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Summary. This paper is devoted to the development of a statistical framework for air quality
assessment at country level and for the evaluation of the ambient population exposure and risk
with respect to airborne pollutants. The framework is based on a dynamic coregionalization
model which copes with the data complexity and is able to provide high resolution multipollutant
dynamic maps. Air quality indicators based on latent variables, exposure indicators and risk
indicators are defined at different aggregation levels in space and time and they are evaluated,
uncertainty included, on observed air quality data for Scotland for 2009.
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1. Introduction

During the last decades, outdoor air pollution received great attention as one of the main
health threats in urban areas, where most of the pollutant sources are located and where
pollutant concentration is usually high. Indeed, the air quality problem has been addressed
within many research areas, bringing insights into the pollutants’ life-cycle and their im-
pact on human health (see Nicolopoulou-Stamati (2005)). Nevertheless, many aspects still
deserve to be deepened and new methodologies are needed to answer new complex ques-
tions about air quality. The air quality problem is complex in nature due to its typical
spatial scale in the order of many kilometers, and to its interaction with the environment
and the anthroposphere. Perhaps, the main complication arises from the way airborne pol-
lutants are measured in the field. The high economic costs of installation and maintenance
of monitoring networks usually prevent pollutants from being measured with the adequate
spatial resolution, resulting in monitoring stations mainly located in critical areas where
pollutant concentration and population density are expected to be high. Although this is
reasonable from the standpoint of prevention, it may represent a problem when air quality
has to be assessed for non-monitored areas. Remote sensing data, characterized by a homo-
geneous spatial coverage, can mitigate this issue though they must be carefully calibrated
with respect to ground-level measurements but may suffer from a high missing data rate
(see Fassò and Finazzi (2011)). Alternatively, the approach of Diggle et al. (2010) can be
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adopted to jointly model the observed pollutant concentration and the sampling location
under preferential sampling.

Another problem related with air quality is how air quality is assessed for large regions,
potentially countries. In a way, air quality assessment is the process of deriving a small
set of values, reflecting air quality, by analyzing the raw measurements collected by the
monitoring networks. When the sets of pollutants measured at different monitoring stations
are different, it is not always clear how to define daily and yearly air quality indicators for
the whole region or how to evaluate their uncertainty. Moreover, it is not straightforward
to compare across years when in each year, the structure of the monitoring network (sites
included) and the quantity of missing data differ.

Finally, and more importantly, being able to assess air quality does not mean being able
to assess the potential impact of air pollution on population health. Indeed, the ultimate
role of air quality assessment should be, on the one hand, to evaluate whether any actions
undertaken to improve air quality have been successful or not (see Scott (2007)), and on
the other, to provide real-time and long-term population risk and exposure estimation.
The measures of risk and exposure are used as a basis for epidemiological studies, where
respiratory hospital admissions and possibly other disease rates are correlated with pollutant
exposure (see Lee et al. (2009)).

Note that, in this work, the focus will be on the so called ambient exposure rather than
on the personal exposure. A review of ambient exposure estimation methods can be found
in Jerret et al. (2005) though limited to the intraurban case. A good example of personal
exposure estimation, on the other hand, can be found in Zidek et al. (2007). Although
not impossible, however, it would be impractical to extend the personal exposure approach
from city-size to country-size regions. On the contrary, we aim to provide high resolution
ambient exposure maps at the country level, where the exposure is directly represented by
the pollutant concentration measured by the monitoring stations. Aware that this may
introduce an ecological bias, we point out that the current legislation in terms of pollutant
exposure is based on temporal averages of the measured pollutant concentration at the
monitoring stations.

The above mentioned aspects related to air quality have usually been considered sepa-
rately. The main aim of this work is to provide a statistical framework where those aspects
can be addressed in a unified way and to provide a set of statistical tools that environmental
agencies can adopt in order to handle the current high profile topics of air pollution and
health impact, at the country level and with respect to the air quality legislation in force.
The framework should be based on a multivariate space-time statistical model, general
enough to account for the complex data structure related with the number of pollutants
and the way they are measured in space and time. The model itself should be flexible
enough to provide results and the respective uncertainty at different levels of aggregation
in space and time. The estimation procedures must be stable and efficient both when large
datasets are considered and when the datasets are characterized by a high missing data rate
and heterotopicity (variables observed at non-collocated sites).

The rest of the paper is organized as follows. Section 2 of this paper is dedicated
to the Dynamic Coregionalization Model (DCM) introduced by Fassò and Finazzi (2011).
Parameter estimation and space-time pollutant concentration mapping are discussed for
multivariate data observed in a heterotopic configuration. In Section 3, the problem of
defining aggregated air quality indicators for state-size regions is introduced and a model
derived from the DCM is considered. Exposure and risk assessment indicators based on
coupling population spatial distribution and model outputs are defined in Section 4. As an
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application, air quality data for 2009 collected over Scotland are considered in Section 5
and analyzed by means of the statistical tools developed in this work.

