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Abstract

The problem to establish not only the asymptotic distribution results
for statistical estimators but also the moment convergence of the estimators
has been recognized as an important issue in advanced theories of statis-
tics. There is an authorised theory dealing with this problem for some
M -estimators by Ibragimov and Has’minskii (1981). A large deviation in-
equality, which was a crucial point of Ibragimov and Has’minskii’s (1981)
theory, has been proved with a good generality by Yoshida (2011). The pur-
pose of this paper is to present an alternative, simple theory to derive the
moment convergence of Z-estimators; any large deviation type inequalities
do not appear in our approach. Moreover, a merit of our approach is that
the cases of parameters with different rate of convergence can be treated eas-
ily and smoothly. Applications to some diffusion process models and Cox’s
regression model are discussed.

1 Introduction

This paper is devoted to the convergence of moments for “Z-estimators”, in other
words, estimators that are the solutions to estimating equations. Let us first give
a review on the moment convergence problem, and next we shall list up some
examples to which our results can be applied.

∗Corresponding author.
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For an illustration, let us consider the simplest case of i.i.d. data. Let (X ,A, µ)
be a measure space, and let us be given a parametric family of probability densities
f(·; θ) with respect to µ, where θ ∈ Θ ⊂ Rd. Let X1, X2, . . . be an independent
sequence of X -valued random variables from this parametric model. There are at
least two ways to define the “maximum likelihood estimator (MLE)” in statistics.
One way is to define it as the maximum point of the random function

θ 7→Mn(θ) =
1

n

n∑
k=1

log f(Xk; θ),

while the other is to do it as the solution to the estimating equation

Zn(θ) = 0, or, in another notation, Ṁn(θ) = 0,

where Zn(θ) = Ṁn(θ) is the gradient vector of Mn(θ). The former is a special case
of “M -estimators”, and the latter is that of “Z-estimators”; see van der Vaart and
Wellner (1996) for these terminologies.

It is well known that the MLE θ̂n has the asymptotic normality: it holds for
any bounded continuous function f : Rd → R that

lim
n→∞

E[f(
√
n(θ̂n − θ0))] = E[f(I(θ0)−1/2Z)],

where I(θ0) is the Fisher information matrix and Z is a standard Gaussian ran-
dom vector. Furthermore, it is important for some advanced theories in statistics,
including asymptotic expansions and model selections, to extend this kind of re-
sults for bounded continuous functions f to that for any continuous function f with
polynomial growth, that is, any continuous function f for which there exist some
constants C = Cf > 0 and q = qf > 0 such that

|f(x)| ≤ C(1 + ||x||)q, ∀x ∈ Rd. (1)

See the discussion in Yoshida (2011) for the importance of this problem.
Notice here that, when we have an asymptotic distribution result of an estima-

tor, namely Rn(θ̂n−θ0)→d L(θ0) where Rn is a (possibly, random) diagonal matrix
and the limit random vector L(θ0) is not necessarily Gaussian, it is sufficient for
the generalisation to the case where ψ is a continuous function satisfying (1) to

check that ||Rn(θ̂n − θ0)|| is asymptotically Lp-bounded for some p > q, that is,

lim sup
n→∞

E[||Rn(θ̂n − θ0)||p] <∞.

The study to provide some methods to obtain the moment convergence with
polynomial order goes back to Ibragimov and Has’minskii (1981) who considered
the MLEs and the Bayes estimators (as some special cases of M -estimators) in
the general framework of the locally asymptotically normal models. It should
be emphasised that one of the important merits of Ibragimov and Has’minskii’s
program is perhaps that the theory, based on the likelihood, automatically yields

