this work, we have always used the same order p for the extrapolation as
the order of the temporal scheme.

3. Exact schemes. We discuss here the family of exact schemes, that is schemes
which satisfy exactly, up to given tolerances, the three interface conditions and the
constitutive non-linearities. In particular, we describe the classical schemes, the
approximate-Newton-based scheme and the new family of fixed-point-based scheme.
Then, in Section 3.5, the performance of these schemes will be compared for the first
time for a real haemodynamic case, by using an exponential law for the structure
strain energy.

3.1. Classical scheme. The first strategy corresponds to simple iterations at
each time step between the fluid geometry, the fluid and the structure subproblems
(see [24, 29, 31, 27] for the Dirichlet-Neumann case). Here, we present the Robin-
Robin version of such schemes introduced in [40]. In particular, we have the following

Algorithm 1. GP∞-C∞ scheme. Given the solution at iteration k, solve
until convergence

1. The fluid geometric problem

{
H η̃

k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)
′
,

γ̃mη̃
k+1
m = γ̃sη̃

k
s on Σ0,

(3.1)

2. The (non-linear) fluid problem in ALE configuration with Robin interface
condition

{
F(vk+1

f ,uk+1
m ) + γ̃∗

f λ̃
k+1

f = Gf in
(
V f (ηk+1

m ) × Q(ηk+1
m )

)′
,

αf γfvk+1
f + λk+1

f = αfγs
Dpηk

s

∆t − λk
s on Σk+1;

(3.2)
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3. The (non-linear) structure problem with Robin interface condition

{
S(η̃k+1

s ) + γ̃∗
s λ̃

k+1

s = Gs in (V s)
′
,

αs γ̃s
Dpeηk+1

s

∆t + λ̃
k+1

s = αsγ̃fvk+1
f − λ̃

k+1

f on Σ0;

4. Relaxation step

η̃
k+1
s = ω η̃

k+1
s + (1 − ω)η̃k

s ,

where ω ∈ (0, 1] is a relaxation parameter.
At step 2. we have highlighted the dependence of V f and Qf on ηk+1

m . We monitor the
residuals of conditions (3.1)2 and (3.2)2 and stop the iterations when such residuals
are below a prescribed tolerance.

At each iteration of the previous algorithm, the fluid and structure subproblems
have to be solved with a proper strategy to handle the non-linearities, such as with
Picard iterations for the fluid and Newton iterations for the structure. Algorithm 1
has a double-loop nature and, according to the notation introduced in Section 2.1, it
will denoted in what follows as GP∞-C∞.

3.2. Approximate-Newton-based schemes. We present here the prototype
of such family of schemes, which combines an approximate-Newton scheme for the
monolithic FSI problem with Robin-Robin subiterations for the linearized problem.
This is given by the following

Algorithm 2. GC∞-P∞ scheme [External loop - index k]. Given the
solution at iteration k, solve until convergence

1. The harmonic extension
{

H η̃
k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)
′
,

γ̃mη̃
k+1
m = γ̃sη̃

k
s on Σ0,

(3.3)

obtaining the new fluid domain and fluid domain velocity;
2. The linearized FSI problem. For its solution, we consider the following par-

titioned algorithm:

[Internal loop - index l] Given the solution at subiteration l − 1, solve at
current subiteration l until convergence
(a) The fluid subproblem with a Robin condition at the FS interface





∇̂vf
F(uk

f − uk+1
m )vk+1

f,l + γ̃∗
f λ̃

k+1

f,l = Gf in
(
V f (ηk+1

m ) × Qf (ηk+1
m )

)′
,

αfγfvk+1
f,l + λk+1

f,l = αfγs
Dp η

k+1

s,l−1

∆t − λk+1
s,l−1 on Σk+1;

(3.4)
(b) The structure subproblem with a Robin condition at the FS interface





∇ηS(η̃k
s) δη̃k+1

s,l + γ̃∗
s δλ̃

k+1

s,l = Gs − S(η̃k
s) − γ̃∗

s λ̃
k

s in (V s)
′
,

αsγ̃s

Dp η̃
k+1
s,l

∆t
− λ̃

k+1

s,l = αsγ̃f ṽ
k+1
f,l − λ̃

k+1

f,l on Σ0;

(3.5)
(c) Relaxation step

η̃
k+1
s,l = ω η̃

k+1
s,l + (1 − ω)η̃k+1

s,l−1,

8



where ∇̂vf
F is the Oseen approximation of ∇vf

F with the convective term highlighted
in the brackets. Such algorithm is obtained by applying the approximate-Newton
method to the monolithic non-linear system (2.6), by considering as approximation
of the Jacobian




H γ̃∗
m

γ̃m γ̃∗
s

∇um
F ∇vf

F γ̃∗
f

αf γ̃f I I −αf
βs,0

∆t γ̃s

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηs

S




,

the following expression

ĴDL =




H γ̃∗
m

γ̃m

∇̂vf
F γ̃∗

f

αf γ̃f I I −αf
βs,0

∆t γ̃s

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηs

S




,

which neglects the term ∇um
F involving the shape derivatives and the term γ̃∗

s which
couples the fluid geometry and the structure problems [38].

This algorithm has a double-loop nature as Algorithm 1, however in this case the
physical interface conditions are managed in the internal loop (GC∞-P∞ scheme).
For the external loop, we monitor the residual of equation (3.3)2 and the residuals
related to the convergence of the non-linear terms in the fluid and in the structure
subproblems. For the internal loop, we monitor the residual of equation (3.4)2. In
any case, we stop the external and internal iterations when the related residuals are
below a prescribed tolerance.

