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Introduction and summary 

Air transport system shows a great complexity, mainly linked to the dimensional 

and commercial fragmentation between a large number of players. However, a 

comprehension of the dynamics at the system level allows a contextualization of the 

activities operated by airports which play a crucial role not only within the air 

transportation sector, but also in the process of increasing the quality of life of regional 

and local communities, directly participating in wealth creation. 

Precisely for these reasons, the topic of airport performance has gained increasing 

attention from researchers. Performance evaluation and improvement studies of airport 

operations have important implications for a number of airport stakeholders: (i) for 

airlines in identifying and selecting the more efficient airports at which to base their 

operations, (ii) for municipalities because of the benefits coming from efficient airports 

in terms of attracting business and passengers, (iii) for policy makers in making 

effective decisions on optimal allocation of resources to airport improvement programs, 

and in evaluating the efficacy of such programs. Airport activity can be considered as a 

key factor in promoting economic, productive, tourist and commercial upgrades of a 

territory, thanks to the “multiplier effect” in the number of potential business 

transactions it may stimulate (Jarach, 2005). 

However, besides numerous and sizeable benefits to citizens and companies, 

airports also brings undesired and damaging side–effects to people living nearby and to 

the local and global environment. In particular, the continuously increasing passenger 

traffic and a rise in public awareness have made aircraft noise and emissions two of the 

most pressing issues hampering commercial aviation growth today. Aviation have come 

concerns regarding noise, air quality, water quality and impacts on climate. While 

aircraft have become more fuel efficient and less noisy over the last 35 years, most 

projections for the rate of growth of air transport exceed projections for the rate of 

technological advancement for noise and emissions such that the environmental 

consequences of aviation may increase. There are several challenges to limiting the 

environmental impact of aviation. As well known aviation growth is correlated with 

economic growth. Placing inappropriate constraints on aviation may have negative 
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consequences for local, national and world economies. On the other hand, allowing 

environmental impacts to go unaccounted in consumer and producer behavior also 

produces negative economic impacts.  

In the light of this, the research carried out in this thesis contributes in the 

assessment of aviation efficiency in presence of environmental impacts. The thesis is 

composed by three works describing: (i) the assessment of airport efficiency 

considering the production of pollution, (ii) a new comprehensive methodology to 

compute an economic environmental benchmarks and (iii) the analysis of the current 

aircraft global market with a computation of effective incentives to move towards 

greener fleets. 

In the first paper a hyperbolic distance function model (proposed by Cuesta et al., 

2009), has been applied for airport efficiency assessment considering local air pollution 

as undesirable output. In order to include the negative externalities connected to local 

air pollution, we created an index describing the total amounts of pollutants produced 

for each Italian airport included in our data set. We show that, if the undesirable outputs 

are ignored, airport efficiency scores can be misleading. Our results indicate that 

airports tend to be more efficient, on average, when negative externalities of production 

are included in the analysis. More in details, those airports that are highly technically 

inefficient when only “good” outputs are included (because they have a low utilization 

rate of their aeronautical inputs) showing a strong improvement in their efficiency when 

also undesirable outputs are considered. However, this is not due to managerial effort, 

but to the fact that same weights are given to “bad” and “good” outputs into the distance 

function. Consequently, inefficient airports improve their scores mainly because they 

get closer to the technical/environmental frontier thanks to their low volumes of aircraft 

and passengers movements. When instead airports with similar number of movements 

are considered, we show that a fleet effect may be identified as a driver for the gains 

magnitude in the efficiency scores, given that more environmentally friendly fleets 

produce lower amount of pollutants per movement. This suggests that a possibility for 

airports managements in order to improve efficiency is to promote carriers to use 

modern fleets (e.g., increasing airport charges).  

In the second paper, a new methodology taking into account economic and 

environmental variables is developed. Following Fare and Grosskopf (2010) we present 
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an additive model that benchmarks the decision making units (DMUs) on a unique eco-

environmental frontier considering the production of both good and bad outputs 

productions. Our directional economic environmental distance (DEED) function 

describes the distance of each DMU to the efficient frontier evaluating it as potential 

monetary saving achievable by reaching such frontier. As suggested by Dyckhoff and 

Allen (2001) the normal assumption of considering all inputs as “bads” to be reduced is 

no longer valid in an ecological context. In an eco-environmental perspective 

ecologically good inputs (e.g., waste in a waste-burning power plant or in a recycling 

plan) have to be considered. In our study we extend the idea of desirable input allowing 

the decrease or the increase in desirable input utilization. Following Sueyoshi and Goto 

(2011), we propose an unified efficiency measurement considering both the production 

of good and bad outputs and allowing the constrained increase in desirable input 

utilization. Differently from the usual DEA approach, a DMU could reach the frontier 

decreasing input utilization or, alternately, increasing it. The model proposed is suitable 

in all the industries (e.g., aviation sector) in which it is necessary to account for the 

production of negative externalities. 

Finally, in the third paper we identify the trade-offs that exist between the noise 

and air pollution generated by the existing aircraft-engine combinations. Furthermore, 

we apply the benchmarks resulting from directional economic environmental distance 

function in order to design a relatively efficient aircraft-engine fleet that could operate 

at Stockholm and Amsterdam airports given current technology and service levels. 

Since this implies substituting the inefficient aircraft-engine combinations with those 

lying on the frontier, we obtain estimates of the magnitude of the monetary incentives 

that may induce airlines to move towards a greener fleet. Accordingly, we provide some 

estimates on the optimal airport charges that may encourage a reduction in noise and 

emissions. Noise and emissions charges are not sufficient to incentivize the necessary 

fleet upgrades and it would appear that, depending on stage length, a federal or national 

fund is necessary to reduce the aviation externalities below current levels. 
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Considering the Local Air Pollution in the airport 

efficiency assessment. 

 

Abstract 

We estimate technical efficiency of 33 Italian airports for the period 2005–2008. 

In addition to conventional desirable outputs (aircraft, passenger and cargo movements), 

we consider as negative externality the local air pollution by proposing an indicator able 

to evaluate the environmental social cost produced by the airport activity. We apply a 

hyperbolic distance function to estimate a multi–output stochastic frontier. Furthermore, 

comparing the results with those obtained from a traditional stochastic frontier we show 

that airports’ efficiency scores are greater and closer when local air pollution is included 

in the analysis. Our results suggest that, on the one hand, not considering the 

environmental negative externalities in assessing airport efficiency can lead to 

misleading results. On the other hand, an appropriate weights’ balance between 

desirable and undesirable output seems to be necessary in order to design an airports’ 

regulatory scheme able to boost airport technical/environmental efficiency. 
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1. Introduction 

Aviation and environment is a growing matter of interest due to the projected 

increase in demand for air transport. Riberio et al. (2007) show that the CO2 emission 

forecasts for commercial aviation in 2050 will be from 2 (best scenario) to 5 (worst 

scenario) times the actual emission level. Moreover, according to ICAO, in addition to 

green house gases, the air polluting surrounding airports has become a significant 

concern for local and regional environment. In particular, during the landing take-off 

(LTO) cycle, an aircraft gives off several pollutants affecting the quality of local air and 

human health (Dings et al., 2003). Finally, another important externality – i.e., the noise 

footprint –  concerns the communities surrounding the airports. However, while the 

connection between air pollutants and human health is proven, the one between noise 

and human health is still not completely clear (Daley, 2010).  

Airport efficiency has been the subject of many previous contributions. 

Traditionally, the inputs considered are either the production factors (e.g., labor and 

capital) or the physical infrastructure of the airports (e.g., runways and terminal area), 

while the outputs are given by the number of aircraft movements, passengers, and 

freights.1 Efficient airports are those that maximize their outputs/inputs ratios. Hence, 

under this perspective, the pursuit of efficiency aims at increasing the number of aircraft 

operations as well as the number of passengers transported and cargo handled, for a 

given level of inputs. This traditional approach to estimate airport efficiency does not 

consider the important environmental externalities associated to airport activities that 

should be instead considered in the performance evaluation. Not considering these 

undesirable outputs may give rise to two errors: (1) efficiency estimates may be biased 

and, as a consequence, the obtained benchmarking is misleading (Lozano and Gutierrez, 

2010); (2) the economical benefits created by airport activities are overestimated, since 

they do not take into account the full social cost produced (Lu and Morrel, 2006).  

Few previous contributions have taken into account both desirable and 

undesirable outputs produced by airports. Yu (2004) estimates airports’ technical 

efficiency using aircraft movements as desirable output and aircraft noise as undesirable 

output. He finds that airports are in general more efficient when both desirable and 

                                                 
1For a summary of the input and output included in the previous efficiency analysis refer to Tovar and 
Martín-Cejas (2009) and Lozano and Gutierrez (2009). 
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undesirable outputs are considered, and airports located in a smaller population area 

achieve the same efficiency than other ones. Yu et al. (2008) provides a similar result 

and also finds lower average total factor productivity growth in case of noise inclusion. 

Pathomsiri et al. (2008), besides the conventional desirable outputs, consider time 

delays and number of delayed flights as undesirable outputs. They show that if delayed 

flights are excluded from the model, many large but congested airports are found to be 

efficient. If instead undesirable outputs are taken into account, many other airports can 

be classified as efficient, since they can compensate a lower desirable outputs/inputs 

ratios with shorter delays per inputs. Furthermore, they also provide evidence of a lower 

airports’ productivity when undesirable outputs are included. Lozano and Gutiérrez 

(2010) as well consider delays as undesirable outputs and argue that the inclusion of the 

undesirable effects related to airport operations leads to more valid findings. 

Two issues remain unexplored regarding the efficiency computation in the 

airport analysis. First, none of the previous contributions apply a parametric approach 

(i.e. stochastic frontier analysis, SFA) in the inefficiency assessment when undesirable 

outputs are considered. Second, LAP has never been included despite some authors 

have shown that aircraft local emissions social costs are relevant (Dings et al., 2003 and 

Givoni and Rietveld, 2009 and 2010). Hence, the aim of the present paper is to assess 

airports’ technical efficiency when local environmental emissions are taken into account 

applying a parametric approach. We compute the pollutant emissions produced during 

the LTO cycle and certified by ICAO for each airport in our sample and, following the 

approach of Cuesta et al. (2009), we estimate a stochastic production frontier using a 

hyperbolic distance function model. Finally, we compare the results with those coming 

from estimating a classical stochastic frontier (i.e. with no undesirable outputs). We 

apply these models to a data set composed by 33 Italian airports for the period 2005-

2008. 

The structure of this paper is as follows. In Section 2, we present the hyperbolic 

distance function model and the methodology to compute the index of local airport 

pollution. Section 3 reports our empirical results. Finally, Section 4 summarizes and 

concludes the paper.  
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2. Materials and Methods 

This Section is split into three parts. First, we introduce the analytical 

foundations of the production technology in presence of multi-product firms and we 

point out the differences between the “classical” production function – i.e., when the 

bad output is not taken into account – and the technical/environmental frontier using a 

parametric approach. Different specifications of the latter are presented. Second, we 

show the procedure to include the computation of local air pollution as an yearly social 

cost linked to airports’ operations. This index is then considered as undesirable output 

in the estimation of the technical frontier. Finally, we present the descriptive statistics of 

the variables included in our data set. 

 

3 Distance functions and technical/environmental frontiers 

Technical efficiency in presence of multi-product firms is estimated using a 

distance function. As shown by Coelli and Perelman (1999, 2000) and Kumbhakar and 

Lovell (2000), this can be done by estimating a stochastic distance function. In this 

framework we define � as the firms’ production possibility set—i.e., the output vector 

� � ��� that can be obtained using the input vector � � ��� . That is: � 	 
��, �
: � �
���, � � ���, � ��� ������� ��. This kind of output distance function has been largely 

used in the literature on airport efficiency (Chow and Fung, 2009, Tovar and Martìn-

Cejas, 2009 and Scotti et al., 2012), but it has no environmental interpretation. In this 

traditional framework only desirable output are considered: hence we classify this case 

as the “classical” distance function. By assuming that � satisfies the axioms listed in in 

Färe and Primont (1995), we introduce Shepard’s (1970) output oriented classical 

distance function:  

 

 ����, �
 	 ���
� � 0: ��, �/�
 � ��. (1) 

 

The range of the classical distance function is 0 # ����, �
 $ 1. Lovell et al. 

(1994) show that the classical distance function (1) is non-decreasing and convex in �, 

and decreasing in �. Furthermore, the classical distance function is homogeneous of 

degree 1 in �, i.e., ����, &�
 	 &����, �
. ����, �
 	 1 means that � is located on the 
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outer boundary of the production possibility set. If instead ����, �
 # 1, � is located 

below the frontier; in this case, the distance represents the gap between the observed 

output and the maximum feasible output. This gap may be due both to random shocks 

and to inefficiency, as will be shown later.  

Following Cuesta and Zofio (2005) and Cuesta et al. (2009), we introduce a 

production technology where inputs are transformed into a desirable output vector � and 

undesirable output vector ' � ��( . Hence the technology is given by: 

� 	 
��, �, '
: � � ���, � � ���, ' � ��) , � ��� ������� ��, '
� . A first 

characterization of this technology (Färe et al., 1989 and Cuesta et al., 2009) consists in 

computing only the maximum feasible expansion of the desirable outputs required to 

reach the boundary of the set �. Inputs and undesirable outputs are treated as fixed. We 

label this approach as the Output distance function, which is given by the following 

expression:  

 

 �*��, �, '
 	 ���
+ � 0: ��, �/+, '
 � ��. (2) 

 

The output distance function has range 0 # �*��, �, '
 $ 1  and it is 

homogeneous of degree 1 in �, i.e., �*��, &�, '
 	 &�*��, �, '
. Finally, we consider 

a hyperbolic distance function that represents, for a given amount of inputs, the 

maximum expansion of desirable outputs and equiproportionate reduction of 

undesirable outputs leading a firm on the boundary of technology �.2 The hyperbolic 

distance function is defined by:  

 

 �,��, �, '
 	 ���
- � 0: ��, �/-, '-
 � ��. (3) 

 

Good and bad outputs are treated asymmetrically, yielding a first foundation of a 

technical/environmental production frontier. The function belong to the interval 

0 # �,��, �, '
 $ 1  and it is almost homogeneous of degree 0, 1, -1, 1 since 

�,��, &�, &./'
 	 &�,��, �, '
. Under all previous specifications the firm is efficient 

if the distance function is equal to 1.  

                                                 
2The name is due to the hyperbolic path that the function follows to reach the production frontier. 
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We adopt the translog specification for the three distance functions described 

before, for its flexibility and suitability to the homogeneity conditions. The set of 

restrictions that has to the translog distance function are described in details in Cuesta et 

al. (2009). Using the homogeneity condition for ��  and �* and the almost homogeneity 

condition for �,, and choosing the 012 output for normalization, i.e., & 	 1/��, we get 

the following translog specification for the classical distance function:  

 

3����41/��41
 	 56 7 8 59
�

9:/
 3� �941 7 1

2 8 8 59<
�

<:/

�

9:/
 3� �941  3� �<41 

                                    7 8 =>
�./

>:/
 3� �>41? 7 1

2 8 8 =>@
�./

@:/

�./

>:/
 3� �>41?  3� �@41?                      �4
 

7 1
2 8 8 B9>

�./

>:/

�

9:/
 3� �941  3� �>41?  

 � 	 1,2, . . . , C  D 	 1,2, . . . , �, 
 

where �>41? 	 �>41/��41 . The translog output distance function also considers 

the undesirable outputs as fixed, and it is given by:  

 

3���*41/��41
 	 56 7 8 59
�

9:/
 3� �941 7 1

2 8 8 59<
�

<:/

�

9:/
 3� �941  3� �<41  

7 8 =>
�./

>:/
 3� �>41? 7 1

2 8 8 =>@
�./

@:/

�./

>:/
 3� �>41?  3� �@41?  

                                  7 8 EF
)

<:/
 3� 'F41 7 1

2 8 8 EFG
)

G:/

)

F:/
 3� 'F41  3� 'G41                        �5
 

7 1
2 8 8 B9>

�./

>:/

�

9:/
 3� �941  3� �>41? 7 1

2 8 8 I9F
)

F:/

�

9:/
 3� �941  3� 'F41  

7 1
2 8 8 J>F

)

F:/

�./

>:/
 3� �>41?  3� 'F41  

� 	 1,2, . . . , C  D 	 1,2, . . . , �. 
 

Equiproportional reduction in the amount of the undesirable outputs are taken 

into account in the hyperbolic distance function, so that its translog specification is:  
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3���,41/��41
 	 56 7 8 59
�

9:/
 3� �941 7 1

2 8 8 59<
�

<:/

�

9:/
 3� �941  3� �<41 

7 8 =>
�./

>:/
 3� �>41? 7 1

2 8 8 =>@
�./

@:/

�./

>:/
 3� �>41?  3� �@41?  

7 8 EF
)

<:/
 3� 'F41? 7 1

2 8 8 EFG
)

G:/

)

F:/
 3� 'F41?  3� 'G41?  

                  7 1
2 8 8 B9>

�./

>:/

�

9:/
 3� �941 3� �>41? 7 1

2 8 8 I9F
)

F:/

�

9:/
 3� �941 3� 'F41?                             �6
 

7 1
2 8 8 J>F

)

F:/

�./

>:/
 3� �>41?  3� 'F41?  

� 	 1,2, . . . , C  D 	 1,2, . . . , �, 
 

where 'F41? 	 'F41 L ��41. In a stochastic frontier model the distance separating 

a producer from the frontier is given by two random components (Aigner et al., 1977): 

(1) its technical/environmental inefficiency and (2) a random shock beyond producers’ 

control. Hence the error term of the translog regression equation is defined as M41 	
�N41 O �41
, where N41  is the two–sided random noise capturing the effect of random 

shocks, while �41 is non–negative and represents the time-varying inefficiency term. As 

in a standard stochastic frontier model, N41 are normally distributed as C�0, PQR
 while 

�41  are normally distributed and truncated at 0 as C��S1, PTR
. Hence, if we add the 

random components, the estimated distance functions presented in Eqs. (4)–(6) can be 

written as:  

 

3����41/��41
 	 �U��41 , �41? , V, W, X
 7 N41 
             3���*41/��41
 	 �U��41 , �41? , '41 , V, W, X, Y, Z
 7 N41          �7
 

3���,41/��41
 	 �U��41 , �41? , '41? , V, W, X, Y, Z, \
 7 N41 
� 	 1,2, . . . , C  D 	 1,2, . . . , �. 

 

The expressions shown in (7) can be easily transformed so that the dependent 

variables are O3����41) while 3����41
, 3���*41) and 3���,41
 are written in the right 

hand side of each equation, capturing the inefficiency components �41.  

We regress Eqs. (4)–(6) using the standard maximum–likelihood technique 

developed by Battese and Coelli (1992) and then compute the posterior expected values 
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of the error components, obtaining the time varying efficiency estimates. The latter can 

be transformed in efficiency scores as follows: �]41 	 �.T^_ . We obtain a set of 

estimated efficiency scores that can be used to investigate the impact on efficiency of 

including undesirable outputs. The changes in efficiency scores are then analyzed in 

order to identify whether some distinctive features of airports’ activities have an impact 

on how efficient is the management in dealing with both technical (i.e., desirable 

outputs) and environmental (i.e., local air pollution) issues.  

 

4 The Local Air Pollution Index 

The quality of the air nearby the airports is an increasingly important issue for 

airports managers, particularly in the European Union, where environmental directives 

have been approved. As a result, airports’ managers have to provide detailed 

assessments of their environmental impact. At the local level, airports are working 

alongside regional partners and stakeholders to assess the contribution of airport 

emissions on local air quality and to develop strategies and plans to reduce emissions. 

As a first step in this direction, a rigorous evaluation of the airports’ environmental 

effects on local air is required. Our contribution provides a method to evaluate airports’ 

local air pollution. In doing so, we first take into account that aircrafts affect Local Air 

Pollution (LAP) only when they operate along the Landing Take–Off (LTO) cycle. The 

LTO cycle, following ICAO standards, is split into four stages: take–off, climb (up to 

3,000 ft), approach (from 3,000 ft to landing), and idle (when the aircraft is taxiing or 

standing on the ground with engines–on).3  

We compute the emissions produced by each aircraft type taking into account 

both (1) the emission factors for the aircraft’s specific engines and (2) the time spent in 

each phase of the LTO cycle. Our references are the values specified in the aircraft 

certification, established in accordance with the criteria set out on the basis of Annex 16 

of the ICAO Convention (Volume 2), dealing with the protection of the environment 

from the effect of aircraft engine emissions.  