2. The Dynamic Coregionalization Model

Hierarchical models represent a useful statistical approach for the analysis of environmental
data and they have been applied profitably both in frequentist and Bayesian contexts.
Examples can be found in Banerjee et al. (2004) and Cressie and Wikle (2011) for the
univariate and the multivariate case. The Dynamic Coregionalization Model is a hierarchical
multivariate space-time model based on latent variables introduced by Fassò and Finazzi
(2011). Let y(s, t) = (y1 (s, t) , ..., yq (s, t)) be the q−dimensional data response vector at
the spatial location s ∈ D ⊂ R2 and at time t ∈ N+. The general form of the model is the
following:

y(s, t) = X (s, t)β+Kz(t) + γ $ u(s, t) + δ $w(s, t) + ε(s, t) (1)

where X (s, t) is a matrix of known covariates and β =
(
β′
1, ...,β

′
q

)′
is a vector of global coef-

ficients. The p−dimensional latent temporal state z(t) = (z1(t), ..., zp(t))
′ has the Markovian

dynamics
z(t) = Gz(t− 1) + η(t) (2)

with G a stable transition matrix and η ∼ N(0,Ση). The q × p matrix K is the loading
matrix of known coefficients. The latent spatial component is modeled by both u(s, t) =
(u1(s, t), ..., uq(s, t)) and w(s, t) = (w1(s, t), ..., wq(s, t)) which are i.i.d. over time. For each
fixed t, ui(s, t), 1 ≤ i ≤ q is a latent zero mean Gaussian process with variance-covariance
matrix function Γi = cov (ui (s, t) , ui (s′, t)) = ρi (h,θi), where ρi is a valid correlation
function parametrized by θi and h = ‖s− s′‖ is the Euclidean distance between s and s′.
On the other hand, w(s, t) is described by a q-dimensional linear coregionalization model
(LCM) of c components

w(s, t) =
c∑

j=1

wj(s, t) (3)

where each wj(s, t), 1 ≤ j ≤ c is a latent zero-mean Gaussian process with covariance and

cross-covariance matrix function ΓC
j = cov

(
wj

i (s, t) , w
j
i′ (s

′, t)
)
= Vjρj

(
h,θC

j

)
, 1 ≤ i, i

′ ≤
q, 1 ≤ j ≤ c. Each Vj is a correlation matrix and each ρj is, again, a valid correlation
function. The γ = (γ1, ..., γq) and δ = (δ1, ..., δq) are vectors of scale parameters and $ is the
Hadamard product. Finally, ε(s, t) = (ε1(s, t), ..., εq(s, t)) is the measurement error which
is assumed white-noise in space and time. In particular, εi(s, t) ∼ N(0,σ2

ε,i), 1 ≤ i ≤ q.
The parameter set to be estimated is

Ψ =
{
β,γ, δ,σ2

ε;G ,Ση;θ;θ
C ,V

}
(4)

where σ2
ε =

(
σ2
ε,1, ...,σ

2
ε,q

)′
, θ =

(
θ′
1, ...,θ

′
q

)′
, θC =

(
(θC

1 )
′, ..., (θC

c )
′)′ and V = {V1, ...,Vc}.

It should be noted that the main difference between u(s, t) and w(s, t) is that each
ui(s, t), 1 ≤ i ≤ q, is characterized by its own correlation function ρi (h,θi) while the LCM
imposes, for each of the c components, a unique correlation function across variables. It
can be said that u(s, t) is the direct component while w(s, t) is the interaction component.
Although the model can be estimated with both the components included, preliminary
studies suggest that, when real data are considered, it is important to choose one component
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or the other depending on the spatial correlation structure of the data. Indeed, the LCM
should be included solely when data are known to be spatially cross-correlated while the
direct component should be considered solely when the correlation functions describing the
q variables are very different. In this latter case, it is still worthwhile to consider the model
in its multivariate form since the q variables may be temporally cross-correlated. Finally, if
the flexibility of (1) has to be increased, a version of the DCM with spatiotemporal varying
coefficients can be considered as detailed in Finazzi and Fassò (2011).

The matrix Y = Y (S, T ) =
(
Y (S1, T )′ , ...,Y (Sq, T )′

)′
, is the N ×T matrix of all the

observations collected at S = {S1, ...,Sq} and time T = {1, ..., T}, with Si the collection of
ni locations where the variable yi is observed and N =

∑q
i=1 ni. The maximum-likelihood

(ML) estimate of Ψ is obtained by the expectation-maximization (EM) algorithm as de-
scribed in Fassò and Finazzi (2011), mostly in closed form with exception of the parameters
θ, θC and V. An approximate closed form solution for V is given in the same work. The
whole estimation procedure has been proven to be stable even when large datasets are
considered.