Another scheme of this family, obtained by considering a different approximation
of the Jacobian, is the so-called Single-loop (GCP∞) scheme [23, 33, 30, 38], where
all the non-linearities and interface conditions are treated in the same loop. Such
algorithm is obtained by applying the approximate-Newton method to the monolithic
non-linear system (2.6), by considering the following approximate Jacobian

ĴSL =




H γ̃∗
m

γ̃m

∇̂vf
F γ̃∗

f

αf γ̃f I

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηs

S.




.

Single-loop scheme is also obtained by Algorithm 2 by performing just 1 internal
iteration, however monitoring the residual of equation (3.4)2.

3.3. Fixed-point-based schemes. In this section we present new algorithms,
firstly proposed in [42], to solve the coupled FSI problem.

3.3.1. The fixed-point problem. We start from the Lagrange multipliers for-
mulation (2.6) and we rewrite it as a fixed-point problem over the interface position.

9



To this aim, we introduce the variable

ξ̃s := γ̃sη̃s,

that represents the solid displacement at the FS interface. Moreover, we define the
following operators:

- The harmonic extension operator

H† : H1/2(Σ̃) → Ṽ m × Ṽ m, (η̃m, ũm) = H†ξ̃s,

defined as follows

(η̃m, ũm) = H†ξ̃s :





H η̃m + γ̃∗
mλ̃m = 0 in (Ṽ m)′,

γ̃mη̃m = ξ̃s on Σ̃,

ũm =
Dpη̃m

∆t
in Ω̃f ;

- The operator that represents the interaction between the fluid and the solid
problems in a known given fluid domain,

FS† : V m × V m → Ṽ s, η̃s = FS†(ηm,um).

Given ηm and um, this operator is defined as follows

η̃s = FS†(ηm,um) :





F(vf ,um) + γ̃∗
f λ̃f = Gf in (V f (ηm) × Qf (ηm))′,

αf γ̃f ṽf + λ̃f = αf γ̃s
Dp eηs

∆t − λ̃s on Σ̃,

αsγ̃s
Dp eηs

∆t + λ̃s = αsγ̃f ṽf − λ̃f on Σ̃,

S(η̃s) + γ̃∗
s λ̃s = Gs in (Ṽ s)

′.

We can now introduce a map φ : H1/2(Σ̃) → H1/2(Σ̃), defined as

φ := γ̃sFS†(H†(ξ̃s)), ξ̃s
H†

−→ (η̃m, ũm)
FS†

−→ η̃s
eγs
−→︸ ︷︷ ︸

φ

ξ̃s,

and then write problem (2.6) as a fixed-point problem: Find ξ̃s such that

ξ̃s = φ(ξ̃s). (3.6)

3.3.2. The numerical algorithms. Problem (3.6) can be solved with a fixed-
point iteration method:

Given ξ̃
0

s, ξ̃
k+1

s = φ(ξ̃
k

s), k ≥ 0. (3.7)

This iterative algorithm written in extended form reads as follows:

Given the solution ξ̃
k

s at iteration k, solve at the current iteration k + 1 until conver-

gence

1. The fluid geometric problem

{
H η̃

k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (Ṽ m)′,

γ̃mη̃
k+1
m = ξ̃

k

s on Σ̃,

obtaining the new fluid domain and fluid domain velocity;
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2. The non-linear FSI problem defined in a known fluid domain




F(vk+1
f ,uk+1

m ) + γ̃∗
f λ̃f = Gf in (V f (ηk+1

m ) × Qf (ηk+1
m ))′,

αf γ̃f ṽ
k+1
f + λ̃

k+1

f = αf γ̃s
Dp eηk+1

s

∆t − λ̃
k+1

s on Σ̃,

αsγ̃s
Dp eηk+1

s

∆t + λ̃
k+1

s = αsγ̃f ṽ
k+1
f − λ̃

k+1

f on Σ̃,

S(η̃k+1
s ) + γ̃∗

s λ̃
k+1

s = Gs in (Ṽ s)
′;

(3.8)

3. The solid displacement is then restricted to the interface Σ̃ and updated, in

case, with a relaxation step

ξ̃
k+1

s = ωG γ̃sη̃
k+1
s + (1 − ωG)ξ̃

k

s ,

where ωG ∈ (0, 1] is a relaxation parameter.

�

The second step of the previous algorithm (problem (3.8)) is a coupled FSI prob-
lem solved in a known fluid domain (obtained thanks to ηk+1

m ), but where the con-
stitutive non-linearities are still present. Therefore, to solve this problem we have
to manage in an internal loop both such non-linearities and the physical interface
conditions. To do this, we consider an approximate-Newton method. Different ap-
proximate Jacobians lead to different algorithms, which are presented in what follows.

