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Abstract— In this work, two EMG-based FES control ap-
proaches are investigated with the aim of allowing stroke
patients to recover motor function of the upper limbs, especially
the wrist. Often, patients have weak residual muscle activity but
are not able to achieve high wrist extension angles. This residual
volitional muscle activity can be continuously measured from
the stimulation electrodes by using a customised EMG amplifier.
The aim of both developed control approaches is to find the
optimal FES support that uses the minimal required stimulation
intensity to support the movement and that yields an almost
linear relation between the measured volitional EMG activity
(effort) and the resulting wrist-joint angle. The first approach is
based on iteratively learning a static EMG-stimulation intensity
relation from repeated EMG-reference tracking tasks, while the
second approach maps the detected volitional EMG activity to
a reference angle that is fed to a feedback controller. Both
cases require the measurement of the wrist-joint angle, e.g.
by an inertial motion unit. For both techniques, case studies
with healthy subjects and stroke patients have been conducted.
Advantages and disadvantages of both approaches are discussed
in this contribution.

I. INTRODUCTION

The idea to drive Functional Electrical Stimulation (FES)
by electromyography (EMG) measurements obtained at the
stimulated muscles has been studied by several research
groups, see e.g. [1]–[5]. Residual volitional muscle activity
was detected and the weak movements of the patients were
amplified by FES-induced muscle contractions. The used
systems measured the EMG from separate standard AgCl-
EMG-electrodes or directly from the stimulation electrodes
[6], [7]. In the past, research has been mostly focusing on
the measurement of the EMG between stimulation pulses
and the filtering process for extracting the information about
volitional muscle activity, see e.g. [8]–[16]. The mapping
from the measured volitional EMG activity to the stimulation
intensity was usually static and linear. Parameters of this
static mapping were selected by trial and error. No real
procedure, neither manual or automatic, has been described
or applied for finding optimal parameters.

An optimal EMG-based FES controller should enable the
patient to determine the extent of the desired movement
independently. Furthermore, the right stimulation intensity
must be found automatically in such a way that the desired
movement task can be achieved and that at the same time
the maximal possible volitional contribution is demanded
from the patient. These demands can be translated into the
objective to find a controller that causes a linear function
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between the present volitional EMG activity and the resulting
FES-supported wrist extension. It is obvious, that a simple
linear relation in the control law between the measured
volitional EMG activity and the applied stimulation intensity
usually does not represent a solution for this problem.

This paper outlines two possible solutions for designing
EMG-based FES controllers that fulfil the objective estab-
lished above.

II. MATERIAL AND METHODS

A. Experimental setup

The used experimental set-up is shown in Fig. 1. The
wrist and finger extensors are stimulated through a pair of
self-adhesive hydro-gel electrodes (RehaTrode 6x4cm oval,
HASOMED GmbH, Germany) at a stimulation frequency of
20 Hz. Stimulation pulses are generated by a PC-controllable
stimulator (RehaStim, HASOMED GmbH, Germany) with
USB interface. The current-controlled stimulation pulses are
bi-phasic with fixed current amplitude and modulated pulse
width (stimulation intensity).

EMG-measurements are performed from the stimulation
electrodes using a slightly modified version of the EMG
amplifier STIMYO described in [6]. The amplifier uses
PhotoMOS-switches to disconnect the amplifier inputs from
the electrodes during the application of electrical stimuli
and to shortly discharge the stimulation electrodes after each
stimulus. After amplification and analogue band-pass filter-
ing (200-700 Hz), the EMG-signal is sampled by an ARM
Cortex M3 micro-controller (STM32F103RB, STMicroelec-
tronics, Switzerland) at 4 kHz and a selected time window
(27.5 to 49 ms after each stimulus) is filtered again through
a non-causal digital high-pass filter with zero-phase shift
and a cut-off frequency of 200 Hz. The resulting signal is
windowed again to remove unwanted transients of the digital
high-pass filter. Finally, the remaining signal is rectified
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Fig. 1. Experimental set-up.
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Fig. 2. Principle of iteratively learning EMG-based FES.