                                                 
3The 3,000 ft (approximately 915 m) boundary is the standard set by the ICAO for the average height of 
the mixing zone, the layer of the earth atmosphere where chemical reactions of pollutants can ultimately 
affect ground level pollutant concentrations (US Environmental Protection Agency, 1999). 
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The study considers the operations of aircraft with a maximum take–off weight 

(MTOW) greater than 5,700 kg with turbine engines, i.e., turboprop and turbojet. 

Therefore, aircrafts with internal combustion piston engine (necessarily helical), used 

only in the light aviation, are ignored.  

In order to compute the emissions produced by each airport in our data set we 

matched five databases: OAG, EASA, IRCA, FOI and ICAO Engine Emissions 

Databank databases.4 The first one allows us to compute the number of landing and 

take–off operations for the different model of aircraft in each Italian airport. The second 

and the third ones allow us to link each model of aircraft both to its engine type and to 

the number of engines installed.5 ICAO and FOI provide the Emission Factor (i.e., the 

quantity in grams emitted per kilogram of fuel consumed) for the four LTO phases and 

for each engine model. A more detailed explanation of all the steps adopted to match 

the above databases is provided in Grampella et al. (2012). The pollutants considered in 

this contribution are: hydrocarbons (`a), carbon monoxide (ab), and nitrogen oxides 

(Cbc).6  

In order to compute the total emissions for the LTO cycle (d4e) for the engine � 
and the pollutant �, we sum the specific engine emission factor (]4ef) of pollutant � 

(kg) for each phase � multiplied by the duration of the phase (�f) and by the indicated 

specific engine fuel consumption (gf4) in kg/sec. Hence we have:  

 

d4e 	 8 ]4ef
h

f:/
L �f L gf4  

 
                                                 

4
OAG is the database provided by Official Airlines Guide; IRCA is the International Register of Civil 

Aircraft for engines; EASA is the European Aviation Safety Agency, FAA is the Federal Aviation 
Administration for engines noise certification; ICAO Engine Emission Databank is provided by the 
International Civil Aviation Organization and FOI Database (for engines pollutant emissions) is provided 
by the Swedish Defence Research Agency. 
5The matching is realized on the basis of both the aircraft model and the MTOW. In case of not identical 
weight, we estimate the level of emissions considering only the combinations between the OAG data and 
the EASA with similar MTOW, i.e., with differences lower than i3%. 
6Notice that also lbR  emissions and Particulate Matter (m0) emissions are contributors to LAP (US 
Environmental Protection Agency, 1999), but they are (still) not part of the engine certification process. 
Emission of these pollutants is directly related to fuel consumption and therefore can be incorporated in 
the analysis. However, results of previous studies (Givoni and Rietveld, 2010, and Dings et al., 2003) 
show that the cost of LAP from aircraft operation during the LTO cycle strictly depends on the volume of Cbc emissions. 
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Since the computed emissions refer to the single engine, we had to match each 

aircraft with its engine (considering the number of engines) in order to get aircrafts 

emissions (`a, ab, Cbc) for the LTO cycle. The sum of the emissions (kg) produced 

by each aircraft in a particular airport multiplied by the number of movements of the 

same aircraft over a year gives the total amount of `a, ab and Cbc produced by the 

airport. Table 1 shows the yearly average total kilograms per pollutant produced in each 

airport of our sample.7  

Table 1- Average yearly values of pollutants produced by airport (kg) 

Airport no op qpr Airport no op qpr 

Alghero 3,892 45,247 55,139 Olbia 6,798 62,401 74,743 

Ancona 877 11,949 14,095 Palermo 15,467 164,305 197,459 

Bari 8,975 96,925 101,426 Pantelleria 210 5,712 5,567 

Bergamo 15,959 165,091 232,956 Parma 441 4,888 5,875 

Boulogne 18,948 183,283 165,914 Pescara 1,701 16,858 16,114 

Brescia 4,612 24,336 22,541 Pisa 10,288 112,269 132,920 

Brindisi 3,327 34,453 43,561 Reggio Calabria 2,303 22,596 27,539 

Cagliari 9,770 96,469 120,726 Rimini 523 5,738 5,884 

Catania 18,223 192,436 240,694 
Rome 

Ciampino 
13,169 131,270 187,176 

Florence 13,325 109,064 79,231 
Rome 

Fiumicino 
145,583 1,350,748 1,844,126 

Forlì 1,787 18,643 29,117 Trapani 1,321 18,656 20,079 

Genoa 3,831 49,672 53,733 Treviso 3,967 38,467 58,366 

Lamezia Terme 4,482 46,064 55,574 Trieste 2,338 26,957 32,209 

Lampedusa 293 5,833 5,897 Turin 16,921 175,923 165,520 

Milan Linate 36,867 385,55 498,737 Venice 33,009 314,971 311,884 

Milan 
Malpensa 

112,569 944,858 1,250,709 Verona 10,426 100,409 94,540 

Naples 21,141 223,346 229,965     

 

To aggregate these data into a single index, representing the LAP produced by 

each airport, we consider Dings et al. (2003) estimates of the cost of damage they 

impose. The index Weighted Local Pollution (WLP) is obtained as the sum of kg 

produced of each pollutant ('e) weighted for the relative cost of damage (�e). The latter 

are equal to 4 Euro/kg for `a and 9 Euro/kg for NOx. Carbon monoxide (CO) emissions 

from aircraft operation do not appear to result in substantial health effects and therefore 

a cost estimate for emission of this gas is assumed equal to 0 Euro/kg (Dings et al., 

2003; Givoni and Rietveld, 2010). Hence we have:  

                                                 
7Notice that non–aircraft emissions from airport and airport–related activities such as fleet vehicles and 
ground access vehicles are not considered in this contribution. 



 

 

 

Figure 1 shows the value of the WLP index divided by the number of 

movements for each airport of our dataset. It is evident that there is a big dispersion in 

the amount of local pollution per aircraft movements across all Italian airports, and 

especially among the small and medium size ones (the two largest airports 

Fiumicino and Milan Malpe

magnitude). This suggests that some airports are greener than the others in terms of fleet 

mix. Hence, including this variable into the efficiency assessment implies to penalize 

airports operating more polluting aircraft.

The average cost of local pollution is about 40 Euros per flight, while the 

maximum and minimum local pollution costs are respectively about 80 Euros and 16 

Euros.  

 

Figure 1 - Local pollution per movement 

5 Airport data set 

The data set includes input and output variables of 33 Italian airports for the 

period 2005-2008. Following many previous contributions estimating airports’ technical 
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Figure 1 shows the value of the WLP index divided by the number of 

ts for each airport of our dataset. It is evident that there is a big dispersion in 

the amount of local pollution per aircraft movements across all Italian airports, and 

the small and medium size ones (the two largest airports 

Fiumicino and Milan Malpensa - still exhibit some variation but of a smaller 

). This suggests that some airports are greener than the others in terms of fleet 

mix. Hence, including this variable into the efficiency assessment implies to penalize 

airports operating more polluting aircraft.  

The average cost of local pollution is about 40 Euros per flight, while the 

maximum and minimum local pollution costs are respectively about 80 Euros and 16 

Local pollution per movement (Euro) across airports (2005

The data set includes input and output variables of 33 Italian airports for the 

Following many previous contributions estimating airports’ technical 

Figure 1 shows the value of the WLP index divided by the number of 

ts for each airport of our dataset. It is evident that there is a big dispersion in 

the amount of local pollution per aircraft movements across all Italian airports, and 

the small and medium size ones (the two largest airports - i.e., Rome 

still exhibit some variation but of a smaller 

). This suggests that some airports are greener than the others in terms of fleet 

mix. Hence, including this variable into the efficiency assessment implies to penalize 

The average cost of local pollution is about 40 Euros per flight, while the 

maximum and minimum local pollution costs are respectively about 80 Euros and 16 

across airports (2005-08) 

 

The data set includes input and output variables of 33 Italian airports for the 

Following many previous contributions estimating airports’ technical 
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efficiency, we considered as inputs both capital assets (i.e., most of the airports’ existing 

infrastructures) and labor. We collected information on the runway capacity (CAP)8, the 

number of aircraft parking positions (PARK), the terminal area (TERM) and the number 

of check–in desks (CHECK). Labor is given by the number of employees measured in 

terms of Full–Time Equivalent units (FTE). All the data have been obtained through a 

direct investigation.  

The desirable outputs are an aggregate measure of the annual passenger and 

freights movements (WLU)9 provided by the Italian airport authority (Ente Nazionale 

Aviazione Civile, ENAC), and the annual aircraft movements (ATM) are collected from 

the OAG database. The undesirable output is given by the total local emissions 

produced by each aircraft during the LTO cycles and computed, at the airport level, 

using the WLP index presented in Section 2.2.10 Table 2 shows the descriptive statistics 

regarding outputs and inputs.  

Table 2 - Descriptive Statistics of Inputs (I), Desirable (D) and Undesirable (U) Outputs 

 Average Median Std. Dev. Max Min 
ATM (D, number) 38,782 16,932 62,876 337,986 434 

WLU (D, number) 4,136,556 1,732,196 6,949,506 36,758,411 69,059 

WLP (U, euro) 1,805,864 667,303 3,451,583 19,333,542 22,675 

TERM (I, sqm) 38,812 13,850 73,320 350,000 1,100 

CHECK (I, number) 42 19 65 358 3 

FTE (I, number) 237 110 408 2,186 2 

CAP (I, number per hour) 19 15 18 90 2 

PARK (I, number) 26 18 26 142 2 

 

6 Results 

In this section, we present and discuss our econometric results regarding the 

estimation of the stochastic frontier models presented in Section 2.1. Model DC is the 

classical distance function including only desirable outputs in the estimated frontier (Eq. 

(4)); Model DO gives a output stochastic frontier with desirable outputs and the 

                                                 
8This variable takes into account both the runway length and the airport’s aviation technology level—e.g., 
some aviation infrastructures such as ground–control radars and runway lighting systems. 
9In air transportation, by convention, passengers and freights are combined in a single output measure, 
WLU, such that 100 kilograms of freight corresponds to one passenger. 
10We have checked the validity of the chosen inputs and outputs by testing for their isotonicity—i.e., 
outputs should be significantly and positively correlated with inputs (Charnes et al., 1985). Pearson 
correlation coefficients between all the inputs and the outputs are significant (at a 1% level) and positive. 
Moreover, the inputs correlations are positive, significant, and very high, as a confirmation that in 
managing airports, inputs are jointly dimensioned to avoid bottlenecks (Lozano and Gutiérrez, 2009). 
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undesirable good treated as a fixed input (Eq. (5)). DH represents a hyperbolic distance 

function with both desirable and undesirable outputs (Eq. (6)).  

In all the models ATMit is treated as the normalizing output and HUB is a 

production function shifter: it is a dummy variable equal to 1 if the airport is classified 

as an hub, to control for the presence of a technology difference among hub and non–

hub airports.11 Prior to estimation, all the output and input variables have been divided 

by their respective geometric means. Consequently, inputs and outputs elasticities can 

be regarded as (partial) distance elasticities evaluated at the variable mean of the 

empirical sample.  

Table 3 presents the maximum likelihood estimates of Eqs. (4)–(6). In all 

estimated frontiers the first order coefficient for WLU is positive and significant, as 

expected. This indicates that any increase in the amount of WLU produced, ceteris 

paribus, would imply a smaller distance to the frontier. Hence all the estimated frontiers 

meet the monotonicity condition of being non–decreasing in desirable outputs (at the 

sample mean). The first order coefficient of the bad output, i.e., WLP, when included in 

the frontier has the expected negative sign, and it is statistically significant. This finding 

indicates that the estimated translog functions are non–increasing in the WLP at the 

sample mean, as required by the already mentioned monotonicity condition. The 

variable HUB is negative and statistically significant only in the DC frontier, i.e., when 

the undesirable output is not considered. In all the other frontiers, where the amount of 

pollution is taken into account, it is instead not statistically significant; this implies that 

the hub different technology has no impact on the technical/environmental frontier: hub 

airports have not lower emissions per inputs than the other airports.  

 

 

 

 

 

 

                                                 
11The literature on air transportation (Graham, 2008) highlights that airports with hub–and–spoke system 
employ different technologies (e.g., different BHS) than non–hub ones. Hence, the variable HUB exerts 
an influence on the production function and not on managerial efficiency. 
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Table 3 - Estimation results 

 Model DC Model DO Model DH 

Variables Est. Coeff. Std. Error Est. Coeff. Std. Error Est. Coeff. Std. Error 

Const 0.80 *** 0.10 0.16 *** 0.03 0.12 *** 0.03 
WLU 0.59 *** 0.17 0.57 *** 0.06 0.31 *** 0.04 
WLP - - -0.80 *** 0.03 -0.46 *** 0.01 

TERM 0.16 * 0.09 -0.10 *** 0.03 -0.06 *** 0.02 
CHECK -0.13 0.09 -0.11 *** 0.04 -0.06 ** 0.02 

FTE -0.50 *** 0.08 -0.03 0.03 -0.01 0.02 
CAP -0.41 ** 0.17 0.07 0.05 0.08 ** 0.04 

PARK -0.03 0.09 -0.02 0.05 -0.01 0.03 
WLU x WLU 0.41 ** 0.19 0.04 0.10 0.00 0.07 
WLU x WLP -  -0.02 0.04 -0.05 *** 0.02 

WLU x TERM -0.11 0.13 -0.10 0.07 -0.03 0.05 
WLU x CHECK 0.02 0.20 0.11 0.09 0.09 0.07 

WLU x FTE 0.11 0.09 0.00 0.04 0.05 0.04 
WLU x CAP 0.29 0.30 -0.01 0.12 -0.04 0.07 

WLU x PARK -0.64 *** 0.19 -0.20 ** 0.09 -0.12 ** 0.06 
WLP x WLP - - -0.18 *** 0.05 -0.04 *** 0.01 

WLP x TERM - - 0.10 * 0.06 0.03 0.02 
WLP x CHECK - - 0.03 0.07 0.03 0.03 

WLP x FTE - - 0.00 0.03 0.01 0.01 
WLP x CAP - - -0.03 0.07 -0.03 0.02 

WLP x PARK - - -0.09 0.08 0.00 0.02 
TERM x TERM 0.39 ** 0.20 -0.18 ** 0.09 -0.12 *** 0.05 

TERM x CHECK 0.06 0.22 0.09 0.10 0.04 0.06 
TERM x FTE 0.04 0.09 0.18 *** 0.06 0.11 *** 0.04 
TERM x CAP -0.37 * 0.20 -0.19 * 0.10 -0.09 0.06 

TERM x PARK 0.26 0.17 -0.04 0.09 -0.04 0.05 
CHECK x CHECK -0.40 0.57 -0.21 0.24 -0.06 0.14 

CHECK x FTE 0.24 ** 0.11 0.07 0.08 0.00 0.05 
CHECK x CAP 0.13 0.37 -0.13 0.16 -0.09 0.10 

CHECK x PARK -0.31 0.23 0.16 0.14 0.09 0.08 
FTE x FTE -0.13 0.08 -0.15 *** 0.04 -0.10 *** 0.03 
FTE x CAP -0.01 0.19 0.11 * 0.06 0.09 ** 0.04 

FTE x PARK -0.19 0.17 -0.09 0.08 -0.05 0.05 
CAP x CAP -0.48 0.50 0.11 0.17 0.10 0.11 

CAP x PARK 0.67 ** 0.29 0.15 0.13 0.05 0.08 
PARK x PARK -0.14 0.22 0.11 0.13 0.04 0.08 

HUB -2.33 *** 0.55 0.11 0.15 0.11 0.09 
TIME -0.03 *** 0.01 0.10 ** 0.05 0.07 ** 0.03 PR 1.12 *** 0.37 0.01 *** 0.01 0.01 ** 0.00 s 0.99 *** 0.00 0.79 *** 0.09 0.90 *** 0.06 
log lik. 45.13  159.48  231.22  

Note that *,**,*** denote significance at 10%, 5% and 1% respectively.   

 

Concerning the inputs, first-order coefficients show the magnitude of the 

respective partial input elasticities at the sample mean.12 When they are statistically 

                                                 
12The complete specification of the desirable output (i.e., aircraft movements) elasticity with respect to 

the inputs as follows: M�t,9 	 u�. vw t^

u vw cx^ 	  59 7 ∑ 59<�<:/ ln �<4 7 B9> ln �>4?  (this is for the Classical 

distance function case). However, we have verified that these specifications, on average, coincide with 
the first-order coefficients, for the small magnitude of the logarithmic expressions. 
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significant they have the expected negative sign, with the exception of the variable CAP 

in the hyperbolic distance function (the variable TERM has a positive sign but only at 

10% statistically significance in the classical distance function). Hence, any increase in 

the amount of inputs, ceteris paribus, would imply a greater distance to the frontier. 

This result indicates that the estimated translog functions for all model’s specifications 

satisfy the monotonicity property of being non–increasing in inputs (at the geometric 

mean of the data). Moreover, in case of non-significance of the first-order coefficient, in 

all the model either second-order coefficients or interaction terms result significant. 

This implies that all inputs have impact in the estimated production functions.  

The likelihood function is expressed in terms of the variance parameters 

PR 	 PQR 7 PTR  and s 	 PTR �PTR 7 PQR
⁄ . Table 3 also shows that these parameters are 

always statistically significant at the 1% level, with the estimated s equal respectively 

to 0.99, 0.79 and 0.90. Hence, a relevant part of the distance between the observed 

output levels and the maximum feasible ones is due to technical inefficiency in all the 

three model’s specifications. 

Table 4 compares the average estimated efficiency scores of the four models 

described by Eqs. (4)–(6). Notice that, when local air pollution is included in the airport 

production function, (1) the average efficiency increases (as shown by Yu, 2004, Yu et 

al., 2008, Pathomsiri et al., 2008, and Lozano and Gutiérrez, 2010) and (2) the 

efficiency gaps among the airports become smaller.  

Table 4 - Average technical efficiency scores by model 

Airport DC DO DH Airport DC DO DH 

Alghero 0.490 0.957 0.977 Olbia 0.953 0.972 0.984 

Ancona 0.390 0.844 0.855 Palermo 0.355 0.942 0.950 

Bari 0.182 0.969 0.979 Pantelleria 0.385 0.883 0.921 

Bergamo 0.271 0.913 0.948 Parma 0.934 0.826 0.861 

Boulogne 0.355 0.787 0.850 Pescara 0.78 0.946 0.898 

Brescia 0.512 0.981 0.990 Pisa 0.267 0.828 0.891 

Brindisi 0.351 0.977 0.980 Reggio Calabria 0.752 0.987 0.988 

Cagliari 0.235 0.933 0.969 Rimini 0.942 0.933 0.836 

Catania 0.176 0.925 0.972 Rome Ciampino 0.233 0.829 0.919 

Florence 0.376 0.797 0.872 Rome Fiumicino 0.898 0.963 0.968 

Forlì 0.345 0.844 0.933 Trapani 0.309 0.934 0.947 

Genoa 0.587 0.851 0.866 Treviso 0.240 0.954 0.975 

Lamezia Terme 0.779 0.794 0.769 Trieste 0.554 0.938 0.935 

Lampedusa 0.922 0.955 0.975 Turin 0.284 0.957 0.976 

Milan Linate 0.272 0.977 0.983 Venice 0.196 0.895 0.938 

Milan Malpensa 0.612 0.947 0.979 Verona 0.707 0.808 0.862 

Naples 0.415 0.885 0.893 Mean 0.487 0.912 0.928 
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To investigate the changes in the efficiency scores when bad outputs are taken 

into account, we study the differences in the estimated scores obtained by regressing the 

three different models. More in details, we study the differences between the classical 

stochastic frontier (DC) and the other two frontiers considering bad output production 

(i.e., DO with bad treated as fixed and DH allowing bad output reduction). These 

comparisons are represented in Figures 2 and 3, where horizontal axes represent the 

score obtained by DC, while vertical axes represent the differences between the scores 

of the horizontal axes and those obtained by respectively DO and DH.  

