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ABSTRACT 
 

The propagation of the electrical signal in the Purkinje network is the starting point for the 

activation of the muscular cells leading to the contraction of the heart. In the computational 

models describing the electrical activity of the ventricle is therefore important to account for the 

Purkinje fibers. Until now, the inclusion of such fibers has been obtained by using surrogates 

such as space-dependent conduction properties or by generating a network based only on an a 

priori anatomical knowledge. Aim of this work was to propose a new method for the generation 

of the Purkinje network by using clinical measures of the activation times on the endocardium 

allowing to generate a patient-specific network. To assess the accuracy of the proposed method 

we compared its accuracy with that of other strategies proposed so far in the literature for three 

cases with a normal electrical propagation. The results showed that with the proposed method we 

were able to reduce the errors by at least 25% with respect to the best of the other strategies. This 

highlighted the reliability of the proposed method and the importance of including a patient-

specific Purkinje network in computational models. 

 

Keywords: Purkinje fibers, computational methods, activation times, Eikonal equation. 

 

 

NON-STANDARD ABBREVIATIONS AND ACRONYMS 

 

PF Purkinje fibers, CCS Cardiac conduction system, PMJ Purkinje muscular junctions, MRI 

Magnetic Resonance Imaging, 3D Three-dimensional, AV Atrioventricular, WPW Wolff–

Parkinson–White. 

 

 

INTRODUCTION 

 

The Purkinje fibers (PF) represent the peripheral part of the cardiac conduction system (CCS) 

and are located just beneath the endocardium. Their main role consists in providing rapid and 

coordinate activation of the ventricular myocardium [8], an essential feature for the correct 

pumping of the blood flow into the arteries. PF are electrically connected to the ventricular 

muscle only at certain insertion sites, called Purkinje muscle junctions (PMJ) [15]. From these 

sites the depolarization wave enters the heart muscle, allowing the ventricular excitation and 

contraction [2].  

The mathematical and computational models of cardiac electrophysiology allow to compute 

virtually the electrical activity in the ventricles [11]. The inclusion of CCS and in particular of 

the PF in such models is therefore essential to simulate the ventricular activation. While the 

anatomical reconstruction of the heart geometry is possible thanks to the modern imaging 

techniques (such as MRI and CT), radiological images do not allow to identify and reconstruct 

the PF. 

Until now, the inclusion of the PF in the computational models has been obtained either by 

means of surrogates such as the definition of space-dependent conduction properties [20], or by 

means of the automatic generation of the Purkinje network based on a fractal law and on an a 

priori anatomical knowledge [1,9,18].  

In this work, we proposed a method for the generation of a patient-specific Purkinje network 

driven by clinical measures of the activation times on the endocardium of the left ventricle in a 

normal propagation. At the best of the authors' knowledge, this is the first attempt to use clinical 

data for the explicit construction of the PF by means of computational models.  

To assess the accuracy of the proposed method, we considered clinical measures of three 

subjects characterized by a normal propagation and we compared the results obtained by our 

method with those of other strategies proposed so far in the literature.  

The purpose of this study was twofold: i) To show the applicability and reliability of our method 

for the generation of patient-specific Purkinje networks in real cases; ii) To prove the essential 
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role of a patient-specific Purkinje network in computational models to obtain an accurate 

description of the normal activation in the left ventricle. 

 

 

METHODS 

 

Patient-specific clinical measurements 

Acquisition of imaging data and reconstruction of the endocardium geometry 

We considered three subjects characterized by a normal electrical propagation. Firstly, they 

underwent Magnetic Resonance Imaging (MRI). Using a 1.5 Tesla MRI Unit (Magnetom 

Avanto, Siemens Medical Systems, Erlangen, Germany) and a 8 channel phased array torso coil, 

a non-contrast enhanced three-dimensional (3D) whole heart sequence, cardiac and respiratory 

gated, was performed using the following parameters: voxel resolution of 1.7x1.6x1.3 mm; TR 

(repetition Time)=269.46; TE (EchoTime)=1.46 ms; flip angle=90°; slice thickness=1.3 mm 

with 104 slices per single slab; acquisition matrix=256×173.  