and the mean is calculated yielding a scalar measurement
EMGv(k) of the volitional muscle activity within the last
stimulation period. The index k is the sampling index of
the control system and the sampling period Ts = 50ms
is determined by the stimulation period. The measurement
EMGv(k) is transmitted through an optically isolated USB
interface to a Laptop running Linux with RTAI real-time
extension. At the PC-side the still noisy signal EMGv(k) is
low-pass filtered by a digital first order filter with a cut-off
frequency of 0.25 Hz.

Beside the filtered volitional EMG EMGv f , the wrist-joint
angle α is recorded by mounting an inertial-measurement
unit (MTx, Xsens Technologies B.V., The Netherlands) at
the hand. This measurement is precise as long as the lower
arm is lying flat on a table.

Scilab 4.2.11 together with the HART toolbox2 are used
for controller design, real-time code generation, and in-
terfacing the hardware. In addition, the tool QRtaiLab3

is employed for signal monitoring and on-line parameter
adjustment of the generated real-time executable.

B. System calibration

During an initial calibration phase, EMGv f at rest and
during maximal voluntary contraction are determined and
stored as EMGmin

v f and EMGmax
v f , respectively. Then the min-

imal stimulation intensity pwmin, at which a visible muscle
contraction can be observed, as well as the maximal tolerated
stimulation intensity pwtol are determined. The angle αmin at
rest as well as the maximal desired angle αmax under FES
support are detected. In a last step, the necessary stimulation
intensity pwmax for generating the angle αmax is manually
assigned. The volitional EMG and the angle are normalised
(to the range [0,1]) between the min and max values yielding
the signals EMGn

v f and αn, respectively. For the stimulation
intensity, the range [pwmin,pwtol ] is mapped to the range
[0,1], yielding the normalised intensity pwn.

C. Iteratively learning EMG-based FES

The idea of an iteratively learning EMG-based FES is
depicted in Fig. 2. The patient is asked to track iteratively

1http://www.scilab.org
2http://hart.sf.net
3http://qrtailab.sf.net
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a set of N distinct EMG-levels EMGn
v f ,i = i/N, i = 1, . . . ,N,

which are equally distributed over the range (0,1]. He/she
must keep the generated volitional EMG for a certain du-
ration inside some pre-defined band. For each EMG-level,
a constant supportive stimulation intensity pwn

i, j is applied
which, is calculated for EMGn

v f ,i from a static EMGn
v f to

pwn relation that is valid during the iteration j. For the first
iteration, a linear relation between EMGn

v f and pwn is chosen
(pwn

i,1 = pwmax/pwtol · EMGn
v f ,i). For each tracked EMG-

level with FES support, the resulting steady-state wrist-joint
angle αn

i, j is stored and the deviation en
i, j from a linear

relation between EMGn
v f and αn is computed. In order

to drive these errors to zero the static relation between
EMGn

v f and pwn will be updated as follows from iteration
to iteration: pwn

i, j+1 = pwn
i, j − ken

i, j. This learning may be
stopped when the observed relation between EMGn

v f and
αn becomes almost linear. The found piecewise linear static
relation between volitional EMG and stimulation intensity
may be used in EMG-based FES afterwards.