 

Figure 2 - Delta scores analysis: Classical vs Output distance function 
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Figure 3 - Delta scores analysis: Classical vs Hyperbolic 

 

 

Figures 2 and 3 show clearly that we observe greater gains in the efficiency 

scores for airports that are inefficient according to the classical definition of technical 

efficiency. This “inefficiency effect” is due to the fact that, in our framework, an airport 

is efficient if, given its current input utilization, carries out as many aircrafts and WLU 

movements as possible and, at the same time, produces the minimum feasible amount of 

pollution. Hence, airport inefficiency can come from two main sources: low good 

outputs volumes (much less traffic than the nominal capacity) or high production of 

undesirable outputs. Many airports are inefficient if only desirable outputs are 

considered because, since the level of several inputs is fixed across airports, they have 

low good outputs volumes per installed inputs. When instead emissions are introduced, 

these airports benefit from very low emission rates per input. For instance, the same 

underutilized runway capacity gives rise to low efficiency in terms of desirable outputs, 

but high efficiency in terms of emissions.  
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Differently from previous parametric contributions we include in the efficiency 

estimation both desirable outputs (i.e., passengers, freights and aircraft movements) and 

an undesirable output (i.e., local air pollution produced by aircrafts during the LTO 

cycle). Hence, this paper estimates a desirable outputs/emission production frontier. In 

order to include local air pollution, we computed an index describing the social costs of 

the total amounts of local pollutants produced for each Italian airport included in our 

data set.  

We show that, if the undesirable outputs are ignored, airport efficiency scores 

can be misleading. Our results indicate that airports tend to be more efficient, on 

average, when negative externalities of production are included in the analysis. More in 

details, those airports that are highly technically inefficient when only “good” outputs 

are included (because they have a low utilization rate of their aeronautical inputs), show 

a strong improvement in their efficiency when also undesirable outputs are considered. 

However, this is not due to managerial effort, but to the fact that same weights are given 

to “bad” and “good” outputs into the distance function. Consequently, inefficient 

airports improve their scores mainly because they get closer to the 

technical/environmental frontier thanks to their low volumes of aircraft and passengers 

movements. When instead airports with similar number of movements are considered, 

we can assume that a fleet effect may be identified as a driver for the gains magnitude in 

the efficiency scores, given that more environmentally friendly fleets produce lower 

amount of pollutants per movement.   

Our results yield the following policy implications. A tight regulation to 

improve airports’ technical efficiency would not be necessary if negative environmental 

externalities are included in the benchmarking analysis. When pollutants are considered, 

we provide evidence that almost all airports are very close to the estimated frontier. 

However, we have also found that the vast majority of airports are technically 

inefficient (and rather far from the frontier) when only desirable outputs are considered. 

These insights create a friction that has to be taken into account in designing an airports’ 

regulatory scheme fostering efficiency. An optimal balance of weights between good 

and bad outputs could overcome such a friction by enabling both the inclusion of 

undesirable output and the implementation of an effective regulatory mechanism. In this 

scenario, airports should have the incentives to induce airlines to renovate their fleet 
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either through engine updating or by replacing old aircrafts with new environmental 

friendly ones. This practice may be implemented by imposing emission charges, maybe 

linked to fuel consumption. 

A possible extension of this work may be the inclusion in the efficiency analysis 

of noise to obtain a more complete desirable/undesirable outputs frontier. This implies 

to treat a non–linear variable such as noise and to estimate the social cost of noise 

annoyance.  

  



24 

 

References 

• Aigner, D.J., Lovell, C.A.K., Schmidt, P., 1977. Formulation and estimation of 

stochastic frontier production functions models. International Economic Review 17, 

377–396. 

• Battese, G.E., Coelli, T.J., 1992. Frontier Production Functions, Technical Efficiency 

and Panel Data: with Application to Paddy Farmers in India. The Journal of 

Productivity Analysis, 3, 153–169.  

• Charnes, A., Cooper, W.W., Golany, B., Seiford, L., Stutz, S., 1985. Foundations of 

data envelopment analysis for Pareto-Koopmans efficient empirical production 

function. Journal of Econometrics 30, 91e107. 

• Chow, C.K.W., Fung, M.K.Y., 2009. Efficiencies and Scope Economies of Chinese 

Airports in Moving Passengers and Cargo. Journal of Air Transport Management, 15, 

324-–329.  

• Coelli, T.J., Perelman, S., 1999, ‘A Comparison of Parametric and Non-Parametric 

Distance Functions: with Application to European Railways.’ European Journal of 

Operational Research, 117, 326–339.  

• Coelli, T.J., Perelman, S., 2000. Technical Efficiency of European Railways: A 

Distance Function Approach. Applied Economics, 32, 1967–1976.  

• Cuesta, R.A., Zofío, J.L., 2005. Hyperbolic efficiency and parametric distance 

functions: with application to Spanish savings banks. Journal of Productivity Analysis, 

24, 31-–48.  

• Cuesta, R.A., Lovell, C.A.K., Zofío, J.L., 2009. Environmental efficiency measurement 

with translog distance functions: A parametric approach. Ecological Economics, 68, 

2232-–2242.  

• Dailey, B., 2010. Air Transport and the Environment, Farnham, Surrey, England: 

Ashgate Pub. Co.  

• Dings, J.M.W., Wit, R.C.N., Leurs, B.A., Davidson, M.D., Fransen, W., 2003. External 

Costs of Aviation, (Berlin, Federal Environmental Agency, Umweltbundesamt).  

• Fa�re, R., Grosskopf, S., Lovell, C.A.K., Pasurka, C., 1989. Multilateral productivity 

comparisons when some outputs are undesirable: a nonparametric approach. Review of 

Economics and Statistics 75, 90–98. 



25 

 

• Färe, R., Primont, D., 1995. Multi–Output Production and Duality: Theory and 

Applications, (Dordrecht, Kluwer Academic Publishers).  

• Givoni, M., Rietveld, P., 2009. Airlines’ choice of aircraft size–explanations and 

implications. Transportation Research A 43, 500–510. 

• Givoni, M., Rietveld, P., 2010. The environmental implications of airlines’ choice of 

aircraft size. Journal of Air Transport Management, 16, 159-–167. 

• Grampella, M., Martini, G., Scotti, D., Tassan, F., Zambon, G., 2012. A Simplified 

Method for Airport Environmental Impacts Assessment. University of Bergamo, 

mimeo. 

• Graham, A., 2008. Managing airports: an international perspective, (Oxford, 

Burlington, MA).  

• Kumbhakar, S.C., Lovell, C.A.K., 2000. Stochastic Frontier Analysis, (Cambridge, 

U.K., Cambridge University Press).  

• Lozano, S., Gutiérrez, E., 2009. Efficiency Analysis and Target Setting of Spanish 

Airports. Networks and Spatial Economics, doi: 10.1007/s11067–008–9096–1.  

• Lozano, S., Gutiérrez, E., 2010. Slacks–based measure of efficiency of airports with 

airplanes delays as undesirable outputs. Computers and Operations Research, 

doi:10.1016/j.cor.2010.04.007.  

• Lovell, C.A.K., Richardson, S., Travers, P., Wood, L., 1994. Resources and 

functionings: a new view of inequality in Australia. In: Eichhorn, W. (Ed.), Models and 

Measurement of Welfare and Inequality. Springer-Verlag, Berlin. 

• Lu, C., Morrell, P., 2006. Determination and Applications of Environmental Costs at 

Different Sized Airports- Aircraft Noise and Engine Emissions. Transportation, 33, 45-

61. 

• Pathomsiri, S., Haghani, A.,Dresner, M., Windle, R.J., 2008. Impact of undesirable 

outputs on the productivity of US airports. Transportation Research Part E, 44, 235-–

259.  

• Ribeiro, S., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D.S., Muromachi, 

Y., Newton, P.J., Plotkin, S., Sperling, D., Wit, R., Zhou, P.J., 2007. Transport and its 

infrastructure. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (Eds.), 

Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth 



26 

 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 

• Scotti, D., Malighetti, P., Martini, G., Volta, N., 2012. The impact of airport 

competition on technical efficiency: A Stochastic Frontier Analysis applied to Italian 

airports. Journal of Air Transport Management, 22, 9-15.  

• Shephard, R.W., 1970. Theory of Cost and Production Functions. Princeton University 

Press, Princeton, NJ. 

• Tovar, B., Martin Cejas, R.R., 2009. Technical Efficiency and Productivity Changes in 

Spanish Airports: A Parametric Distance Functions Approach. Transportation Research 

Part E: Logistics and Transportation Review, 46, 249–260.  

• Yu, M.M., 2004. Measuring physical efficiency of domestic airports in Taiwan with 

undesirable outputs and environmental factors. Journal of Air Transport 

Management,10, 295-–303.  

• Yu, M.M., Hsu, S.H., Chang, C.C., Lee, D.H., 2008. Productivity growth of Taiwan’s 

major domestic airports in the presence of aircraft noise. Transportation Research Part 

E, 44(3), 543-–554.  

 



27 

DEED: a Directional Economic Environmental 

Distance function of efficiency 

 

Abstract 

In this paper we introduce a new data envelopment analysis (DEA) methodology 

in order to compute the efficiency measurement when considering the production of bad 

externalities. Starting from the approach of Fare and Grosskopf (2010), we design an 

additive model that allows for the constrained increase of inputs and for different 

disposability in the technology to analyze. The general model we propose is suitable 

and applicable in all these industries in which an economic environmental measure of 

efficiency is necessary. 
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1 Introduction 

Modelling the production of bad outputs in a data envelopment analysis (DEA) 

framework has received growing interest in the recent literature. The concepts of 

efficiency and performance are being flanked to the new one of ecological efficiency. 

Usually decision making units (DMU) are evaluated only respect the input utilization 

and output production considered as “good”. However, as stated by Seiford and Zhu 

(2002), both desirable and undesirable output may be present in the production process. 

Following this idea, in the existing literature different industries were analyzed 

considering the undesirable output production: pulp and paper industry (Hailu and 

Veeman, 2001), solid waste collection and sorting programs (Courcelle et al., 1998), 

power plants (Fare et al., 1996; Korhonen, 2007; Zhou et al., 2008; Yang and Politt, 

2010), industrial systems (Zhang et al., 2008), transportation sector (Lozano and 

Gutierrez, 2011; Yu, 2004), etc.  

The common procedure in order to measure environmental performance is to 

incorporate undesirable outputs through data transformation in the traditional DEA 

framework to calculate the efficiencies. Koopmans (1951), Ali and Seiford (1990), 

Scheel (2001) and Seiford and Zhu (2002) present well known procedures to include 

bad outputs production in existing DEA models. Moreover, there has been an expansion 

of methodological approaches to empirical research on performance measurement 

models accounting for bad output production. Dyckhoff and Allen (2001), Sarkis and 

Talluri (2004), Zhou et al. (2008) and Gomes and Lins (2008) present an overview on 

the state of the art DEA models in presence of undesirable outputs. These studies have 

been predominantly based on the concept of radial efficiency measures. 

Despite this, Fare and Lovell (1978) pointed out the short-comings of radial 

measurement. Radial measures of efficiency overestimate technical efficiency when 

there are nonzero slacks in the constraints. In order to consider slacks, the authors 

suggested the concept of non-radial measures introducing an input-oriented Russell 

measure that minimizes input slacks. Charnes et al. (1978) presented an additive model 

that maximizes the sum of both input and output slacks. The principal drawback in this 

approach is that input and output slacks are added without considering the different unit 

of measures. To solve this problem, Tone (2001) proposed a slack based model (SBM) 

that maximizes input and output slacks making them comparable. Cooper et al. (1999) 
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and Cooper et al. (2011) present respectively a range adjusted measure (RAM) and a 

bounded adjusted measure (BAM) that, as SBM, maximize input and output slacks 

following an additive measure approach. Fukuyama and Weber (2009) introduced the 

directional distance function technology into SBM approach to develop a generalised 

measure of technical efficiency. On the other hand, Fare and Grosskopf (2010) 

proposed a generalization of the SBM measure based on the directional distance 

function. The authors compute the efficiency based on the sum of directional distances 

describing the excess in input utilization and the losses in output production.  

Following Fare and Grosskopf (2010), we present an additive model that 

benchmarks the decision making units (DMUs) on a unique eco-environmental frontier 

considering the production of both good and bad outputs productions. Our model 

describes the distance of each DMU to the efficient frontier evaluating it as potential 

monetary saving achievable by reaching such frontier. As suggested by Dyckhoff and 

Allen (2001) the normal assumption of considering all inputs as “bads” to be reduced is 

no longer valid in an ecological context. In an eco-environmental perspective 

ecologically good inputs (e.g., waste in a waste-burning power plant or in a recycling 

plan) have to be considered. Jahanshahloo et al. (2005) and Liu et al. (2010) apply this 

concept of desirable and undesirable input in their works. In our study we extend the 

idea of desirable input allowing the decrease or the increase in desirable input 

utilization. Following Sueyoshi and Goto (2011), we propose an unified efficiency 

measurement considering both the production of good and bad outputs and allowing the 

constrained increase in desirable input utilization. Differently from the usual DEA 

approach, a DMU could reach the frontier decreasing input utilization or, alternately, 

increasing it. Finally, our model permits to easily consider weak (Fare et al., 1989) or 

strong (free) disposability assumptions on outputs production.  

The remainder of the paper is organised as follows. Section 2 deals with the 

mathematical definition of our model, Section 3 presents empirical comparisons with 

different models presented in literature. Finally, Section 4 concludes our study. 

 

2 Methodology 

In this section we present the new methodology we developed. We start defining 

our directional economic environmental distance (DEED) function (paragraph 2.1) 
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following with a discussion on the objective function adopted (paragraph 2.2) and on 

the constraints presented in our model (paragraph 2.3).  

 

2.1. Directional Eco Efficiency Distance (DEED) function 

In order to develop our new methodology, we start assuming that there are 

} 	 �1,2, … , �
  DMUs using �� 	 ��/�, �R� ,…,  �>�
  inputs to produce �� 	
��/�, �R� , … , �<�
  outputs. Let now assume that the input used by the production 

technology can be divided in a set of desirable input and a set of undesirable input. In 

the same way, the production of output can be divided in a set of desirable outputs and a 

set of negative externalities treated as bad outputs. Thus, the input vector �� can be split 

in �� 	 ��/�, �R� , … , ���
  desirable input and in �� 	 ��/� , �R� , … , �T�
  undesirable 

input (� 	 � 7 �). Simultaneously, the outputs vector ��  can be split into two sub-

vectors: �� 	 ��/�, �R� , … , �G�
  for good and �� 	 ��/�, �R�, … , �2�
  describing bad 

outputs, with 3 	 � 7 � . Rather than assuming that inputs and outputs are strictly 

positive we assume that: 

 

1
 �e� � 0, ��� � 0, �F� � 0, �f� � 0 '�D� � 	 1, … , �; � 	 1, … , �;  � 	 1, … , �; � 	
1, … , � 2
 ∑ �e�@�:/ � 0, ∑ �e��4:/ � 0 3
 ∑ ���@�:/ � 0, ∑ ���T4:/ � 0  4
 ∑ �F�@�:/ � 0, ∑ �F�GF:/ � 0 

5
 ∑ �f�@�:/ � 0, ∑ �f�2f:/ � 0 

 

which allow some input or output to be zero (assumption 1) relaxing strict 

positivity. Moreover, assumptions 2-5 require that at least one type of each input and 

output is produced by at least one DMU. 

Our model relaxes the typical assumption of null-jointness first introduced by 

Shepard and Färe (1974). Null-jointness describes the idea that good and bad outputs 

are jointly produced. More in detail, it means that if there is not a production of bad 

outputs, there is not even a production of good outputs. Otherwise, if some good outputs 

are produced, a quantity of undesirable outputs is produced. Our idea is that there exist 

application areas in which the technology design creates trade-offs within the bad 

outputs that can wipe out the production of some of them without impacting the input 
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utilization or the good output production (e.g. shift in technology like moving from 

diesel to electric engines, or, in aviation, moving from turbo fan to turbo propeller 

engines) 

Starting from the weighted additive model (Pastor, 1994) and following Färe 

and Grosskopf (2010), we design a directional eco efficiency distance (DEED) function 

as a linear program presented in Equations (1.1)-(1.7). Consider, again, } 	 1, … , � 

DMUs using a column vector of d desirable inputs (�� ) and a column vector of u 

undesirable input (��) in order to yield a column vector of s desirable (good) outputs 

(��) and a column vector of h undesirable (bad) outputs (��).  

 

max�,�,�,�,� � 	 8 me�5e
�
e:/ 7 8 m�T=� 7 8 mF�sF 7 8 mf�Bf

2
f:/

G
F:/

T
�:/           �1.1
 

�. D.  8 �e�
@

�:/
�� 	 �e6 O 5e�e  �� 	 1, … , �
,          �1.2
 

  8 ���
@

�:/
�� 	 ��6 O =���  �� 	 1, … , �
,          �1.3
 

8 �F�
@

�:/
�� 	 �F6 7 sF�F  �� 	 1, … , �
,         �1.4
 

                         8 �f�
@

�:/
�� 	 �f6 O Bf�f �� 	 1, … , �
,          �1.5
                  

8 ��
@

�:/
	 1         �1.6
 

O 8 me�
T

/
5e $  8 mf�Bf

2
/          �1.7
 

 

�� � 0 , 5e ���� �� ����, =� � 0  , sF � 0 , Bf � 0 ,  
 

where the variables � represent the targets identifying the linear combinations of 

efficient DMUs.  

Consequently, model (1) is a non-oriented, directional distance function with a 

weighted additive measure of efficiency. Model (1) designs a single efficient frontier in 

which DMUs are benchmarked simultaneously with respect to all the variables.  
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2.2 Objective function (Equation 1.1) 

In Model (1) the economic-environmental objective function maximizes the 

sums of the inputs slacks 5eand =�, the desirable outputs slacks sF and the undesirable 

outputs slacks δf, multiplied by their respective prices, i.e., Pd, Pu, Pg
 and P

b. Note that 

in in this case, the price vector translates the objective function in a weighted additive 

model in which the prices are such weights. Moreover, the price vector permits to 

compare variables and DMUs identifying a score in monetary units. 

The estimated efficiency score � is equal to 0 when the DMU is efficient, while 

the greater the values of �, the more inefficient the DMU. A higher value of � implies 

larger monetary waste, the score obtained describes the maximum saving achievable for 

an inefficient DMU moving to the efficient frontier. It is important to consider that by 

modifying the objective function (equation 1.1.), it is possible to change the perspective 

of the analysis. As an example, it is possible to only maximize the reduction in bad 

output (i.e., max�,� � 	 ∑ mf�Bf2f:/  ) in order to only focus on the environmental 

problems.  

Furthermore, it is possible to adapt the objective function (equation 1.1) in order 

to obtain efficiency values lying between zero and one. Range adjusted measure 

(RAM), proposed by Cooper et al. (1999), and bounded adjusted measure (BAM), 

proposed by Cooper et al. (2011), are the two most famous alternatives in order to 

obtain efficiency scores between zero and one in an additive approach. Even if BAM 

has a greater discriminatory power (Cooper et al., 2011), given the nature of this 

measure, it is not implementable in its original form in our DEED model. Deeply, the 

lower-side range for desirable input (Ue6� 	 �e6 O �e) could be lower than the desirable 

input slack (5e) yielding a mistake in efficiency scores computation (i.e. if 5e describe 

an increase in the input utilization it could be greater than the difference between the 

value and the lower bound of that input, 5e �  �e6 O �e ). 1  In equation (1.1b) we 

present the DEED objective function adapted to the RAM approach. 