Let Ψ̂ be the ML estimate of Ψ, then the concentration of the i− th pollutant at a new
set of sites S0 )⊂S and time t ∈ T is evaluated by means of a plug-in approach as

ŷi (S0, t) = Xi (S0, t) β̂i +Kiz
T (t) + γ̂iu

T
i (S0, t) + δ̂iw

T
i (S0, t) (5)

where
{
β̂i, γ̂i, δ̂i

}
∈ Ψ̂, zT (t) = EΨ̂ (z(t) | Y ) is the Kalman smoother output, uT

i (S0, t) =

EΨ̂ (ui (S0, t) | Y ) and wT
i (S0, t) = EΨ̂ (wi (S0, t) | Y ) are the estimated latent spatial vari-

ables, Xi (S0, t) is a matrix of covariates and Ki is again a loading matrix. Note that the
Kalman smoother provides a fast algorithm for the evaluation of EΨ̂ (z(t) | Y ) using the
state-space representation of model (1) (see, for instance Shumway and Stoffer (2006)). On
the other hand, the conditional expectations of the latent spatial variables with respect
to the observed data are evaluated through the usual formulas of the multivariate normal
distribution adapted for the missing data case as detailed in Fassò et al. (2009).

The spatial prediction variance-covariance matrix of ŷi (S0, t) is given by

Σŷi (S0, t) = K ′
iP

T (t)Ki + Ai(S0, t) (6)

where PT (t) is the estimated variance-covariance matrix of zT (t) provided by the Kalman
smoother and Ai(S0, t) is the sub matrix of the co-kriging variance-covariance matrix A(S0∪
S, t) related to the i− th pollutant and the set of sites S0.

If the sites in S0 cover the whole region D as a fine regular grid, we call ŷi (S0, t) a map
and the ordered collection

Ŷi (S0) = {ŷi (S0, 1) , ..., ŷi (S0, T )} (7)

a dynamic map for the i− th pollutant. If, instead of the set of sites S0, a tessellation B of
the region D is considered, the change of support problem (see Gotway and Young (2002))
must be addressed and

ŷi (B, t) = EΨ̂

(
1

|B|

∫

s∈B
yi (s) ds | Y

)
(8)

must be evaluated for each block B ∈ B. However, if the blocks in B are square pixels
whose side length is small compared to the monitoring network site intra-distance, then
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ŷi (B, t) can be replaced by ŷi (s∗, t), with s∗ the centre of the pixel B. In what follows,
the dependence on the estimated parameter set Ψ̂ will be dropped in order to simplify the
notation.

It must be noted that the dynamic map carries most of the information about the tem-
poral and the spatial dynamics of the ground level pollutant concentration. However, the
amount of information is huge and it is rarely useful to decision makers. The following
sections describe how aggregate information (uncertainty included) can be derived by con-
sidering a different version of the DCM and how dynamic maps can be analyzed in order
to evaluate population exposure and risk.

3. Air quality indicators

When environmental space-time data are considered, aggregation can be applied, of course,
either over space or time. Although, from a mathematical point of view, both aggregations
are equivalent, obtaining aggregated results over time is usually straightforward with respect
to spatial aggregation. This is mainly due to the fact that environmental data are collected
at regular time steps while the spatial sampling locations are irregularly sparse over the
region. Moreover, while the temporal sampling frequency is usually appropriate with respect
to the temporal dynamics of the physical phenomenon, the sampling spatial frequency rarely
is. For these reasons, the focus of this section is the synthesis of aggregated results over
space; in particular, the problem of defining global air quality indicators with measures of
uncertainty is addressed.

3.1. Global indicators
With a global air quality indicator, we refer here to a single number able to describe the
air quality level for an entire region D at a specific time t. Since pollutant concentration
measurements are never instantaneous, it is implied that the air quality level at time t is
the expected air quality level in the interval (t− 1, t].

The main role of a global air quality indicator is to provide a way to easily compare
disjoint temporal periods with respect to air quality. As already mentioned, air quality
reflects the concentration of one or more airborne pollutants. In the ideal case, all the
airborne pollutants known to have an impact on human health should be considered. In
other words, the problem is usually multivariate.

Before looking for any indicator, it is important to define what the indicator is repre-
sentative of and which properties it should have. If the region is large, defining a global
air quality indicator may be a difficult task since different areas of the region may exhibit
different pollutant concentrations due to local conditions.

When air quality is measured at different points in space, a natural choice for the
global indicator is the median of pollutant concentration at the sampling sites (see Bruno
and Cocchi (2002)). The problem of such an indicator, however, is that it may not be
representative of the the region as a whole at time t. Other statistics, such as the mean
or the maximum, suffer the same problem. A better approach based on geostatistical
modelling can be found in Lee et al. (2011), which also provides measures of uncertainty on
the evaluated air quality indicators.

A second problem is the robustness of the indicator with respect to the monitoring sites
considered in its evaluation. If the indicator is truly representative of the whole region,
then its value should not depend on the particular choice of monitoring stations. This is
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not the case if the indicator is defined as simply the mean or the median of the pollu-
tant concentrations. Considering only urban monitoring stations or only rural monitoring
stations, for example, gives very different realised indicator values. The problem becomes
more prominent when air quality has to be compared across years or across countries and
the number of monitoring stations is not constant over time, the monitoring networks are
heterogeneous and unbalanced (see Bodnar et al. (2008)) and missing data are present.