1. Using a single internal loop - G∞-CP∞ scheme. In this case, we apply the
approximate-Newton method to system (3.8), with the following approximation of
the Jacobian

P̂1 =




∇̂vf
F γ̃∗

f

αf γ̃f I

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηs

S


 . (3.9)

This scheme then reads as follows

Algorithm 3. G∞-CP∞ scheme [External loop - index k]. Given the

solution ξ̃
k

s at iteration k, solve at the current iteration k + 1 until convergence
1. The fluid geometric problem

{
H η̃

k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (Ṽ m)′,

γ̃mη̃
k+1
m = ξ̃

k

s on Σ̃;
(3.10)

obtaining the new fluid domain and fluid domain velocity.
2. The FSI problem in a known given fluid problem. For its solutions, we con-

sider the following approximate-Newton-based partitioned algorithm:

[Internal loop - index j] Given the solution at subiteration j − 1, solve at
the current subiteration j until convergence
(a) The fluid subproblem with a Robin condition at the FS interface

{
∇̂vf

F(uk+1,j−1
f − uk+1

m )v
k+1,j
f + γ̃∗

f λ̃
k+1,j

f = Gf in (V f (ηk+1
m ) × Qf (ηk+1

m ))′,

αfγfv
k+1,j
f + λ

k+1,j
f = αfγs

Dp ηk+1,j−1
s

∆t − λk+1,j−1
s on Σk+1,

(3.11)
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(b) The structure subproblem with a Robin condition at the FS interface





∇ηs
S(η̃k+1,j−1

s ) δη̃k+1,j
s + γ̃∗

s δλ̃
k+1,j

s = Gs − S(η̃k+1,j−1
s ) − γ̃∗

s λ̃
k+1,j−1

s in (Ṽ s)
′,

αsγ̃s
Dp η̃

k+1,j
s

∆t
− λ̃

k+1,j

s = αsγ̃f ṽ
k+1,j
f − λ̃

k+1,j

f on Σ̃.

(c) Relaxation step

η̃
k+1,j
s = ωP η̃

k+1,j
s + (1 − ωP )η̃k+1,j−1

s ,

where ωP ∈ (0, 1] is a relaxation parameter.

3. The solid displacement is then restricted to the interface Σ̃

ξ̃
k+1

s = ωG γ̃sη̃
k+1
s + (1 − ωG)ξ̃

k

s ,

where ωG ∈ (0, 1] is a relaxation parameter.
�

To stop the external iterations, we monitor the residual of condition (3.10)2, while
to stop the internal iterations we monitor the residual of condition (3.11)2 and the
residuals related to the convergence of the non-linear terms in the fluid and in the
structure subproblems.

Remark 1. G∞-CP∞ algorithm has a double loop structure, as GC∞-P∞ de-
scribed in Algorithm 2. The difference with that algorithm consists in the fact that
there the structure Jacobian was updated just at each external iteration, while here it
is updated at each internal iteration.

2. Using two nested internal loops - G∞-C∞-P∞ scheme. In this case, we consider
two nested loops to solve the FSI problem (3.8): an intermediate one to manage
the constitutive non-linearities and an internal one to prescribe the physical interface
conditions. This corresponds to use

P̂2 =




∇̂vf
F γ̃∗

f

αf γ̃f I I −αf
βs,0

∆t γ̃s

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηs

S


 ,

as approximate Jacobian for the approximate-Newton method applied to problem
(3.8). At each approximate-Newton iterations, we have a fully linearized FSI prob-
lem. This can be solved with a block-Gauss-Seidel preconditioner which has formally
the same expression of (3.9), but where the structure Jacobian is built differently, as
it will be clear by Remark 2. We have then the following

Algorithm 4. G∞-C∞-P∞ scheme [External loop - index k]. Given the

solution ξ̃
k

s at iteration k, solve at the current iteration k + 1 until convergence
1. The fluid geometric problem

{
H η̃

k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (Ṽ m)′,

γ̃mη̃
k+1
m = ξ̃

k

s on Σ̃;
(3.12)

obtaining the new fluid domain and fluid domain velocity.
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2. The FSI problem in a known given domain. For its linearization, we consider
the following approximate-Newton iterations:

[Intermediate loop - index j] Given the solution at subiteration j − 1,
solve at the current subiteration j until convergence





∇̂vf
F(uk+1,j−1

f − uk+1
m )v

k+1,j
f + γ̃∗

f λ̃
k+1,j

f = Gf in (V f (η̃k+1
m ) × Qf (η̃k+1

m ))′,

αfγfv
k+1,j
f + λ

k+1,j
f = αfγs

Dp ηk+1,j
s

∆t − λk+1,j
s on Σk+1,

αsγ̃s
Dp η̃

k+1,j
s

∆t
− λ̃

k+1,j

s = αsγ̃f ṽ
k+1,j
f − λ̃

k+1,j

f on Σ̃,

∇ηs
S(η̃k+1,j−1

s ) δη̃k+1,j
s + γ̃∗

s δλ̃
k+1,j

s =

Gs − S(η̃k+1,j−1
s ) − γ̃∗

s λ̃
k+1,j−1

s in (Ṽ s)
′.

(3.13)
At each iteration of the intermediate loop this problem is still coupled through
the physical interface conditions. For this reason we consider a Robin-Robin
partitioned algorithm for its solution:

[Internal loop - index l] Given the solution at subiteration l − 1, solve at
the current subiteration l until convergence
(a) The fluid subproblem with a Robin condition at the FS interface





∇̂vf
F(uk+1,j−1

f − uk+1
m )v

k+1,j
f,l + γ̃∗

f λ̃
k+1,j

f,l = Gf in
(
V f (η̃k+1

m ) × Qf (η̃k+1
m )

)′
,

αfγfv
k+1,j
f,l + λ

k+1,j
f,l = αfγs

Dp η
k+1,j

s,l−1

∆t − λ
k+1,j
s,l−1 on Σk+1,

(b) The structure subproblem with a Robin condition at the FS interface





∇ηs
S(η̃k+1,j−1

s ) δη̃k+1,j
s,l + γ̃∗

s δλ̃
k+1,j

s,l = Gs − S(η̃k+1,j−1
s ) − γ̃∗

s λ̃
k+1,j−1

s in (Ṽ s)
′,

αsγ̃s

Dp η̃
k+1,j
s,l

∆t
− λ̃

k+1,j

s,l = αsγ̃f ṽ
k+1,j
f,l − λ̃

k+1,j

f,l on Σ̃.