 

                                                 
1 A possibility to deal with this problem is to consider the maximum difference between the observation 

and the upper and lower input value (i.e., L = max (�e6 O �e; �e6 O �e���) ).  
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����,5,=,s,B � 	 1 O /
���T�G�2
 �∑ ��

 ��.��¡
�e:/ 7 ∑ �¢

 T¢.T¢¡
T�:/ 7 ∑ �£

 �£.�£¡
GF:/ 7 ∑ B¤

 �¤.�¤¡
2f:/ ¥,      (1.1b) 

 

where the upper case and the lower case stand respectively for the maximum and the 

minimum value of the variables. Adopting (1.1b) formulation the prices are not considered, so 

each slack has the same weight given by (
/

���T�G�2
). As an alternative to function (1.1b), it is 

possible to weight each variable slack using prices as shown by equation (1.1c). Note that in this 

case results will not have a monetary interpretation.  

 

����,5,=,s,B � 	 1 O /
�¦§�¦¨�¦©�¦ª 
 �∑ me� ��

 ��.��¡
�e:/ 7 ∑ m�T �¢

 T¢.T¢¡
T�:/ 7 ∑ mF� �£

 �£.�£¡
GF:/ 7

∑ mf�
B¤

 �¤.�¤¡
2f:/ «            (1.1c) 

 

2.3 Constraints (1.2) – (1.7)  

Equations 1.2, 1.3, 1.4 and 1.5 represent the constraints on desirable inputs 

undesirable output and, desirable and undesirable outputs respectively. As in Färe and 

Grosskopf (2010), if the column vector e is composed of ones it is assumed a freely 

disposable production of good and bad outputs. Thus, the production of undesirable 

output is a free activity, as commonly assumed in traditional production theory. 

However, as stated in Fare et al. (1989), some existing technologies may not dispose of 

free or costless disposability of bad outputs. Changing the values in vector e it is 

possible to connect the variables analyzed introducing weak disposability in our model. 

Weak disposability means that reduction in bad outputs is always possible if good 

outputs are reduced in proportion. As an example, consider a production using one input 

producing two desirable and two undesirable output. Introducing a vector e = [1, -1, -1, 

1, 1] we are able to consider proportional weak disposability in our model. If this is the 

case, the objective function has to be changed as follow: 

 

max�,�,�,�,� � 	 8 me�5e
�
e:/ 7  8 m�T=� O 8 mF�sF 7 8 mf�Bf

2
f:/

G
F:/

T
�:/           �1.1�
 

 

Where good output slacks are negative in sign highlighting the reduction in 

production. 
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In this case good output are scaled if a decrease in bad output is achievable. If 

instead we want to introduce a non proportional weak disposability, it is possible to 

keep constant the production of good output and to reduce the undesirable ones using a 

vector such as e = [1, 0, 0, 1, 1]. Viceversa, it is possible to keep constant the bad output 

and to maximize the increase in good output using a vector e = [1, 1, 1, 0, 0]. If these 

are the cases, no changes in objective function are necessary. As stated in Yang and 

Politt (2010), in the same technology process both weak and strong disposability could 

be present on different variables. Following this, in our model it is possible to assume 

weak or strong disposability for each of the selected variable simply modifying as 

explained the vector e. Tadeo et al. (2005) and Färe et al. (2007) describe the 

differences in introducing weak or strong disposability assumptions within a directional 

distance function framework. For a deeper discussion on the implications of 

disposability choice, refer to Färe et al. (1985), Taskin and Zaim (2001), Cooper et al. 

(2006), Zhu and Cook (2007) and Sahoo et al (2011). 

Equation 1.2 and 1.3 treat inputs with the same mathematical formulation. 

Differences between desirable and undesirable input are highlighted with the slacks 

boundaries. In DEED model the desirable input slacks 5e are free in sign, allowing for 

reductions in input utilization (with 5e > 0), increases (5e< 0) or no changes in the 

input levels (5e 	 0). Consequently, we identify potential increases in desirable inputs 

that may simultaneously reduce the utilization of undesirable input and the production 

of negative externalities, increasing the production of good outputs. Desirable inputs 

can be interpreted as those ecological/not environmental impacting variables (e.g. waste 

in a waste burning power plant, total workers, amount of money, etc…). Undesirable 

input slacks (=�
 describe a situation in which only the reduction (=� � 0) or no change 

�=� 	 0
 in utilization are allowed. Undesirable inputs can be interpreted as all that 

variables necessary to the production but directly affecting environment (e.g., water, 

fuel, electricity, chemicals, etc…) 

Constraint (1.5) incorporates the undesirable outputs as inputs to be reduced. 

Alternative approaches would be to define them as negative outputs (and then using 

equation 1.5b) or to translate the inverse of the externalities as an undesirable output 

(Scheel (2001)). However, latter approach is not applicable in the DEED model because 
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requires a non-linear transformation which renders the undesirable output slacks (Bf) as 

no longer comparable to the other slacks in the model. 

 

                         8 �f�
@

�:/
�� 	 �f6 7 Bf�f �� 	 1, … , �
,         �1.5�
                  

 

Constraint (1.6) is the typical variable return to scale (VRS) constraint. It should 

be noted that the model allows for constant return to scale (CRS) technology by simply 

deleting this constraint.2 

Finally, increases in desirable input utilization are limited by constraint (1.7) 

which implies that a higher expenditure in desirable inputs has to be at most equal to the 

reduction in the social costs of bad outputs. Constraint (1.7) may be changed following 

the preferences and the objective of the research. As an example, if there is no limitation 

in input increase, it could be simply deleted. Another possibility is to limit the 

utilization of the raw desirable input to the production of the raw bad output. If this 

case, it is enough to not consider the prices in the constraint (1.7). Clearly, the raw data 

has to be comparable in the unit of measure. Furthermore, it is possible to limit the 

increase in the utilization of some desirable inputs to, as maximum, the decrease in the 

utilization in the other desirable inputs. In this way we are in a zero-sum situation that 

implies that any desirable input increase has to be compensated by a reduction in the 

levels of other desirable inputs. The constraint describing this situation becomes as 

follows: 

O 8 me�
T

/
5e $  0        �1.7�
 

 

Further possibilities may be to link the increase in desirable input utilization to 

the reduction of undesirable input consumption or to connect the input utilization to the 

production of good outputs or, finally, to limit the increase in input to a certain value 

(e.g. an amount of money for new investments, a government incentive to move 

towards different technologies, a maximum or minimum threshold, etc…) 

 

                                                 
2 Note that the RAM approach (equations 1.1b and c) only deals with VRS models (Cooper et al., 2011). 
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3 Empirical comparison 

In the paragraph 3.1 we provide analysis showing how our model performs the 

efficient frontier. Moreover we provide a comparison with the model proposed in 

Sueyoshi and Goto (2011) (paragraph 3.2). 

 

3.1 Numerical Example 

We apply our model to a sample data set composed by five DMUs as shown in 

table 1. We identify two inputs, one good output and one bad output. In “Example 1” 

we apply our model 1 considering both the inputs as undesirable (i.e. they can only be 

decreased) and using a vector of prices composed by ones. In “Example 2” we allow for 

the constrained increase of inputs (i.e., input considered as desirable)using a vector of 

prices of ones. Finally in “Example 3”, we still consider both the inputs as desirable 

increasing the input 2 price from 1 to 4. 

 

Table 1 – data sample 

DMU Input 1 Input 2 Good output Bad output 

A 4 13 37 7 

B 9 15 32 8 

C 6 15 32 11 

D 10 9 39 14 

E 12 8 35 13 

 

In Table 2 we show the scores obtained in Example (1)-(3), the relative 

reference sets and the slacks for each variable. Scores describe the distance from the 

efficient frontier: a DMU obtaining a score equal to 0 is defined as efficient. The greater 

the score, the greater is the level of inefficiency of the DMU. Lambdas describe the 

reference set, while the variables slacks (i.e. 5e, sF , Bf) are the reductions (slack > 0) 

or the increases (slack < 0) that the particular DMU has to perform in order to reach the 

efficient frontier.  
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Table 2 – Scores, reference sets and slacks obtained in Example (1)-(3) 

  Reference Set Slacks 

 m/T=1 mRT=1 m�
=1 m� =1 

Example 1 Scores ¬­ ¬® ¬¯ ¬° ¬± Input1 Input 2 
Good 

output 

Bad 

output 

DMU A 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DMU B 13.00 1.00 0.00 0.00 0.00 0.00 5.00 2.00 5.00 1.00 

DMU C 13.00 1.00 0.00 0.00 0.00 0.00 2.00 2.00 5.00 4.00 

DMU D 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

DMU E 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 m/T=1 mRT=1 m�
=1 m� =1 

Example 2 Scores ¬­ ¬® ¬¯ ¬° ¬± Input1 Input 2 
Good 

output 

Bad 

output 

DMU A 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DMU B 13.00 1.00 0.00 0.00 0.00 0.00 5.00 2.00 5.00 1.00 

DMU C 13.00 1.00 0.00 0.00 0.00 0.00 2.00 2.00 5.00 4.00 

DMU D 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

DMU E 11.00 1.00 0.00 0.00 0.00 0.00 8.00 -5.00 2.00 6.00 

  m/T=1 mRT=4 m�
=1 m� =1 

Example 3 Scores ¬­ ¬® ¬¯ ¬° ¬± Input1 Input 2 
Good 

output 

Bad 

output 

DMU A 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DMU B 19.71 0.86 0.00 0.00 0.14 0.00 4.14 2.57 5.29 0.00 

DMU C 21.86 0.43 0.00 0.00 0.57 0.00 -1.43 4.29 6.14 0.00 

DMU D 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

DMU E 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 

The first important consideration to address is that the efficient set when the 

increase in input utilization is allowed (i.e., Example 2 and 3) is a sub set of the efficient 

set obtained when only decreases are possible (i.e., Example 1). In general, when it is 

possible to increase input utilization, DMUs looks for the best inputs trade off in order 

to maximize the final score constrained to the decrease in bad output production 

(constraint 1.7). The score describes the distance to the optimal profit frontier or, in the 

same sense, the maximum saving achievable for each DMU. Thus, when the increase 

input utilization is allowed, DMUs are able to achieve greater saving respect to the 

usual DEA framework. Another important consideration is that the prices applied in the 

objective function are able to change the efficient set. Prices work as weights that, 

linked with the possibility to increase input utilization, makes valuable or not a change 

in reference set and makes efficient or not a particular DMU.  

Looking to the differences between Example 2 and Example 3 (where the price 

of input 2 increases from 1 to 4), it is interesting to observe that DMU C changes the 
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input mix increasing the input 1 (from a reduction of 2 to an increase of 1.43) and 

decreasing the more expensive input 2 (from a reduction of 2 to a reduction of 4.29) 

allowing a greater good output production (from an increase of 5 to an increase of 6.14). 

On the contrary, DMU E, given the increase in input 2 price, does not gain in increasing 

that input utilization (as in example 2) and becomes efficient not having greater savings 

to achieve. 

 

3.1 Sueyoshi and Goto (2011) 

In this section we compare Model (1) with the following Sueyoshi and Goto 

(S&G) category II model, presented in Sueyoshi and Goto (2011) work: 

 

max 8 �4c
>

4:/
��4c� 7 �4c.
 7 8 �F��F�

G

F:/
7 8 �f�

2

f:/
�f� 

8 �4�
@

�:/
�� O �4c� 7 �4c. 	 �49   �� 	 1, … , �
, 

8 �F�
@

�:/
�� O �F� 	 �F9   �� 	 1, … , �
, 

8 �f�
@

�:/
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@

�:/
	 1 �} 	 1, … , �
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 �4c� � 0 �� 	 1, … , �
,  �4c. � 0 �� 	 1, … , �
, 
�F� � 0 �� 	 1, … , �
 ��� �f� � 0 , �� 	 1, … , �
. 

 

where �4c, �F� and �f� are the ranges for the unified model, while �4c�, �4c., �F� 

and �f� are respectively  the slacks for increasing input, decreasing input, good output 

and bad output. For a detailed explanation of the model refer to Sueyoshi and Goto 

(2011). 

We run the models considering the data-base describing the electric power 

companies in Japan presented in Sueyoshi and Goto (2011) work (table 3). 3   

                                                 
3 We run Sueyoshi and Goto (2011) model category II. Given the non linearity of  the model, we compute 
the alternative b suggested by the authors. The mixed integer programming problem is solved using 
Wotao Yin. Gurobi Mex: A MATLAB interface for Gurobi, URL: 
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Table 3 – Electric power company data set (Sueyoshi and Goto (2011)) 

Variables 
 

Input 1 Input 2 Desirable output 1 Desirable output 2 Undesirable output 1 

Year 

Electric 

power 

company 

Total assets 

(100 Bilion 

JPY) 

Labor Cost 

(100 Bilion 

JPY) 

Total sales (100 

GWh) 

Number of 

customers (100 

Thousand) 

CO2 emissions (100 

Thousand ton) 

2006 Hokkaido 14.3 0.8 315.1 39 156.6 

 
Tohoku 37.1 1.3 809.5 76.7 408.3 

 
Tokyo 129.2 4.6 2876.2 280.7 1073 

 
Chubu 52.9 1.4 1326.9 103.9 591.2 

 
Hokuriku 14.8 0.5 282 20.8 113.8 

 
Kansai 61.9 2.1 1472.6 132.8 520 

 
Chugoku 24.8 1.2 612.6 52.1 394.7 

 
Shikoku 13.8 0.5 281.6 28.5 108.3 

 
Kyushu 37.9 1.4 844 83.5 306 

2007 Hokkaido 14.6 0.6 324.4 39.2 150.8 

 
Tohoku 36.8 1.4 840.7 76.7 357 

 
Tokyo 130.6 3.4 2974 283.2 976 

 
Chubu 52.4 1.5 1374.8 104.4 637.8 

 
Hokuriku 14.8 0.4 293 20.8 128.8 

 
Kansai 61.4 2.1 1504.2 133.4 498.1 

 
Chugoku 25.3 1.1 635.8 51.9 425.4 

 
Shikoku 13.6 0.6 292.7 28.3 103.6 

 
Kyushu 37.8 1.4 880.8 83.8 316 

2008 Hokkaido 15.6 0.5 318.4 39.4 167.8 

 
Tohoku 36.8 1.5 811 76.8 397.9 

 
Tokyo 129.9 4.8 2889.6 284.9 1265 

 
Chubu 51.1 1.9 1297.3 104.6 646.7 

 
Hokuriku 14.2 0.5 281.5 20.8 185.2 

 
Kansai 62.4 2.4 1458.7 134 549.9 

 
Chugoku 26.1 1.1 612.2 51.9 430.7 

 
Shikoku 13.5 0.7 287 28.3 114.6 

 
Kyushu 38.3 1.4 858.8 84 341 

 

In order to compare our DEED model to the one of S&G, we utilize two 

different versions namely “DEED 1” and “DEED 2”. DEED 1 is our model as presented 

in paragraph 2.1. Thus, DEED 1 limits the maximum input increases to the obtained 

decrease in bad output production. While, when considering “DEED 2”, we do not 

bound the input increase (i.e., as in S&G approach) not including constraint 1.7. 

In order to obtain monetary values as final scores, we fix prices for the variables 

presented in Table 3. The price vector for the inputs is composed by ones, since both the 

inputs in the data sets are expressed in monetary values. Price for desirable output 1 is 

24 Yen/KWh (source: Platts website) while, as price for desirable output 2 (number of 

                                                                                                                                               

http://convexoptimization.com/wikimization/index.php/gurobi_mex, 2009-2011. 
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costumer) we use the average Japanese yearly energy consumption in Yen (83,296 

Yen/costumer, source: Platts website). Finally, price for the undesirable CO2 emitted is 

1641.7 Yen/ton (source: Sendeco2 website). Price vectors adopted in this comparison 

are shown in Table 4, note that prices are all converted in order to obtain billion of Yen 

as final unit of measure. In this comparison we consider both the two inputs as desirable 

(increases or decreases are possible). Then, we consider the vectors e as ones. Thus, the 

production of desirable and undesirable output is a free activity.  

 

Table 4 – Price vector applied in the comparison 

Inputs Desirable output Undesirable output 

m/� mR� m/�
 mR�

 m/�  

1 1 2.40 8.33 1.64 

 

Table 5 presents in the first three columns the DMUs specifications. In columns 

4, 5 and 6 the scores obtained respectively with Sueyoshi and Goto (2011) category II, 

with DEED 1 and with DEED 2 model. Finally in columns 7, 8 and 9 are reported the 

relevant targets obtained in the three models for each of the DMUs analyzed. 
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Table 5 – Sueyoshi and Goto (2011) DEED 1 and DEED 2 model compared: scores and reference set. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

 
# DMU 

S&G (2011) 

model 
DEED 1 DEED 2 Reference set S&G (2011) Reference set DEED 1 Reference set DEED 2 

2006 Hokkaido 1 0.972 341.88 370.67 �²=0.944, �/R=0.056 �/R=0.057, �/³=0.943 �/R=0.061, �/³=0.939 

Tohoku 2 0.896 1248.38 1328.02 �/R=0.349, �/³=0.651 �/R=0.338, �/³=0.662 �/R=0.349, �/³=0.651 

Tokyo 3 0.917 414.59 414.59 �/R=1 �/R=1 �/R=1 

Chubu 4 0.836 1523.50 1644.75 �/R=0.559, �/³=0.441 �/R=0.542, �/³=0.458 �/R=0.559, �/³=0.441 

Hokuriku 5 0.983 186.56 187.91 �/R=0.012, �/³=0.988 �/R=0.011, �/³=0.989 �/R=0.012, �/³=0.988 

Kansai 6 0.958 342.02 375.34 �²=0.526, �/R=0.474 �/R=0.473,  �/³=0.527 �/R=0.477,  �/³=0.523 

Chugoku 7 0.848 1734.35 1861.54 �/R=0.334, �/³=0.666 �/R=0.316, �/³=0. 684 �/R=0.334, �/³=0. 666 

Shikoku 8 0.991 68.07 70.54 �/R=0.005, �/³=0.995 �/R=0.005, �/³=0.995 �/R=0.005, �/³=0.995 

Kyushu 9 0.979 187.80 199.96 �²=0.772, �/R=0.228 �/R=0.230, �/³=0.770 �/R=0.232, �/³=0.768 

2007 Hokkaido 10 0.973 265.94 290.68 �/R=0.054, �/³=0.946 �/R=0.051, �/³=0.949 �/R=0.054, �/³=0.946 

Tohoku 11 0.944 707.99 756.73 �²=0.713, �/R=0.287 �/R=0.284, �/³=0.716 �/R=0.290, �/³=0.710 

Tokyo 12 1.000 0.00 0.00 �/R=1 �/R=1 �/R=1 

Chubu 13 0.805 1824.04 1975.98 �/R=0.612, �/³=0.388 �/R=0.591, �/´=0.409 �/R=0.612, �/´=0.388 

Hokuriku 14 0.967 295.40 306.51 �/R=0.029, �/³=0.971 �/R=0.027, �/³=0.973 �/R=0.029, �/³=0.971 

Kansai 15 0.973 0.00 82.17 �²=0.039, �/R=0.452, �/³=0.509 �/´=1 �/R=0.452, �/³=0.548 

Chugoku 16 0.821 1960.47 2104.88 �/R=0.369, �/³=0.631 �/R=0.348, �/³=0.652 �/R=0.369, �/³=0.631 

Shikoku 17 1.000 0.00 0.00 �/³=1 �/³=1 �/³=1 

Kyushu 18 0.976 186.95 205.77 �²=0.761, �/R=0.239 �/R=0.241, �/³=0.759 �/R=0.243, �/³=0.757 

2008 Hokkaido 19 0.956 437.53 468.75 �/R=0.074, �/³=0.926 �/R=0.069, �/³=0.931 �/R=0.074, �/³=0.926 

Tohoku 20 0.913 1149.25 1222.89 �/R=0.337, �/³=0.663 �/R=0.327, �/³=0.673 �/R=0.337, �/³=0.663 

Tokyo 21 1.000 0.00 0.00 �R/=1 �R/=1 �R/=1 

Chubu 22 0.808 2083.98 2245.50 �/R=0.623, �/³=0.377 �/R=0.599, �/´=0.401 �/R=0.623, �/´=0.377 

Hokuriku 23 0.923 830.82 879.15 �/R=0.094, �/³=0.906 �/R=0.087, �/³=0.913 �/R=0.094, �/³=0.906 

Kansai 24 0.930 640.48 688.72 �²=0.491, �/R=0.509 �/R=0.505, �/³=0.495 �/R=0.512, �/³=0.488 

Chugoku 25 0.816 2069.50 2213.59 �/R=0.375, �/³=0.625 �/R=0.354, �/³=0.646 �/R=0.375, �/³=0.625 

Shikoku 26 0.987 113.26 120.08 �²=0.993, �/R=0.007 �/R=0.012, �/³=0.988 �/R=0.013, �/³=0.987 

Kyushu 27 0.962 467.17 499.22 �²=0.732, �/R=0.268 �/R=0.268, �/³=0.732 �/R=0.272, �/³=0.728 
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In column 4 the score is equal to 1 if the DMU is fully efficient, while it is 0 if 

the DMU is totally inefficient. In column 5 and 6 the efficiency score is equal to 0 if 

the DMU is totally efficient, while the greater the values of � the more inefficient is 

the DMU. In model DEED 1 and DEED 2 the scores have a monetary interpration, in 

particular it is the maximum saving achievable for an inefficient DMU expressed in 

billion of Yen. 

