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Abstract

The COGARCH (COntinuous Generalized Auto-Regressive Condi-
tional Heteroschedastic) model can be considered as a continuous ver-
sion of the well known GARCH discrete time model. They are driven
by general Lévy processes and the resulting volatility process satisfies a
stochastic differential equation. The main difference between COGARCH
models and other stochastic volatility models is that there is only one
source of randomness (the Lévy process) and all the stylized feature are
captured by the dependance structure of the model as in the GARCH
models. A general method to calculate the moment of higher order of the
COGARCH(1,1) model is presented. A general formula to calculate all
the joint and the conditional moments is also provided. The explicit form
of the higher moment is useful to apply some prediction based estimation
function (PBEF) methods to estimate the parameters of the COGARCH
models and in particular to find an optimal PBEF.

Keywords: cogarch model, stochastic volatility models, prediction based
estimating functions, parameter estimation

1 Introduction

The COGARCH model with order (1,1) was introduced as a continuous version
of the GARCH(1,1) model in [Klüppelberg et al., 2004]. It is driven by a
general Lévy process through the equation dGt = σt−dLt and the resulting
volatility process σt satisfies the stochastic differential equation dσ2

t = (β −
ησ2

t−)dt + φσ2
t−d[L]dt where the parameters fulfill β > 0, η ≥ 0 and φ ≥ 0

and [L]dt is the discrete part of the quadratic variation of the Lévy process
L = (Lt)t≥0. Financial log-returns are modelled by the increments of the process
Gt,h = Gt+h −Gt.

The main difference between COGARCH models and other stochastic volatil-
ity model is that the Lévy process is the sole source of randomness and when it
jumps both the price and the volatility jump at the same time.
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For a more thorough presentation of such model, for the relation between
GARCH sequences and the COGARCH process, for a comparison with other
continuos time models with the same aim and for how this model is able to
capture the stylized facts about financial data we refer the reader to the following
papers [Klüppelberg et al., 2004, Klüppelberg et al., 2011, Haug et al., 2007,
Kallsen and Vesenmayer, 2009,Maller et al., 2008,Buchmann and Mueller, 2012].
In the last few years many generalizations of the COGARCH model have been
proposed. Among them COGARCH processes of order (p,q) [Brockwell et al.,
2006] and multivariate COGARCH(1,1) [Stelzer, 2010] seem to be the most
interesting.

A few methods for the estimation of the model parameters from a sample of
equally spaced returns Gir,r = G(i+1)r −Gir are currently available.

In [Haug et al., 2007] explicit estimators have been derived from a method
of moments (MM). In [Maller et al., 2008] a pseudo maximum likelihood (PML)
method has been proposed that allows also for non equally spaced observations,
and in [Müller, 2010] an MCMC-based estimation method has been presented
for the model driven by a compound Poisson process.

Our guess is that the method of Prediction Based Estimating Functions
(PBEFs) introduced in [Sørensen, 2000] is applicable to the COGARCH(1,1)
model and that its performances are better then the other available procedures.
The general theory of PBEFs allows to find an optimal PBEF if the joint mo-
ments of the observation are explicitly known up to a certain order.

Motivated by the search for an optimal PBEF, the aim of the present

paper is to present a recursive formula for the moments E(G2i
t σ

2(k−i)
t ) and

Ev[G
2i
s,hσ

2(k−i)
s+h ] whenever they exist. Explicit expressions for any total order

2k and any integer i ≤ k and for any t, h > 0 and s > v > 0 are given. Ev
denotes conditional expectation with respect to the natural filtration Fv.

Explicit expression for the joint moments E(G2ih
th,r

G
2ih−1

th−1,r
· · · G2i2

t2,r G
2i1
t1,r) are

also provided for any integers i1 · · · ih and hence any total order k = i1 + · · ·+ ih
and for any times th · · · t1 such that ti − ti−1 ≥ r.

Up to the order four (k = 2) our formulae coincide with those of [Haug et al.,
2007], but explicit expressions for the higher orders are provided as a new result
whose interest might go beyond the statistical methodology proposed.

