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Abstract

This paper presents a general spatio-temporal model for assessing
the air quality impact of environmental policies which are introduced as
abrupt changes. The estimation method is based on the EM algorithm
and the model allows to estimate the impact on air quality over a region
and the reduction of human exposure following the considered environ-
mental policy. Moreover, impact testing is proposed as a likelihood ratio
test and the number of observations after intervention is computed in or-
der to achieve a certain power for a minimal reduction. An extensive case
study related to the introduction of the congestion charge in Milan city
and the monitoring of particulate matters and total nitrogen oxides mo-
tivates the methods introduced and illustrate implementation issues and
inferential machinery.

1 Introduction

Environmental, energetic and industrial policies are often motivated by the need
to improve air quality in terms of pollutants concentration reduction. This
is usually pursued by a supposedly appropriate cut of emissive activity like
selective or indistinct car tra¢c reduction, carbon energy substitution with green
energy, industrial requaliÖcation, etc. Hence a fundamental step is to assess if
a policy actually obtains a relevant reduction of pollutant concentrations. In
this paper, we develop a general observational methodology for spatiotemporal
impact assessment.
The general approach proposed is motivated by and benchmarked on a real

application related to the impact of tra¢c reduction. In particular, on January
16, 2012, the Municipality of Milan introduced a new tra¢c restriction system
known as congestion charge. This requires to pay a fee of Öve Euros for enter-
ing the central area, known as "Area C" which is inside the so called "Cerchia
dei Bastioni". According to Municipality, in the Örst two months, car tra¢c
decreased of about 36% in Area C and, at the overall city level, Municipality
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reported a tra¢c reduction of about 6% which started at the beginning of Janu-
ary, before the congestion charge. This bringing forward may partly be related
to the preparatory campaign playd out by the administration and partly by
overall decrease in gas consumption at the national level due to economic crisis.
January and February have been cold and heavily polluted months with a

large number of days exceeding the thresholds Öxed by the European regulations
(see Arduino and FassÚ, 2012). Although the congestion charge is intended as
a tra¢c control measure, the question which arise is whether there has been
an impact on air quality or not. Air quality is usually deÖned according to the
concentrations of various pollutants. In particular particulate matters (PM) are
important because of their toxicity and are extensively monitored. Nevertheless
the health e§ects of PM are known to depend not only on concentration but also
on particle size, composition and black carbon content, so that having extensive
data on particle numbers (see e.g. Hong-di and Wei-Zehn, 2012) or on black
carbon content (see e.g. Janssen et al. 2011) would be very useful to understand
air quality from health protection point of view. For other pollutants threat-
ening human health, e.g. nitrogen oxides, which also are extensively monitored
because of their health impact, we do not have this problem and concentration
is the main health concern.
In general, comparing concentrations before and after intervention is a non-

trivial problem. In fact, considering PM10 concentration in Milan city center
depicted in Figure 1, we note that the January-February mean of the last three
years is 71.3 g=m3 which is smaller than the after-intervention mean, obtained
between January 16 and the end of February, which is 76.7 g=m3. So the

Figure 1: PM10 at Verziere Station. Black vertical line is Jan 16.

air quality impact of the tra¢c reduction due to the congestion charge has to
face a major intrinsic confounder, due to atmospheric conditions, which greatly
a§ects air quality in the Po Valley basin in general and Milan area in particular.
Moreover a second possible confounder is related to the economic crisis which
is reducing car use and gas consumption around Italy.
This paper aims at an early estimation of the spatially distributed reduction

in the yearly average of pollutant concentrations. To do this, it aims to focus
the following three scientiÖc questions, which are exempliÖed by means of Milan
case study.
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1. The Örst point is whether or not the congestion charge has a measurable
permanent impact on air quality in terms of concentration reduction of
particulate matters (PM10 and PM2:5) and total nitrogen oxides (NOX)
after adjusting for the e§ects of meteorological conditions and tra¢c re-
duction due to economic crisis or other general áuctuations which are not
related to Milan speciÖc facts.

2. Moreover, the second point aims to know if there is a di§erent impact
inside the intervention area (area C) and the rest of the city.