In order to solve this impasse, two points are worth mentioning. First of all, different
areas of the region are characterized by different concentration magnitudes due to, for
example, different urbanization levels. Secondly, assuming a common emission trend over
the year for all points of the region, then what really drives pollutant concentration are
meteorological conditions. Indeed, when meteorological conditions deteriorate over the
whole region (with respect to air quality), then pollutant concentrations increase with the
same trend (in a statistical sense) at each monitoring station. This can be easily seen by
evaluating the average temporal cross-correlation between sites and noting that it is positive
and far from zero.

The above considerations bring us to define a global air quality indicator which is repre-
sentative of the common variation at monitoring sites rather than of the absolute pollutant
concentrations. In other words, if the value of the global air quality indicator doubles from
time t to time t + 1, it means that (on average), the pollutant concentration doubled at
each monitoring site from its previous level. The concepts of good and bad air quality are
now relative to the average pollution level at the specific site. This reflects the fact that air
quality cannot be either bad or good in the same way over the whole region.

Now, from a statistical point of view, the air quality level is considered here as a latent
variable which manifests itself through the concentration measurements collected at the
sampling sites. Although in a different context, the same idea has been developed by Chiu
et al. (2011) in the definition of health factor indices.

In order to estimate the latent air quality level, the following model is proposed:

y(s, t) = K (s)z(t) + ε(s, t) (9)

which is a reduced and slightly different version of the model described in Section 2. The
models do not include any latent spatial variables and the matrix K is now a function
of the specific site s. For instance, K (s) can be proportional to the yearly mean pollutant
concentration at site s. The dimensionality of z(t) must be chosen carefully, usually between
either 1 or the total number of pollutants q. If the pollutants are known to be highly and
positively correlated, then z(t) can be unidimensional and the global air quality indicator
for time t can be easily defined as

I1(t) = zT (t) (10)

where zT (t) is the estimated latent state output of the Kalman smoother at time t. On
the contrary, if the pollutants are not positively correlated or each pollutant has a different
effect on population health, then it is better to rely on a q-variate z(t), in which case
each pollutant retain its own temporal trend. In this case, two possible global air quality
indicators are

I2(t) =
1

q

q∑

i=1

πi(t)z
T
i (t) (11)

I3(t) = max
i=1,...,q

πi(t)z
T
i (t) (12)
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where zTi (t) is the i − th component of the estimated latent state zT (t) output of the
Kalman smoother and πi(t) is a weight reflecting the effect on population health of the
i − th pollutant. Note that πi is time variant, allowing differing weight for the pollutants
across time.

When multiple pollutants are considered, the problem of comparing them on a common
scale arises. If the above models have to be applied, we strongly suggest to rescale each pol-
lutant with respect to a concentration level Li, 1 ≤ i ≤ q, where Li may be a specific critical
pollutant concentration threshold. This is particularly important when a unidimensional
z(t) is used to describe all the pollutants.

With regards to the uncertainty related to the above indicators, this can be evaluated by
considering the variance-covariance matrix PT (t) related to z(t). In particular, the variance
of I2(t) can be evaluated as

V ar [I2(t)] =
1

q2

q∑

i,j=1

πi(t)πj(t)pij(t) (13)

where pij(t) is the (i, j)−th element of the matrix PT (t). From z(t) | Y ∼ Nq

(
zT (t),PT (t)

)
,

a 95% confidence interval for I2(t) can be evaluated as I2(t)±1.96
√
V ar [I2(t)]. Confidence

intervals for I3(t) do not have, in general, a simple closed form but they can be easily
evaluated by considering the quantiles of Nq

(
zT (t),PT (t)

)
.

When plotted against time, the indicators I1, I2 and I3 provide an immediate view of the
air quality trend over the region considered. This allows comparison across days and years
and to test if air quality is either improving or worsening over time. From an epidemiological
point of view, however, this kind of information is not rich enough to derive conclusions
about the potential impact of pollution on population health, which is the object of the
next section.

4. Population exposure and risk assessment

Mapping pollutant concentration over space and time is important to identify critical areas
with respect to air quality. In order to evaluate the potential impact of airborne pollution
on population health, however, the spatial distribution of the population density must
also be considered. Indeed, pollutant concentrations may be high in uninhabited areas, in
which case the local impact on population health is either negligible or zero. Of course,
most air quality monitoring stations are usually located where critical levels of pollutant
concentration may be reached during the year and where the population density is high.
Nevertheless, pollutants like ozone are known to be higher in concentration in rural areas,
where population density is usually low.

It must be specified that, in this work, pollution is not related to population health in
an epidemiological way, namely by correlating pollutant concentrations with clinical data.
On the contrary, population exposure and population risk are evaluated by analyzing the
interaction between the spatial distributions of the pollutants and the population spatial
distribution d for the region D. Exposure and risk indicators are derived in order to compare
the potential (or expected) air quality impact on population health across time.
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4.1. Exposure indicator
Exposure and risk are related concepts and the respective indicators may carry the same
information. However, in particular contexts, exposure and risk might differ substantially.
In a way, the risk indicator should reflect the impact of critical (and less frequent) air quality
conditions on population health while the exposure indicator should reflects the long-term
or the mean effect.