Explicit expression for the joint moments E(G2ih
th,r

G
2ih−1

th−1,r
· · · G2i2

t2,r G
2i1
t1,r) are

also provided for any integers i1 · · · ih and hence any total order k = i1 + · · ·+ ih
and for any times th · · · t1 such that ti − ti−1 ≥ r.

Up to the order four (k = 2) our formulae coincide with those of [Haug et al.,
2007], but explicit expressions for the higher orders are provided as a new result
whose interest might go beyond the statistical methodology proposed.

The paper is organized as follows. In Section 2 the definition and the proper-
ties of COGARCH(1,1) model are presented. In section 3 and in all its Subsec-
tion the higher moments are derived and explicit formulae are given. In Section
5 some further developments are discussed, in particular how can the moment
of the process be used to find an optimal PBEF.
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2 The COGARCH(1,1) model

Let us introduce on a filtered probability space (Ω,F , {Ft}t≥0,P) with the usual
properties, a Lévy process L = (Lt)t≥0 with Lévy triplet (γ, τ2, ν) and Poisson
random measure N (see [Applebaum, 2009, Kyprianou, 2006, Protter, 2005]).
The COGARCH(1,1) model is defined as the solution (G, σ2) =

(
Gt, σ

2
t

)
t≥0

of

the following system of stochastic differential equations (SDE) driven by the
Lévy process L {

dGt = σt−dLt

dσ2
t = (β − ησ2

t−)dt+ φσ2
t−d[L]dt ,

(1)

with initial value G0 = 0 and σ0 a random variable independent of the Lévy
process (Lt)t≥0. The parameter space Θ ⊂ R3 is defined as θ = (β, η, φ) ∈ Θ

if β > 0, η ≥ 0 and φ ≥ 0. By [L]dt , for every t ≥ 0 is the discrete part of the
quadratic variation [L]t = τ2t+ [L]dt of the driving Lévy process Lt defined as

[L]dt =

∫
R
x2N(t, dx) =

∑
0<s≤t

∆L2
s

with ∆Ls = Ls − Ls−.
The following is assumed throught all the paper.

Condition 2.1. E(L1) = 0 and E(L2
1) = 1.

If Conditions 2.1 holds, then Lt is a martingale and the volatility of the
component Gt is given solely by σt.

Remark 2.1. Under Condition 2.1, γ e τ2 are not parameters of the model. In-
deed since E(L1) = 0, γ =

∫
|x|≥1

x2dν. Moreover since, by the product formula,

[L]t − L2
t = 2

∫ t
0
LsdLs, we have

E[L]1 = τ2 +

∫
R
x2ν(dx) = E

(
L2

1

)
= 1.

hence τ2 = 1 −
∫

R x
2ν(dx). Let however remark that the Lévy measure ν may

contain further parameters, that are supposed known.

For later convenience we list here without proof some properties of the COG-
ARCH(1,1) that we will use later on.

An explicit solution

σ2
t = βe−(Xt−Xu)

∫ t

u

e−(Xu−Xs) ds+ e−(Xt−Xu)σ2
u. (2)

of the second of equations (1) with initial condition σ2
u at time u is available in

terms of the auxiliary process

Xt = ηt+
∑

0<s≤t

log(1 + φ∆Ls)
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whose Laplace transform can be written as

Ee−cXt = etΨ(c)

for a function Ψ defined as

Ψ(c) = −ηc+

∫
R

[
(1 + φx2)c − 1

]
ν(dx) = ηc+

c∑
i=1

(
c

i

)
φi
∫
R

x2iν(dx). (3)

The Laplace transform is finite at c if and only if L1 has finite moments of order
2c and, together with Ψ(c) < 0, it is a sufficient condition for the process σ2

t to
admit a stationary distribution (cf. [Klüppelberg et al., 2004]) with moments
given by the following formula

Eσ2k
∞ = k!βk

k∏
l=1

−1

Ψ(l)
. (4)

In the COGARCH(1,1) model log-returns are represented as increments
Gt,h = Gt+h−Gt of the G process. The couple

(
Gt, σ

2
t

)
t≥0

is a Markov process,

but the single component (Gt)t≥0 is not. It can be proved (see [Klüppelberg

et al., 2004]) that if E(L4
1) < ∞ and if the parameters are such that Ψ(2) < 0,

both the volatility process (σ2
t )t≥0 and the log-returns process (Gt,h)t≥0 are

stationary (allows for a stationary density) and strongly mixing with an expo-
nentially decreasing rate. We assume that σ2

0 has the stationary distribution.