3. Finally, the third point is related to the spatial and temporal information
content required to have sound conclusions. That is the number of days,
required to "observe" a statistically signiÖcant permanent impact with
high probability and the number of stations required to understand the
spatial impact.

In time series analysis the non spatial part of questions one and two are
treated by intervention analysis after the celebrated paper of Box and Tiao
(1975) : See also e.g. Hipel and McLeod (2005). Soni et al. (2004) discuss spatio-
temporal intervention analysis in the context of neurological signal analysis using
STARMA models. In river networks water quality monitoring, Clement et al.
(2006) considered a spatiotemporal model based on directed acyclic graphs.
Here, we extend these methods to a general multivariate spatiotemporal model
for air quality and develop some examples related to Milan congestion charge.
With this aim, the rest of the paper is organized as follows. Section 2

presents a general spatiotemporal model, which is capable of various levels of
complexity according to the information content of the underlying monitor-
ing network. The estimation method is based on the EM algorithm and the
model allows to estimate the impact on air quality and the reduction of hu-
man exposure following the considered environmental policy. Moreover, impact
testing is proposed as a likelihood ratio test and the number of observations
after intervention is computed in order to achieve a certain power for a minimal
reduction. In section 3, the above approach is applied to the introduction of the
congestion charge in Milan city. To do this, the general model is tailored to the
reduced monitoring network that the environmental agency, ARPA Lombardia,
implemented for monitoring particulate matters (PM10 and PM2:5) and nitro-
gen oxides (NOX) in this city. The concentration reduction is then assessed for
the above pollutants using a preliminary vector autoregression approach and a
conÖrmatory spatiotemporal model named STEM used when the spatial infor-
mation contained in the monitoring network is su¢cient. The conclusions and
acknowledgment sections close the paper.

2 Impact modelling by STEM

We consider here a general model able to assess the impact on air quality of
an environmental rule in a geographic region R. To do this, we deÖne a spa-
tiotemporal model for the observed concentration at coordinates s 2 R and day
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t = 1; 2; :::; n, denoted by y (s; t), able to capture the e§ect of the environmental
intervention, dated t = nm+1 and observed for m = n t+1 days, namely

y (s; t) =  (s; t) +  (t)x (s; t) +  (s; t) (1)

The quantity  (s; t) represents the expected spatial impact of the environ-
mental intervention and  (s; t) = 0 for t < t: In general terms  is a dynamic
random Öeld and the e§ectiveness of a environmental policy can be assessed by
the expected impact on pollution concentrations over region R and time horizon
M , which is given by

 =
1

M

t+M1X

t=t

Z

R
E ( (s; t)) p (s; t) ds

The weighting function p (s; t) may be used for averaging, e.g. p (s; t) = jRj1,
or risk assessment. For example, we may be interested in human exposure and,
following Finazzi et al (2012), we may take the weighting function p (s; t) as the
dynamic population distribution or a time-invariant p (s) as a static population
distribution over the study area. If  < 0 then the impact is negative and we
have an increase in pollutant concentration.
The simplest model for reduction assessment, is given by a scalar determin-

istic impact
 (s; t) =  (2)

which assumes constant impact over time and space after intervention. At
an intermediate complexity level, we may use  (s; t) =  (s) which gives a
time-invariant reduction map, appropriate for assessing a localized permanent
stationary impact. Of course the choice among the above alternatives relies also
on the spatial information content of the monitoring network.
Confounders may be covered by a time varying linear confounder model

component  (t)x (t) ; where  (t) is a stationary stochastic coe¢cient vector.
For example, Finazzi and FassÚ (2011b) use a Markovian dynamics for  (t).
In the Milan application of the next section, considering the limited amount of
spatiotemporal information contained in the data, in order to avoid overÖtting
and shadowing of the change point t, we use a deterministic  with a minimal
seasonal structure given by:

 (t) =


s t 2 Summer
w t 2Winter (3)

In equation (1), the spatiotemporal error  (s; t) allows for spatial and tem-
poral correlation using either separability or non-separability, see e.g. Porcu
et al (2006) ; Bruno et al. (2009) and Cameletti et al. (2011). In this paper,
we use a latent process with three components adapted from FassÚ and Finazzi
(2011a), namely

 (s; t) = z (t) + ! (s; t) + " (s; t)
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where z (t) = z (t 1) +  (t) is a stable Gaussian Markovian process, with
jj < 1 and 2 = V ar (). The purely spatial component ! (s; t) is given by iid
time replicates of a zero mean Gaussian spatial random Öeld characterized by a
spatial covariance function given by

 (js s0j) = 2! exp


js s0jr




(4)

with r = 1 or 2. Finally " (s; t) is a Gaussian measurement error iid over time
and space, with variance 2" .