2



also the asymptotic efficiency. In their main theorems, it was assumed that an
exponential type large deviation inequality holds for the rescaled log-likelihood ratio
random field. However, checking the assumption in terms of the large deviation
inequality was not always easy. Although there are some successful works of Yury
Kutoyants, including his books published in 1984, 1994 and 2004, who applied the
theory of Ibragimov and Has’minskii (1981) to some stochastic process models,
developing a general theory to establish the large deviation inequality was an open
problem for many years. Several years ago from now, N. Yoshida solved this
problem, and his theory has been published in Yoshida (2011). The paper starts
from pointing out that a polynomial type large deviation inequality is sufficient
for the core part of Igragimov and Has’minskii’s (1981) program, and the main
contribution is to have proved the (polynomial type) large deviation inequality
with a good generality. Uchida and Yoshida (2012) applied Yoshida’s (2011) theory
to establish the moment convergence of some M -estimators in ergodic diffusion
process models with Kessler’s (1997) adjustment. We also mention that Nishiyama
(2010) pointed out that the moment convergence problem for M -estimators can
be solved by using a maximal inequality instead of the large deviation inequalities,
and that Kato (2011) took this type of approach to deal with some bootstrap
M -estimators.

In this paper, we shall consider the problem to prove the moment convergence of
not M -estimators but Z-estimators. Since we have to assume that the random filed
something like the log-likelihood is differentiable, our framework is more restrictive
than that for M -estimators. Instead, the proof becomes simpler. Actually, any
large deviation type inequalities do not appear in our approach, and our proof
is just a combination of simple arguments based only on the usual Hölder’s and
Minkowskii’s inequalities.

Another difference between Yoshida’s (2011) and our theories is that we can
easily treat also the cases where the rates of convergence are different over the
components of θ. This is due to the fact that in our theory of Z-estimators we
can multiply the gradient vector γ̇n(θ) of a contrast function γn(θ), where γn(θ) is
typically the log-likelihood function, by a matrix R−2

n to get a kind of law of large
numbers, namely,

Ṁn(θ) = R−2
n γ̇n(θ).

Typically, Rn =
√
nId where Id is the identity matrix, although a merit of our

approach is that the diagonal components of Rn may be different in our frame-
work. In contrast, in the framework of M -estimation theory the (scalar valued)
contrast function γn(θ) with no assumption of differentiability has to be multiplied
by a scalar. Yoshida (2011) overcame this difficulty by introducing some nuisance
parameters in order to handle the components of different rates step by step.

In the rest of this section, we shall list up some examples which fit in our
theories. In what follows, the parameter space Θ is a bounded, open, convex subset
of Rd, where d is a fixed, positive integer. The word “vector” always means “d-
dimensional real column vector”, and the word “matrix” does “d× d real matrix”.

The Euclidean norm is denoted by ||v|| :=
√∑d

i=1 |v(i)|2 for a vector v where v(i)
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denotes the i-th component of v, and by ||A|| :=
√∑d

i,j=1 |A(i,j)|2 for a matrix A

where A(i,j) denotes the (i, j)-component of A. Note that ||Av|| ≤ ||A|| · ||v|| and
||AB|| ≤ ||A||·||B|| for vector v and matricesA,B. The notations v> andA> denote
the transpose. We use also the notation A ◦B defined by (A ◦B)(i,j) := A(i,j)B(i,j)

for two matrices A,B (the Hadamard product). We denote by Id the identity
matrix. The notations →p and →d mean the convergence in probability and the
convergence in distribution, as n→∞, respectively.

Example A: Moment estimators

Let X1, X2, . . . be an i.i.d. sample from a distribution P on (X ,A). Let ψ1, . . . , ψd
be measurable functions on X . Define

Zn(θ) =
1

n

n∑
k=1

(ψ1(Xk)− θ1, . . . , ψd(Xk)− θd)>.

Our result can be applied to these estimating functions whose derivative matrix
Żn(θ) = {Ż(i,j)

n (θ)}(i,j)∈{1,...,d}2 , where Ż(i,j)
n (θ) = ∂

∂θj
Z(i)
n (θ), is −Id.