3 Higher moments

In this section we give conditions that assure the existence of simple and joint
moments of the process Gt,r up to any fixed order k, and we show how they can
be calculated using an iterative procedure.

3.1 Notations

Whenever we refer to the quadratic variation of the driving Lévy process Lt we
denote it simply [L]t. We reserve the less compact standard notation [M,N ]t
for the quadratic covariation of two semimartingales Mt and Nt. Moreover, we
often need to take quadratic covariations of quadratic variations and to this
aim we introduce the following notation: quadratic variations of order i+ j are

defined as [L]
(i+j)
t =

[
[L](i), [L](j)

]
t
, with [L]

(1)
t = Lt and hence [L]

(2)
t = [L]t,

[L]
(3)
t =

[
L, [L]

]
t

=
[
[L], L

]
t

and so on so forth.

For i > 2 the quadratic variations [L]
(i)
t do not have any continuous compo-

nent

[L]
(i)
t =

∫
R
xiN(t, dx) E[L]

(i)
t = t

∫
R
xiν(dx).

However, in some iterative formula below where an index i ranges between

different values we will write [L]
d(i)
t to keep track of the fact that when i = 2

the right object to be meant is the discrete part of the quadratic variation.
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3.2 Higher moments of COGARCH(1,1)

Let us start with two Lemma that will be used repetitively in the next sections.

Lemma 3.1. For every integer k, it holds that

σ2k
t = k

∫ t

0

σ2k−2
s (β − ησ2

s) ds+

k∑
i=1

(
k

i

)
φi
∫ t

0

σ2k
s d[L]d(2i)

s (5)

and

G2k
t =

2k∑
i=1

(
2k

i

)∫ t

0

G2k−i
s σisd[L](i)s (6)

Proof. We prove formula (5) by induction. For k = 1 it is true. Let us suppose
that it is true for k − 1:

σ2k−2
t = (k − 1)

∫ t

0

σ2k−4
s (β − ησ2

s) ds+

k−1∑
i=1

(
k − 1

i

)
φi
∫ t

0

σ2k−2
s d[L]d(2i)

s .

Then by Ito product formula (cfr. [Applebaum, 2009] Theorem 4.4.13), the (1)
and equation (4.15) in [Applebaum, 2009] p. 257 or Theorem 29 in [Protter,
2005] we obtain

σ2k
t =

∫ t

0

σ2k−2
s dσ2

s +

∫ t

0

σ2
sdσ

2k−2
s + [σ2k−2, σ2]t =

= k

∫ t

0

σ2k−2
s (β − ησ2

s) ds+ φ

∫ t

0

σ2k
s d[L]ds+

+

k−1∑
i=1

(
k − 1

i

)
φi
∫ t

0

σ2k
s d[L]d(2i)

s +

k−1∑
i=1

(
k − 1

i

)
φi+1

∫ t

0

σ2k
s d[L]d(2i+2)

s =

= k

∫ t

0

σ2k−2
s (β − ησ2

s) ds+ kφ

∫ t

0

σ2k
s d[L]ds

+

k−1∑
i=2

[(
k − 1

i

)
+

(
k − 1

i− 1

)]
φi
∫ t

0

σ2k
s d[L]d(2i)

s + φk
∫ t

0

σ2k
s d[L]d(2k)

s

by the well known Pascal’s rule for the binomial coefficients we obtain (5).
The identity (6) was proven for k = 1 and k = 2 in [Haug et al., 2007]. For

any k > 2 it follows by induction writing G2k
t as G2

tG
2(k−1)
t and applying Ito’s

product formula. Algebraic manipulations with repeated use of Pascal’s rule
are needed to simplify the coefficients.