2.1 Estimation and inference

We denote the parameter array characterizing model (1) by  = (; ), where
 is the component related solely to the e§ect  () =  (j) and  is
the parameter component for the global dynamics of y independent on the
intervention. Although, in general the impact could depend on  :  = (), it
is convenient to deÖne models for which  depends solely on . In the simple
case of equation (2), we have  =  / ().
With this notation, the estimated model parameter array is given by ̂ =

̂; ̂


, which may be computed using maximum likelihood as in FassÚ and

Finazzi (2011a) : In particular the estimates are computed using the EM algo-
rithm, hence the acronym STEM for this approach. Note that the EM algorithm
relies on a posteriori common latent e§ects, namely ẑ (t) = E (z (t) jY ) ; which
are computed by the Kalman smoother, and a posteriori local e§ects, namely
!̂ (s; t) = E (! (s; t) jY ), which are computed by Gaussian conditional expec-
tations. An e¢cient software for EM estimation, Öltering and kriging, called
D-STEM, has been recently introduced by Finazzi (2012) and is largely used in
section 3.
Using the above model, the e§ectiveness of an environmental measure may

be proven by rejecting the non-change hypothesis given by

H0 :  () = 0

Suppose that () = 0 for  = 0: We can then test the above non e§ect
hypothesis by the (one sided) likelihood ratio test. In particular, if  = 
is a simple scalar parameter, we can approximate the likelihood ratio test by a
simple t test and reject H0 for large signiÖcant values of ̂

se(̂) . Moreover, if  (s)
is a stochastic map, it may be estimated by kriging-like computations, giving
the impact map ̂ () and the 1 p level conÖdence bands given by

̂ () zp=2se (̂ ())
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2.2 Days for detection and Information

Under regularity assumptions, the observed Fisher information matrix In, for
large n and m, may be related to the partitioned information i as follows

In; = m


i i;
i;

n
m i


(5)

where the information blocks are conformable to  = (; v). It follows that
the precision in the estimation of the pollution reduction  depends mainly on
m.
The number of days required to detect a reduction of size  with high

probability  is then computed with formulas which generalize the classical
sampling results. In particular for the simple scalar parametrization of  (),
applying the partitioned matrix inversion lemma to expression (5), we have the
approximated formula

m  m =

i1  i;

m

n
i1i;

1
 
 (1 p)1 +()1



!2
(6)

3 Milan case study

The monitoring network of Milan city, depicted in Figure 2, is composed by
one station for PM2:5, four stations for PM10 and eight stations for NOX : All
these sensors give data at least three years old, that is, we consider the log-
transformed and centered concentrations between January 1st, 2009, and July
20, 2012, totalling n = 1297 days and m = 186 days are after the congestion
charge introduction dated January 16, 2012.
In order to adjust for the confounders, we considered meteorological condi-

tions in Milan, namely wind speed (daily maximum and average) and direction,
humidity, temperature, solar radiation and pressure. Moreover, we used the
additional covariates given by the concentration readings of the same pollutants
in Bergamo city which is approximately 45km North-East of Milan and we used
data from the urban ground station known as Meucci. This is an important
proxy for all other meteorological and economic factors common to the north
plain of Lombardy but the congestion charge in Milan.