The exposure indicator for the i− th pollutant, the block B ∈ B and the temporal frame
T̃ = {t1, ..., t2}⊂ T , 1 ≤ t1 < t2 ≤ T is defined here as:

κi

(
B, T̃

)
= ȳi(B) · d(B) (14)

where ȳi(B) = 1
t2−t1+1

∑
t∈T̃ ŷi(B, t), t ∈ T̃ , is the estimated temporal average concen-

tration of the i − th pollutant while d(B) is the time-invariant population count of block
B.

In this case we prefer to evaluate a temporally averaged indicator since, as said before,
the exposure indicator should reflects the long term effect. For instance, the set T̃ can

represent a month, a whole season or a year. If needed, the exposure indicator κi

(
B, T̃

)

can be aggregated over space in order to define the following average exposure indicator for
the region D:

κi

(
T̃
)
=

∑
B∈B κi

(
B, T̃

)

∑
B∈B d(B)

(15)

In order to evaluate how the spatial distributions of population and pollutant concen-
tration interact, an interesting picture is provided by the pollutant concentration density
evaluated with respect to population distribution. The pollutant concentration density
h(y) over the population can be evaluated by kernel smoothing of the empirical distribution
Ĥi (y) of the estimated concentration ŷi(B, t), namely

Ĥi (y) =
1

|B|
∑

B∈B:ŷi(B,t)≤y

d (B) (16)

where |B| is the number of B in B.
Similarly, for each concentration level Li related to the i− th pollutant, the time series

of the number of people receiving a ”dose” higher than Li can be evaluated as

Ĉi(t) =
∑

B∈B:ŷi(B,t)≥Li

d(B) (17)

4.2. Risk indicator
The risk indicator is defined here by considering a concentration threshold Li for the i− th
pollutant above which the impact on human health is known to be significant. The threshold
Li can be, for example, the concentration level which causes respiratory hospital admissions
to increase with respect to a baseline rate. The two risk indicators proposed are:

ri (B, t) = PΨ̂(yi(B, t) > Li) · d(B) (18)

r̃i (B) = PΨ̂

(∣∣Ť (B | Li)
∣∣ > M

)
· d(B) (19)
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where PΨ̂(yi(B, t) > Li) is the probability that the pollutant concentration yi exceeds the
Li threshold in block B and time t, while PΨ̂

(∣∣Ť (B | Li)
∣∣ > M

)
, Ť ⊂ T , is the probability

that the number of days for which Li is exceeded in block B exceeds M , with Ť (B) ⊂ T the
set of days for which the exceedance occurs. The risk indicator defined in (19) reflects the
current air quality norm, which usually prescribes a maximum number of days the pollutant
concentration can exceed a threshold L. The aggregated risk indicator over space is:

ri (t) =
∑

B∈B
ri (B, t) (20)

The risk indicator of (19) can be evaluated by noting that

∣∣Ť (B | Li)
∣∣ ∼

∑

t∈T̃

Be
(
PΨ̂(yi(B, t) > Li)

)
(21)

with Be(p) the Bernoulli distribution with parameter p. Since the sum of independent
Bernoulli distributions with varying parameter p has no simple closed formula, (21) must
be evaluated numerically. For instance, the distribution of

∣∣Ť (B | Li)
∣∣ can be evaluated by

Monte Carlo simulation.
As a final remark, it is worth noting that the exposure and risk indicators defined

above are conditioned on the specific history of the temporal frame T , in particular to the
observed covariates and the estimated latent variables u, w and z. In other words, both
indicators have to be applied only in retrospective analysis and they cannot be considered
as characteristics of a particular spatial site s ∈ D independent of time.

4.3. Exceedance probability evaluation
Assuming that the population distribution is available with the proper spatial resolution, a
key aspect in assessing risk is the evaluation of the exceedance probability PΨ̂(yi(B, t) > Li).
It should be noted that this probability involves the real pollutant concentration yi(B, t)
rather than the kriged concentration ŷi(B, t). Although PΨ̂(ŷi(B, t) > Li) could be easily
evaluated by considering the distribution of ŷi(B, t), we claim that such a probability is
too conservative. In fact, it does not take into account any model miss-specification error.
Moreover, we are also interested in evaluating a confidence interval for PΨ̂(yi(B, t) > Li),
which is not provided by the dynamic kriging. For these reasons, the following procedure
is considered:

(a) Given the model in (1), the observation matrix Y is used to estimate the model
parameter set Ψ̂;

(b) The leave-one-site-out cross-validation technique is applied and the cross-validation
residuals eΨ̂(s, t), s ∈ Si related with the i− th variable are considered;

(c) Residuals are studentized with respect to the dynamic kriging variance σ̂2
Ψ̂
, namely:

ẽΨ̂(s, t) =
eΨ̂(s, t)

σ̂Ψ̂(s, t)
; s ∈ Si, t ∈ T (22)