(c) Relaxation step

η̃
k+1,j
s,l = ωP η̃

k+1,j
s,l + (1 − ωP )η̃k+1,j

s,l−1 ,

where ωP ∈ (0, 1] is a relaxation parameter.

3. The solid displacement is then restricted to the interface Σ̃

ξ̃
k+1

s = ωG γ̃sη̃
k+1
s + (1 − ωG)ξ̃

k

s , (3.14)

where ωG ∈ (0, 1] is a relaxation parameter.
�

To stop the external iterations, we monitor the residual of condition (3.12)2.
Regarding the intermediate iterations, we monitor the residuals related to the conver-
gence of the non-linear terms in the fluid and in the structure subproblems. Finally,
to stop the internal iterations we monitor the residual of condition (3.13)2.

Remark 2. G∞-C∞-P∞ algorithm has a triple loop nature. We observe that
the structure Jacobian is updated at each intermediate iteration, by evaluating it for
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a structure displacement (η̃k+1,j−1
s ) which satisfies exactly the physical interface con-

ditions, differently from that used to update the structure Jacobian in G∞-CP∞ al-
gorithm, which does not satisfy them.

3. Using two nested internal loops - G∞-P∞-C∞ scheme. This scheme is obtained
by exchanging the order of the loops in G∞-C∞-P∞ scheme, that is by treating the
constitutive non-linearities in the internal one. Even if we presented such algorithm as
a fixed-point-based scheme, in the numerical results we will consider it as a classical
one, due to its implementation based on solving in an iterative framework the non-
linear fluid and structure subproblems. For the sake of brevity, we do not report here
the detailed description of this algorithm.

3.4. An efficient choice of the internal tolerance. In the algorithms pre-
sented in previous sections, whenever Newton or approximate-Newton iterations are
considered, the linear systems involved at each iteration do not need to be solved until
convergence when an iterative method is considered. Indeed, as observed for example
in [28], it is enough to stop the internal iterations when the residual is below a tol-
erance which is proportional to the Newton residual. This leads to a great saving in
the computational times, without affecting the accuracy, since at convergence of the
Newton iterations the tolerance of the internal linear system has become sufficiently
low.

It is then possible to apply such idea to our cases, in particular to GC∞-P∞ and
G∞-C∞-P∞. In both cases, the FSI linear system arising at each Newton iteration
(step 2. in Algorithm 2 and step b. in Algorithm 4, respectively) does not need to be
solved until convergence. This means that the physical interface conditions are in fact
not satisfied at each approximate-Newton iteration. However, at convergence of the
approximate-Newton loop, they are satisfied, so that these schemes are in fact exact.

In [28] such strategy is referred to as inexact-Newton. However, in order to avoid
confusion with the inexact schemes presented in Section 4, we name these algorithms
exact schemes with dynamic tolerance and we add the suffix DT at the end of the
name. In what follows, we detail GC∞-P∞-DT scheme.

Algorithm 5. GC∞-P∞-DT scheme [External loop - index k]. Given
the solution at iteration k, solve until convergence

1. The harmonic extension
{

H η̃
k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)
′
,

γ̃mη̃
k+1
m = γ̃sη̃

k
s on Σ0,

(3.15)

obtaining the new fluid domain and fluid domain velocity;
2. The linearized FSI problem. For its solution, given the external residual

Rk+1 := ‖γ̃s η̃
k+1
s −γ̃s η̃

k
s‖X+‖((uk+1

f −uk
f )·∇)uk+1

f ‖W +‖Gs−S(η̃k+1
s )−γ̃∗

s λ̃
k+1

s ‖K ,

we consider the following partitioned algorithm:

[Internal loop - index l] Given the solution at subiteration l − 1 and a
suitable scalar σk+1, solve at current subiteration l until

∥∥∥∥
αfβ0

∆t

(
γ̃sη̃

k+1
s,l − γ̃s η̃

k+1
s,l−1

)
+ λ̃

k+1

s,l − λ̃
k+1

s,l−1

∥∥∥∥
Z

≤ σk+1Rk+1,
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(a) The fluid subproblem with a Robin condition at the FS interface




∇̂vf
F(uk

f,l − uk+1
m )vk+1

f,l + γ̃∗
f λ̃

k+1

f,l = Gf in
(
V f (ηk+1

m ) × Qf (ηk+1
m )

)′
,

αfγfvk+1
f,l + λk+1

f,l = αfγs
Dp ηk

s,l−1

∆t − λk
s,l−1 on Σk+1;

(3.16)
(b) The structure subproblem with a Robin condition at the FS interface





∇ηS(η̃k
s,l) δη̃k+1

s,l + γ̃∗
s δλ̃

k+1

s,l = Gs − S(η̃k
s) − γ̃∗

s λ̃
k

s in (V s)
′
,

αsγ̃s

Dp η̃
k+1
s,l

∆t
− λ̃

k+1

s,l = αsγ̃f ṽ
k+1
f,l − λ̃

k+1

f,l on Σ0;

(3.17)
(c) Relaxation step

η̃
k+1
s,l = ω η̃

k+1
s,l + (1 − ω)η̃k+1

s,l−1.