3.1 Modelling details

Due to the sparsity of Milan data, we start using three di§erent simple ex-
ploratory q-dimensional vector seasonal autoregressive (ARX) models. For
PM2:5 we use only a unidimensional ARX model, while for PM10 and NOX ,
we integrate the analysis of the vector ARX models with the STEM approach
of the previous section.
The exploratory ARX models are given by

yt = at + bxt +Gyt1 + et
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Figure 2: Milan Area C (red line) and monitoring network.
Blue pushpins: NOX only, from top right counterclockwise Lambro, Marche,
Zavattari, Liguria, Abbiategrasso.
Green Ballons: PM10 and NOX , Area C, Senato and Verziere.
Pink Ballon: PM2:5, PM10 and NOX : Citt‡ studi, Pascal.
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where yt is PM2:5, PM10 or NOX with dimensions q = 1; 3 and 7, respectively.
The impact at is as in equation (2) and, similarly, the seasonal adjustment b
is as in equation (3). The covariates are selected by taking into account BIC
criterion and residual autocorrelation. The persistence matrix G is taken as a
diagonal matrix:

G = diag (g1; :::; gq)

Note that the multivariate approach is important here, because the errors et
may be strongly (spatially) correlated.
According to the AR(1) dynamics, the scalar steady state impact on yt is

given by
d =

a

1 g
(7)

Moreover, ignoring the uncertainty of the pre-intervention estimation of g and
recalling the Fisher information matrix given in (5), we get the approximate
variance for d̂; namely

V ar

d̂

= V ar (â) = (1 ĝ)2

It follows that the city average steady state e§ect is given by

d = qj=1d̂jpj

with variance given by the well known quadratic form:

V ar

d

= p0V ar


D̂

p

In the above formula, D = (d1; :::; dq) and the weights p = (p1; :::; pq) can be
based on the population density, which is taken as approximately constant in
the rest of the paper, as we are involved in city center data especially for the
PM study.

3.2 Fine particulate matters

We start with the single station on Öne particulate matters PM2:5, namely Pas-
cal station, which is a ground station external to "Area C" and located in the
relatively central quarter named "Citt‡ studi". Here, Öne particulate concentra-
tions have a three-year average of approximately 30g=m3 before intervention.
After January 16 the January-February three year mean increased from 53.7
g=m3 to 54.1 g=m3, questioning the congestion charge e§ect.
To Öt the model for Öne particulate matters, we use the centered log trans-

formed concentrations which have variance 2y = 0:70, and, after row deletion
of missing data, we get the Ötted model of Table 1 based on the remaining 1038
observations. It is worth noting that wind speed has an e§ect both in summer
and winter while, not surprisingly, solar radiation is not signiÖcant in winter.
After adjusting for Bergamo concentrations which are quite signiÖcant in the
model, the residual autocorrelation is not large resulting in g = 0:212.
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Parameter Estimate se
a 0.095 0 .0 3 1

PM2:5 in Bergamo 0.775 0 .0 2 7

Average Wind speed - Summer -0.295 0 .0 4 9

Max Wind speed - Summer 0.044 0 .0 2 5

Solar radiation - Summer -0.00065 0 .0 0 0 2

Average Wind speed - Winter -0.312 0 .0 6 3

Max Wind speed - Winter 0.062 0 .0 3 3

g 0.212 0 .0 2 1

d 0.121 0 .0 4 0

m 162
R2 0.80

Table 1: ARX model and reduction for PM2:5

Since we are in log scale, the permanent e§ect, computed as both â or d̂ of
equation (7), may be interpreted as a percent change. According to this model,
at Pascal station, we observe a 0:12 permanent reduction of PM2:5 on log scale
with a one-sided p-value smaller than 0:2%. From the bottom row of Table 1,
we see that Ötting is quite good. The residuals result to be satisfactorily white
noise but moderately non Gaussian as shown by Figure 3 and by unreported
kurtosis which are larger than three. Although some alternatives to conditional
Gaussian models could be developed, see e.g. Bartoletti and LoperÖdo (2010) or
Nadarajah (2008), the above results where validated by simulation experiments
and by comparison with robust estimation methods getting very close results to
Table 1.

Figure 3: Residuals of PM2:5 at Pascal station.