(d) Considering all the studentized residuals Ẽ =
{
ẽΨ̂(s, t) : s ∈ Si, t ∈ T

}
, their cumula-

tive distribution function FẼ is obtained by kernel-smoothing.
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(e) For each block B and time t, the exceedance probability is evaluated as

PΨ̂(yi(B, t) > Li) ≡ 1− FẼ

(
Li − ŷi(s∗, t)

σ̂Ψ̂(s
∗, t)

)
(23)

with ŷi(s∗, t) the kriged pollutant concentration under the estimated model with pa-
rameter set Ψ̂. The approximations ŷi(B, t) , ŷi(s∗, t) and σ̂2

Ψ̂
(B, t) , σ̂2

Ψ̂
(s∗, t) are

considered negligible since it is assumed that B - B is a fine tessellation of the region
D.

Note that the cross-validation residuals are presumed to take into account the model
miss-specification error and they are characterized by a higher variance with respect to
classical residuals. The transformation at step 3. above is not a real studentization (Cook
(1982)) since σ2

Ψ̂
(s, t) is not an estimate of the residual standard deviation σ2

e(s, t). However,

σ̂2
Ψ̂
(s, t) ∝ σ2

e(s, t) and the studentization procedure is applied here in order to homogenize
the model residuals which, on their own, are not homoscedastic with respect to space.
Indeed, the c.d.f. FẼ can be evaluated by considering all the studentized residuals provided
they are white noise both in space and time.

4.3.1. Confidence intervals
In order to evaluate if the probabilities given by (23) are reliable, we aim to provide con-
fidence intervals. Let PLi(B, t) = PΨ̂(yi(B, t) > Li), the γ-level confidence interval for
PLi(B, t) is denoted by (P1,Li(B, t), P2,Li(B, t)).

The idea here is to consider the asymptotic distribution of the estimated parameter
set Ψ̂ ∼ N(Ψ̂, I−1), with I the Fisher information matrix (see Fassò et al. (2009)), and
to sample from it in order to generate a collection of parameter sets Ψ =

(
Ψ(1), ...,Ψ(R)

)
.

For each parameter set Ψ(j), new cross-validation residuals eΨ(j)(Si, t) are evaluated and
the procedure of the previous paragraph is applied. This allows a sample of exceedance
probabilities

PΨ(B, t) =
{
PΨ(1),Li

(B, t), ..., PΨ(R),Li
(B, t)

}
(24)

from which to evaluate an approximate confidence interval to be gathered. Note that the
assumption eΨ(j) ∼ eΨ̂ can be considered in which case the computation time may be greatly
reduced by avoiding, for each Ψ(j), the leave-one-site-out procedure.

5. The Scottish case

The methodology and the statistical tools discussed in the previous sections are applied
here to Scottish air quality data for the year 2009. The air pollution standards and the
air quality objectives considered in the analysis are based on the Air Quality Standards
(Scotland) Regulations 2007 for the purpose of Local Air Quality Management. A summary
of the current standards and objectives can be found in DEFRA (2009).

This section is organized as follows. Paragraph 5.1 describes the data considered in
terms of pollutants, population distribution and covariates. Paragraph 5.2 reports the
model estimation results and some examples of dynamic maps. The global air quality
indicator for Scotland is evaluated in paragraph 5.3 while the population exposure and risk
indicators are developed in paragraph 5.4.
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5.1. Data description
The data sources considered in this work are essentially three: the ground-level concen-
tration of airborne pollutants, measured by the Scottish Automatic Urban Network, the
population spatial distribution downloaded from the Oak Ridge National Laboratory and
the meteorological covariates downloaded from the NASA Global Modeling and Assimila-
tion Office. Each data source is characterized by a different spatial and temporal resolution,
as described hereafter.

5.1.1. Pollutant concentrations
The Scottish Automatic Urban Network provides hourly mean data on six main airborne
pollutants, namely nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), sulphur
dioxide (SO2) and particulate matters (PM10 and PM2.5). In this work, only the NO2, O3,
and PM10 concentration data are considered since they are measured at sufficient monitoring
stations to justify a space-time analysis. Moreover, the hourly mean data are averaged in
order to work with daily data.

For the year 2009, the number of monitoring stations is 81. Each station measures only
a subset of the three pollutants considered and missing data are possible, due to temporary
breakdowns of either the station or the single measuring instrument. Days with less than
75% hourly data (18 hours) are considered as days with missing data. The exact number
of monitoring stations for each pollutant is reported in Table 1, showing that the network
is unbalanced in the sense of Bodnar et al. (2008). The respective spatial distributions
are reported in Figure 1, from which it is clear that the monitoring stations are not evenly
distributed over Scotland as they are mainly located in the most populated area of Scotland.

For each pollutant, the average temporal cross-correlation (weighted for missing data)
between sites is reported in Table 1 and they suggest the presence of a common temporal
trend between sites. This, in turn, suggests that the global air quality indicators defined in
Section 3 can be representative of the air quality over Scotland.