Example B: Ergodic diffusion process

Let I = (l, r), where −∞ ≤ l < r ≤ ∞, be given. Let us consider an I-valued
diffusion process t ; Xt which is the unique strong solution to the stochastic
differential equation (SDE)

Xt = X0 +

∫ t

0

S(Xs;α)ds+

∫ t

0

σ(Xs; β)dWs,

where s; Ws is a standard Wiener process. The parameters come from α ∈ ΘA ⊂
RdA and β ∈ ΘB ⊂ RdA , and we denote θ = (α>, β>)>. We are supposed to be
able to observe the process X at discrete time grids 0 = tn0 < tn1 < · · · < tnn, and
we shall consider the asymptotic scheme n∆2

n → 0 and tnn →∞ as n→∞, where

∆n = max
1≤k≤n

|tnk − tnk−1|,

and
n∑
k=1

∣∣∣∣ |tnk − tnk−1|
tnn

− 1

n

∣∣∣∣→ 0, as n→∞. (2)

We will consider the following

Zn(θ) = Ṁn(θ) = R−2
n γ̇n(θ),

where

γn(θ)

= −
∑

k:tnk−1≤tnn

{
log σ(Xtnk−1

; β) +
|Xtnk

−Xtnk−1
− S(Xtnk−1

;α)|tnk − tnk−1||2

2σ(Xtnk−1
; β)2|tnk − tnk−1|

}
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and Rn is the diagonal matrix such that R
(i,i)
n is

√
tnn for i = 1, . . . , dA and

√
n for

i = dA + 1, . . . , d with d = dA + dB.
The problem to establish the moment convergence for M -estimators in this

model, where X is a multi-dimensional diffusion process, was considered by Yoshida
(2011). Uchida and Yoshida (2012) relaxed the assumption n∆2

n → 0 up to n∆a
n →

0, where a ≥ 2 is a constant depending on the smoothness of the model, by
using Kessler’s (1997) method. However, their arguments consist of plural steps in
order to handle the parameters α and β, whose rates of convergence are different,
separately. In contrast, our theory makes it possible to treat both parameters
simultaneously. Although we consider only the one-dimensional diffusion process
X under the sampling scheme n∆2

n → 0 in order to explain our core idea clearly
within a reasonable number of pages, some extension to the case that Uchida and
Yoshida (2012) considered would be possible. We leave this problem for readers.

Example C: Volatility of diffusion process

Let I = (l, r), where −∞ ≤ l < r ≤ ∞, be given. Let us consider an I-valued
diffusion process t; Xt which is the unique strong solution to the SDE

Xt = X0 +

∫ t

0

S(Xs)ds+

∫ t

0

σ(Xs; θ)dWs,

where s ; Ws is a standard Wiener process. Here, the drift coefficient S(·) is
treated as an unknown nuisance function. We are supposed to be able to observe
the process X at discrete time grids 0 = tn0 < tn1 < · · · < tnn = T <∞, and we shall
consider the asymptotic scheme (2).

We introduce

Zn(θ) = Ṁn(θ) =
1

n
γ̇n(θ),

where

γn(θ) = −
∑

k:tnk−1≤tnn

{
log σ(Xtnk−1

; θ) +
|Xtnk

−Xtnk−1
|2

2σ(Xtnk−1
; θ)2|tnk − tnk−1|

}
.

The rate matrix is given by Rn =
√
nId.

Example D: Cox’s regression model

Let a sequence of counting processes t ; Nk
t , k = 1, 2, . . ., which do not have

simultaneous jumps, be observed the time interval [0, T ]. Suppose that t ; Nk
t

has the intensity
λkt (θ) = α(t)eθ

>Zk
t Y k

t ,

where the baseline hazard function α which is common for all k’s is non-negative
and satisfies that

∫ T
0
α(t)dt < ∞, the random process t ; Zk

t is a vector valued
covariate for the individual k, and the random process t; Y k

t is given by

Y k
t =

{
1, if the individual k is observed at time t,
0, otherwise.
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This model was introduced by Cox (1972), and its asymptotic theory was developed
by Andersen and Gill (1982).

We introduce

Zn(θ) = Ṁn(θ) =
1

n
γ̇n(θ),

where

γn(θ) =
n∑
k=1

∫ T

0

(θ>Zk
t − logSn,0t (θ))dNk

t

with

Sn,0t (θ) =
n∑
k=1

eθ
>Zk

t Y k
t .

The rate matrix is Rn =
√
nId.