Days for detection From the practical point of view it is important to
see which is the number of days required to detect a certain reduction in the
annual average of PM2:5: Following the approach which gives formula (6), we
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Station a PM10 in Max WS Average WS g d R2

Bergamo Winter Summer Winter
Pascal 0.045 0.718 0.169 -0.360 -0.576 0.193 0.068 0.80
se 0 .0 2 4 0 .0 2 3 0 .0 6 5 0 .0 4 9 0 .0 9 4 0 .0 2 0 0 .0 3 0

Senato 0.059 0.675 0.150 -0.290 -0.428 0.210 0.075 0.80
se 0 .0 2 2 0 .0 2 1 0 .0 6 1 0 .0 4 6 0 .0 8 8 0 .0 2 0 0 .0 3 0

Verziere 0.069 0.625 0.237 -0.182 -0.504 0.224 0.089 0.85
se 0 .0 1 8 0 .0 1 7 0 .0 4 9 0 .0 3 7 0 .0 7 0 0 .0 1 8 0 .0 2 3

Milan 0.061 0.077 0.82
0 .0 1 8 0 .0 2 4

Table 2: Vector ARX model and reduction for PM10, Single stations and city
average. WS stands for Wind speed.

consider the t-test for the hypothesis of no impactH0 : d = 0 against a reduction
d > 0 based on large values of the statistic â

se(â) : Using the nominal signiÖcance
level p = 5%, the number of days for detecting a permanent reduction of size
d = 0:10 in log scale with probability  = 85% is given by m  m = 162 as
shown in Table 1, which is consistent with the above results.

3.3 Particulate matters

For the PM10; we have three sites, two are tra¢c stations located inside "Area
C", namely Verziere and Senato stations, and the third is Pascal, which is a
ground station located in Citt‡ studi which is semi-peripheral area with patterns
similar to the city center.
Table 2 shows the Ötted model for PM10. We see that the persistence coef-

Öcients g are small and very close each other, denoting the same weak autocor-
relation after adjusting for the Po valley concentration proxy given by Bergamo
measurement and local meteorological covariates. Both average and maximum
wind speed have an e§ect on PM10 with a clear seasonal behaviour. The last
column shows that Ötting is quite satisfactory. We note that, after introducing
the Bergamo proxy, only local conditions given by wind speed enter as additional
covariates.
As in the previous section, a moderate residual non normality indicated by

kurtosis larger than three for all components does not jeopardize the results of
Table 2. Moreover, Figure ?? shows that the residuals can be assumed to be a
white noise and the importance of the multivariate approach is appreciated by
the marked residual correlation shown in Table 3.
Note that the global three-year average for these stations before intervention

is about 45g=m3, so the average reduction of d = 0:137 in log scale, with se =
0:053, corresponds approximately to 6g=m3 for the yearly average. According
to the data, this impact is stronger in Area C.
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Citt‡ studi 1 0.65 0.58
Senato 1 0.69
Verziere 1

Table 3: ARX model residual correlations for PM10

Figure 4: Residual autocorrelations of Vector ARX model for PM10.

STEM approach In the light of the preliminary analysis, we go further
with the approach of section 2, obtaining the Ötted model of Table 4. To avoid
initial values dependence, the EM algorithm has been replicated 100 times ap-
plying beta distributed random perturbations1 to the initial estimates which
have been computed using the method of moments. The power r of the spa-
tial correlation (4) has been selected to r = 1 comparing the corresponding
log-likelihoods.
Generally speaking the standard errors are small, with the exception of the

spatial correlation parameter ; which has a quite large uncertainty. This is not
surprising since with only three stations is not easy to estimate spatial correla-
tion. The reduction parameter  is positive, denoting a signiÖcant permanent
reduction of particulate concentrations of 0:085 in log scale for the city center
with one sided p-value smaller than 1%.
Moreover, the likelihood ratio test for the hypothesis of no e§ect, namely

H0 :  = 0; gives a test statistic 2log (LR) = 13:2 with a p-value smaller than
0:1%. Finally, the number of days for detection of formula (6), with nominal
signiÖcance level p = 5%, a permanent reduction of size  = 10% and power
 = 85% results to be m = 154 which is consistent with above results.
According to ARX model, Area C has a little larger PM10 reduction, but

the di§erence in a coe¢cients of Table 2 is far from signiÖcant. Using STEM
model, the corresponding analysis is based on the a posteriori local e§ects of
section 2.1, that is ! (s) = 1

m

Pn
t=t !̂ (s; t) which are smaller than 1% and have

non signiÖcant p-values for Pascal, Senato and Verziere. Hence we can conclude
the reduction in PM10 is approximately constant around the city center but we