Then, the segmented images of the left ventricle endocardium have been obtained by processing 

the MRI study using the EnSite Verismo™ Segmentation Tool (EnSite Verismo 2.0.1), which is 

based on a threshold method. Later, the segmented images have been used to build the 

computational domains in view of the numerical simulations and have been imported into the 

EnSite NavX system to acquire the activation times.  

 

Acquisition of electrical data 

The activation times were measured on the endocardium of the left ventricle in the three subjects 

by means of the Ensite NavX system. This is capable of accurately locating any electrode 

catheter within the 3D navigation field, allowing the reconstruction of the mapping of the 

activation times. As mentioned earlier, in this work we considered only the activation times 

related to subjects with a normal electrical propagation. 

The study has been approved by the ethic committee of Azienda Provinciale per i Servizi 

Sanitari, Trento, Italy. The subjects have been previously informed and gave their consent both 

for the invasive clinical procedure and for the successive mathematical elaborations. 

 

Patient-specific generation of the Purkinje fibers network 
The normal electrical activity of the left ventricle is characterized by a front propagating through 

the Purkinje network and then within the heart muscle. In particular, in the normal propagation 

the front starts from the atrioventricular (AV) node and propagates in the proximal part of the PF 

with a velocity in the range 3-4 m/s [13]. At the mid-antero-septal level, located on the 

endocardium, the PF start to be connected with the ventricular muscle cells through the PMJ. In 

this way, the electrical signal enters the ventricle muscle and propagates in the whole 

myocardium, with a reduced conduction velocity in the range 0.3-0.8 m/s [13].  

 

General overview of the algorithm 

The starting point of our method was the use of a fractal law to generate a tentative Purkinje 

network as proposed in [1,9,18]. Then, such a network has been corrected by using the data of 

the normal activation acquired with the EnSite NavX system, allowing to obtain a patient-

specific network. In particular, our method can be summarized in the following steps: 

 

Generation of the patient-specific Purkinje network using data of a normal propagation and 

computation of the activation times in the left ventricle:  

1) Manually design of the bundle of His and of the main bundle branches; 

2) Generation of a tentative Purkinje network without using the clinical data; 

3) Computation of the activation times in the tentative network and in particular at the PMJ; 

4) Computation of the activation times on the endocardium of the left ventricle by using as input 

the activation times at the tentative PMJ computed at step 3; 

5) Comparison between the activation times computed at step 4 and the measured data; 

http://en.wikipedia.org/wiki/Thresholding_(image_processing)
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6) Generation of the patient-specific Purkinje network as a correction of the tentative one, driven 

by the discrepancies between the computed and the measured data obtained at step 5; 

7) Computation of the activation times in the patient-specific network and in particular at the 

PMJ; 

8) Computation of the activation times in the endocardium (or in whole left ventricle) by using 

as input the activation times at PMJ computed at step 7. 

 

We notice that the algorithm for the patient-specific Purkinje network generation involves only 

steps from 1 to 6. Here we have added also steps 7 and 8 for the computation of activation times 

in the endocardium or even in the whole left ventricle, since this was the final goal of the PF 

generation. We also observe that at steps 3-4 and 7-8 we firstly solved the network solely (steps 

3,7), and then we used this solution evaluated at the PMJ as sources for the computation of the 

muscular activation (steps 4,8). This is an explicit solution strategy, since it does not account for 

the feedback of the muscular activation on the Purkinje network. This choice was justified by the 

fact that for a normal electrical activity the propagation in the PF are not influenced by the 

muscular propagation.  

 

Modeling the electrical activity 

We illustrate now the mathematical models used to compute the activation times (steps 3,4,7,8 in 

our algorithm). One of the most widely used models for the description of the electrical activity 

in the myocardium is the so-called bidomain equation, obtained by considering a propagation 

both in the extra- and in the intra-cellular spaces [12,24,7] . However, if one is interested only in 

the activation times, then the simpler Eikonal equation could be considered [10,5]. This is a 

steady model which allows to recover for any point of the computational domain the activation 

time at which the potential reaches the value (Wr+Wp)/2, where Wr is the minimum of the 

potential and Wp the value reached at the plateau. This simple model has been often used for 

clinical applications, see for example the recent work [22]. 