For the choice of σk we follow [28]. In particular, we set

σk =





σmax k = 0,

min
(
σmax, γ

(
Rk/Rk−1

)2)
k > 0, γ(σk−1)2 ≤ 0.1,

min
(
σmax,max

(
γ
(
Rk/Rk−1

)2
, γ(σk−1)2

))
k > 0, γ(σk−1)2 > 0.1.

(3.18)
In the numerical simulations presented in this work we have used σmax = 0.9999
and γ = 0.9. In the computation of the residuals, X, W, Z, K are suitable Sobolev
spaces. In particular, the right choice is X = H1/2(Σ0), W = H−1(Ωf ), Z =
H−1/2(Σ0), K = H−1(Ωs). However, due to the complexity in the computation of
these norms, in practical implementations we considered W = L2(Ωf ), K = L2(Ωs)
and X = Z = L2(Σ0).

Remark 3. In [28] it has been shown that the choice (3.18) guarantees a second
order convergence when the exact Newton is considered. For approximate-Newton
strategies, as in our case, this choice allows to recover first order of convergence.

3.5. Numerical results for exact schemes.

3.5.1. Generalities. In all the numerical experiments of this work, we consid-
ered the nearly incompressible exponential material whose first Piola-Kirchhoff tensor
reads

T̃ s(F s) = GJ−2/3
s

(
F s −

1

3
tr(F T

s F s)F
−T
s

)
eγ(J

− 2
3

s tr(F T
s F s)−3)+

κ

2

(
Js − 1 +

1

J s
ln(Js)

)
JsF

−T
s ,

(3.19)
whose related energy is given by

W (F s) =
G

2γ

(
eγ(Js

− 2
3 tr(F T

s F s)−3) − 1

)
+

κ

4

(
(Js − 1)2 + (lnJs)

2
)
.

Here F s := ∇x0
s
xt

s, with x0
s the coordinates in the reference configuration and xt

s

those in the current configuration, Js := det(F s), κ is the bulk modulus and G the
shear modulus. For small deformations such material behaves as a linear structure
described by the infinitesimal elasticity, characterized by a Poisson’s ratio ν and a
Young modulus E related to κ and G as follows

κ =
E

3(1 − 2ν)
, G =

E

2(1 + ν)
.
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The parameter γ characterizes the stiffness of the material for large displacements.
Moreover, we used P1bubble−P1 finite elements for the fluid subproblem and P1

finite elements for the structure subproblem, and the following data: final time T =
0.4 s, viscosity µ = 0.03 g/(cms), fluid density ρf = 1 g/cm3, structure density ρs =
1.2 g/cm3, bulk modulus κ = 107 dyne/cm2, shear modulus G = 1.034 · 106 dyne/cm2

(corresponding for small displacements to Young modulus E = 3 · 106 dyne/cm2 and
Poisson ratio ν = 0.45), γ = 1. Moreover, if not otherwise specified, we used as time
discretization parameter ∆t = 0.002 s.

For the prescription of the interface continuity conditions, in all the simulations we
have considered the Robin-Robin (RR) scheme [3, 4], with the optimized coefficients
proposed in [22] and adapted to the various temporal schemes in [38]. To compute the
optimal αf we have used the value of E = 3 · 106 dyne/cm2. In all the simulations of
this work, RR scheme has converged without any relaxation, confirming its suitability
for haemodynamic applications.

The numerical experiments have been performed with the parallel Finite Element
library LIFEV (www.lifev.org), see [38] for details.

3.5.2. Efficiency of exact schemes in a real test case. In all the simulations
of this section and of Section 4.4 we considered the computational domain depicted in
Figure 2.1, representing the real carotid of a patient, after the removal of a plaque. The
vessel lumen has been reconstructed by using the code VMTK (see www.vmtk.org),
while the structure geometry has been obtained by extrusion, by setting the ratio
between the lumen radius and the thickness equal to 0.24. The number of degrees
of freedom is 160000 for the fluid domain and 30000 for the structure, and the fluid
and structure meshes are conforming at the interface. For the harmonic extension
and for the structure, we prescribed at the artificial sections normal homogeneous
Dirichlet conditions and tangential homogeneous Neumann conditions, that is we let
the domain move freely in the tangential direction. At the fluid inlet we imposed
the patient-specific flow rate depicted in Figure 3.1, measured by means of the Eco-
Color Doppler technique and prescribed through the Lagrange multipliers method
(see [15, 46, 18, 19]). At the fluid outlets, we used an absorbing resistance boundary
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Fig. 3.1. Patient-specific flow rate waveform prescribed at the inlet of the carotid.

condition, see [39, 38] for details. At the external surface Σ0
out we prescribed a Robin
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boundary condition with Robin coefficient αe with the aim of modeling the presence
of a surrounding tissue around the vessel [32, 35, 9, 38]. In particular, we set αe =
3 · 106 dyne/cm3. This value allows to recover a pressure in the physiological range.

As a representative case, we reported in Figure 3.2 a snapshot of the streamlines
obtained with GC∞-P∞ scheme and BDF1/BDF1 time discretization.

Fig. 3.2. Streamlines of the velocity field at sistole (0.31 s, left) and at diastole (0.80 s, right).
GC∞-P∞ - BDF1/BDF1.