Some detailed discussions about moment convergence of Z-estimators for Ex-
amples B, C and D will be given in Sections 3.1, 3.2 and 3.3, respectively, while
that for Example A is left for readers.

2 Moment convergence of Z-estimators

Let Θ be a bounded, open, convex subset of Rd. Let an Rd-valued random function
Zn(θ) of θ ∈ Θ which is continuously differentiable with the gradient vector Żn(θ),
defined on a probability space (Ω,F , P ) that is common for all n ∈ N. (However,
it will be clear from our proofs that if the limit matrices V (θ0) and Ż(θ) appearing
below are non-random then the underlying probability spaces need not be common
for all n ∈ N.)

As an important special case is that Zn(θ) is given as the gradient vector Ṁn(θ)
of a rescaled contrast function Mn(θ) = R−2

n γn(θ) of θ ∈ Θ which is twice continu-
ously differentiable with the gradient vector Ṁn(θ) and the Hessian matrix M̈n(θ),
where Rn be a (possibly, random) diagonal matrix whose diagonal components are

positive; that is, defining Qn by Q
(i,j)
n = (R

(i,i)
n R

(j,j)
n )−1, put

Zn(θ) = Ṁn(θ) = R−2
n γ̇n(θ) and Żn(θ) = M̈n(θ) = Qn ◦ γ̈n(θ). (3)

(In the typical cases, Rn =
√
nId and Qn = n−11, where 1 denotes the matrix

whose all components are 1.)
Turning back to the general setup, we shall state a theorem to give an asymp-

totic representation for Z-estimators. Although this result is not really novel, we
will give a full (and short) proof for references.

Theorem 2.1 Consider the setting described in the first paragraph of this section.
Suppose there exists a sequence of matrices Vn(θ0) which are regular almost surely

such that for any sequence of Θ-valued random vectors θ̃n converging in probability
to θ0,

Żn(θ̃n)− (−Vn(θ0))→p 0.
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Suppose also that
(RnZn(θ0), Vn(θ0))→d (L(θ0), V (θ0)),

where Rn be a (possibly, random) diagonal matrix whose diagonal components are
positive, L(θ0) is a random vector, and V (θ0) is a random matrix which is regular
almost surely (we do not assume that V (θ0) and L(θ0) are independent).

Then, for any sequence of Θ-valued random vectors θ̂n which converges in prob-
ability to θ0 and satisfies that ||RnZn(θ̂n)|| = oP (1), it holds that

Rn(θ̂n − θ0) = Vn(θ0)−1RnZn(θ0) + oP (1)

→d V (θ0)−1L(θ0).

In this theorem, the consistency of the sequence of Z-estimators θ̂n has been
assumed. A method to show this property will be given in Lemma 2.2 below, whose
proof is omitted because it can be proved exactly in the same way as Theorems
5.7 and 5.9 of van der Vaart (1998).

Lemma 2.2 Suppose that for some θ0 ∈ Θ, it holds that

sup
θ∈Θ
||Zn(θ)− Zθ0(θ)|| →p 0,

where the random field θ ; Zθ0(θ) of the limit satisfies that

inf
θ:||θ−θ0||>ε

||Zθ0(θ)|| > 0 = ||Zθ0(θ0)||, almost surely, ∀ε > 0.

Then, for any sequence of Θ-valued random vectors θ̂n such that ||Zn(θ̂n)|| = oP (1),

it holds that θ̂n →p θ0.

Now, we give a theorem to establish the moment convergence of Z-estimators,
which is the main result in this section.

Theorem 2.3 Consider the setting described in the first paragraph of this section.
Let some constants p ≥ 1 and a, b > 1 such that 1

a
+ 1

b
= 1 be given; see a remark

at the end of the theorem for the case where we may set a = 1.
Suppose that for some θ0 ∈ Θ,

||RnZn(θ0)|| is asymptotically Lpa-bounded. (4)

Suppose also that there exist a constant γ ∈ (0, 1] and some random matrices Żθ0(θ)
indexed by θ ∈ Θ such that

lim
n→∞

E

[
sup
θ∈Θ
||Rγ

n(Żn(θ)− Żθ0(θ))||pa/γ
]

= 0. (5)

Suppose further that either of the following [M1] or [M2] is satisfied:
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[M1] There exists a random matrix J(θ0) which is positive definite almost surely
such that Ż(θ) ≤ −J(θ0) for all θ ∈ Θ, almost surely, and that E[||J(θ0)−1||pb/γ] <
∞;

[M2] E[supθ∈Θ ||Żθ0(θ)−1||pb/γ] < ∞, where the random matrices Żθ0(θ)’s are
assumed to be regular almost surely.