Lemma 3.2. Let us assume Condition 2.1 and let for every integer k ≥ 2,
E(L2k

1 ) <∞, Ψ(k) < 0, and for any integer 2 ≤ i < k,
∫

R x
2i−1dν(x) = 0. Then

for every integer 1 ≤ i ≤ k − 1 we have

E(G2i
t σ

2(k−i)
t ) = etΨ(k−i)

∫ t

0

Cki(s)e
−sΨ(k−i)ds (7)

5



where

Cki(t) =β(k − i)E
(
G2i
t σ

2(k−i)−2
t

)
+

i∑
j=1

(
2i

2j

)
E
(
G2i−2j
t σ

2(k−i)+2j
t

)
E
(

[L]
(2j)
1

)

+

k−i∑
j=1

(
k − i
j

) i∑
h=1

(
2i

2h

)
φjE

(
[L]

(2j+2h)
1

)
E
(
G2i−2h
t σ

2(k−i)+2h
t

)
.

Proof. Indeed, for the Ito product formula and for Lemma 3.1 we can write

G2i
t σ

2(k−i)
t =

∫ t

0

G2i
s dσ

2(k−i)
s +

∫ t

0

σ2(k−i)
s dG2i

s + [G2i, σ2(k−i)]t

= (k − i)
∫ t

0

G2i
s σ

2(k−i)−2
s (β − ησ2

s) ds+

k−i∑
j=1

(
k − i
j

)
φj
∫ t

0

G2i
s σ

2(k−i)
s d[L]d(2j)

s

+

2i∑
j=1

(
2i

j

)∫ t

0

G2i−j
s σ2(k−i)+j

s d[L](j)s +

+

k−i∑
j=1

(
k − i
j

)
φj
∫ t

0

σ2(k−i)
s d[L]d(2j)

s ,

2i∑
h=1

(
2i

h

)∫ t

0

G2i−h
s σhs d[L](h)

s


= −(k − i)η

∫ t

0

G2i
s σ

2(k−i)
s ds+

k−i∑
j=1

(
k − i
j

)
φj
∫ t

0

G2i
s σ

2(k−i)
s d[L]d(2j)

s

+ β(k − i)
∫ t

0

G2i
s σ

2(k−i)−2
s ds +

2i∑
j=1

(
2i

j

)∫ t

0

G2i−j
s σ2(k−i)+j

s d[L](j)s + (8)

+

k−i∑
j=1

(
k − i
j

) 2i∑
h=1

(
2i

h

)
φj
∫ t

0

σ2(k−i)+h
s G2i−h

s d[L](2j+h)
s .

Now, taking the expectation, applying the compensation formula (see for
example [Kyprianou, 2006, Theorem 4.4]) differentiating with respect to t, re-
membering (3) and the hypothesis on the odd moments of the measure ν, we
obtain

d

dt
E
(
G2i
t σ

2(k−i)
t

)
=

= Ψ(k − 1)E
(
G2i
t σ

2(k−i)
t

)
+

+ β(k − i)E
(
G2i
t σ

2(k−i)−2
t

)
+

i∑
j=1

(
2i

2j

)
E
(
G2i−2j
t σ

2(k−i)+2j
t

)
E
(

[L]
(2j)
1

)
+

+

k−i∑
j=1

(
k − i
j

) i∑
h=1

(
2i

2h

)
φjE

(
G2i−2h
t σ

2(k−i)+2h
t

)∫
R
x(2j+2h)dν(x).
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Simplyfing we obtain

d

dt
E
(
G2i
t σ

2(k−i)
t

)
= Ψ(k − i)E

(
G2i
t σ

2(k−i)
t

)
+ Cki(t),

and a stationary solution of this ode with initial condition E
(
G2i

0 σ
2(k−i)
0

)
= 0

exists if Ψ(k − i) < 0 and is given by (7). This completes the proof.

Theorem 3.3. Let us assume Condition 2.1. Moreover, for every k ≥ 1 let
Ψ(k) < 0 and E(L2k

1 ) < ∞. Let moreover, for every c ≤ k, E([L]2c−1) =∫
R x

(2c−1)dν(x) = 0. Then

EG2k
t =

k∑
i=1

(
2k

2i

)
E([L]

(2i)
1 )

∫ t

0

E
(
G2k−2i
s σ2i

s

)
ds

Proof. The result follows from (6) taking the expectation and applying the
compensation formula [Kyprianou, 2006, Theorem 4.4]).