Starting analyzing the efficient units, it is possible to observe that applying the 

DEED 2 model we obtain the same efficient frontier obtained in Sueyoshi and Goto, 

while computing DEED 1 we obtain the same result except for DMU 15 that is 

evaluated efficient. Given the constrained increase in input, DMU 15 is not able to 

improve her savings moving to the efficient frontier. 

Analyzing the reference set, as shown in columns 7, 8 and 9, it is possible to 

draw an important observation. The DEED model overcomes the problem in the 

reference set present in S&G model. In particular, in S&G, given the coexistence of 

positive and negative input slacks, inefficient DMUs could be targets for other 

inefficient DMUs (e.g. DMU 8 is target for DMUs 1, 6, 9, 11, 15, 18, 24, 26 and 27). 

Practically, Sueyoshi and Goto (2011) model designs different frontiers for each 

combination of input slacks (namely d1+ d2+; d1- d2-; d1+ d2-; d1- d2+) and 

combine them selecting the minimum score obtained. Thus, it happens that if a DMU 

is efficient in some but not in all the frontiers designed, it could be target for other 

DMUs even if it is inefficient in the final score. Our model overcomes this problem 

by designing a single frontier and using as targets only efficient DMUs. 

In Table 6 we show the slacks computed for each DMU obtained with the 

three models applied. Notice that in DEED 1 and DEED 2, a negative sign means an 

increase in the utilization of the variable, while a positive sign describes a reduction in 

such variable. 
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Table 6 – Sueyoshi and Goto (2011), DEED 1 and DEED 2 model compared: slacks. 
S&G (2011) model DEED 1 DEED 2 

Px1 =1 Px2 =1 Px1 =1 Px2 =1 Pg1=2.4 Pg2=8.3 Pb=1.64 Px1 =1 Px2 =1 Pg1=2.4 Pg2=8.3 Pb=1.64 Px1 =1 Px2 =1 Pg1=2.4 Pg2=8.3 Pb=1.64 

DMU dx+
1 dx+

2
 dx-

1 dx-
2 good1 good2 bad input1 input 2 good1 good2 bad input1 input 2 good1 good2 bad 

1 6.00 0.00 0.00 0.14 116.37 3.68 0.00 -5.93 0.04 129.48 3.74 3.59 -6.41 0.03 140.49 4.79 0.00 

2 17.36 0.28 0.00 0.00 419.69 40.63 0.00 -16.03 -0.25 389.21 37.73 9.92 -17.36 -0.28 419.69 40.63 0.00 

3 1.40 0.00 0.00 1.20 97.80 2.50 97.00 -1.40 1.20 97.80 2.50 97.00 -1.40 1.20 97.80 2.50 97.00 

4 26.09 0.76 0.00 0.00 464.43 66.87 0.00 -24.07 -0.72 418.03 62.46 15.10 -26.09 -0.76 464.43 66.87 0.00 

5 0.17 0.13 0.00 0.00 42.05 10.48 0.00 -0.15 -0.13 41.53 10.43 0.17 -0.17 -0.13 42.05 10.48 0.00 

6 7.32 0.00 0.00 0.22 86.47 16.55 0.00 -6.99 0.18 87.14 15.95 4.15 -7.54 0.16 99.90 17.16 0.00 

7 27.84 0.33 0.00 0.00 574.79 61.25 0.00 -25.72 -0.28 526.11 56.63 15.84 -27.84 -0.33 574.79 61.25 0.00 

8 0.43 0.12 0.00 0.00 25.55 1.17 0.00 -0.39 -0.11 24.60 1.08 0.31 -0.43 -0.12 25.55 1.17 0.00 

9 2.51 0.00 0.00 0.24 51.05 3.03 0.00 -2.64 0.16 66.12 3.50 1.51 -2.84 0.15 70.77 3.94 0.00 

10 5.33 0.15 0.00 0.00 113.37 2.89 0.00 -4.92 -0.14 103.90 1.99 3.08 -5.33 -0.15 113.37 2.89 0.00 

11 10.48 0.00 0.00 0.07 212.60 24.80 0.00 -9.97 0.01 212.16 23.87 6.07 -10.78 -0.01 230.82 25.64 0.00 

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

13 32.84 0.81 0.00 0.00 559.75 79.98 0.00 -30.31 -0.75 501.60 74.46 18.92 -32.84 -0.81 559.75 79.98 0.00 

14 2.18 0.28 0.00 0.00 77.15 14.86 0.00 -1.99 -0.28 72.90 14.46 1.38 -2.18 -0.28 77.15 14.86 0.00 

15 5.09 0.00 0.00 0.24 0.00 10.12 0.00 0.00 0.00 0.00 0.00 0.00 -5.11 0.23 0.99 10.17 0.00 

16 31.46 0.53 0.00 0.00 645.94 70.42 0.00 -29.05 -0.48 590.68 65.17 17.98 -31.46 -0.53 645.94 70.42 0.00 

17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 3.96 0.00 0.00 0.21 45.28 5.67 0.00 -3.97 0.13 57.51 5.88 2.34 -4.29 0.12 64.71 6.56 0.00 

19 6.61 0.31 0.00 0.00 171.62 7.66 0.00 -6.09 -0.29 159.67 6.52 3.89 -6.61 -0.31 171.62 7.66 0.00 

20 16.27 0.04 0.00 0.00 386.22 37.49 0.00 -15.04 -0.02 358.04 34.81 9.17 -16.27 -0.04 386.22 37.49 0.00 

21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

22 35.34 0.44 0.00 0.00 664.60 82.38 0.00 -32.64 -0.38 602.79 76.51 20.11 -35.34 -0.44 664.60 82.38 0.00 

23 10.34 0.36 0.00 0.00 262.00 31.34 0.00 -9.54 -0.34 243.50 29.58 6.02 -10.34 -0.36 262.00 31.34 0.00 

24 10.84 0.00 0.00 0.42 193.15 24.12 0.00 -10.25 0.39 187.23 22.95 6.01 -11.05 0.37 205.69 24.70 0.00 

25 31.37 0.55 0.00 0.00 685.83 71.97 0.00 -28.96 -0.49 630.69 66.73 17.94 -31.37 -0.55 685.83 71.97 0.00 

26 1.15 0.00 0.00 0.18 14.15 2.05 0.00 -1.46 0.07 36.90 2.97 0.85 -1.58 0.06 39.51 3.21 0.00 

27 6.82 0.00 0.00 0.12 144.85 12.81 0.00 -6.60 0.05 151.28 12.50 3.99 -7.14 0.04 163.54 13.66 0.00 
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Starting from the results in table 6, it is possible to compute for each variable the 

comparison in total savings obtained with the different models. Table 7 shows the sum 

of each DMU slack multiplied by their price for all the variables. 

 

Table 7 – Sueyoshi and Goto (2011), DEED 1 and DEED 2 model compared: total 

savings 

 
input1 input2 good1 good2 bad 

 
total 

S&G -299.2 -2.1 14531.3 5703.9 159.1 20093 

DEED1 -274.1 -2.5 13653.3 5267.9 435.1 19079.7 

DEED2 -301.8 -2.8 14897.3 5762.2 159.1 20514.1 

 

From table 7 it is possible to drawn some important observations. First, 

analyzing column 2 and 3, it is important to notice that all the three models increases the 

utilization of both the inputs (the total input slack value is negative). Different mixes of 

inputs are used in the three models in order to achieve the maximum savings. In 

particular, DEED 2 uses the biggest amount of increase in inputs to achieve the greatest 

increase in good outputs production. Total savings (last column of table 7) obtained 

with DEED 2 are the greatest respect to the ones obtained in the two models, while 

DEED 1 uses a mix of inputs in order to achieve the greatest reduction in bad outputs 

(column 6) and achieving the lowest global savings. DEED1 and DEED2 differ in 

constraint 1.7, without introducing this allows the model to be free to increase good 

output production as much as possible non considering the reduction in externalities. 

Comparing DEED 2 with S&G model, it should be noted that DEED 2 performs better 

than S&G model. Indeed, S&G is not able to achieve the greatest savings for inefficient 

DMUs obtaining a sub optimal solution respect to DEED 2 model. 

 

4 Conclusions 

The article proposes a new DEA model in order to compute the efficiency in an 

eco-environmental point of view. The directional economic environmental distance 

(DEED) function includes the analysis of undesirable output and it is suitable for 

different industries applications. The DEED function is a non-radial measure of 

efficiency that accounts for the presence of desirable and undesirable input and for the 
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production of good and bad outputs. Moreover, the model designs a single frontier 

allowing a constrained increase in desirable input. The particular feature of the objective 

function specifies, as result, the maximum monetary savings achievable for inefficient 

DMUs given the prices of each variable. Another peculiarity of our model is the 

possibility to consider strong or weak disposability of output implementing different 

solution for the vector e in the constraints. We show how our DEED function over-

performes present models and solve the problem in the existing literature.  
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The Directional Economic-Environmental Distance 

function: The case of the global aviation fleet 

 

Abstract 

We develop a directional economic-environmental distance function (DEED) 

which accounts for the production of both desirable and undesirable output and the 

potential for constrained increases in input utilization. This research applies the 

modeling framework to analyze the potential to reduce noise and airborne pollutants 

emitted by aircraft-engine combinations given the current state of aeronautical 

technology. The global engine-aircraft market is viewed from the regulatory perspective 

in order to compare the single environmental and operational efficient frontier to that of 

the airline carriers and environmental objectives. The results of DEED are then applied 

in order to substitute the fleets serving Schipol, Amsterdam and Arlanda, Stockholm 

airports in June 2010 with the benchmark aircraft. The results highlight the 

inefficiencies of the current airline fleets and that the IPCC values of externalities are a 

magnitude of TEN too low to encourage changes in the global fleet hence the need for 

government intervention. 
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1 Introduction 

The impact of aviation on the environment is of growing concern, mainly due to 

the projected increase in demand for air transport. The 37th ICAO assembly hold in 

2010 forecast a +4.7% growth in world revenue passenger kilometers flown between 

2010 and 2030. 1  In the U.S. market alone, the Federal Aviation Administration 

Aerospace Forecasts 2011-2031 predict a growth in the number of commercial aircraft 

from 7,096 in 2010 to 10,523 by 2031 with an average increase of 163 new aircrafts 

annually (+1.9%). The Committee on Climate Change (2008) projected future CO2 

aviation emissions and reached the conclusions that under a high growth scenario the 

2050 CO2 emissions will be 7 to 8 times the 1990 levels.2 According to ICAO, in 

addition to green house gases, the air pollution enveloping airports has become a 

significant concern for local and regional governments due to the increasing residential 

development surrounding airports and the continuing growth of commercial air travel. 

Two of the most important negative externalities generated by aviation include the noise 

footprint and the aircraft engine emissions. Of these two, noise has the largest impact on 

the community surrounding airports, while engine emissions have both local and global 

impacts (Marais and Waitz, 2009).  

Aviation noise is generated from different sources: the combination of acoustic 

energy generated by non-smooth fluid mechanical processes within an engine, the 

interaction between the exhaust heat and the surrounding air and the fluctuating flow 

produced by the airframe. Aircraft noise interrupts speech, causes sleep disturbance, and 

affects property values in the neighborhood of the airport (Marais and Waitz, 2009). 

The importance of the noise problem clearly depends on the location of the specific 

airport and on whether there are alternative take-off or landing routes. Further advances 

in technology with respect to the airframe and engines are necessary in order to reduce 

the noise footprint, as well as investments in real estate infrastructure (e.g., double 

glazing). 

Local emissions are known to have a direct impact on human health leading to 

an increased risk of premature death (Daley, 2010). Local air quality is directly affected 

and varies on a daily basis with emission volumes, while health impacts may take 

                                                 
1 Source: ICAO, September 2010. 
2 Source: Aviation CO2 Emissions Abatement Potential from Technology Innovation (2008). 
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longer to emerge and tend to persist over time. The levels of the most important local air 

pollutants (carbon dioxide (CO2) and monoxide (CO), sulphur oxides (SOX), particulate 

matter (PM) and hydrocarbon (HC)) are directly linked with fuel consumption. Hence, 

the simplest solution to the production of local aircraft emissions would be to reduce 

fuel consumption. However, reducing fuel consumption is insufficient, since a trade off 

exists among emissions that depend on the engine technology and aircraft design (ICAO 

Long Term Technology Goals for CAEP/7, 2011). For example, nitrogen oxides (NOx) 

are more difficult to reduce because their source draws from the high temperatures and 

pressures necessary to increase engine efficiency. We may compare two specific 

engines, the CFM56-5B9/3 (CFM international) and the PW6122 (Pratt and Whitney), 

which are both currently employed on the Airbus A318-100. According to standard 

ICAO landing take-off certification, the former produces a higher amount of NOx 

(6,754 grams versus 6,456 grams) whilst burning a lower amount of fuel (718 kilograms 

versus 802), hence emitting a lower quantity of HC (904 grams versus 996). 3 

Consequently, the level of pollutants is not always proportional to fuel consumption. 

Furthermore, the different pollutants have varying impacts on human health (Dings et 

al., 2003). In addition to local air pollution, aircraft emit chemical species and produce 

physical effects, such as contrails, during the cruise stage which are likely to affect 

climate change, however the scientific literature has yet to explain the likely impact and 

so these are considered beyond the scope of this contribution.  

Despite the importance of aircraft externalities, very few attempts have been 

implemented to quantify or limit their production. Capoccitti et al. (2010), Green (2009) 

and Lawrence (2009) describe possible technical improvements such as changes in 

propulsion and in-wings span. Moreover, they also describe possible improvements in 

air traffic management that may reduce emissions. Hence, they focus on both technical 

developments and operational improvements. Sgouridis et al. (2011) provide a 

computer simulation of the possible effects of technical and operational improvements, 

use of alternative fuels, negative demand shifts and carbon pricing.4 They provide some 

                                                 

3 Emission pollution and fuel consumption are computed per landing-take off cycle (LTO) as defined in 
the ICAO emissions databank. 
4 Sgouridis et al. (2011) argue that the strongest effect on CO2 emissions are driven by negative demand 
shifts, while the other scenarios have similar weaker effects. However, none of the alternatives, if 
implemented individually, leads to an eco-sustainable growth for the air transportation industry. 
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evidence that carbon pricing may reduce CO2 emissions without hurting airlines 

profitability substantially. 

Several papers have focused on the impact of regulation and pricing on the 

reduction of externalities caused by aviation (Schipper, 2004; Lu and Morrell 2006; 

Brueckner and Girvin, 2008, and Lijesen et al., 2010). Tighter regulation could push 

aircraft manufacturers to further reduce emissions. ICAO introduced more stringent 

emissions and noise standards through CAEP/6 and Chapter 4 designation, however the 

main impact of these regulations will be on the medium and long-run technological 

designs. Hence, they do not impact the use of existing designs for aircraft currently in 

production and, moreover they will not influence the short-run airline decision 

regarding the adoption of greener aircraft already existing in the market. Doganis (2002) 

describes airline fleet purchase as a two-stage decision process. In the first-stage, the 

airline identifies a shortlist of models that are efficient for a given stage length. In the 

second-stage, the role of management becomes critical because they are responsible for 

choosing the optimal aircraft size as a function of the airport characteristics and demand 

magnitude. Hence, pricing may be a solution to limit externalities in the short-run by 

providing airlines with the necessary incentives (e.g., through airport charges) to move 

towards greener aircraft-engine combinations give current aircraft technology. 

Schipper (2004) argues that noise social costs are substantially larger than air 

pollution social costs in the aviation market. His results show that the environmental 

costs represent only 2.5% of aviation prices and, that noise costs dominate the 

externality costs, representing 75% of the total costs. Lu and Morrell (2006) present a 

welfare analysis of movements, noise and pollution social costs which they apply to a 

small sample of European airports in order to identify the socially optimal production 

levels. They reach the opposite result to Schipper (2004) by arguing that noise social 

costs are less important than emission costs. The authors argue that the marginal 

environmental cost increases as aircraft movements increase, thus additional flights at 

hub airport causes more damage than a similar increase at a regional airport. 

Furthermore, they present evidence that the socially optimal number of annual aircraft 

movements is approximately 450,000 based on an analysis of five European airports5. 

                                                 
5 However, Lu and Morrell (2006) only consider the social benefits drawing from direct aviation activities 
such as the employment created by airport operations. 
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Brueckner and Girvin (2008) and Lijesen et al. (2010) focus on aircraft noise emissions 

at the local level. The former study suggests that individual airport noise limits would 

also be binding on other airports and that airport pricing could impact the upstream 

airframe manufacturers’ design. Lijesen et al. (2010) analyze the impact of noise 

reduction in the area surrounding Amsterdam Schipol airport. They adopt a hedonic 

approach to estimate noise costs by comparing housing prices in the airport catchment 

area. They show that the marginal benefits from noise reduction are decreasing, as a 

function of the distance from the airport and that the marginal costs of noise reduction 

are steeply increasing. Consequently, the social optimal noise reduction is equal to 

about 3dB from the observed average level at Schipol.   

Two issues remain unexplored in the literature to date. First, estimates of an 

economic-environmental frontier taking into account the aircraft models currently 

composing the worldwide industry fleet have not yet been evaluated. Second, no 

contributions to date have analyzed all potential aircraft-engine combinations which 

impact the level of externalities produced directly. The combination is important 

because there is a specific engine effect per aircraft model (as highlighted by the Airbus 

A318-100 CFM/P&W example discussed previously). This paper aims to fill these gaps 

by applying a new data envelopment analysis (DEA) model to estimate an economic-

environmental function. The modeling approach accounts for the production of 

desirable outputs and negative externalities as well as the potential for constrained 

increases in input utilization. We apply this model to a data set consisting of the vast 

majority of aircraft-engine combinations existing in the market today. 

In the first stage, we investigate three variations of the DEA model. First, we 

estimate the Pareto aircraft-engine frontier in which both desirable and undesirable 

outputs are taken into account, labeled as the regulatory perspective. Second, we 

estimate the aircraft-engine Pareto frontier when only desirable outputs are taken into 

account which implies a focus on private costs and revenues hence, we label the airline 

perspective. The outcome in this case is the airline economic efficient frontier. Third, 

we estimate a Pareto frontier in which only the externalities are included in the output, 

thus focusing only on noise and emissions without considering profitability which is 

labeled the green perspective. Hence, by comparing these three frontiers we identify 

whether the regulatory, airline and environmental objectives are aligned. 
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In a second-stage analysis, we apply the benchmarks resulting from the three 

first-stage estimated frontiers to obtain, from each perspective, the optimal aircraft-

engine fleet that could operate at Stockholm and Amsterdam airports. Since this implies 

substituting the inefficient aircraft-engine combinations with those on the frontiers, we 

obtain estimates of the monetary incentives that may induce airlines to move towards a 

greener fleet. Accordingly, we provide some estimates on the optimal airport charges 

that may encourage a reduction in noise and emissions. To the best of our knowledge 

this contribution is the first attempt to analyze the performance of the existing aircraft-

engine fleet and to evaluate the costs that would be incurred were the carriers to operate 

an economically and environmentally efficient fleet.  