5.1.2. Population distribution
The population distribution has a twofold role here. It is considered as a time-invariant
covariate and it is used to evaluate the exposure and risk indicators discussed in Section 4.
The Oak Ridge National Laboratory manages the LandScanTM ambient population count
database, currently updates to the year 2008 (see Bhaduri et al. (2007)). The database
provides 24 hours average population count over the entire world with 30”× 30” resolution
(approximately 1km × 1km). The population spatial distribution for Scotland is reported
in Figure 2a, from which it is clear that most of the population is located in the central belt
along the Glasgow-Edinburgh parallel. In what follows, it is assumed that the population
spatial distribution is error-free and constant over 2008 and 2009.

Table 1. summary statistics of the pollutant concentration data
for 2009. Mean and standard deviation expressed in µgm−3

pollutant #sites mean std missing cross
NO2 66 32.19 23.35 12.7% 0.65
O3 10 55.80 18.99 12.1% 0.71
PM10 60 16.60 8.58 16.1% 0.70
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Fig. 1. spatial distributions of the Scottish Automatic Urban Network monitoring sites for NO2, O3

and PM10. Number of sites in brackets.

5.1.3. Morphological and meteorological covariates

Pollutant concentrations are known to be related to some anthropological and meteorologi-
cal covariates due to the physical processes that drive the pollutant diffusion and advection.
Covariates can improve the mapping capabilities of the statistical model, reducing estima-
tion uncertainty and providing a better insight into the spatiotemporal pollutant dynamics.
The covariates considered in this work are population count (pop), sea level pressure (slp),
temperature (t), specific humidity (sh), wind speed (ws) and boundary layer height (blh).
Note that the population count is a good proxy of both the pollutant emissions and the
site type (urban, sub-urban and rural). The meteorological covariates are downloaded from
the NASA Global Modeling and Assimilation Office. In particular, the MERRA (Modern
Era Retrospective Analysis for Research and Applications) product (see Rienecker et al.
(2010)) is considered, which is characterized by a temporal resolution of one hour and a
spatial resolution of 2/3◦ longitude by 1/2◦ latitude. Since the pollutant concentrations are
daily averages, the meteorological covariates are also averaged over 24 hours and they are
interpolated at 30”× 30” resolution for mapping purposes.

As a final remark, we point out that we don’t claim optimality of the data sources
considered in this work. Indeed, the main aim is to provide a statistical methodology for
air quality assessment with respect to the legislation in force and to show how it can be
applied when routine air quality datasets are considered.

5.2. Model estimation and dynamic mapping
The DCM defined in (1) allows joint modeling of the space-time correlation of all the
pollutants considered. However, in order to better define the parametric structure of the
multivariate model, it is useful to first estimate as many univariate models as the number
of pollutants. In fact, the dimension q of the latent temporal state z(t), the inclusion of
either u(s, t) or w(s, t) (or both) and the number c of coregionalization components must be
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decided before estimating the model. Although models can be compared by means of cross-
validation techniques, the number of possible model parametrizations may be large and it
is useful to consider the univariate models as a guide to define the parametrization of the
multivariate model. As far as the spatial correlation structure concerns, the exponential
correlation function has been considered, namely ρi (h, θi) = exp (−h/θi) , θi ∈ R+, i ∈
{NO2, O3, PM10}

Table 2 reports the value of Ψ̂ computed by means of the EM algorithm for each of the
univariate models. Note that all the variables and the covariates are log-transformed and
standardized. Standardization helps numerical stability and allows direct comparison of the
parameter values across pollutants.

By comparing the values of the estimated β̂ parameters with respect to their standard
deviations, it can be seen that all the covariates are significant except β̂slp for NO2. It is

worth noting that, though the estimated parameters θ̂i may seem very different between
each other, their respective standard deviations are quite large. This is particularly true for
O3 which is monitored at only 10 sites. These considerations suggest that a LCM may be
appropriate for modeling the spatial latent component, since there is not enough evidence to
conclude that the θ̂i are different. On the other hand, the ĝi values are significantly different
suggesting that each pollutant should retain its own temporal dynamics, hence p = 3 for
the multivariate model. The optimal number c of coregionalization components cannot be
judged from the results of Table 2 and must be assessed through cross-validation. Cross-
validation results not reported here suggest c = 1. Table 2 also reports the cross-validation
mse (c-mse) obtained by applying the leave-one-site-out technique.

The estimated
{
β̂, σ̂2

ε, δ̂
}

for the multivariate model are reported in Table 3. The

remaining parameters are

Ĝ =




0.97 −0.02 −0.01

−0.17 0.87 0.11
0.27 0.13 0.58





Σ̂η =




0.006 0.013 0.011

0.063 −0.026
0.170





θ̂C1 = 40.99(2.44)

V̂1 =




1 −0.79(0.06) 0.71(0.05)

1 −0.61(0.09)

1





with the most relevant standard deviations in round brackets. Note that, in this case, the
parameter θ̂C1 of the spatial correlation function is common for all the pollutants considered.
The matrix V̂1 shows that the component of w(s, t) related to O3 is negatively correlated
with the components related to the other pollutants. Note also that δ̂i , 0.5 for each
pollutant, namely w(s, t) accounts for about half of the data variability. By comparing
the c-mse reported in Tables 2 and 3, the gain in terms of prediction capability for the
multivariate model can be appreciated. The reduction in the c-mse is particularly evident
for O3 which has the sparsest monitoring network and benefits more from the spatiotemporal
correlation with the other pollutants.