Remark 3.4. For k = 1 and k = 2 the moments where already calculated
(see formulae (9) and (10) in [Haug et al., 2007] ). We recovered equivalent
expressions. Explicit calculation to obtain the moments for k = 3 and k = 4
have been derived. Since their expression are very long we include as supporting
material a software implementation, that allows to calculate and manipulate the
expression.

3.3 Higher conditional moments

Conditional moments of the product are necessary not only to derive joint mo-
ments of higher order of the log returns, as we will do in the next section, but
could be useful by itself and for this reason the result is presented in this section.

Theorem 3.5. For every k and for any 0 ≤ i ≤ k, for h > 0, s > 0 and given
0 < v < s, we have

Ev

[
G2i
s,hσ

2(k−i)
s+h

]
=

k∑
r=0

Jkir(h, s− v)σ2r
v (9)

where G2i
s,h = (Gs+h − Gs)

2i and the coefficients Jkir(h, d) can be calculated
recursively as follows.

First
Jk0k(h, d) = e(h+d)Ψ(k), (10)

then for every 1 ≤ i ≤ k

Jk0(k−i)(h, d) =
k!

(k − i)!
βi
∫ h+d

0

dsi

∫ si

0

dsi−1 · · ·

· · ·
∫ s2

0

e(h+d−si)Ψ(k)+(si−si−1)Ψ(k−1)+···+s1Ψ(k−i)ds1.

(11)
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For any fixed k and i < k the coefficients Jkir(h, d) can be derived as follows

Jkik(h, d) = ehΨ(k−i)
∫ h

0

e−wΨ(k−i)

 i∑
j=1

E
(

[L]
(2j)
1

)(2i

2j

)
Jk(i−j)k(w, d)+

+

i∑
m=1

(
2i

2m

)
Jk(i−m)k(w, d)

k−i∑
j=1

(
k − i
j

)
φjE

(
[L]

(2j+2m)
1

) dw. (12)

For any r < k

Jkir(h, d) = ehΨ(k−i)
∫ h

0

e−wΨ(k−i)

[
(k − i)βJ(k−1)ir(w, d)+

+

i∑
j=1

E
(

[L]
(2j)
1

)(2i

2j

)
Jk(i−j)r(w, d)+ (13)

+

i∑
m=1

(
2i

2m

)
Jk(i−m)r(w, d)

k−i∑
j=1

(
k − i
j

)
φjE

(
[L]

(2j+2m)
1

) dw.
Finally, for any r ≤ k we have

Jkkr(h, d) =

k−1∑
j=0

(
2k

2(k − j)

)
E[L]

(2(k−j))
1

∫ h

0

Jkjr(u, d)du.

Proof. Fix k. Let us start to prove equation (9) for i = 0. To calculate Ev
(
σ2k
t

)
we apply formula (2) with initial condition at time v. For every v ≤ s1 ≤ · · · ≤
sk ≤ t, we have

σ2k
t =

(
β

∫ t

v

e−(Xt−Xs) ds+ e−(Xt−Xv)σ2
v

)k
= e−k(Xt−Xv)σ2k

v

+

k∑
i=1

(
k

i

)
e−(k−i)(Xt−Xv)σ2(k−i)

v βi
∫ t

v

e−(Xt−Xs1
) ds1 · · ·

∫ t

v

e−(Xt−Xsi
) dsi

= e−k(Xt−Xv)σ2k
v +

k∑
j=1

(
k

j

)
σ2(k−j)
v βj · j!·

∫ t

v

dsj

∫ sj

v

dsj−1 · · ·
∫ s2

v

e−k(Xt−Xsj
)e−(k−1)(Xsj

−Xsj−1
) · · · e−(k−j)(Xs1

−Xv)ds1.

The incrementsXt−Xv are independent of Fv and of σ2
v which is Fv-measurable.