The results of the research highlight the fact that the cost of the negative 

externalities at current IPCC values is so low that they are unlikely to impact fleet 

choice. We find that at Schiphol airport, the fuel savings from the upgraded fleet more 

than cover the cost of the fleet modifications but given the level of profitability in the 

airline market, are likely to require government intervention, for example through loan 

guarantees, in order to encourage the replacement. At Arlanda airport, where flight 

stage lengths serving this market are shorter, the ownership cost requirements exceed 

the fuel savings, hence we suggest that at the very least the cost of externalities should 

be used in the form of loans to encourage fleet upgrades.  

The structure of the paper is organized as follows: Section 2 describes the new 

DEA model designed to estimate the economic-environmental efficient frontier and the 

procedure applied in the second-stage analysis to substitute the current fleet operating at 

an airport. Section 3 presents the data set while in Section 4 we present the empirical 

results. Conclusions, policy implications and future research directions are discussed in 

Section 5. 

 

2 Modeling framework 

In this section we first develop a modified directional distance function which 

identifies the aircraft-engine combination Pareto frontier. Then we define the procedure 

adopted to substitute the inefficient combinations with the Pareto optimal fleet. Since 

airline fleet choices are per-stage length (Doganis, 2002), we estimate four Pareto 

frontiers, one for each of the following aircraft types: turbo propellers (TP), regional jets 



57 

(RJ), narrow-bodies (NB) and wide-bodies (WB).6 Babikian et al. (2002) describe the 

differences between turbo propellers, regional jets and large jets, while Swan and Adler 

(2006) compute two cost functions, one for narrow-body and one for wide-body 

categories, highlighting that the two aircraft categories serve different markets. Whilst 

very occasionally, a widebody aircraft may be flown short haul, as occurs in the 

Japanese domestic market due to slot allocation issues (Adler et al., 2012), aircraft are 

generally designed to fly specific stage lengths.   

 

2.1 Economic-environmental objective function 

Technical and allocative efficiency concepts can be traced back to Farrell (1957) 

and Debreu (1951). A unit (i.e., a firm or a factory) is technically efficient if it produces 

outputs using a minimum of inputs and allocatively efficient if the input mix is chosen 

such that costs are minimized (Färe, Grosskopf and Lovell, 1994). Thus, it is necessary 

to collect information on the quantities of inputs and outputs in order to describe the 

structure of the production frontier as well as their prices. The frontier may be estimated 

using either parametric or non-parametric techniques. Parametric approaches such as 

stochastic frontier analysis require knowledge of the functional form of the production 

technology as well as that of the inefficiency distribution. Given these limitations, we 

have chosen the non-parametric DEA approach.  

A DEA model is a multi-factor productivity analysis that measures the relative 

efficiency of a homogeneous set of decision making units (DMU), first introduced by 

Charnes, Cooper and Rhodes (1978). In order to identify the economic-environmental 

frontier for the engine-aircraft combinations, we develop a directional economic-

environmental distance (DEED) function which is inspired by the directional distance 

function approach first introduced in Chambers et al. (1998) and by the additive model 

of Charnes et al. (1985). However, similarly to Färe and Grosskopf (2010), DEED does 

not set the slacks direction exogenously. 

We design the DEED function as a linear program presented in Equations (1.1)-

(1.6), which defines the regulatory perspective. Consider } 	 1, … , �  DMUs using a 

                                                 
6  DEA models require a certain degree of homogeneity among the different observations, hence 
categorizing the set of existing aircraft-engine combinations into four similar groups provides more 
consistent efficiency estimates. 
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column vector of m inputs (��) in order to yield a column vector of s desirable (good) 

outputs (�� ) and a column vector of h undesirable (bad) outputs (�� ), where �� 	
��/�, … , �>�
µ , �� 	 ��/�, … , �G�
µ and �� 	 ��/�, … , �2�
µ . It is assumed that 

��, �� , ��  � 0 for all j=1,…, n. 
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In Model (1) the economic-environmental objective function sums the input 

wastage =4 , the desirable output shortfalls sF  and the excessive undesirable outputs 

slack production δf, multiplied by their respective prices, i.e., P
x, P

g
 and P

b. The 

estimated efficiency score �)¶� is equal to 0 if the DMU is efficient, while the greater 

the values of �)¶� the more inefficient the DMU. Consequently, a higher value of �)¶� 

implies larger monetary waste, since the objective function represents the monetary 

values of the excess inputs and externalities as well as desirable output shortfalls7. 

Consequently, model (1) is a non-oriented, slack based measure of efficiency. Equations 

(1.2)-(1.4) represent the constraints on inputs, desirable outputs and undesirable outputs 

respectively. The variables � represent the targets that identify the linear combinations 

of efficient DMUs. As in Färe and Grosskopf (2010), the column vector e is composed 

                                                 
7 It should be noted that if the P vectors are unitary values, the raw data must be expressed in the same 
unit of measure. 
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of ones. It is possible to balance the importance of a particular variable with respect to 

the others by changing the values of vector e. Model (1) designs a single efficient 

frontier in which DMUs are benchmarked simultaneously with respect to all variables. 

As noted in Färe and Grosskopf (2010), this model is monotonic and unit, translation 

and reference set invariant. 

Constraint (1.4) incorporates the undesirable outputs as inputs to be reduced. 

Alternative approaches would be to define them as negative outputs (equation 1.4b) or 

to translate the inverse of the externalities as an undesirable output (Scheel, 2001). 

However, this requires a non-linear transformation which would render the undesirable 

output slacks (Bf) as no longer comparable to the other slacks in the model. 

 

                         8 �f�
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�:/
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Constraints (1.4) do not directly connect the production of bad outputs to input 

utilization or to good output production. Consequently, we do not make any 

assumptions with regard to disposability. Thus, the production of undesirable output is a 

free activity, as commonly assumed in traditional production theory. This is a 

reasonable assumption in our analysis because it is possible to reduce the externalities 

without changing the maximum number of passengers carried or the size of the aircraft 

(e.g., by adopting a new generation of aircraft). Picazo-Tadeo et al. (2005) and Färe et 

al. (2007) describe the impact of introducing weak or strong disposability assumptions 

within a directional distance function framework.  

An additional feature of the DEED model is that it permits both input reductions 

and increases. Input expansions may be necessary in order to move to the efficient 

frontier. For this reason in the DEED model, the input slacks =4 are free in sign, allowing 

for reductions in input utilization (with =4 > 0), increases (=4 < 0) or no changes in the 

input levels (=4 	 0). Consequently, we identify potential increases in inputs that may 

simultaneously reduce the production of negative externalities and increase the 

production of good outputs. However, increases in input utilization are limited by 

constraint (1.6) which implies that a higher expenditure in inputs must be at most equal 

to the reduction in the social costs of bad outputs from the regulatory perspective. 
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Hence, model (1) defines the regulatory perspective because it identifies the efficient 

fleet by maximizing the good output slacks (revenues) and the slacks on input (savings) 

as well as minimizing the environmental social costs. 

We specify two additional perspectives including that of the airlines (Model (2)) 

and the environment (Model (3)). Model (2) assumes that airlines maximize profits by 

maximizing desirable outputs and minimizing input utilization whilst ignoring any 

environmental social costs. Constraint (2.5) implies that any input increase has to be 

compensated by a reduction in the levels of other inputs. In comparison with Model (1) 

the constraint on externalities (i.e., constraint (1.4)) is eliminated in Model (2). 
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Finally, according to the environmental perspective presented in Model (3), the 

objective function minimizes the production of negative externalities alone. In 

comparison with Model (1) the constraint on desirable outputs (i.e., constraint (1.3)) is 

eliminated, while with respect to Model (2), constraint (2.3) is replaced by (3.3).  
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2.2 Replacement fleet 

After estimating the Pareto efficient aircraft-engine combinations from the three 

perspectives, we identify the optimal fleet by replacing the inefficient combinations in 

the current existing fleet with their per aircraft category-benchmarks. As shown in 

Lijesen et al. (2010), fleet substitution is the only environmentally positive strategy 

feasible in the short-run that does not involve any restriction on the demand side (e.g., a 

reduction in total aircraft movements). We apply the estimated benchmarks to the 

current fleet operating in a given airport, and implement the necessary substitutions. We 

compute the changes in local pollutants emitted during the LTO cycle, the amount of 

CO2 emitted during the flight, fleet value, payload and fuel consumption. The sum of 

these changes produces the cost of fleet substitution which represents the monetary 

incentive that may induce airlines to move towards a greener fleet.  

Based on the results obtained from Models (1), (2) and (3), we identify the best 

aircraft-engine combinations per aircraft category per perspective. In order to avoid 

excessive variation in aircraft payload when substitution is required, we replace 

inefficient aircraft-engine combinations with their benchmarks not requiring more than 

a 20% increase or decrease in seat capacity. 

In order to estimate the fleet value and the cost of the replacement, we develop 

an index that describes the operations of a specific aircraft model during a 

representative week at a given airport, i.e., the share of feasible hours of weekly 

operations that are dedicated to the route involving the airport under investigation. This 

utilization index, UI, is computed as follows: 
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�¹4 	  ∑ º 4�� �g4�/7
                                  (4) 

 

where º 4�  is a parameter that indicates the fraction of a day of operation in 

which aircraft i is engaged on route j. We assume that º 	 
0.25,0.5,1�. º is equal to 

0.25 (i.e., 1/4 of a day) if the route is short-haul with duration shorter than 3 hours, 0.5 

(i.e., 1/2 of a day) if the route is medium-haul with duration between 3 and 6 hours, and 

1 for long-haul routes, with duration above 6 hours. Hence, if an aircraft is operating on 

a short-haul route, we assume that it may fly four times per day while if it operates on a 

long-haul route it may fly only once daily. g4� represents the weekly frequency of route 

j operated by aircraft i (i.e., the weekly number of flights on that route). Dividing 

frequency by 7 days and multiplying by º 4�, we obtain the weekly number of aircraft 

that are allocated to route j. As an example, consider the case of aircraft i flying ten 

times on a two hour route j during a week:  º 4� �g4�/7
 = 0.25 * 10/7 = 0.36. This 

implies that aircraft i is allocated to route j at the airport under investigation for about 

one third of its feasible week’s total flying hours. The remaining two thirds of the week, 

we assume that the aircraft serves alternative routes. Clearly, 0 $ �¹4 $ 1. Based on 

the Utilization Index, we compute the share of aircraft i’s ownership costs that are 

attributed to route j at the airport under consideration. In order to calculate realistic fuel 

consumption at Schipol and Arlanda, we consulted the OAG database in order to 

compute the average stage length per aircraft category.  

 

3 Data 

In this section we present the aircraft database and descriptive statistics in 

section 3.1, the externality measures in section 3.2 and the price parameters expressed 

in the objective function in section 3.3. Finally, in section 3.4 we present the main 

features of the airports analyzed in the second stage of the analysis. 

 

3.1 Aircraft database 

The unit of observation for this analysis consists of a specific aircraft-engine 

combination. Ownership costs and fuel burn, proxies for the technology embedded in 
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the aircraft, are inputs producing a given payload, a proxy for passengers and cargo 

capacity (i.e., the desirable output). ICAO certification data provides the emissions and 

noise values representing the undesirable outputs. The input vector �� 	 �g��3� , »�3���
¼ 

is composed of fuel consumption (in kilograms) during a standard flight per aircraft 

category and the aircraft ownership costs in euro per flight.8  The desirable output, 

�� 	 �l��D ������D�}
µ
, is based on the certified maximum payload that a specific 

aircraft-engine combination carries divided by the average passenger weight9. We thus 

consider the theoretical maximum number of seats that an aircraft may carry 

irrespective of the different airline seat configurations.  

Jane’s All the World Aircraft (2011-2012 version) provides technical details on 

over 950 civil and military aircrafts currently being produced or under development by 

more than 550 air manufacturing companies, including the maximum take-off weight of 

each aircraft-engine combination. Any missing information was collected from the 

manufacturers’ websites. The data set consists also of the most updated engine models 

produced by each engine manufacturer, assuming that the best engine technology is 

applied to the aircraft-engine combinations analyzed, ensuring a conservative estimate 

of the potential environmental achievements possible. 

Our dataset is composed of 162 different aircraft-engine combinations, 

describing almost completely the current civilian market for passenger aircraft. Russian 

aircraft are not considered in the analysis due to a lack of financial information. The 

data set for commercial aviation includes 11 aircraft manufacturers and 8 engine 

manufactures, as listed in Table 1. Some of these manufacturers are no longer in 

business, but the aircraft produced are still in use and sold in the second-hand market.  

 

 

 

 

 

                                                 

8 In order to compute fuel consumption we consider 1,000 km flight legs for turbo propellers and regional 
jets, 5,000 km for narrow bodies and 10,000 km for wide bodies. To compute the per flight aircraft 
ownership costs we multiply the aircraft market value by the utilization index UIi over a year. We assume 
300 days of operation per year for all aircraft categories, and a maximum of 4 flights per day for TP and 
RJ, 2 flights per day for NB and 1 flight per day for WB. 
9 We assume the standard Work Load Unit weight: 1 passenger plus luggage = 100 kilograms.  
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Table 1 –Aircraft and Engine Manufacturers 

Aircraft manufacturers Engine manufacturers 

Airbus Allison Engine Company 

Avions de Transport Regional CFM International 

BAE systems Engine Alliance 

Boeing Company General Electric 

Bombardier Inc. International Aero Engines 

Donier Pratt & Whitney 

Embraer Rolls-Royce 

Fokker Textron Lycoming 

McDonnell Douglas 
 

Saab 
 

Short Brothers 
 

 

3.2 Negative externalities 

Aircraft cause local air pollution (LAP) only when operating inside the landing 

take-off cycle (LTO). According to ICAO standards, the LTO cycle consists of four 

stages: take-off, climb (up to 3,000ft), approach (from 3,000ft to landing) and idle 

(when the aircraft is taxiing or parked on the ground with engines-on)10. Furthermore, 

ICAO sets a standard profile for the LTO cycle based on engine power settings and 

average time at each stage. The engine certified emissions level i.e., the quantity, in 

grams, of hydrocarbons and nitrogen oxides emitted per kilogram of fuel consumed per 

engine is provided by the ICAO Engine Emissions Databank and by the FOI Database. 

Furthermore, the two data bases provide measures of the level of fuel consumption 

during the LTO cycle per engine model11. The vector of undesirable outputs includes 

the principal aviation local air pollutants (in kilograms), i.e., HC, NOx, PM and SO2, 

and the costs (in euro) of aircraft noise levels produced during the LTO cycle, i.e. 

�� 	 �`a}, Cb�} , lb2} , m0}, C����}
µ12. Particulate matter (PM) and Sulphur Dioxide (SO2) 

are not part of the LTO engine certification process. The emission of these pollutants is 

directly related to fuel consumption. Based on Givoni and Rietveld (2010), Sutkus et al. 

                                                 

10 
The 3,000ft altitude boundary is the average height of the mixing zone, namely the layer of the earth’s 

atmosphere in which chemical reactions affect ground level pollutant concentrations 
11 The ICAO Engine Emission Databank is provided by the International Civil Aviation Organization and 
the FOI Database is provided by the Swedish Defense Research Agency. 
12 Carbon Oxide (CO) is not included because Dings et al. (2003) estimate that its social costs are 
negligible. 
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(2001) and Dings et al. (2003), we assume an emission factor of 0.8 grams of SO2 and 

0.2 grams of PM per kilogram of fuel burn during the LTO cycle.  

Noise certified data are measured in decibels of effective perceived noise 

(EPNdb) and are provided for each aircraft-engine combination’s maximum take-off 

weight (MTOW). Noise emissions are computed at three reference points located in 

each airport: lateral, flyover and approach. The lateral measurement point is located 450 

meters from the runway and captures the highest noise levels. The flyover measurement 

point is located under the over-flight trajectory at 6,500 meters from the point of brake 

release. The approach measurement point measures the noise generated on landing and 

is placed 2,000 meters from the point at which the landing aircraft is at 120 meters 

altitude above the ground. 

The European Aviation Safety Agency (EASA) and the Federal Aviation 

Administration (FAA) provide the certified noise values for each combination of 

aircraft-engine-MTOW. The logarithmic nature of noise makes it difficult to aggregate 

and compare the three measurement points. Furthermore, to evaluate the impact of the 

level of noise damage, we ought to consider the size of population living in proximity to 

the airport. To standardize the analysis, we utilize the noise charges that are currently 

set by Swedish airports per aircraft movement 13 . The noise charge is based on a 

weighted energetic mean that assigns a monetary value to the noise level produced by 

an aircraft. The formula applied to obtain the noise charge is as follows: 

 

a½ 	 a �10¾�(¿.À/
 /6Á⁄ 7 10¾�(§.²Â
 /6⁄ Á
                              (5) 

 

where CN is the noise charge, C is the airport specific unit noise fee, UÃ is the 

approach noise level of the individual aircraft and U� is the average of the lateral and 

fly-over noise levels. C is equal to 30 Swedish Crown (SEK) at Arlanda airport. 

Descriptive statistics on all variables are presented in Table 2, clustered by 

aircraft type. We note that the minimum noise costs for the turbo propeller category is 

zero. Indeed, some aircraft-engine combinations emit a level of noise lower than the 

minimum noise impact threshold level shown in equation (5). 

 

                                                 
13 See “Swedavia’s conditions of Use and Airport Charges for all Swedavia Airports” 2011 edition. 
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Table 2 – Data set descriptive statistics 

 
Turbo Propellers 

 

Fuel 

consumption 

(Kg/Flight) 

Ownership 

cost 

(€/Flight) 

Seat 

capacity 

HC 

(kg/LTO) 

NOx 

(kg/LTO) 

SO2 

(kg/LTO) 

PM 

(kg/LTO) 

Noise 

(€/LTO) 

average 1,476 470 57 0.234 2.098 0.056 0.225 7.0 

min 1,110 140 38 0.000 0.592 0.028 0.112 0.0 

max 1,996 1,668 87 1.634 3.248 0.122 0.486 15.4 

 
Regional Jets 

 

Fuel 

consumption 

(Kg/Flight) 

Ownership 

cost 

(€/Flight) 

Seat 

capacity 

HC 

(kg/LTO) 

NOx 

(kg/LTO) 

SO2 

(kg/LTO) 

PM 

(kg/LTO) 

Noise 

(€/LTO) 

average 2,778 549 95 0.816 4.382 0.102 0.407 9.54 

min 1,358 120 33 0.036 2.156 0.055 0.219 4.05 

max 3,864 956 137 1.796 6.656 0.151 0.605 18.43 

 
Narrow-bodies 

 

Fuel 

consumption 

(Kg/Flight) 

Ownership 

cost 

(€/Flight) 

Seat 

capacity 

HC 

(kg/LTO) 

NOx 

(kg/LTO) 

SO2 

(kg/LTO) 

PM 

(kg/LTO) 

Noise 

(€/LTO) 

average 18,868 1,905 203 0.879 12.127 0.191 0.763 15.84 

min 13,878 326 129 0.064 5.458 0.133 0.533 3.87 

max 28,546 4,401 309 2.536 29.582 0.294 1.174 31.26 

 
Wide-bodies 

 

Fuel 

consumption 

(Kg/Flight) 

Ownership 

cost 

(€/Flight) 

Seat 

capacity 

HC 

(kg/LTO) 

NOx 

(kg/LTO) 

SO2 

(kg/LTO) 

PM 

(kg/LTO) 

Noise 

(€/LTO) 

average 80,728 10,485 505 2.481 37.737 0.450 1.800 43.79 

min 49,788 3051 308 0.156 18.338 0.292 1.170 18.79 

max 179,879 24,804 907 7.452 70.852 0.807 3.229 89.24 
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3.3 Objective Function Parameters 

Table 3 provides a summary of the prices for inputs, good and bad outputs 

applied in the analysis. All prices are expressed in euro.14 The input price vector is 

composed of the cost of a kg of jet fuel (0.749 €, source: IATA) plus the estimated 

social cost of CO2 emitted during the entire flight (0.045 € per kg of jet fuel which is the 

2010 average EU emission charges according to the trading scheme market).15 In Model 

(2), i.e., the airline perspective, we consider the fuel price without incorporating the 

price for CO2 emitted, given that in this scenario the externalities are not taken into 

account. Ownership cost is set equal to 1 because data are already expressed in 

monetary values (2010 euro). The price vector for revenues given by the aircraft 

payload is the average ticket price per passenger charged by the airlines in the period 

2001-2010. The source is provided by the IATA Industry Statistics, June 2011. Hence, 

the revenue per passenger adopted in this work does not reflect the possible differences 

between aircraft typologies or stage length. Clearly, it would have been preferable to 

use average yields per stage length were such information available. However, our 

choice does not impact the DEA rankings and benchmarks because of the invariance of 

the models and the categorization into aircraft types. Finally, for the externality prices 

we apply the social cost of a kilogram of pollutant produced as estimated by Dings et al. 