1At each replication, the initial values have been rescaled between 0 and three times their
value by multiplication with random numbers 3B where B0s have been drawn from the Beta
distribution with parameters 4 and 8, so that E (3B) = 1.
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Parameter Estimate se
 - City center impact 0.085 0 .0 3 5

PM10 in Bergamo 0.790 0 .0 1 4

Summer - Average Wind speed -0.242 0 .0 3 3

Winter - Average Wind speed -0.536 0 .0 6 2

Winter - Max Wind speed 0.286 0 .0 4 6

 0.378 0 .1 0

2 0.032 0 .0 1 1

 12.4 1 0 .1

 0.131 0 .0 3 8

2" 0.028 0 .0 0 2

Log-likelihood 3073.6

Table 4: STEM model for PM10

have no information on peripheral areas.

3.4 Nitrogen oxides

As mentioned above, the total nitrogen oxides are monitored in Milan city more
extensively than particulate matters. In fact, in addition to the previous three
stations, we have four tra¢c stations near the internal bypass and one ground
station in the green area of Parco Lambro, near the eastern circular highway
and exposed to Linate airport emissions. Using this relatively larger network,
we will address the spatial variability of the congestion charge impact around
the city. We Örst observe that nitrogen oxides data are given as hourly data.
In order to have high quality daily data, and considering that STEM approach
is resistant to missing data, we deÖned as missing those daily averages based
on less then 20 validated observations. An additional meteorological covariate
enters at this stage which was not signiÖcant with particulate matters. This
is the prevalence of South western wind (SW-PWD) deÖned as the number of
hours per day when the prevailing wind is from SW.
The vector ARX model for these eight stations is reported in Table 5. We

keep this as a preliminary analysis model even if, with such a number of spatial
locations, a vector approach begins showing its limitations and the need for
a uniÖed approach such as STEM is now becoming evident. The proxy from
Bergamo and the seasonal e§ect on wind are again decisive for the good model
Ötting, reported in the last column of Table 5. As mentioned above, the wind
direction from South West is signiÖcant for various stations. Despite the number
of monitoring stations, the impact of the congestion charge on NOX is far from
constant around the city.
In Pascal station, we have the maximum reduction, more than 0:28 in log

scale and p-value close to zero. Surprisingly this value is much larger than inside
the tra¢c restricted Area C, where the permanent e§ect estimated by the ARX
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model is positive but very small especially in Verziere. Moreover, in peripheral
stations, at Liguria and Lambro stations, we have signiÖcant increases in NOX
concentrations. Note that this fact is not a model artifact but reáects the daily
averages behaviour. These points will be partially overcome in the Önal STEM
model.
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The residuals of this model are satisfactorily Gaussian, white noise and ho-
moskedastic according to standard tests. Note that the estimated permanent
reduction for Pascal is quite large, d̂ = 0:44 with a standard error se = 0:05;
and will be discussed in the next section.

STEM approach In order to deepen the urban variability and seek
for a uniÖed conclusion about the congestion charge impact on nitrogen oxides
concentrations, we consider a STEM model with spatially varying impact. In
the light of the limited spatial information contained in Milan eight station
network, we use the following simple impact model for t  t

 (s) =


1 s 2 City center
2 s =2 City center (8)

where, for the purpose of this paper, the city center is deÖned by Area C plus
Citt‡ studi, as discussed in the previous section. The estimated model, reported
in Table 6, clearly shows the di§erence between the impact in the city center,
where a permanent reduction of about 0:23 in log scale is estimated, and the
peripheral area where NOX concentrations show an increase of 0:07, although
not statistically signiÖcant. To have a conÖrmation about the non-increase in
the peripheral area, we tested the hypothesis 2 = 0 using the Likelihood ra-
tio test. This approach gives a restricted Log-likelihood of 6515:0 and a non
signiÖcant LR statistic with p-value = 15:7%. Interestingly the spatial correla-
tion parameter  is very close to the PM10 case but, as expected, the standard
deviation is smaller reáecting the major spatial information of nitrogen oxides
network.
The local e§ects ! (s) of section 2.1 are reported in Table 7. Note that,

considering for example Pascal, if we sum up 1 from Table 6 and ! (s) from
Table 7 we get a total reduction of 0:402 which is quite close to the estimate d̂
of the ARX model. Note that these results reáect the change in the unadjusted
seasonal average concentration. For example in the last two columns of Table
7, we have the comparison of the average concentrations in the period January
16 - July 20 before and after the congestion charge introduction, in the years
2009-2011 and 2012 respectively.