As observed, the patient-specific clinical data were available only on the endocardium. For this 

reason, in view of the comparison between computed and measured data at step 5 of our 

algorithm, we needed to know the computed activation times only on the endocardium. Then, we 

decided to consider the mathematical model for the electrical propagation only on the 

endocardium (and not in the whole myocardum) given by the isotropic version of the Eikonal 

model, which reads 

 

Ve | ue | = 1   xΩe,       (1) 

ue(x) = ue,0(x)   xΓe, 

 

where ue(x) is the unknown activation time at a point of the endocardium with coordinates x, Ωe 

is the computational domain, Γe is the set of points generating the front, that is the PMJ, ue,0(x) is 

the value of the activation times in Γe, and Ve is the velocity of the front, tuned in the range 0.3-

0.8 m/s maximizing the agreement with the clinical measures. We observe that Ωe is a surface, 

so that the gradient has to be intended as a the projection of the gradient onto the tangential plane 

at x.  

For the solution of equation (1) at step 4 of the algorithm, one needs to know the source term ue,0 

that represents the activation times at the PMJ. To obtain such values, the activation times in the 

PF tentative network must be known (step 3). Analogously, to compute the final electrical 

activity (step 8), one needs to know the activation times in the patient-specific network to 

provide the source terms to equation (1) (step 7).  Therefore, we needed to introduce a 

mathematical model to compute the activation times also in a Purkinje network. With this aim, 

we considered again an isotropic Eikonal model, more precisely 

 

 

Vp |∂up/∂s | = 1   xΩp,       (2) 

up(x) = up,0(x)     xΓp, 
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where up(x) is the unknown activation time at the point of the network with coordinates x, Ωp is 

the computational domain representing the network, Γp is set of points generating the front (in 

the normal propagation the AV node), up,0(x) represents the activation times in Γp, and Vp is the 

velocity of the front, supposed to be constant and tuned in the range 3-4 m/s, maximizing the 

agreement with the clinical measures. We observe that the computational domain Ωp in this case 

is a line, so that the derivatives have to be intended as directed along the tangent s. 

For the numerical solution of the Eikonal equations (1) and (2) we considered the Fast Marching 

Method [21], implemented in the software VMTK (www.vmtk.org).  

 

Details of the patient-specific generation of the Purkinje fibers network 

We provide here a few details of the algorithm described above.  

At step 1, the bundle of His and the main bundle branches were manually designed, accordingly 

to anatomical a priori knowledge [1,18]. At step 2 a tentative network as a fractal tree was 

generated. The growing process followed the 'Y' production rule, similar to that implemented in 

[1,9,18], where the number of levels of the tree, the same for each branch, was determined a 

priori. In our approach, at each level of the generation, we identified active branches and leaves. 

An active branch can generate other branches, whereas leaves terminate at their end points which 

are identified with the PMJ. In this way, the branches could be characterized by a different 

number of levels. To ensure a correct distribution of the PMJ on the endocardium, we described 

the process of generation of a leaf by means of a Bernoullian probability, where the probability 

to generate a leaf, p, is a function of the tree level. In particular, p is small for the first levels and 

grows up for the successive levels. To obtain a more realistic pattern of PF, we described the 

lengths Ll and Lr  and the branching angle α of the new fibers by means of Gaussian variables, 

with mean value 4.0±0.3 mm for the lengths and 60±1,8
0
 for the angle [18], see Figure 1.  

 

Figure 1 

 
Fig. 1 Schematic representation of the generation of two new branches in the Purkinje network. Ll, Lr and α indicate 

Gaussian variables 

 

The active branches stopped to generate new branches when one or several of the following 

conditions were satisfied:  

 

i) The active branches intersected other branches;  

 

ii) The active branches reached the zone identified with the upper areas of the mid-antero septum 

(this region being not reached by the Purkinje network [19]);  

 

iii) The maximum number of levels defined by the user has been reached.   

 

This procedure allowed to generate a network which in what follows has been referred to as 

tentative network.  

The activation times on the PMJ were then computed by solving the 1D Eikonal equation (2) in 

the tentative network (step 3). These activation times were then used as sources for the Eikonal 

problem (1) on the endocardium (step 4), allowing to obtain a tentative activation map which 

was then compared with the experimental data (step 5).  