Then, for any sequence of Θ-valued random vectors θ̂n such that ||RnZn(θ̂n)||
is asymptotically Lpa-bounded, it holds that ||Rn(θ̂n − θ0)|| is asymptotically Lp-

bounded. Therefore, in this situation, whenever we also have that Rn(θ̂n − θ0)→d

G(θ0) where G(θ0) is a random vector, it holds for any continuous function f
satisfying (1) for q ∈ (0, p) that

lim
n→∞

E[f(Rn(θ̂n − θ0))] = E[f(G(θ0))],

where the limit is also finite.
When the last condition in [M1] is satisfied with ||J(θ0)||−1 which is bounded

or the first condition in [M2] is satisfied with supθ∈Θ ||Żθ0(θ)−1|| which is bounded,
the constant a appearing in the above claim may be replaced by 1.

Remark. When the last condition in [M1] is satisfied with ||J(θ0)||−1 which is
bounded or the first condition in [M2] is satisfied with supθ∈Θ ||Żθ0(θ)−1|| which is
bounded, the constant a appearing in the above claim may be replaced by 1.
Remark. The crucial point in the course of applying this theorem is to check
the condition (5) together with [M1] or [M2]. This is clearly satisfied for moment
estimators described in Example A.
Remark. The condition [M1] above is corresponding to the case ρ = 2 of the
conditions [A3] and [A5] in Yoshida (2011), which are, in the notations of our
style,

Mθ0(θ)−Mθ0(θ0) ≤ −χ(θ0)||θ − θ0||ρ, ∀θ ∈ Θ,

where Mθ0(θ) denotes the “limit” of Mn(θ), and high order moment conditions on
the positive random variable χ(θ0)−1.

Proof of Theorem 2.1. Recalling (3), it follows from the Taylor expansion that

(RnZn(θ̂n))(i) = (RnZn(θ0))(i) + (Żn(θ̃n)Rn(θ̂n − θ0))(i), i = 1, . . . , d. (6)

So we have
Rn(θ̂n − θ0) = An +BnRn(θ̂n − θ0), (7)

where

An = Vn(θ0)−1Rn(Zn(θ0)− Zn(θ̂n)),

Bn = Vn(θ0)−1(Żn(θ̃n) + Vn(θ0)),

and θ̃n is a random vector on the segment connecting θ0 and θ̂n. It follows from
the extended continuous mapping theorem (e.g., Theorem 1.11.1 of van der Vaart
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and Wellner (1996)) that Vn(θ0)−1 →p V (θ0)−1, thus we have ||An|| = OP (1) and
||Bn|| = oP (1). It therefore holds that

||Rn(θ̂n − θ0)|| ≤ OP (1) + oP (1) · ||Rn(θ̂n − θ0)||,

which implies that ||Rn(θ̂n − θ0)|| = OP (1). Hence, going back to (7) we obtain

Rn(θ̂n − θ0) = RnAn + oP (1) = Vn(θ0)−1RnZn(θ0) + oP (1).

The last claim is also a consequence of the extended continuous mapping theorem.
The proof is finished. 2

Proof of Theorem 2.3. We will give a proof for the case where [M1] is assumed.
The proof for the case where [M2] is assumed is similar (and simpler), so it is
omitted.