Time homogeneity of Xt ensures that Xt−Xv
D
= Xt−v. Then taking the condi-
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tional expectation with respect to Fv, by equation (3), we get

Ev
(
σ2k
t

)
= e(t−v)Ψ(k)σ2k

v +

k∑
j=1

(
k

j

)
σ2(k−j)
v βj · j!·

·
∫ t

v

dsj

∫ sj

v

dsj−1 · · ·
∫ s2

v

e(t−sj)Ψ(k)e(sj−sj−1)Ψ(k−1) · · · e(s1−v)Ψ(k−j)ds1.

that gives the thesis once observed that the coefficients in (9) with i = 0 are
actually dependent only on the sum of their arguments.

Now let us prove equation (9) for i = k = 1. By the Ito product formula

G2
s,h = (Gs+h−Gs)2 =

(∫ s+h

s

σudLu

)2

= 2

∫ h

0

(Gs+u−Gs)σs+udLs+u+

∫ h

0

σ2
s+ud[L]s+u

and by the compensation formula for the conditional expectation [Kyprianou,
2006, Corollary 4.5]

ErG
2
s,h = E([L]1)

∫ h

0

Er(σ
2
s+u)du.

Now let us assume as inductive hypothesis that (9) holds for any given integer
value k ≤ a − 1 and for all i ≤ k. We have to show that it holds also for
k = a and all i ≤ k. Let us start to notice that for k = a and i = 0 this has
already been proved. So it is enough to prove that equation (9) for k = a and
all i ≤ b − 1 < a implies equation (9) with k = a and i = b. For every k, by

writing G2k
s,h = G

2(k−1)
s,h G2

s,h and applying the Ito product formula, we have in
analogy with (6)

G2k
s,h =

2k∑
i=1

(
2k

i

)∫ h

0

(Gs+u −Gs)2k−iσis+ud[L]
(i)
s+u. (14)

With the analogous calculations that lead to formula (8), Ito product formula
guarantees that

G2b
s,hσ

2(a−b)
s+h = −(a− b)η

∫ h

0

G2b
s,uσ

2(a−b)
s+u du+

a−b∑
j=1

(
a− b
j

)
φj
∫ h

0

G2b
s,uσ

2(a−b)
s+u d[L]

d(2j)
s+u

+ β(a− b)
∫ h

0

G2b
s,uσ

2(a−b−1)
s+u du +

2b∑
j=1

(
2b

j

)∫ h

0

G2b−j
s,u σ

2(a−b)+j
s+u d[L]

(j)
s+u+

+

(a−b)∑
j=1

(
a− b
j

) 2b∑
h=1

(
2b

h

)
φj
∫ h

0

G2b−h
s,u σ

2(a−b)+h
s+u d[L]

(2j+h)
s+u .

again analogously to the proof of Lemma 3.2 we can show that Ev

(
G2b
s,hσ

2(a−b)
s+h

)
solves the following ode

9



d

dh
Ev

(
G2b
s,hσ

2(a−b)
s+h

)
= Ψ(a− 1)Ev

(
G2b
s,hσ

2(a−b)
s+h

)
+ Cab(h, s, v)

with

Cab(h, s, v) =(a− b)βEv
(
G2b
s,hσ

2(a−b−1)
s+h

)
+

b∑
j=1

(
2b

2j

)
Ev

(
G

2(b−j)
s,h σ

2(a−b+j)
s+h

)
E
(

[L]
(2j)
1

)
+

+

b∑
m=1

(
2b

2m

)
Ev

(
G

2(b−m)
s,h σ

2(a−b+m)
s+h

) a−b∑
j=1

(
a− b
j

)
φjE

(
[L]

(2j+2m)
1

)
with initial condition Ev

(
G2b
s,0σ

2(a−b)
s

)
= 0. Solving the ode we get

Ev(G
2b
s,hσ

2(a−b)
s+h ) = ehΨ(a−b)

∫ h

0

Cab(u, s, v)e−uΨ(a−b)du (15)

Let us now observe that by the inductive hypothesis formula (9) is true for
all the conditional expectations appearing in Cab(u, s, v), thus

Ev

(
G2b
s,hσ

2(a−b−1)
s+h

)
=

a−1∑
r=0

J(a−1)br(h, s− v)σ2r
v

Ev

(
G

2(b−j)
s,h σ

2(a−b+j)
s+h

)
=

a∑
r=0

Ja(b−j)r(h, s− v)σ2r
v

Ev

(
G

2(b−m)
s,h σ

2(a−b+m)
s+h

)
=

a∑
r=0

Ja(b−m)r(h, s− v)σ2r
v .