The algorithm passed then to the final stage, represented by step 6 and consisting in adapting the 

tentative network to the clinical data by using the discrepancies computed at step 5. Accordingly, 

the leaves of the network were moved or deleted in order to satisfy the data. This is a completely 

new step with respect to previous works in the generation of PF and allowed to obtain a patient-

specific Purkinje network. In particular, for each point xj where the measures were available, we 

defined its region of influence as the set Sj of PMJ which were possible sources determining the 

activation time tj in xj when solving a 2D Eikonal equation (1). In other words, PMJ not 

belonging to Sj did not contribute in determining the solution in xj. To do this, we proceeded as 

follows: 



 

6 

 

i) We solved a 2D backward Eikonal problem using the measures as sources; 

 

ii) Given a PMJ pi located in yi, we concluded that pi belonged to Sj if it has been activated at 

step i) by the source located in xj.  

 

This allowed to associate to any pi an activation time τ, solution of the backward problem, which 

is nothing but the boundary condition which would guarantee that pi activated the point xj at time 

tj (see Figure 2A). We then compared the activation time τ in PMJ pi obtained by solving the 

backward problem with τi obtained by solving the network. If these two values were in 

agreement, we conclude that PMJ pi is able to activate the measure located in xj. Otherwise, we 

moved pi in order to minimize the mismatch between τ and τi (see Figure 2B). The code for the 

implementation of this algorithm has been written in C++ using the VTK 5.8 library. 

 

Figure 2 
 

Fig. 2 A) The first backward signal reaching PMJ pi starts from measure xj so that pi belongs to the region of influence 

Sj; B) PMJ pi is then moved in order to maximize the accordance between the activation time τi computed by the 

network and that predicted by the backward Eikonal solution τ 

 

Models for a computational comparison  

In order to assess the accuracy of the numerical solutions obtained with our strategy (referred in 

what follows to as model D), we compared its performance with that of other three scenarios 

used so far in the literature:  

 

i) Absence of the Purkinje network and localization of a single source for problem (1) at the apex 

of the ventricle [16] (model A);  

 

ii) Absence of the network and localization of the sources for problem (1) driven by the clinical 

measurements [20] (model B). In particular, we identified as source the points with the smallest 

measured activation times; 

 

iii) Presence of the tentative network [1,9,18] (only steps 1,2,3,4 of our algorithm, model C).  

 

 

RESULTS 

 

In this section, we show the numerical results related to the normal propagation of the three 

subjects, referred in what follows to as subject 1, 2 and 3. The goal is to compare the measured 

activation times with those computed by the four scenarios considered for the comparison. Given 

a point on the endocardium where a measure was available, we say that the related datum has 

been satisfied by one of the four models if the difference in activation time between the datum 

and the computed value was less than 20%. 

Our starting points were the geometries reconstructed from the MRI data and the measured 

activation times in the three subjects. We acquired such measures in 186 points for subject 1, in 

156 points for subject 2 and in 284 points for subject 3.  

Since we used a probabilistic model to generate the Purkinje tentative network, each run of our 

method produced a different outcome. For this reason, we ran the algorithm 20 times for subject, 

generating 20 tentative and 20 patient-specific networks. In Table 1, first two rows, we reported 

the mean number and the standard deviation of branches and PMJ in the generated networks. In 

Figures 3, for each of the subjects, at the top we indicated the localization of the sources for 

models A and B, whereas at the bottom we reported a selected network generated by our 

algorithm for each case. We observe that in all the three subjects by using model D no PMJ were 

generated at the base of the ventricle, as expected from the anatomical knowledge. Accordingly, 

the network generated in such a region was deleted. Therefore, for our method one does not need 
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to decide a priori which region of the base should be not reachable by the network (as needed 

when using model C) since the method itself is able to identify such a region. 

 

Table 1 

 

Figure 3 

 
Fig. 3 Subjects 1, 2 and 3. Top. Localization of the sources in the models without PF: Model A (left) and model B 

(right). Bottom. Tentative (model C, left) and patient-specific (model D, right) Purkinje networks generated by our 

algorithm. In yellow we depicted the PMJ. For models C and D we depicted one selected case over the 20 simulated 

 

Then, we solved the Eikonal problem (1) on the endocardium, obtaining the activation times for 

all the four models, reported in Figures 4, 5 and 6. For models C and D we depicted one selected 

case over the 20 simulated. The velocities of conduction in the network (Vp) and on the 

endocardium (Ve) have been tuned in order to maximize the number of satisfied points and it has 

been kept constant in the 20 simulations of models C and D. We reported such quantities in 