Due to (6) again, we have

Rn(θ̂n − θ0) = Cn + (D(1)
n +D(2)

n )Rn(θ̂n − θ0),

where

Cn = J(θ0)−1Rn(Zn(θ0)− Zn(θ̂n)),

D(1)
n = J(θ0)−1(Żn(θ̃n)− Żθ0(θ̃n)),

D(2)
n = J(θ0)−1(Żθ0(θ̃n) + J(θ0)),

where θ̃n is a random vector on the segment connecting θ0 and θ̂n.
From now on, we consider the case γ ∈ (0, 1); the proof for the case γ = 1

is easier, and it is omitted. Since −D(2)
n is non-negative definite almost surely, it

follows from Minkowskii’s and Hölder’s inequalities that

(E[||Rn(θ̂n − θ0)||p])1/p

≤ (E[||(Id −D(2)
n )Rn(θ̂n − θ0)||p])1/p

≤ (E[||Cn||p])1/p + (E[||Rγ
nD

(1)
n ||p/γ])γ/p(E[||R1−γ

n (θ̂n − θ0)||p/(1−γ)])(1−γ)/p

≤ O(1) + o(1) · (E[||R1−γ
n (θ̂n − θ0)||p/(1−γ)])(1−γ)/p,

where we have used Hölder’s inequality again to get

E[||Cn||p] ≤ (E[||J(θ0)−1||pb])1/b(E[||Rn(Zn(θ0)− Zn(θ̂n))||pa)1/a

and

E[||Rγ
nD

(1)
n ||p/γ] ≤ (E[||J(θ0)−1||pb/γ])1/b(E[||Rγ(Żn(θ̃n)− Żθ0(θ̃n))||pa/γ)1/a;

if ||J(θ0)||−1 is bounded, we can get this kind of bound with a = 1.
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Notice that

||R1−γ
n (θ̂n − θ0)||1/(1−γ)

≤

√√√√d(1/(1−γ))−1

d∑
i=1

|R(i,i)
n |2|θ̂(i)

n − θ(i)
0 |2/(1−γ)

≤ ||Rn(θ̂n − θ0)|| · d1/(2−2γ) · |D(Θ)|γ/(1−γ),

where D(Θ) denotes the diameter of Θ. So we obtain

(E[||Rn(θ̂n − θ0)||p])1/p

≤ O(1) + o(1) · (E[||Rn(θ̂n − θ0)||p])(1−γ)/p

≤ O(1) + o(1) · (E[||Rn(θ̂n − θ0)||p] ∨ 1)1/p,

which yields that

E[||Rn(θ̂n − θ0)||p] ≤ O(1) + o(1) · E[||Rn(θ̂n − θ0)||p].

Therefore, ||Rn(θ̂n − θ0)|| is asymptotically Lp-bounded. 2

3 Examples

In this section we give some detailed discussions about moment convergence of
Z-estimators for Examples B, C and D, respectively.

3.1 Example B: Ergodic diffusion process

Recall the description of Example A in Section 1, where the first dA-components
α of the parameter θ = (α>, β>)> is involved in the drift coefficient, and the latter
dB-components β is in the diffusion coefficient. Recalling also the definition of the
rate matrix Rn there, let us consider the (dA + dB)-dimensional random vectors
Zn(θ) = Ṁn(θ) and the (dA + dB) × (dA + dB)-random matrices Żn(θ) = M̈n(θ)
given by the trivial notations as follows:

Ṁn(θ) = (ṀA
n (θ)>, ṀB

n (θ)>)>,

M̈n(θ) =

(
M̈A

n (θ) M̈C
n (θ)

M̈C
n (θ)> M̈B

n (θ)

)
.

Below, we will use the following notation: for a given constant p ≥ 1 and a
given sequence of positive constants rn,

ξn = oM(p)(r
−1
n ) ⇐⇒ rnE[||ξn||p]→ 0. (8)

Notice that ξn = oM(1)(r
−1
n ) implies that ξn = oP (r−1

n ).
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Under some regularity conditions which are usually assumed in the asymptotic
theory for ergodic diffusion process models, it is standard to show the following
facts (see e.g. the appendix of Kessler (1997) and Nishiyama (2011) for the detailed
proofs of the techniques that are omitted in Kessler’s (1997) appendix):∣∣∣∣∣∣