In Table 3.1 we reported the number of iterations for different exact schemes. The
number of external iterations reported in the table has to be intended as an average
one over the period [0, T ], whilst the intermediate and the internal ones as the average
per outer loop (the external and the intermediate ones, respectively). We reported
also the CPU time normalized over that of GC∞-P∞-DT scheme, used here as our
gold-standard.

# of external # of intermediate # of internal Normalized
iterations iterations iterations CPU time

GC∞-P∞ 13.5 – 7.7 1.72
GC∞-P∞-DT 13.9 – 3.0 1.00
GCP∞ 20.4 – – 2.00

G∞-CP∞ 12.3 – 9.4 3.53
G∞-C∞-P∞ 12.3 5.7 6.3 3.05

G∞-P∞-C∞ 12.9 6.7 3.5 3.76
GP∞-C∞ 15.3 – 3.8 4.16

Table 3.1
Average number of iterations in the external loop and average number of iterations per outer

loop in the intermediate and internal ones, and CPU time normalized with respect to that of GC∞-
P∞-DT scheme. Exact schemes. BDF1/BDF1.

Discussion of the numerical results. The results reported in Table 3.1 show that
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the approximate-Newton-based schemes are the most efficient among exact methods.
In particular, GC∞-P∞ scheme is slightly faster than GCP∞. We also ran the
proposed numerical experiment with GC∞-P∞-DT scheme, described in Algorithm
5. As observed in Table 3.1, the CPU time needed by GC∞-P∞-DT have been almost
halved with respect to GC∞-P∞.

Regarding the fixed-point-based schemes, they seem to be quite slower than
approximate-Newton methods. The best performance have been obtained by G∞C∞-
P∞ scheme, the CPU time being less than two times greater than for GC∞-P∞. We
point out that in any cases, fixed-point-based schemes converged without any re-
laxation (ωG = 1). We ran G∞-C∞-P∞ scheme also with an Aitken relaxation
procedure [26] over (3.14), with the hope of improving the efficiency. However, we
found that the CPU time normalized with respect to that of GC∞-P∞-DT is 2.90,
against 3.05 for the case ω = 1, so that no substantial improvement is observed with
the Aitken procedure. We did not consider G∞-C∞-P∞-DT scheme, due to the
worse performance of G∞-C∞-P∞ with respect to GC∞-P∞.

Concerning the classical schemes, they showed a very poor efficiency in compari-
son to approximate-Newton, their CPU time being more than four times greater with
respect to that of GC∞-P∞-DT. They are also slower than the fixed-point-based
methods. Such schemes are however the most appealing from the computational
point of view, when one has at disposal two black-box solvers for the fluid problem
in ALE formulation and for the structure, since they need just to implement suitable
routines for the transfer of the interface conditions between the two codes. Instead,
approximate-Newton-based and fixed-point-based algorithms can be implemented in a
modular way provided that one can access to the fluid and structure tangent problems
(always possible by running just 1 Newton internal iteration).

In conclusion, we suggest GC∞-P∞-DT as the most suitable among exact schemes
for real haemodynamic applications.

4. Inexact schemes. Here, we want to extend to the case of the finite elasticity
the semi-implicit schemes [43, 12, 6, 39, 9] and, more generally, the geometrical inex-
act schemes [38]. A first way to do this, consists in considering the classical scheme
G∞-P∞-C∞ and to perform just one (or few) external iterations over the interface
position [35]. In this case the physical interface conditions and the constitutive non-
linearities are both treated exactly. Here, we want to introduce a different family of
inexact schemes, where, besides the geometrical interface condition, also the fluid and
structure constitutive non-linearities are not prescribed exactly. In other words, we
ask if it is necessary in haemodynamic applications to handle exactly the constitutive
non-linearities, in particular the structure one. In Section 4.1 we considered the inex-
act versions of the approximate-Newton-based schemes, and in Section 4.2 the inexact
versions of the fixed-point-based schemes. To study the accuracy, we considered both
an analytical test case in Section 4.3 and a real test case in Section 4.4. In the latter
section, we also study the efficiency of the inexact schemes in a real context.

4.1. Approximate-Newton-based inexact schemes. The starting point is
the observation that in the case of the linear infinitesimal elasticity, semi-implicit
schemes can be regarded as GC∞-P∞ scheme where the number of external iterations
is fixed and equal to 1. By performing just one external iteration also in presence of
the finite elasticity, we obtain a scheme where also for the constitutive non-linearities
just one iteration is performed (I-GC1-P∞). More in general, it is possible to perform
m external iterations for a fixed m > 1, obtaining the I-GCm-P∞ scheme. For such
schemes, the stopping criteria on the geometrical condition and on the constitutive
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non-linearities are not checked, so that they are in principle inexact also with respect
to the constitutive non-linearities. This fact makes very interesting the study of
the accuracy of such schemes, since there is no a priori evidence that the fluid and,
especially, the structure problems need to be solved exactly in order to recover a global
accurate solution.

4.2. Fixed-point-based inexact schemes. We introduce here the inexact
variants of the fixed-point-based schemes introduced in Section 3.3. The philosophy
is the same used to derive the inexact schemes from the approximate-Newton-based
algorithms, that is to perform a fixed number of iterations in the external loops.