Table 1, third and fourth rows. We observe that for models C and D such values fell into the 

physiological ranges (3-4 m/s for Vp and 0.3-0.8 m/s for Ve). Regarding models A and B, the 

absence of the PF network has been supplied by choosing a conduction velocity Ve which could 

change over the domain. In particular, we chose two different values of such a velocity, one in 

the region of the endocardium which is activated by the PF, and another one in the region 

characterized by a purely muscular activation (that is at the base of the ventricle and at the upper 

areas of the mid-antero septum). From Table 1 we observe that for models A and B we let Ve 

assume values outside the muscular physiological range (but consistent with the conduction 

velocity in the network) to account for the PF propagation.  

In Figures 4, 5 and 6 we also plotted the measured activation times (represented with squares) 

and the absolute error (that is the distance between computed and measured data) at each point. 

We observe an excellent qualitative agreement between measured and computed data obtained 

with our method, whereas a comparable accuracy was obtained by models B and D. Model A 

seemed to feature the poorest accuracy among the four models. 

In order to quantify the accuracy of the different models, we computed the percentage of 

satisfied points and the average relative error in activation time between the measures and the 

prediction by the four models in each measurement point. We reported such values in Table 2, 

which confirmed the better accuracy of the model with a patient-specific Purkinje network 

(model D) with respect to the other models.  

 

Table 2 

 

Figure 4 

 
Fig. 4 Computed activation times and errors for the four models. Top left, model A. Top right, model B. Bottom left, 

model C. Bottom right, model D. For each case, in the upper row we depicted the computed activation times (the 

measured data are plotted with squares), and in the lower row we represented the absolute errors. For models C and D 

we depicted one selected case over the 20 simulated. Subject 1, normal activation 

 

Figure 5 
 

Fig. 5 Computed activation times and errors for the four models. Top left, model A. Top right, model B. Bottom left, 

model C. Bottom right, model D. For each case, in the upper row we depicted the computed activation times (the 

measured data are plotted with squares), and in the lower row we represented the absolute errors. For models C and D 

we depicted one selected case over the 20 simulated. Subject 2, normal activation 

 

Figure 6 
 

Fig. 6. Computed activation times and errors for the four scenarios. Top left, model A. Top right, model B. Bottom 

left, model C. Bottom right, model D. For each case, in the upper row we depicted the computed activation times (the 

measured data are plotted with squares), while in the lower row we represented the absolute errors. For models C and 

D we depicted one selected case over the 20 simulated. Subject 3, normal activation 
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DISCUSSION 

 

State of the art. Mathematical models of the cardiac electrophysiology allow to compute 

virtually the electrical activity in the ventricles, providing a non-invasive tool for the study of the 

propagation of the electrical signal [11]. Despite PF have an essential function in the coordinated 

activation of the ventricles, they have been usually neglected in the computational models [20]. 

This was mainly due to the difficulty in obtaining in vivo images of the PF, which are 

excessively thin for the current clinical imaging resolution.  

A common strategy used so far to obtain significant results without generating explicitly the 

Purkinje network consisted in locating the source of the front at the apex of ventricle (model A) 

[16]. An alternative approach has been considered in [20], where the sources were localized by 

analyzing available clinical data and defining space-dependent conduction properties (model B).  

Nevertheless, accounting for the PF in ventricular computational models is essential to simulate 

the normal activation [23,17]. For this reason, some scientists have attempted to incorporate PF 

in the mathematical models by their explicit construction. Three possible alternatives have been 

proposed so far:  

 

(i) A manual procedure based on the anatomical knowledge [23,3] ;  

 

(ii) The segmentation of PF from ex vivo images [4];  

 

(iii) The construction of the Purkinje network computationally with a semi-automatic algorithm 

[1,9,18].  

 

In the latter case, the network generation was driven only by general anatomical information and 

was not patient-specific (model C). In this work we proposed to use the same approach, where 

however the construction of PF has been driven by clinical patient-specific data concerning the 

activation times on the endocardium of a normal propagation (model D). At the best of our 

knowledge, this has been the first attempt to use clinical data for the explicit construction of the 

Purkinje network by means of computational tools, allowing to obtain patient-specific networks. 