∣∣∣∣∣∣ṀA
n (θ0)− 1

tnn

∑
k:tnk−1≤tnn

Ṡ(Xtnk−1
;α0)

σ(Xtnk−1
; β0)

(Wtnk
−Wtnk−1

)

∣∣∣∣∣∣
∣∣∣∣∣∣ = oM(p)((t

n
n)−1/2),

∣∣∣∣∣∣
∣∣∣∣∣∣ṀB

n (θ0)− 1

n

∑
k:tnk−1≤tnn

σ̇(Xtnk−1
; β0)

σ(Xtnk−1
; β0)

{
|Wtnk

−Wtnk−1
|2

|tnk − tnk−1|
− 1

}∣∣∣∣∣∣
∣∣∣∣∣∣ = oM(p)(n

−1/2),

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣M̈A

n (θ)− 1

tnn

∑
k:tnk−1≤tnn

HA(Xtnk−1
; θ0, θ)|tnk − tnk−1|

∣∣∣∣∣∣
∣∣∣∣∣∣ = oM(p)((t

n
n)−1/2),

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣M̈B

n (θ)− 1

n

∑
k:tnk−1≤tnn

HB(Xtnk−1
; θ0, θ)

∣∣∣∣∣∣
∣∣∣∣∣∣ = oM(p)(n

−1/2),

sup
u∈[0,1]

sup
θ∈Θ
||M̈C

n (u, θ)|| = oM(p)(n
−1/4),

where

HA(x; θ0, θ) =
S̈(x;α)(S(x;α0)− S(x;α))− Ṡ(x;α)Ṡ(x;α)>

σ(x; β)2
,

HB(x; θ0, θ) =

{
σ̈(x; β)

σ(x; β)3
− 3

σ̇(x; β)σ̇(x; β)>

σ(x; β)4

}
(σ(x; β0)2 − σ(x; β)2)

−2
σ̇(x; β)σ̇(x; β)>

σ(x; β)2
.

The regularity conditions for the above claims depend on the constant p ≥ 1
appearing in “oM(p)(r

−1
n )” which we need to have.

The assumption (4) can be checked by applying Burkholder-Davis-Gundy’s
inequality to the main part of RnṀn(θ0). On the other hand, noting also tnn ≤ n, we
can apply Remark 1 (ii) of Uchida and Yoshida (2012) to show that the assumption
(5) for M̈n(θ) is satisfied with the limits

M̈θ0(θ) =

(
M̈A

θ0
(θ) 0

0 M̈B
θ0

(θ)

)
,

where

M̈A
θ0

(θ) =

∫
I

HA(x; θ0, θ)µθ0(dx) and M̈B
θ0

(θ) =

∫
I

HB(x; θ0, θ)µθ0(dx),

and µθ0 denotes the invariant distribution of X when the true value is θ0. In order
to make the assumption [M1] or [M2] fulfilled, we have to introduce the parametric
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model for the drift and diffusion coefficients nicely. An example for which the
assumption [M1] can be easily checked is S(·;α) = α>a(·) and σ(·; β) = eβ

>b(·),
where a(·) and b(·) are some vectors of known functions, assuming that b(·) is
bounded. The assumption [M2] would be satisfied in more general parametric
models, because M̈(θ)’s are non-random in this example.

3.2 Example C: Volatility of diffusion process

Recall the description of Example C in Section 1. An interesting point of this
example is that the limit of −M̈n(θ̃n) is random.

Let a constant p ≥ 1 be given, and recall the notation (8). Under some regu-
larity conditions, it holds that∣∣∣∣∣∣

∣∣∣∣∣∣Ṁn(θ0)− 1

n

∑
k:tnk−1≤tnn

σ̇(Xtnk−1
; θ0)

σ(Xtnk−1
; θ0)

{
|Wtnk

−Wtnk−1
|2

|tnk − tnk−1|
− 1

}∣∣∣∣∣∣
∣∣∣∣∣∣ = oM(p)(n

−1/2),

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣M̈n(θ)− 1

n

∑
k:tnk−1≤tnn

H(Xtnk−1
; θ0, θ)

∣∣∣∣∣∣
∣∣∣∣∣∣ = oM(p)(n

−1/2),

where

H(x; θ0, θ) =

{
σ̈(x; θ)

σ(x; θ)3
− 3

σ̇(x; θ)σ̇(x; θ)>

σ(x; θ)4

}
(σ(x; θ0)2 − σ(x; θ)2)

−2
σ̇(x; θ)σ̇(x; θ)>

σ(x; θ)2
.