We can derive two groups of inexact algorithms, one from G∞-CP∞ scheme and
one from G∞-C∞-P∞ scheme. In any case, as for the approximate-Newton-based
inexact algorithms, the physical interface conditions are satisfied exactly, due to the
high added mass effect in haemodynamics. In the first case we obtain I-Gm-CP∞
schemes, derived from Algorithm 3 by performing just m external iterations. This
scheme, differently from I-GCm-P∞, solves exactly the constitutive non-linearities,
and only the geometrical interface condition is not prescribed correctly. Since we
are here interested in the accuracy of schemes which do not solve exactly the con-
stitutive non-linearities, we do not consider such schemes in the following numerical
experiments.

The second group of inexact schemes is derived from G∞-C∞-P∞ scheme. In
this case, they are obtained by considering just m iterations in the external loop and r
iterations in the intermediate loop (in principle, also the case r = ∞ could be allowed,
but it is not considered here). We obtain I-Gm-Cr-P∞ schemes, derived from Algo-
rithm 4 by performing just m external iterations and r intermediate iterations. Such
schemes, as for I-GCm-P∞ scheme, treat inexactly both the geometrical interface
condition and the constitutive non-linearities.

4.3. Numerical results for inexact schemes: Convergence with respect
to time. We consider the same analytical test case proposed in [38] for the linear in-
finitesimal elasticity. This test consists in a translation of a cylinder of small thickness
(the structure) filled by the fluid and in a rotation around its axis with no volume
forces.

Referring to the same data reported in [38], it is easy to check that the analytical
solution of the FSI problem is given by

{
uf = ū in Ωt

f , pf = 0 in Ωt
f ,

η̃s = η̄ in Ω0
s, η̃m = η̄ in Ω0

f ,

where

η̄ :=




x0
s,1(cos θ − 1) − x0

s,2 sin θ + c1,
x0

s,1 sin θ + x0
s,2(cos θ − 1) + c2,

c3,


 , ū :=




θ̇(c2 − xf,2) + ċ1,

θ̇(xf,1 − c1) + ċ2,
ċ3,




for given functions of time θ(t) and c(t). We observe that with respect to the analytical
solution proposed in [38], here the pressure is identically zero.

We considered, in particular, the cylindrical geometry depicted in Figure 4.1,
where the length is L = 5 cm, the fluid domain radius R = 0.5 cm, the structure
thickness Hs = 0.1 cm. The space discretization parameter is h = 0.025 cm and the
fluid and structure meshes are conforming at the interface. The mesh is composed of
about 57000 degrees of freedom for the fluid and about 6000 for the structure. For

19



Fig. 4.1. Cylindrical geometry.

what concerns the data of the test, we have set c = 0 and θ(t) = 0.2(1 − cos(50π t)).
We ran all the simulations on 4 processors for the solution of the fluid problem and
on 1 processor for the structure.

In Figure 4.2 we show the convergence history of four selected inexact schemes,
namely I-GC1-P∞, I-GC2-P∞, I-G1-C2-P∞ and I-G2-C2-P∞, chosen as the most
representative, for three selected temporal schemes, namely BDF1/BDF1, BDF2/BDF2
and BDF3/BDF3. A relative L2 norm of the error is computed at time t = 0.002 s.
The time discretization parameter is ∆t = 2 · 10−3, 10−3, 5 · 10−4, 2.5 · 10−4 s. For
BDF2/BDF2 and BDF3/BDF3 schemes, I-GC1-P∞ and I-G1-C2-P∞ featured just
first order convergence, so that we have considered in these cases also the extrapolated
versions I-GC1E-P∞ and I-G1E-C2-P∞.

Discussion of the numerical results. From the convergence rates depicted in Fig-
ure 4.2, we observe that when BDF1/BDF1 is used, all the four inexact schemes
considered recovered first order convergence without any extrapolation of the inter-
face position, fluid velocity and structure displacement. Regarding BDF2/BDF2 and
BDF3/BDF3, we observe that schemes which perform two iterations in the loops re-
lated to the geometrical condition and to the constitutive non-linearities (I-GC2-P∞
and I-G2-C2-P∞) featured second and third order convergence, respectively, without
any extrapolation. For the other two schemes (I-GC1E-P∞ and I-G1E-C2-P∞) an
extrapolation of order two and three, respectively, has been needed in order to recover
the right convergence order. This results show that, at least for the analytical test
case, it is not needed to solve exactly the constitutive non-linearities to recover an
accurate solution.

4.4. Numerical results for inexact schemes: Efficiency and accuracy in
a real test case. In this section we report the numerical results obtained for the
same test case presented in Section 3.5.2, by using the four inexact schemes considered
above. This allowed to study the accuracy and the efficiency of such schemes in a real
context.

In Tables 4.1 and 4.2 we report the relative errors of the inexact schemes by
using the solution obtained with GC∞-P∞ scheme as the reference one. In partic-
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(c) BDF3/BDF3

Fig. 4.2. Convergence rate of three temporal schemes considered. Relative errors of the fluid
velocity (left), of the pressure (middle) and of the structure displacement (right) - BDF1/BDF1
(up), BDF2/BDF2 (middle), BDF3/BDF3 (bottom) - t = 0.002 s.

ular, we report the L∞(L∞)-norm of average quantities, namely the mean structure
displacement η, the flow rate Q and the mean pressure P computed over sections
perpendicular to the axial axis. To do this, we computed quantities as

maxj ‖x
j
EX − xj

∗‖L∞(0,T )

maxj ‖x
j
EX‖L∞(0,T )

, (4.1)

where xj is one of the average quantities computed at different sections Σj orthogonal
to the axial direction, EX stands for “solution computed with the exact scheme” and
* stands for one of the inexact schemes. The results reported in Table 4.1 refer to
BDF1/BDF1, while those in Table 4.2 to BDF2/BDF2.