 

Discussion of the results. We applied the four models to three subjects characterized by a normal 

conduction activity (Figures 3,4,5,6 and Tables 1,2). Our results showed that the errors obtained 

with model B decreased in the three subjects by 14%, 10%, 74%, respectively, in comparisons of 

those obtained with model A, while the number of satisfied points increased by a factor 2.9, 13.0 

and 1.5, respectively. This showed that the use of clinical data could improve the accuracy of the 

numerical results when no PF are modeled.  

The same conclusion concerning the importance of using clinical data to improve the accuracy, 

holds also for the models with a Purkinje network. Indeed, the errors obtained with model D 

decreased in the three subjects by 41%, 55%, 49%, respectively, in comparisons of those 

obtained with model C, while the number of satisfied points increased by a factor 1.7, 2.5 and 

1.5, respectively. 

By comparing the performance obtained by models which exploited clinical measures (models B 

and D), we found that the inclusion of the Purkinje network is fundamental to obtain accurate 

results. Indeed, the errors obtained with model D decreased in the three subjects by 53%, 62%, 

25%, respectively, in comparisons of those obtained with model B, while the number of satisfied 

points increased by a factor 2.0, 3.0 and 1.4, respectively.  

Moreover, by comparing the accuracy of models B and C we found that such methods featured 

more or less the same accuracy. This showed that using the clinical data without modeling the 

Purkinje network or modeling the network without using the clinical data brought more or less to 

the same level of accuracy. This clearly showed the importance of using both clinical data and a 

Purkinje network to obtain accurate results by numerical simulations of a normal propagation.  

 

On the choice of considering only the endocardium to generate the patient-specific network. In 

this work we considered the activation times related to a normal ventricle propagation. In such a 
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condition the electrical signal propagates firstly on the endocardium and then into the 

myocardium starting uniquely from the PMJ. Therefore, for a normal activation the propagation 

in the myocardium does not influence that on the endocardium. As observed, to generate the 

patient-specific Purkinje network we needed to know the activation times only on the 

endocardium (step 5 of our algorithm). These facts justified our choice to solve a problem only 

on the endocardium at step 4 of our algorithm.  

 

On the choice of using the Eikonal model. Regarding the mathematical models used to compute 

the activation times (problems (1) and (2)), we considered in this work the Eikonal equation both 

for the PF and for the endocardium. In its more complex version, such equation accounts for the 

orientation of the muscular fibers and for the diffusion process characterizing the front 

(anisotropic Eikonal-Diffusion equation [14,20]). This model was proved to be a good 

approximation of the more complex bidomain one for computing the activation maps in the 

myocardium [6] and has been considered also for clinical applications [22]. 

In this work, we made two approximations for the Eikonal equation. From one hand, we 

considered the isotropic version of such a model. Indeed, as already noticed, for a normal 

activation the signal enters the ventricle at the level of the endocardium, propagating first on 

such a surface and then in the myocardium. Therefore, for a normal ventricle activation the 

propagation on the endocardium is not influenced by the muscular fibers which are located 

downstream, along the thickness of the myocardium, and not on the endocardium. This justified 

our choice of using the isotropic equation. On the other hand, we neglected the diffusion term, 

since we assumed that the diffusion process gives a small contribution with respect to the 

advection one. This was justified by noticing that PF were so dense to inhibit the diffusion to 

become relevant.  

Concerning the propagation in the PF, these two approximations (isotropy and absence of 

diffusion) were perfectly justified, due to the absence of fibers (and then of anisotropy) in the 

network, and to the high advection term Vp which dominated any diffusion process.  

 

On the versatility of the proposed method. The use of our method is independent of the model 

chosen to compute the electrical activity in the Purkinje network and in the endocardium at steps 

3 and 4. Indeed, one could consider different models, for example the anisotropic Eikonal 

equation, the monodomain or the bidomain models. Then, steps 5 and 6 would follow as in the 

described case. This shows the versatility of our method which could be used in combination 

with different electrical models depending on the required accuracy and efficiency. In particular, 

in this work we showed that for a normal propagation the use of the isotropic Eikonal equation is 

enough to provide accurate results. However, in other situations, this could not be the optimal 

choice. For example, the premature muscular propagation characterizing the Wolff–Parkinson–

White (WPW) syndrome is known to be caused by an anomalous conduction way (the bundle of 

Kent) which enters the left ventricle in an intramyocardial region. Therefore, in this case the 

signal reached the endocardium after having propagated through the myocardium through the 

muscular fibers. In such a case one should need to account for example for a 3D Eikonal model 

with anisotropy, since the muscular fibers would influence the propagation on the endocardium. 