The regularity conditions for the above claims depend on the constant p ≥ 1 which
we need to have. Moreover, under some standard conditions, it holds that for any
sequence of random vectors θ̃n such that ||θ̃n − θ0|| →p 0,

||M̈n(θ̃n) + Vn(θ0)|| →p 0,

where

Vn(θ0) =
2

n

∑
k:tnk−1≤tnn

σ̇(Xtnk−1
; θ0)σ̇(Xtnk−1

; θ0)>

σ(Xtnk−1
; θ0)2

.

Also, it follows that

(
√
nṀn(θ0), Vn(θ0))→d (V (θ0)1/2Z, V (θ0))

where Z is a standard Gaussian random vector which is independent of the random
matrix V (θ0) given by

V (θ0) = 2

∫ T

0

σ̇(Xs; θ0)σ̇(Xs; θ0)>

σ(Xs; θ0)2
ds.

12



Due to the above facts Theorem 2.1 yields that for any consistent estimator θ̂n
for θ0 satisfying ||Ṁn(θ̂n)|| = oP (n−1/2) we have

√
n(θ̂n − θ0)→d V (θ0)−1/2Z,

Next let us apply Theorem 2.3. The assumption (4) for
√
nṀn(θ0) can be

checked by using Burkholder-Davis-Gundy’s inequality. In the case of this example,
checking that the assumption (5) for M̈n(θ) is satisfied with

M̈θ0(θ) =

∫ T

0

H(Xt; θ0, θ)dt

is easy. In order to make the assumption [M1] or [M2] fulfilled, we again have to
introduce the parametric model for the diffusion coefficients nicely. An example
for which the former assumption in [M1] can be easily checked is σ(·; θ) = eθ

>g(·),
where g(·) are some vectors of known, bounded functions. The latter assumption
in [M1] is then reduced to

E

∣∣∣∣∣
∣∣∣∣∣
(∫ T

0

g(Xt)g(Xt)
>dt

)−1
∣∣∣∣∣
∣∣∣∣∣
pb/γ
 <∞,

for which we can give a clear sufficient condition for the function g at least in the
one-dimensional case (for example, just assume |g(·)|2 ≥ c for a constant c > 0).

3.3 Example D: Cox’s regression model

Recall the description of Example D in Section 1.
Introducing the notations

Sn,0t (θ) =
n∑
k=1

eθZ
k
t Y k

t ,

Sn,1t (θ) =
n∑
k=1

Zk
t e

θZk
t Y k

t ,

Sn,2t (θ) =
n∑
k=1

(Zk
t )>Zk

t e
θZk

t Y k
t ,

we suppose that

sup
θ∈Θ

sup
t∈[0,T ]

∣∣∣∣∣∣∣∣ 1nSn,lt (θ)− S lt(θ)
∣∣∣∣∣∣∣∣→p 0, l = 0, 1, 2,

where the limits t ; S lt are some stochastic processes (c.f. Andersen and Gill
(1982) who assumed that S l’s are not random).
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Then, some arguments similar to Section 3.1 are possible for

Ṁθ0(θ) =

∫ T

0

(
S1
t (θ0)

S0
t (θ0)

− S
1
t (θ)

S0
t (θ)

)
S0
t (θ0)α(t)dt,

Vn(θ0) =
1

n

∫ uT

0

Sn,0t (θ0)Sn,2t (θ0)− Sn,1t (θ0)Sn,1t (θ0)>

Sn,0t (θ0)
α(t)dt,

V (θ) =

∫ T

0

S0
t (θ)S2

t (θ)− S1
t (θ)S1

t (θ)>

S0
t (θ)2

S0
t (θ0)α(t)dt

The details are omitted.
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