(2003) for the year 2001. We adjust these values in order to be comparable to prices 

expressed in Euro 2010 by the deflator factor 1.24 (Source: Eurostat). Note that the 

price for noise is equal to 1 because the data is already in monetary values.  

 

Table 3 – Price parameters 

Fuel Passengers ticket HC NOx PM SO2 

€ 0.795/kg 

(Model 2 € 0.749/kg) 
€ 133 € 4.97/kg € 11.19/kg € 186.7/kg € 7.46/kg 

 

                                                 

14 The SEK-Euro exchange rate considered for converting Swedish noise charge in euro is equal to 1 
SEK/0.10486 €. The Dollar-Euro exchange rate is 1 $ = 0.75521 €. These values are the 2010 averages of 
daily exchange rates. 
15 The CO2 price source was drawn from: http://www.sendeco2.com/it/precio_co2.asp?ssidi=5. We adopt 
a ratio of 3.152 kg of CO2 per kg of fuel (Givoni and Rietveld (2010)). 
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The Aircraft Value Reference database (AVAC) provided 2010 aircraft market 

values rather than list prices. 16 Market values represent the fluctuations in the market 

capturing the dynamic nature of the industry. Aircraft values correspond to a new 

aircraft built in 2010. Regarding out of production aircraft, the market values 

correspond to the 2010 hypothetical value of a new aircraft with the same 

characteristics. In order to evaluate the aircraft value per flight, we divide the market 

value over an assumed lifecycle of 20 years, with a utilization of 300 days per year and 

4 flights per day for TP and RJ, 2 flights per day for NB and 1 flight per day for WB 

(these values reflect the parameters used in the Utilization Index equation (4)). 

 

3.4 Airport fleet data 

In order to perform the second-stage analysis, we substitute the inefficient 

aircraft-engine combinations with their benchmarks. Then, we analyze the replacement 

fleets for two large European airports, and estimate the costs of the aircraft 

substitutions. We consider Amsterdam Schipol and Stockholm Arlanda. Amsterdam 

Schipol is the main international airport for the Netherlands and a primary hub for 

KLM. Schipol served 304,464 European aircraft movements and 81,852 

intercontinental movements in 2010. Stockholm Arlanda is the major international 

airport in Sweden and primary hub for Scandinavian Airline (SAS). In 2010, Arlanda 

served 190,000 movements, of which 125,000 were international and 64,000 domestic. 

We analyze all aircraft movements operating during the first week of June 2010 at both 

airports and summary statistics are presented in Table 4. 

 

Table 4 – Summary statistics per airport (7th to the 13th June 2010) 

 Average Stage Length (km) # of Departures 

 
Schipol Arlanda Schipol Arlanda 

Turbo propeller 490 396 23 335 

Regional jet 596 708 1,097 156 

Narrow body 1,221 1,023 2,031 1,358 

Wide body 7,013 5,550 460 42 

 

                                                 
16 The Aircraft Value Reference database was kindly provided by The Aircraft Value Analysis Company 
(AVAC). 
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The data highlights the shorter average flight legs served at Arlanda in all 

categories, except the regional jets which represent 8% of the market in terms of 

number of departures. The differences in aircraft served and average stage lengths 

directly impact the results of the second stage analysis as discussed in section 4.3. 

Information was drawn from the Official Airline Guide (OAG) database that 

collects data on all scheduled flights per airport. The OAG database identifies the 

aircraft model, maximum take-off weight, flight length and frequency for each flight 

scheduled in the chosen week. The OAG specifies the aircraft model but not the 

engines. To overcome this limitation, we collected technical information on aircraft 

currently flying and on the distribution of different types of engines on each aircraft 

model from the International Register of Civil Aviation (IRCA). For simplicity, we 

assume that each aircraft operating at Arlanda and Schipol airports adopted the engine 

most frequently purchased for that specific aircraft model (i.e., the mode of the specific 

aircraft-engine distribution). Thus, we compute the pollutant emissions and fuel 

consumption per aircraft, engine and maximum take-off weight combining the ICAO, 

FOI, FAA and EASA databases. Regarding the ownership cost of each aircraft 

operating at the two selected airports, we assume that the current aircraft value is given 

by the average of the AVAC market values from the first year of sale to the last year of 

production. If the aircraft’s first year of production is prior to 1985, we assume (given 

the average passenger aircraft lifecycle in the aviation industry) that it started operating 

at each of the airports during 1985.  

 

4 Results 

In this section we show the results of our two stage empirical analysis. In 

Section 4.1 we describe the aircraft-engine efficiency scores estimated by applying 

Models (1)-(3). In section 4.2, we perform the second stage analysis using the estimated 

benchmarks to compute the cost of fleet substitution. Finally, in section 4.3 we discuss a 

pricing scheme that may induce the airlines to adopt a more efficient and 

environmentally friendly fleet. 
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4.1 The aircraft-engine economic- environmental efficiency frontier 

Table 5 presents the results of the DEA models per aircraft-engine combination 

for each aircraft category. We analyze 16 turbo propeller combinations, 32 regional jets, 

62 narrow bodies and 52 wide body aircraft-engine combinations in total. DMUs with a 

score equal to zero are considered efficient, i.e. lie on the economic-environmental 

frontier. On the contrary, the greater the score, the greater is the DMU inefficiency. The 

last three columns of Table 5 present �)¶� , �·4F  and �Ä@Q estimates. �represents the 

savings that could be obtained under each possible scenario, i.e. the total per flight cost 

savings were the aircraft-engine combination to lie on the frontier.  

 

[TABLE 5: SEE APPENDIX] 

  

Differences in the number of efficient units are observable across the three 

perspectives for all the aircraft categories analyzed. Combining the results, only six 

engine-aircraft combinations are efficient according to all three perspectives observed: 

turbo propellers ATR 42-300-PW120 engine and ATR42-400-PW121A engine; the 

regional jet Dornier 328 Jet-PW3068 engine, the narrow body Airbus A318-100-

CFM56-5B8/3 engine and the two wide bodies, Boeing 767-200-CF6-80C2B2 engine 

and Boeing 767-300-CF6-80A2 engine. These engine-aircraft combinations represent 

the most efficient technologies currently available irrespective of the perspective 

analyzed. Furthermore, for all the aircraft categories, the efficient DMUs in Model (2) 

(the airline perspective) are a subset of the efficient units in Model (1) (the regulatory 

perspective).  

Table 6 presents some descriptive statistics of the first-stage results. The turbo 

propeller category has the highest percentage of efficient units, partially because the 

data set consists of the smallest number of observations but also due to minimal engine 

heterogeneity in this category. In the turbo propeller category, manufacturers’ efforts 

have been mostly directed to improving flight comfort including noise isolation and 

cabin size rather than with engine and airframe improvements.  

Columns four and five of Table 6 present the input slack direction and numbers 

in parentheses represent input reductions. Input reductions are required much more than 

input increases for fuel consumption. This implies that efficient aircraft-engine 
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combinations are those granting savings in fuel costs. However, there are a larger 

number of input increases for ownership costs. This implies that the newer and more 

expensive aircraft lie on the frontier due to their substantial fuel savings and lower 

levels of pollutants emitted. Moreover, as in a standard DEA model in which only input 

reductions are possible, a significant number of DMUs (23%) become efficient by 

reducing both inputs. 

 

Table 6– First stage results descriptive statistics 

Regulatory 

perspective 

Total # 
of 

DMUs 

# of 
efficient 

DMUs 

# of DMUS that increase 

(decrease) fuel consumption 

# of DMUs that increase 

(decrease) ownership cost 

TP 16 10 (63%) 1 (5) 3 (3) 

RJ 32 11 (34%) 0 (16) 12 (9) 

NB 62 18 (29%) 7 (37) 27 (14) 

WB 52 15 (29%) 0 (37) 10 (27) 

     

Airline 

perspective 

Total # 

of 

DMUs 

# of 

efficient 

DMUs 

# of DMUS that increase 

(decrease) fuel consumption 

# of DMUs that increase 

(decrease) ownership cost 

TP 16 4 (25%) 7 (5) 5 (7) 

RJ 32 4 (13%) 0 (26) 26 (2) 

NB 62 4 (6%) 2 (56) 50 (4) 

WB 52 5 (10%) 2 (45) 19 (26) 

     

Environmenta

l perspective 

Total # 

of 

DMUs 

# of 

efficient 

DMUs 

# of DMUS that increase 

(decrease) fuel consumption 

# of DMUs that increase 

(decrease) ownership cost 

TP 16 7 (44%) 1 (8) 2 (7) 

RJ 32 10 (31%) 0 (23) 6 (21) 

NB 62 7 (11%) 3 (51) 20 (35) 

WB 52 5 (10%) 0 (47) 9 (38) 

 

4.2 Substitution effect: the optimal green fleet results 

Table 7 presents the results for the second-stage analysis considering the optimal 

economic-environmental frontiers applied to Amsterdam Schipol and Stockholm 

Arlanda. Estimates of the social costs of bad outputs, of inputs and of revenues are 

provided for the current operating fleet (column 2), for the regulatory perspective 

(column 3), for the airline perspective (column 4) and for the green perspective (column 

5). The values for the three models are obtained by substituting the estimated 

benchmarks to the fleet currently operating at the two airports. All the values in Table 7 
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are expressed on an annual basis. In order to consider yearly values, we assume 26 

weeks of high demand (replicates of the week analyzed, which belongs to a peak 

period) and 26 weeks of lower demand (one half of the movements with respect to the 

week analyzed). 



73 

Table 7 – Second-stage results 

Amsterdam Schipol Airport (yearly) 

 
Original fleet Regulatory perspective Airline perspective Green perspective 

HC €                           772,727 €                          556,789 -28% €                         695,424 -10% €                    509,468 -34% 

NOx €                     18,733,702 €                    15,813,308 -16% €                   16,769,852 -10% €              14,954,441 -20% 

PM €                       4,978,510 €                       4,355,203 -13% €                     4,411,552 -11% €                 4,177,829 -16% 

SO2 €                           796,562 €                          696,832 -13% €                         705,848 -11% €                    668,453 -16% 

Noise €                       2,645,553 €                       1,891,511 -29% €                     2,151,652 -19% €                 1,750,255 -34% 

CO2 €                             70,552 €                            64,385 -9% €                           61,942 -12% €                      61,740 -12% 

Total externalities €                     28,051,415 €                    23,425,697 -16% €                   24,841,744 -11% €              22,168,935 -21% 

Fuel consumption €               1,171,786,239 €               1,069,357,477 -9% €             1,028,779,201 -12% €         1,025,426,073 -12% 

Ownership cost €                   189,494,669 €                  237,069,737 25% €                 232,087,624 22% €            224,639,718 19% 

Seat capacity 56,062,277 56,034,034 0% 59,673,949 6% 52,870,173 -6% 

       
Stockholm Arlanda Airport (yearly) 

 
Original fleet Regulatory perspective Airline perspective Green perspective 

HC €                    307,184 €                    290,137 -6% €                  260,946 -15% €              283,54 -8% 

NOx €                 7,036,472 €                5,322,540 -24% €               5,729,612 -19% €          5,278,386 -25% 

PM €                 2,089,854 €                1,883,170 -10% €               1,788,838 -14% €          1,822,261 -13% 

SO2 €                    334,376 €                    301,307 -10% €                  286,214 -14% €              291,561 -13% 

Noise €                 1,068,653 €                    787,401 -26% €               1,002,410 -6% €              794,735 -26% 

CO2 €                       15,762 €                      14,628 -7% €                     13,234 -16% €                13,612 -14% 

Total externalities €              10,852,303 €                8,599,186 -21% €               9,081,257 -16% €          8,484,103 -22% 

Fuel consumption €            261,793,608 €           242,966,901 -7% €          219,812,135 -16% €     226,095,421 -14% 

Ownership cost €              43,808,735 €              69,683,502 59% €            75,570,042 72% €        63,468,068 45% 

Seat capacity 22,707,039 23,090,261 2% 26,025,067 5% 21,375,625 -6% 
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Table 7 shows that it is possible to obtain substantial reductions in the total cost 

of externalities by substituting the inefficient aircraft-engine combinations with the 

estimated benchmarks resulting from applying the DEA Models (1)-(3). The results 

with respect to the total cost of externalities show that it is possible to achieve up to a 

21% reduction by replacing the majority of the current fleet17. Even from the airline 

perspective for which reducing fuel costs is the main priority, an 11% reduction is 

possible at Schipol and a 16% reduction at Arlanda. Hence, we provide some empirical 

evidence that the current operating fleets are not environmentally efficient. This is not 

due to a technological gap but to failures in adopting an optimal fleet given the current 

technology.  

Table 7 also shows that, from the airline perspective, it is possible to achieve 

fuel consumption reductions equal to 12% at Schipol and to 16% at Arlanda. Moreover, 

relatively similar reductions under this perspective are obtained in pollutant emissions. 

However, as expected, the lowest reduction in NOx is achieved under the airline 

perspective because it is the gas least correlated with fuel consumption. Hence, we 

provide some empirical evidence that the correlation between fuel consumption savings 

and reductions in the production of externalities are not strong. The same result is 

obtained by comparing the reductions in fuel costs and emissions costs under the 

regulatory perspective: the former are equal to -9% at Schipol and -7% at Arlanda, 

while the latter are greater at both airports.  

Table 7 also shows that in general higher noise reductions can be obtained by 

adopting an optimal fleet than with emissions. For instance, under the regulatory 

perspective a -29% reduction in noise levels can be obtained at Schipol and a -26% at 

Arlanda. Regarding the different emissions, the evidence is mixed: for instance, under 

the regulatory perspective, the highest reduction is in HC at Schipol and in NOx at 

Arlanda. Interestingly, at both airports the smallest reduction is in CO2 (-10% at Schipol 

and -3% at Arlanda). 

Under the green perspective, it is possible to achieve relatively large reductions 

in pollutant emissions (-22% on average), mostly through the adoption of a smaller size 

of aircraft (which is true for every aircraft category). The optimal fleet under the green 

                                                 
17 At Schipol airport, 87% of the current fleet was replaced under the regulatory regime and 74% of the 
fleet was replaced at Arlanda. 
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perspective implies a reduction of 6% in the total seat capacity. Considering an average 

load factor of 75.6% (IATA 2009), it would appear that the current fleets may be 

slightly oversized with respect to demand and a natural way to reduce the pollutant 

emissions would be to reduce the size of the aircraft. On the other hand, the airlines 

would prefer to increase seat capacity and the more balanced regulatory perspective 

keeps seat capacity constant, which explains the higher fleet value as compared to the 

environmental perspective. 

Figure 1 presents the percentage changes in inputs, good output and externalities 

under the three models. There is a general reduction in externalities across all 

perspectives hence there is a general alignment between private and social perspectives 

when considering the direction of variations in both noise and emissions. However, 

there is a difference in the magnitude of these variations which under the private 

perspective are lower than the socially optimal levels. 

 

Figure 1 – Percentage changes in inputs, output and externalities with the upgraded fleet 
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Table 8 presents the annual costs per seat for aggregated externalities, fuel 

consumption and ownership costs. It is evident from this table that the costs of fuel are 

substantial. Under the current fleets, ownership costs per seat are about 1/6 of fuel costs 

per seat, while externalities represent about 2% of fuel costs and 15% of ownership 

costs per seat at Schipol and 4% of fuel costs and 20% of ownership costs at Arlanda. 

Under the regulatory perspective, ownership costs increase to 22% of fuel costs, while 

externality costs are stable around 1% of fuel costs and drop to only 10% of ownership 

costs. The lowest levels per seat of ownership costs are obtained under the airline 

perspective, as expected. Interestingly, there is no difference in the externalities costs 

per seat under the three perspectives.  
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Table 8 – Values per seat capacity 

Amsterdam Schipol Airport 

 

Original fleet 

(€/seat) 

Regulatory 

perspective (€/seat) 

Airline perspective 

(€/seat) 

Green perspective 

(€/seat) 

Total 
Externalities 

costs 

0.50 0.42 0.42 0.42 

Fuel 

consumption 
20.90 19.08 17.24 19.40 

Ownership cost 3.38 4.23 3.89 4.25 

 

Stockholm Arlanda Airport 

 

Original fleet 

(€/seat) 

Regulatory 

perspective (€/seat) 

Airline perspective 

(€/seat) 

Green perspective 

(€/seat) 

Total 
Externalities 

costs 

0.48 0.37 0.35 0.40 

Fuel 

consumption 
11.53 10.52 8.45 10.58 

Ownership cost 1.93 3.02 2.90 2.97 

 

4.3 Pricing externalities 

Given the results of the two stage analysis, it is reasonably clear that the current 

IPCC environmental charges are too low: they should be a magnitude of 10 higher in 

order to provide an incentive for aircraft-engine substitutions. For example, the social 

marginal cost should be equal to € 49.7/kg of HC, € 111.9/kg of NOx, € 1865/kg of PM 

and € 74.6/kg of SO2. The sum of the charges for a narrow body aircraft would add a € 

14.7 charge per passenger. Consequently, the savings in externalities that can be 

obtained by adopting the substitute fleet are rather low, ranging from a maximum of € 6 

million at Schipol (Model (3)) to a minimum of € 1.7 million at Arlanda (Model (2)) 

under the IPCC pricing system as presented in Table 9. It should be noted that noise 

charges are already applied at both airports considered and emission charges are also in 

place at Arlanda18. However, the results of the current analysis identify potential 

improvements in the present situation.  

Table 9 demonstrates that a one-shot change in the fleet would require a 

substantial annual investment. Assuming perfect second-hand markets for aircraft, 

under Model (1) it is necessary to invest € 48 million annually over a 20 year lifecycle 

                                                 
18 At Arlanda, as with all Swedish airports, fees are charged with respect to noise, NOx and HC produced 
by each aircraft. 
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to adopt an upgraded fleet at Schipol. Under Model (2), the investment requirements are 

approximately € 43 million, while under Model (3) they are equal to € 35 million 

annually. Lower, but still very significant figures, are obtained for Arlanda (see Table 

9). On the other hand, the fleet replacement would lead to substantial fuel savings, in 

the range of double the ownership investment costs from the regulatory perspective, and 

triple the savings on an annual basis from the airline and environmental perspectives at 

Schipol. This leads us to the obvious question: why do airlines not upgrade without 

additional incentives simply based on the importance of the fuel input factor? Clearly 

the second hand market is not perfect and were all European airline to attempt to sell a 

large percentage of their current fleet immediately, the market value would likely 

collapse. Furthermore, given the state of profitability or lack thereof in the airline 

market, it is clear that the funds available are extremely limited. Hence, it is reasonable 

to assume that the replacements or upgrades should be gradual over a ten year 

timeframe in which case the environmental charges should be collected into a special 

fund to which airlines could apply, at the very least for interest free loans. In this 

manner, the European Union could also encourage replacements according to their 

perspective, which is slightly costlier than those of the airlines perspective at Schipol. 

At Arlanda, the results of the analysis are slightly different due to the smaller aircraft 

configurations serving the market and shorter distances flown. In this case, the fuel 

savings are lower than the additional ownership costs from the regulatory perspective, 

which leads to the argument that fleet replacements should be subsidized from a social 

perspective and again the environmental charges at the current levels could be directed 

towards this aim. 