This is currently under study and it will be the subject of future works. 

 

 

CONCLUSIONS 
 

In this work we proposed a method for the computation of a patient-specific Purkinje network 

starting from clinical measurements of a normal electrical propagation, to be used to improve the 

computational models for the computation of the electrical activity in the left ventricle. The main 

contributions of the present work are summarized in what follows: 

 

- We showed, for the first time, the feasibility of using clinical measurements of the activation 

times on the endocardium to drive the Purkinje network generation by means of computational 

tools, allowing to recover patient-specific networks; 
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- We showed an improvement of the accuracy in the case of a normal propagation when patient-

specific measures were used to drive the simulation, both in the absence and in the presence of a 

Purkinje network; 

 

- We showed the importance of generating a patient-specific Purkinje network to recover an 

accurate electrical activation on the endocardium for a normal propagation, when clinical 

measures are available; 

 

- We showed that the simple isotropic Eikonal model solved only on the endocardium was 

enough to describe accurately the normal propagation on such a surface. 

 

These conclusions show us that the proposed method is able to provide an effective tool to 

improve the accuracy in the computation of the normal electrical activity of the left ventricle. 

The next step we are working on is the adaptation of such a method to the description of 

pathological cases such as WPW.  
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      model A     model B     model C     model D 

 # branches X X 1977±42 1724±46 

SUBJECT  1 # PMJ X X 494±13 239±10 

 Vp (m/s) X X 3.9 3.9 

 Ve (m/s) 2.4/0.8 2.4/0.8 0.6 0.6 

      

 # branches X X 1382±30 1218±51 

SUBJECT 2 # PMJ X X 343±12 179±39 

 Vp (m/s) X X 3.9 3.9 

 Ve (m/s) 2.4/0.8 2.4/0.8 0.6 0.6 

 

 

SUBJECT 3 

 

# branches 

# PMJ 

Vp (m/s) 

Ve (m/s) 

 

X 

X 

X 

2.3/0.8 

 

X 

X 

X 

1.6/0.8 

 

2521±102 

611±34 

3.2 

0.4 

 

2149±100 

240±26 

3.2 

0.4 

 
Table 1. Number of branches and of PMJ of the networks generated by models C and D, and estimated 

conduction velocities in the network (Vp) and on the endocardium (Ve). For Ve in models A and B the first value 

refers to the endocardium excluding the base of the ventricle and the upper areas of the septum, while the 

second one refers to the base of the ventricle and the upper areas of the mid-antero septum. For models C and D 

the results have to be intended as the average over the 20 simulations 
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  SATISFIED POINTS 

(%) 
MEAN RELATIVE 

ERROR (%) 

 

 

 

 

SUBJECT 1 

 

model A 

 

model B 

 

model C 

 

model D 

 

 

11.2 

 

32.8 

 

39.9±2.3 

 

66.7±1.5 

 

50.0±5.5 

 

43.0±6.3 

 

33.9±6.8 

 

19.9±5.3 

 

 

 

 

SUBJECT 2 

 

model A 

 

model B 

 

model C 

 

model D 

 

 

1.6 

 

20.8 

 

25.3±3.9 

 

63.1±2.4 

 

83.8±12.4 

 

75.5±9.0 

 

63.9±8.6 

 

28.6±6.0 

 

 

 

 

SUBJECT 3 

 

model A 

 

model B 

 

model C 

 

model D 

 

 

31.7 

 

47.1 

 

43.3±4.5 

 

64.1±4.1 

 

103.4±12.3 

 

26.7±4.9 

 

39.1±5.5 

 

20.1±4.6 

 
Table 2. Percentage of satisfied points (that is characterized by an error less than 20%) and mean relative error 

for the three cases in the four scenarios. For models C and D the results have to be intended as the average over 

the 20 simulations 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 

 

 

 
 



 

17 

FIGURE 4 
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FIGURE 5 
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FIGURE 6 

 

 