Substituting in (15) we get that Ev(G
2b
s,hσ

2(a−b)
s+h ) is itself a polynomial in σ2

v of
highest order a with coefficients given by formula (13) if r 6= k of according to
formula (12) if r = k.

To conclude the proof we need to show that if (9) is true for k = a and
i ≤ a − 1 then it is also true for k = i = a. To this aim we rewrite (14), with
k = a

G2a
s,h =

2a∑
i=1

(
2a

i

)∫ s+h

s

(Gu −Gs)2a−iσiud[L](i)u .

Redefining the index of the sum as j = a− i we have for all v < s and h > 0

Ev
(
G2a
s,h

)
=

a−1∑
j=0

(
2a

2(a− j)

)
E[L]

(2(a−j))
1

∫ s+h

s

Ev

[
G2j
s,hσ

2(a−j)
u

]
du

=

a∑
r=1

σ2r
v

a−1∑
j=0

(
2a

2(a− j)

)
E[L]

(2(a−j))
1

∫ s+h

s

Jajr(h, s− v)du


10



hence

Jaaj(h, s− v) =

a−1∑
j=0

(
2a

2(a− j)

)
E[L]

(2(a−j))
1

∫ s+h

s

Jajr(h, s− v)du

Remark 3.6. In the coefficients given by (10) and (11) the dependence from
the time lags h and d came just throw the total time lag h+ d.

3.4 Joint Moments

We are now ready to state the main result that motivated us throw the paper

Theorem 3.7. Fix any integer k ≥ 1. Let Ψ(k) < 0, E(L2k
1 ) < ∞ and for

every c ≤ k let E([L]2c−1) =
∫

R x
(2c−1)dν(x) = 0. For any integer h ≥ 2 and

any set of integers ij ≥ 0, j = 1, . . . , h such that i1 + i2 + . . .+ ih = k we have
for every 0 ≤ t1 < t2 < . . . < th < T , and tj > tj−1 + r for any j,

E
(
G2ih
th,r

G
2ih−1

th−1,r
· · · G2i2

t2,r G
2i1
t1,r

)
=

ih∑
r1=0

(
Jihihr1(r, sh−1 − sh−2 − r)

·
r1+ih−1∑
r2=0

{
J(r1+ih−1)ih−1r2(r, sh−2 − sh−3 − r)

·
r2+ih−2∑
r3=0

[
J(r2+ih−2)ih−2r3(r, sh−3 − sh−4 − r) · · ·

· · ·
rh−2+i2∑
rh−1=0

(
J(rh−2+i2)i2rh−1

(r, s1 − r)E
(
σ2rh−1
r G2i1

r

))]})
,

where sj−1 = tj − t1, j = h, . . . , 2.

Proof. By stationarity of Gt,r we can write

E
(
G2ih
th,r

G
2ih−1

th−1,r
· · · G2i2

t2,r G
2i1
t1,r

)
= E

(
G2ih
sh−1,r

G2ih−1
sh−2,r

· · · G2i2
s1,r G

2i1
r

)
Taking the conditional expectation repeatedly in the right hand side

E

[
Er

{
· · ·Esh−3+r

[
Esh−2+r

(
G2ih
sh−1,r

)
G2ih−1
sh−2,r

]
G2ih−2
sh−3,r

· · ·G2i2
s1,r

}
G2i1
r

]

applying Theorem 15 we can reduce the argument of the expectation (uncon-
ditional) to be a part deterministic and a part measurable with respect to Fr
and we get the thesis.
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4 Examples

The class of driving Lévy processes that can be considered in the COGA-
RCH(1,1) model is very general. Compound Poisson, Normal Inverse Gaussian,
Variance Gamma and Meixner processes are families of Lévy processes that
for some value of their parameters are such that the moments of the COGA-
RCH(1,1) process associate exist. Details are presented only for the Variance
Gamma family.