4 Conclusions

In order to answer the three scientiÖc questions on air quality impact raised in
the introduction, we introduced a general approach, based on STEM model, for
spatiotemporal impact assessment of air quality policies allowing both estima-
tion and testing.
The Örst question on the presence of a "permanent impact" is positive. In

particular, we showed that the congestion charge operating in Milan center since
January 16, 2012, has a signiÖcant permanent impact on air quality in terms
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Parameter Estimate se

Central impact - 1 0.218 0 .0 4 8

Peripheral impact - 2 -0.077 0 .0 4 7

Summer Average WS -0.706 0 .0 5 4

Max WS 0.267 0 .0 4 2

South West -0.0073 0 .0 0 1 4

Winter Average WS -1.021 0 .0 6 1

Max WS 0.552 0 .0 5 0

BG.NOX 0.604 0 .0 1 6

 0.599 0 .0 4 8

2 0.033 0 .0 0 4 7

 12.7 3 .7

 0.153 0 .0 1 3

2" 0.054 0 .0 0 2

Log-likelihood 6516.0

Table 6: STEM model for NOX . WS stands for Wind speed.

Station Local E§ect se Seasonal average
before after

Pascal -0.160 0 .0 6 5 56.3 31.3
Verziere 0.138 0 .0 6 4 67.1 51.4
Senato 0.117 0 .0 6 4 46.5 41.2
Liguria 0.157 0 .0 6 5 63.2 73.4
Marche -0.070 0 .0 6 5 70.2 67.2
Abbiategrasso 0.100 0 .0 6 5 33.4 42.4
Lambro -0.065 0 .0 6 6 51.4 56.8
Zavattari 0.035 0 .0 6 6 65.5 61.3

Table 7: STEM local e§ects ! (s) for NOX , in log scale, and unadjusted seasonal
averages before(2009-2011) and after (2012) the intervention in ppb.
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of particulate matters and nitrogen oxides concentrations at least in the city
center. The air quality impact has been estimated after adjusting for meteoro-
logical factors and other common forcing factors, such as the economic crisis.
Interestingly, the reduction on PM2:5, PM10 and NOX concentrations estimated
using both a preliminary vector autoregressive model and STEM approach, is
not conÖned inside the tra¢c restricted area.
The second question, on the spatial distribution of the air quality change

has an articulated answer. We observed that, despite the reduced number of
monitoring stations in the city, the impact has a noticeable spatial variability
which is di§erent for PM10 and NOX . In particular, after the tra¢c intervention,
a signiÖcant reduction of both particulate matters and nitrogen oxides has been
estimated in the city center. The reduction of particulate matters, which is
about 8%, or 3:6 g=m3, in city center, is slightly higher in the intervention
area, but the spatial variations around the city center either inside or outside
the Area C can be neglected. The nitrogen oxides show di§erent Ögures and
pattern, with a reduction larger than 19%, or 13 ppb, in city center. Surprisingly,
the reduction is higher in Citt‡ studi, outside the intervention area, while in
Verziere, which is inside Area C, the reduction is barely signiÖcant. Moreover,
in the peripheral areas of the city, we observe changes of nitrogen oxides in both
directions and no overall decrease can be concluded.
Considering the third question on spatiotemporal information, we observe

that, using the data before August 2012 gives a substantially clear picture of
air quality impact, at least in the city center. Nevertheless, having a more ex-
tended monitoring network, would allow us to estimate more detailed reduction
maps both for pollutant concentrations and human exposure by means of the
dynamical kriging capabilities of the STEM approach proposed in this paper.
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