D. Feedback EMG-based control

Feedback EMG-based FES control represents another ap-
proach to obtain a linear relation between volitional muscle
activity of the patient and the joint angle. This method is
based on the use of a control loop. The measured angle αn(k)
is fed back. The angle reference αn

r (k) is defined as follows:

α
n
r (k) = EMGn

v f (k) (1)

The use of normalised signals allows the direct assign-
ment from EMGn

v f (k) to αn
r (k). As shown in Fig. 3, a PI

(Proportional-Integral) controller is used in order to compute
the stimulation intensity pwn(k):

en(k) = α
n
r (k)−α

n(k)

pwn(k+1) = KPen(k)+KITs

k

∑
l=1

en(l)
(2)

Here, en(k) is the error between desired and real angle. The
controller parameters KP and KI are positive constants that
are chosen by trial and error in order to avoid oscillations
of the closed loop system and to maintain good tracking
performance (rise time less than 8 s). The controller was im-
plemented with an anti-windup feature [17] for the integrator
as the control signal (stimulation intensity) may saturate at
the level pwtol .

III. RESULTS

A. Iteratively learning EMG-based FES

The iteratively learning EMG-based FES was evaluated
with healthy subjects at first. To mimic a reduced muscle
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Fig. 4. Results of iteratively learning EMG-based FES with a healthy
subject: 1st-2nd EMG reference staircase → learning, 3rd-4th angle ref.
staircases → EMG-based control with fixed controller.
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FES shown in Fig. 4.

activity, the maximal allowed volition EMG during the
experiments was set to the EMG activity measured during
20◦ wrist-joint extension (hand flat on the table corresponds
to 0◦). For one subject, Fig. 4 shows the results from
two iterations of learning followed by two iterations of
angle tracking using the found static controller relation.
The maximal wrist extension was 58◦. The updated static
relations between EMG and stimulation intensity/angle for
the learning phase are shown in Fig. 5. It can be observed
that already after two iterations of learning an almost linear
EMG–angle relation could be achieved. From 180 s on, an
angle tracking test was performed using the previously found
nonlinear EMG–stimulation intensity relation.

B. Feedback EMG-based FES

Also the feedback EMG-based FES was evaluated with
healthy subjects at first. Fig. 6 shows exemplary results of
an angle tracking test. The angular reference was a staircase
like signal. The scatter plots of normalised EMG, stimulation
intensity and measured angle in Fig. 7 clearly show that an
almost linear EMG–angle relation can be generated with the
feedback EMG-based FES approach.

C. Clinical tests

The iteratively learning EMG-based FES was applied to
stroke patients as well. Fig. 8 shows exemplary data. The first
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Fig. 7. Scatter plots of normalised EMG, stimulation intensity and
measured angle for feedback EMG-based FES trial shown in Fig. 6.

50 s, the patient was asked to track a staircase like angular
reference profile without FES support with a maximal wrist
extension of 41◦. The requested higher angles could not be
reached. Then two iterations of iteratively learning EMG-
based FES followed. The test concluded with two rounds of
angle tracking with EMG-based stimulation (using the found
EMG–stimulation intensity relation) and one round of angle
tracking without FES-support. It is interesting to notice that
an almost linear EMG–angle relation can be observed after
the learning. However, one tracking round later the subject
needs less volitional effort to produce the angle profile and
after switching off the stimulation support he is even able to
generate the angle profile completely alone.

IV. DISCUSSION AND CONCLUSIONS

The proposed methods automatically seek the stimulation
support for achieving an almost linear relation between
residual volitional muscle activity and wrist-joint angle. Both
methods require an additional measurement of the joint
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angle. The iteratively learning EMG-based FES is bound
to repetitive movements while the feedback EMG-based
FES can also be applied to free non-repetitive movements.
However, a badly tuned feedback EMG-based FES may lead
to instability and oscillations.

Preliminary results with stroke patients indicate that the
iteratively learning EMG-based FES should not be stopped
after some iterations. Learning should always continue to
adapt for changes in spasticity, muscle tone and fatigue.
For the reported case, the muscle tone of the flexors was
probably decreasing during the experiment. As a conse-
quence, the patient could track the required angle profile
at the end with the same extensor EMG activity which
was initially not adequate. Another clinical observation is
that the maximal volitional EMG of the supported muscle
should be re-calibrated after a certain time to adapt for
improvements/deteriorations of the patient’s residual motor
control.
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