4.1 Variance Gamma

The Variance Gamma process Vt is an infinity activity pure jump Lévy process
that has been used itself to model log returns [Madan and Seneta, 1990]. The
characteristic function is given by

E
(
eiuVt

)
=

(
1 +

A2u2

2C

)−tC
,

where A and C are positive parameters. The Lévy measure has density

νL(dx) =
C

|x|
exp

(
−|x|
A

√
2C

)
dx x 6= 0.

The Variance Gamma process has finite moments of any order and a symmetric
density which cannot be expressed in a closed form. Its variance is given by A2t.
If we assume that it drives (without a Brownian component) a COGARCH(1,1)
model, the first of Conditions 2.1 imposes A = 1, while the parameter C remains
free.

5 Further developments

A few methods for the estimation of the model parameters from a sample of
equally spaced returns Gir,r = G(i+1)r −Gir are currently available.

In [Haug et al., 2007] explicit estimators have been derived from a method
of moments (MM). In [Maller et al., 2008] a pseudo maximum likelihood (PML)
method has been proposed that allows also for non equally spaced observations,
and in [Müller, 2010] an MCMC-based estimation method has been presented
for the model driven by a compound Poisson process.

In a forthcoming paper the method of Prediction Based Estimating Func-
tions (PBEFs) introduced in [Sørensen, 2000] is applyed to the COGARCH(1,1)
model and its performances are compared with some of the other available pro-
cedures. The general theory of PBEFs allows to find an optimal PBEF if the
joint moments of the observation are explicitly known up to a certain order.

This paper was motivated by the search for an optimal PBEF, where a recur-

sive formula for the moments E(G2i
t σ

2(k−i)
t ) and Ev[G

2i
s,hσ

2(k−i)
s+h ] wow necessary.

Explicit expressions for any total order 2k and any integer i ≤ k and for any
t, h > 0 and s > v > 0 are given in this paper.
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Explicit expression for the joint moments E(G2ih
th,r

G
2ih−1

th−1,r
· · · G2i2

t2,r G
2i1
t1,r) are

also provided for any integers i1 · · · ih and hence any total order k = i1 + · · ·+ ih
and for any times th · · · t1 such that ti − ti−1 ≥ r.

Up to the order four (k = 2) our formulae coincide with those of [Haug et al.,
2007], but explicit expressions for the higher orders are provided as a new result
whose interest might go beyond the statistical methodology proposed.

Knowing all simple and joint moments up to the order four, such as, for
example, E

(
G2
jr,rG

2
ir,r

)
, E
(
G4
jr,r

)
, for any integer i, j is essential to calculate

the predictors and hence to calculate any estimating function. Such explicit
expressions for the COGARCH(1,1) model are given in [Haug et al., 2007].
However the asymptotic variance of the estimates involves a matrix which de-
pends on all the simple and joint moments up to the order eight, e.g. E

(
G8
jr,r

)
,

E
(
G6
jr,r

)
, E
(
G2
jr,rG

6
ir,r

)
, E
(
G2
ir,rG

2
jr,rG

2
kr,rG

2
hr,r

)
and similar. Explicit expres-

sions for such moments are currently not available and finding such expressions
is the goal of Section 3. The optimal weight matrix W ∗ depends on all the
simple and joint moments up to the order eight. Explicit expressions for such
moments are currently not available and finding such expressions is the goal of
Section 3. In term of existence of higher moments, the condition requested for
the optimality for the estimators obtained via the PBEF and via the MM is the
same (Eθ(G

8+δ
1 ) < ∞ for some δ > 0), see [Haug et al., 2007]. What is needed

to calculate explicitly the estimators are the moments till the order four for the
MM estimator, the moments till the order eight for the PBEF.
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lus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, second edition.

[Brockwell et al., 2006] Brockwell, P., Chadraa, E., and Lindner, A. (2006).
Continuous-time GARCH processes. Ann. Appl. Probab., 16(2):790–826.

[Buchmann and Mueller, 2012] Buchmann, B. and Mueller, G. (2012). Limit
experiments of GARCH. BERNOULLI, 18(1):64–99.
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