21



η (%) Q (%) P (%)

I-GC1-P∞ 0.890 0.413 0.702
I-GC2-P∞ 0.003 0.005 0.003

I-G1-C2-P∞ 0.847 0.439 0.694
I-G2-C2-P∞ 0.002 0.001 0.001

Table 4.1
Relative error of inexact schemes with respect to the exact solution, computed with (4.1).

BDF1/BDF1. Left: displacement. Middle: flow rate. Right: mean pressure.

η (%) Q (%) P (%)

I-GC1-P∞ 1.013 0.832 1.342
I-GC1E-P∞ 0.066 0.084 0.054
I-GC2-P∞ 0.004 0.006 0.004

I-G1-C2-P∞ 0.994 0.768 0.078
I-G1E-C2-P∞ 0.042 0.027 0.025
I-G2-C2-P∞ 0.003 0.002 0.002

Table 4.2
Relative error of inexact schemes with respect to the exact solution, computed with (4.1).

BDF2/BDF2. Left: displacement. Middle: flow rate. Right: mean pressure.

In Table 4.3 we report the number of iterations for BDF2/BDF2. In particular,
the number of iterations in the intermediate and in the internal loops has to be
intended as the average per outer loop. We also report the CPU time normalized over
that of GC∞-P∞-DT scheme, that is the fastest among the exact schemes.

# of external # of intermediate # of internal Normalized
iterations iterations iterations CPU time

I-GC1-P∞ 1 – 24.8 0.34
I-GC1E-P∞ 1 – 24.6 0.33
I-GC2-P∞ 2 – 20.3 0.70

I-G1-C2-P∞ 1 2 21.8 0.46
I-G1E-C2-P∞ 1 2 21.4 0.44
I-G2-C2-P∞ 2 2 18.6 0.83

Table 4.3
Average number of iterations per outer loop in the intermediate and internal ones, and CPU

time normalized with respect to that of GC∞-P∞-DT scheme. Inexact schemes. BDF2/BDF2.

Discussion of the numerical results. The results reported in Tables 4.1 and 4.2 show
that the relative errors of inexact schemes with respect to the solution obtained with
an exact scheme are in any case less than 1%. In particular, the accuracy improves
of one order of magnitude by performing just one external iteration with a suitable
extrapolation in the case of BDF2/BDF2, and of two orders of magnitude by perform-
ing two external iterations instead of one both for BDF1/BDF1 and for BDF2/BDF2,
These results show that also in real applications, an inexact treatment of the consti-
tutive non-linearities and of the geometrical interface condition is sufficient to recover
a satisfactory solution for practical purposes.
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Regarding the efficiency, we observed that the inexact approximate-Newton-based
methods are slightly faster than the inexact fixed-point-based ones, while we did not
experience significant differences in the case of one external iteration between the cases
with or without extrapolation, see Table 4.3. Performing just one external iteration
allows a big saving in the computational effort, being the CPU times reduced to three
times. When moving from one to two external iterations, the CPU time doubles,
being however less than the CPU time of the most efficient exact schemes.

5. Conclusions. In this work we studied the numerical performance of several
partitioned schemes for the solutions of the FSI problem with non-linear fluid and
structure subproblems for real haemodynamic applications. We considered approximate-
Newton-based, fixed-point-based and classical methods. For the first two families of
schemes, we considered both exact and inexact schemes, the latter being obtained by
performing just one or two iterations in the loops managing the geometrical coupling
and the constitutive non-linearities, guaranteeing in any case the satisfaction of the
physical interface conditions. The main features of such schemes highlighted by this
work are summarized as follows.

1. Among exact schemes, approximate-Newton methods are in general more per-
forming than fixed-point ones. In particular, GC∞-P∞ is the most efficient
for real applications;

2. For the latter scheme, we also experienced the excellent performance of a
variant where the physical interface conditions in the internal loop are solved
with a precision which is proportional to the external residual (GC∞-P∞-
DT). This scheme allowed to almost half the CPU times with respect to
GC∞-P∞;

3. Classical schemes are more than four times slower than approximate-Newton
methods, being however the easier to be implemented when black-box solvers
are available;

4. Inexact schemes, where both the geometrical interface condition and the con-
stitutive non-linearities are not prescribed exactly, are accurate, recovering,
for the analytical test case, the expected convergence rate when at most two
iterations involved in the relative loops are performed. When just one itera-
tion is considered, a suitable extrapolation of interface position, fluid velocity
and structure displacement is needed to recover the right order of convergence.

5. Inexact schemes, where two iterations in the external loops are performed
are very accurate for real haemodynamic applications. A very good accuracy
(even if worse than that obtained with two external iterations) has been
experienced also when performing one external iteration for BDF2/BDF2,
provided that a suitable extrapolation is considered. These facts confirm, for
the first time, the effectiveness of inexact schemes in haemodynamics also
when the finite elasticity is considered for the structure subproblem;

6. Inexact schemes are more efficient than exact schemes, the CPU time being
reduced to three times when just one external iteration is performed.

For the reasons highlighted at the previous points, among all the schemes pro-
posed in this work, we recommend I-GC2-P∞ as the best compromise between good
accuracy and efficiency for real haemodynamic applications. For BDF2/BDF2 an ef-
fective alternative is provided by I-GC1E-P∞, which allows to half the CPU times
with respect to I-GC2-P∞, with a slight reduction in the accuracy (the errors being
however less than 0.1%).
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