 

Table 9 – Marginal values comparing the current fleet with that of the benchmarks 

Amsterdam Schipol 

 
Regulatory perspective Airline perspective Green perspective 

Savings 

Externalities costs €         4,625,718 €         3,209,671 €         5,882,479 

Fuel consumption €     102,428,763 €     143,007,038 €     146,360,166 

Costs 

Ownership costs -€      47,575,069 -€      42,592,955 -€      35,145,049 

Seat capacity -€         3,191,461 €                         - -€    360,707,691 

Total €       56,287,951 €     103,623,754 -€    243,610,094 
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Arlanda Stockholm 

 
Regulatory perspective Airline perspective Green perspective 

Savings 

Externalities costs €         2,253,117 €         1,771,046 €         2,368,200 

Fuel consumption €       18,826,708 €       41,981,473 €       35,698,187 

Costs 

Ownership cost -€      25,874,767 -€      31,761,308 -€      19,659,334 

Seat capacity €                         - €                         - -€    150,449,780 

Total -€         4,794,942 €       11,991,211 -€    132,042,726 

 

5 Conclusions 

A directional economic-environmental distance (DEED) model has been 

developed in order to compute the relative efficiency of aircraft-engine combinations 

taking into account both the production of desirable and undesirable outputs such as 

noise and air pollutant emissions. Three different perspectives have been considered, 

namely a regulatory perspective in which a single operational and environmental 

frontier is developed, an airline perspective in which undesirable outputs are not 

internalized and a green perspective, in which only undesirable outputs are included. 

The different aircraft-engine combinations are grouped into four aircraft categories: 

turbo propellers, regional jets, narrow-bodies and wide-bodies. The results of the DEED 

model are then applied in order to design a replacement fleet according to each 

perspective and to estimate the costs (due to aircraft substitution) and benefits (from 

savings in pollution, noise and fuel consumption) drawing from implementation at  

Stockholm Arlanda and Amsterdam Schipol airports.  

The first stage, DEED analysis identifies the relatively efficient fleet according 

to the three perspectives. We find evidence that airlines are presented with a choice of 

aircraft-engine combinations per stage length and that the choice yields different 

outcomes from both economic and environmental perspectives. Specifically, we show 

that within the same aircraft category, several trade-offs exist among the different 

aircraft-engine combinations. This implies that airline managers, when choosing their 

fleet, could take into account not only the route and stage length to serve, i.e. the market 

constraints, but also the importance that the company places on the environment. In the 

second stage, after replacing or upgrading the fleets serving Arlanda and Amsterdam, 
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we identify potential emissions reductions using more fuel efficient aircraft-engine 

combinations without necessarily reducing profits. The fleets currently serving the two 

airports analyzed are neither efficient in terms of fuel consumption nor externalities 

produced, despite the presence of environmental charges over the past decade. As a 

result, we find that the current IPCC emissions values are probably too low to induce 

airline managers to pay sufficient attention to the issue of negative externalities when 

purchasing aircraft. This implies that, under the status quo, environmental 

improvements are a secondary effect, since they are most likely to occur only when 

directly coupled to economic performance through fuel efficiency. Furthermore, airport 

noise charges are mainly related to the density of the population in the communities 

surrounding the airport and currently are too low to impact managerial decisions with 

respect to fleet choice and aircraft purchase. Our solutions suggest that the level of 

pricing of negative externalities would need to be increased ten-fold in order to be taken 

into account during the aircraft purchase decision. Given the current economic situation 

of the airline industry, it is highly unlikely that carriers are in a position to bear the 

substantial investments needed to adopt a more environmentally friendly fleet. 

However, utilizing the IPCC pricing scheme may produce sufficient revenues to 

subsidize the purchase of new aircraft or upgrade the current fleet with the newest 

engine kits, so that both emissions and noise could be reduced gradually. For this to 

occur, a national or European wide fund would need to be managed in order to collect 

the funds and set up procedures to subsidize loans or provide subsidies for the purpose 

of fleet renewal according to the regulatory perspective. 
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Appendix 

Table 5– First stage results 

A score of zero in the last three columns implies efficiency and a positive score suggests the levels of savings that could be 

achieved according to each of the three models. 

Turbo Propellers 

Aircraft Manufacturer Model Engine Manufacturer Model DMU Year Regulatory Airline Green 

Avions de Transport 
Regional 

ATR42-300 Pratt & Whitney PW120 1 1997 0 0 0 

Avions de Transport 
Regional 

ATR42-320 Pratt & Whitney PW121 2 1997 21 1 4 

Avions de Transport 
Regional 

ATR42-400 Pratt & Whitney PW121A 3 1997 0 0 0 

Avions de Transport 
Regional 

ATR42-500 Pratt & Whitney PW127E 4 2009 0 2752 0 

Avions de Transport 
Regional 

ATR42-500 Pratt & Whitney PW127M 5 2009 2121 2875 5 

Avions de Transport 
Regional 

ATR72-200 Pratt & Whitney PW127 6 1996 142 180 15 

Avions de Transport 
Regional 

ATR72-210 Pratt & Whitney PW127 7 1998 0 0 15 

Avions de Transport 
Regional 

ATR72-500 Pratt & Whitney PW127F 8 2010 0 108 5 

BAE systems ATP Pratt & Whitney PW126A 9 1993 372 1123 16 

Bombardier Inc. Q 200 Pratt & Whitney PW123C 11 1996 2165 2948 12 

Bombardier Inc. Q 300 Pratt & Whitney PW123B 10 1991 1732 3056 9 

Bombardier Inc. Q 400 NextGen Pratt & Whitney PW150A 12 2010 0 0 37 

Fokker 50 Pratt & Whitney PW125B 13 1996 0 1455 0 

Saab 2000 Allison Engine Company AE2100A 14 1999 0 1754 0 

Saab 340 General Electric CT7-9B 15 1999 0 1324 0 

Short Brothers SD3-60 Pratt & Whitney PT6A-67R 16 1991 0 2628 0 
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Regional Jets 

Aircraft Manufacturer Model Engine Manufacturer Model DMU Year Regulatory Airline Green 

BAE systems Bae 146-200 Textron Lycoming ALF 502R-3A 1 1993 1230 3466 41 

BAE systems Bae 146-200 Textron Lycoming ALF 502R-5 2 1993 2164 3415 44 

BAE systems Bae 146-300 Textron Lycoming LF507-1H 3 1993 1898 2576 52 

BAE systems Bae 146-300 Textron Lycoming ALF 502R-5 4 1993 1051 2365 44 

BAE systems AVRO RJ70 Textron Lycoming LF507-1F 5 2000 2899 3451 53 

BAE systems AVRO RJ85 Textron Lycoming LF507-1F 6 2001 1038 1639 52 

BAE systems AVRO RJ100 Textron Lycoming LF507-1F 7 2001 0 634 54 

Bombardier Inc. CRJ 200 ER General Electric CF34-3B1 8 2005 0 341 0 

Bombardier Inc. CRJ 200 LR General Electric CF34-3B1 9 2005 34 563 0 

Bombardier Inc. CRJ 701 General Electric CF34-8C1 10 2005 0 2240 0 

Bombardier Inc. CRJ 701 ER General Electric CF34-8C1 11 2005 5 2271 0 

Bombardier Inc. CRJ 705 General Electric CF34-8C5 12 2006 0 552 0 

Bombardier Inc. CRJ 900 General Electric CF34-8C5 13 2005 160 1176 0 

Bombardier Inc. CRJ 1000 NextGen General Electric CF34-8C5A1 14 2010 0 0 7 

Donier 328JET Pratt & Whitney PW306B 15 2002 0 0 0 

Embraer ERJ 135 ER Allison Engine Company AE3007A1/3 16 2005 0 779 0 

Embraer ERJ 135 LR Allison Engine Company AE3007A1/3 17 2005 0 527 0 

Embraer ERJ 140 ER Allison Engine Company AE3007A 18 2005 0 385 0 

Embraer ERJ 140 LR Allison Engine Company AE3007A1/1 19 2005 20 101 3 

Embraer ERJ 145 LR Allison Engine Company AE3007A1/1 20 2005 0 0 3 

Embraer E-Jets 170 General Electric CF34-8E5 21 2010 2057 3465 9 

Embraer E-Jets 170 LR General Electric CF34-8E5 22 2010 2074 3489 9 

Embraer E-Jets 175 General Electric CF34-8E5 23 2010 994 2421 9 

Embraer E-Jets 175 LR General Electric CF34-8E5 24 2010 1010 2444 9 

Embraer E-Jets 190 General Electric CF34-10E5A1 25 2010 577 571 73 

Embraer E-Jets 190 LR General Electric CF34-10E5A1 26 2010 602 597 74 

Embraer E-Jets 190 AR General Electric CF34-10E5A1 27 2010 616 611 74 
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Embraer E-Jets 195 General Electric CF34-10E5A1 28 2010 0 0 72 

Embraer E-Jets 195 LR General Electric CF34-10E5A1 29 2010 33 33 73 

Embraer E-Jets 195 AR General Electric CF34-10E5A1 30 2010 46 45 74 

Fokker 100 Rolls Royce TAY 650-15 31 1996 1352 1273 67 

Fokker 70 Rolls Royce TAY 620-15 32 1996 626 213 65 

         
Narrow Bodies 

Aircraft Manufacturer Model Engine Manufacturer Model DMU Year Regulatory Airline Green 

Airbus A318-100 CFM International CFM56-5B8/3 1 2010 0 0 0 

Airbus A318-100 CFM International CFM56-5B9/3 2 2010 722 3346 3 

Airbus A318-100 Pratt & Whitney PW6122A 3 2010 4391 6741 9 

Airbus A318-100 Pratt & Whitney PW6124A 4 2010 6213 8741 33 

Airbus A319-100 CFM International CFM56-5B5/3 5 2010 0 0 3 

Airbus A319-100 CFM International CFM56-5B6/3 6 2010 476 1237 5 

Airbus A319-100 CFM International CFM56-5B7/3 7 2010 1825 4399 23 

Airbus A319-100 CFM International CFM56-5A5 8 2010 0 1512 0 

Airbus A319-100 International Aero Engines V2522-A5 9 2010 0 5637 0 

Airbus A319-100 International Aero Engines V2524-A5 10 2010 657 6943 12 

Airbus A319-100 International Aero Engines V2527M-A5 11 2010 0 6461 0 

Airbus A320-200 CFM International CFM56-5B4/3 12 2009 5389 7212 26 

Airbus A320-200 CFM International CFM56-5B5/3 13 2009 0 2353 6 

Airbus A320-200 CFM International CFM56-5B6/3 14 2009 1043 3719 8 

Airbus A320-200 International Aero Engines V2527-A5 15 2009 0 8422 4 

Airbus A320-200 International Aero Engines V2527E-A5 16 2009 0 8422 4 

Airbus A321-100 CFM International CFM56-5B1/3 17 2004 1900 3152 60 

Airbus A321-100 CFM International CFM56-5B2/3 18 2004 2336 3595 73 

Airbus A321-100 International Aero Engines V2530-A5 19 2004 1188 5189 77 

Airbus A321-200 CFM International CFM56-5B1/3 20 2009 384 1215 65 

Airbus A321-200 CFM International CFM56-5B2/3 21 2009 626 1659 77 
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Airbus A321-200 CFM International CFM56-5B4/3 22 2009 0 0 29 

Airbus A321-200 International Aero Engines V2530-A5 23 2009 0 3258 78 

Airbus A321-200 International Aero Engines V2533-A5 24 2009 652 3851 102 

Boeing Company 717-200 Rolls-Royce BR700-715C1-30 25 2006 0 11768 0 

Boeing Company 737-300 CFM International CFM56-3B1 26 1999 5755 6326 20 

Boeing Company 737-300 CFM International CFM56-3B2 27 1999 7772 8074 25 

Boeing Company 737-400 CFM International CFM56-3B2 28 1999 3834 4046 25 

Boeing Company 737-400 CFM International CFM56-3C1 29 1999 4073 6633 32 

Boeing Company 737-500 CFM International CFM56-3B1 30 1999 5067 5625 11 

Boeing Company 737-600 CFM International CFM56-7B18/3 31 2006 0 6864 0 

Boeing Company 737-600 CFM International CFM56-7B22/3 32 2006 3586 10601 5 

Boeing Company 737-700 CFM International CFM56-7B20/3 33 2009 0 6318 3 

Boeing Company 737-700 CFM International CFM56-7B22/3 34 2009 920 4897 7 

Boeing Company 737-700 CFM International CFM56-7B24/3 35 2009 1491 5186 12 

Boeing Company 737-700 CFM International CFM56-7B26/3 36 2009 2593 7356 25 

Boeing Company 737-700 CFM International CFM56-7B27/3 37 2009 7462 8406 43 

Boeing Company 737-800 CFM International CFM56-7B24/3 38 2009 2908 3784 22 

Boeing Company 737-800 CFM International CFM56-7B26/3 39 2009 836 5813 28 

Boeing Company 737-800 CFM International CFM56-7B27/3 40 2009 1388 6244 37 

Boeing Company 737-900ER CFM International CFM56-7B26/3 41 2009 0 7586 28 

Boeing Company 737-900ER CFM International CFM56-7B27/3 42 2009 2333 8186 37 

Boeing Company 757-200 Rolls Royce RB211-535C 43 2002 5109 7705 178 

Boeing Company 757-200 Rolls Royce RB211-535E4 44 2002 3656 10078 273 

Boeing Company 757-200 Rolls Royce RB211-535E4B 45 2002 4227 10686 252 

Boeing Company 757-200 Pratt & Whitney PW2037 46 2002 559 2630 136 

Boeing Company 757-200 Pratt & Whitney PW2040 47 2002 4247 3820 186 

Boeing Company 757-300 Pratt & Whitney PW2040 48 2003 0 0 189 

Boeing Company 757-300 Rolls Royce RB211-535E4 49 2003 0 2259 196 

Boeing Company 757-300 Rolls Royce RB211-535E4B 50 2003 0 3746 267 
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McDonnell Douglas MD81 Pratt & Whitney JT8D-209 51 1992 6302 6816 76 

McDonnell Douglas MD81 Pratt & Whitney JT8D-217 52 1992 4677 8565 94 

McDonnell Douglas MD81 Pratt & Whitney JT8D-219 53 1992 5112 8477 97 

McDonnell Douglas MD82 Pratt & Whitney JT8D-217 54 1998 3326 5935 96 

McDonnell Douglas MD82 Pratt & Whitney JT8D-219 55 1998 3152 5718 98 

McDonnell Douglas MD83 Pratt & Whitney JT8D-217 56 1999 8031 7782 101 

McDonnell Douglas MD83 Pratt & Whitney JT8D-219 57 1999 7937 7690 104 

McDonnell Douglas MD87 Pratt & Whitney JT8D-217 58 1992 9771 9611 101 

McDonnell Douglas MD87 Pratt & Whitney JT8D-219 59 1992 9686 9475 104 

McDonnell Douglas MD88 Pratt & Whitney JT8D-217 60 1997 4126 6670 96 

McDonnell Douglas MD88 Pratt & Whitney JT8D-219 61 1997 3968 6581 98 

McDonnell Douglas MD90-30 International Aero Engines V2525-D5 62 1999 0 9147 0 

         
Wide bodies 

Aircraft Manufacturer Model Engine Manufacturer Model DMU Year Regulatory Airline Green 

Airbus A300B4-600 General Electric CF6-80C2A1 1 1992 4338 14606 64 

Airbus A300B4-600 General Electric CF6-80C2A3 2 1992 6603 15571 74 

Airbus A300B4-600R General Electric CF6-80C2A5F 3 1998 10833 19107 77 

Airbus A300B4-600R Pratt & Whitney PW4158 4 1998 9448 17028 130 

Airbus A310-300 General Electric CF6-80C2A2 5 1997 0 11086 12 

Airbus A310-300 Pratt & Whitney PW4152 6 1997 5913 12427 48 

Airbus A330-200 General Electric CF6-80E1A2 7 2010 9669 11957 231 

Airbus A330-200 General Electric CF6-80E1A3 8 2010 13190 13667 307 

Airbus A330-200 General Electric CF6-80E1A4 9 2010 12188 13013 280 

Airbus A330-200 Pratt & Whitney PW4168A 10 2010 0 16407 0 

Airbus A330-200 Pratt & Whitney PW4170 11 2010 12208 17966 134 

Airbus A330-200 Rolls Royce Trent 772-60 12 2010 18601 20820 239 

Airbus A330-300 General Electric CF6-80E1A2 13 2010 12573 15017 224 

Airbus A330-300 General Electric CF6-80E1A3 14 2010 16553 16839 305 
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Airbus A330-300 General Electric CF6-80E1A4 15 2010 15506 16142 279 

Airbus A330-300 Pratt & Whitney PW4164 16 2010 0 16713 0 

Airbus A330-300 Pratt & Whitney PW4168A-1D 17 2010 14124 20357 124 

Airbus A330-300 Pratt & Whitney PW4170 18 2010 15823 21375 134 

Airbus A330-300 Rolls Royce Trent 768-60 19 2010 11228 21506 183 

Airbus A330-300 Rolls Royce Trent 772 20 2010 22402 24453 238 

Airbus A340-200 CFM International CFM56-5C2/P 21 1998 29017 35145 118 

Airbus A340-200 CFM International CFM56-5C3/P 22 1998 32452 37284 148 

Airbus A340-200 CFM International CFM56-5C4/P 23 1998 37005 39801 189 

Airbus A340-300 CFM International CFM56-5C2/P 24 2008 18743 25812 118 

Airbus A340-300 CFM International CFM56-5C3/P 25 2008 23307 28035 147 

Airbus A340-300 CFM International CFM56-5C4/P 26 2008 27277 30651 182 

Airbus A340-500 Rolls Royce Trent 553-61 27 2010 26482 42291 430 

Airbus A340-600 Rolls Royce Trent 556-61 28 2010 0 22893 508 

Airbus A380-800 Engine Alliance GP7270 29 2010 0 0 726 

Airbus A380-800 Rolls Royce Trent 970-84 30 2010 0 6416 561 

Airbus A380-800 Rolls Royce Trent 972-84 31 2010 0 10292 609 

Boeing Company 747-400 General Electric CF6-80C2B5F 32 2003 10551 20464 460 

Boeing Company 747-400 Rolls Royce RB211-524H2-T19 33 1999 27044 31903 574 

Boeing Company 767-200 General Electric CF6-80C2B2 34 1992 0 0 0 

Boeing Company 767-200 Pratt & Whitney PW4060A 35 1992 11936 15483 128 

Boeing Company 767-200ER General Electric CF6-80C2B7F 36 1992 12142 20540 63 

Boeing Company 767-200ER Pratt & Whitney PW4056 37 1992 10624 18209 91 

Boeing Company 767-300 General Electric CF6-80A2 38 2000 0 0 0 

Boeing Company 767-300ER General Electric CF6-80C2B7F 39 2010 2738 10772 72 

Boeing Company 767-300ER Pratt & Whitney PW4060 40 2010 5842 12023 129 

Boeing Company 767-400ER General Electric CF6-80C2B8F 41 2003 0 9047 48 

Boeing Company 777-200 General Electric GE90-77B 42 2004 0 1808 0 

Boeing Company 777-200 Pratt & Whitney PW4077 43 2004 0 0 274 
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Boeing Company 777-200 Rolls Royce Trent 877 44 2004 0 3724 270 

Boeing Company 777-200ER General Electric GE90-94B 45 2010 0 8076 450 

Boeing Company 777-200ER Rolls Royce Trent 895 46 2010 15080 15279 477 

Boeing Company 777-200LR General Electric GE90-110B1 47 2010 16066 15750 594 

Boeing Company 777-200LR General Electric GE90-115B 48 2010 20019 18884 699 

Boeing Company 777-300 Rolls Royce Trent 892 49 2006 0 0 404 

Boeing Company 777-300ER General Electric GE90-115B 50 2010 9757 9278 702 

McDonnell Douglas MD11 General Electric CF6-80C2D1F 51 1999 17291 17547 341 

McDonnell Douglas MD11 Pratt & Whitney PW4460 52 1999 18928 18352 391 

 