The maps of Figure 2 show the yearly average pollutant concentration based on the
multivariate model and evaluated through equations (5-6). The yearly averages are obtained
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from the estimated dynamic maps ŶNO2 (S0), ŶO3 (S0) and ŶPM10 (S0) back-transformed
to the original scale, with S0 given by a regular grid with spatial resolution 30”×30” within
the Scottish boundaries.

The dynamic maps come with the spatial prediction variance-covariance matrices Σŷi

defined in (6). The prediction variance, represented by the diagonal of Σŷi , can be seen as
the uncertainty on the estimated pollutant concentrations and it provides information about
reliable the estimates are. From the point of view of the decision-makers, however, both
pieces of information may not be enough to translate the analysis results into actions. For
instance, it is not clear how two sites characterized by the same average pollutant concentra-
tion but different uncertainty should be treated. The analysis and the examples reported in
the next two paragraphs show how to produce useful and immediately interpretable results
with respect to the current air quality standards.

5.3. Global air quality indicator
The yearly average maps of pollutant concentration discussed in the previous paragraph
can be used to identify (also visually) critical areas with respect to air quality. However,
they do not tell the whole story since the temporal dimension is missing. Indeed, those
maps can be considered as aggregated data in the sense that each map pixel is a temporal
average.

If the aim is to assess the daily air quality over Scotland, extracting useful information
by just looking at T · q = 365 · 3 daily maps is not feasible. In this paragraph, the global air
quality indicators defined in Section 3 are taken into account. Since NO2, O3 and PM10 are
known to have different temporal dynamics over the year, the global air quality indicator
defined in (12) is considered. With regard to the estimation of the latent temporal state
z(t), the model defined in (9) is considered with

K (S) =





ȳNO2 (SNO2 )
ȳNO2

0 0

0
ȳO3 (SO3 )

ȳO3
0

0 0
ȳPM10 (SPM10 )

ȳPM10



 (25)

where ȳi(Si) = T−1
∑T

t=1 yi(Si, t)/Fi is the average scaled pollutant concentration at the

sampling sites Si for the i−th pollutant, i ∈ {NO2, O3, PM10} while ȳi = |Si|−1 ∑
Si

ȳi(Si).
The scaling factors Fi allow the pollutants to be comparable in terms of their impact on
population health. The weights in (12) are chosen to be πi(t) ≡ 1, ∀i, t.

The UK air quality index and banding system (IBS) approved by the UK Commit-
tee on Medical Effects of Air Pollution Episodes (COMEAP) is characterized by a 1-10
index divided into four bands, namely low, moderate, high and very high. Each in-
dex value corresponds to a concentration range where the pollutant concentration can
fall when measured over a period of time ∆T . The limits of each range depend on the
particular pollutant as well as ∆T . For PM10, an index value equal to 10 corresponds
to a running 24 hour mean concentration 24hȳ(s) equal or higher to 128 µgm−3. Al-
though the data considered in this work are daily average concentrations rather than
running 24 hour means, it makes sense to consider FPM10 = 128/10 = 12.8. Note that
the division by 10 is introduced in order to keep the indicator I3 comparable with re-
spect to the index of the IBS. The scaling factor for NO2 and O3 are not immediately
available since the IBS prescribes ranges for the running 8 hour mean 8hȳ(s) for O3 and
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Fig. 2. (a) population spatial distribution - (b) yearly average NO2 concentration - (c) yearly average
O3 concentration - (d) yearly average PM10 concentration. Concentration expressed in µgm−3.
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Fig. 3. Kalman smoother output zT (t). (top) NO2 component; (middle) O3 component; (bottom)
PM10 component. Error bounds zTi (t)± 2

√
pii(t) as dashed lines.

the hourly mean 1hȳ(s) for NO2. Preliminary analysis not reported here suggests that

24hȳNO2(s) , 1
1.91 maxday (1hȳNO2(s)) and 24hȳO3(s) , 1

1.15 maxday (8hȳO3(s)). The scaling
factors are then chosen to be FNO2 = 764/19.1 = 40.0 and FO3 = 360/11.5 = 31.3, where
764 µgm−3 and 360 µgm−3 are the concentrations corresponding to an index value equal
to 10 in the IBS for NO2 and O3 respectively.

After performing ML estimation of model (9), Figure 3 depicts the Kalman smoother
output in terms of the estimated temporal component zT (t). Error bounds are defined as
zTi (t)±2

√
pii(t). Note that each pollutant is characterized by a different temporal dynamic

as expected. Figure 4 shows the evaluated air quality indicator I3(t) which is representative
of Scotland as a whole. By analyzing the temporal series of I3(t), it can be concluded
that, during the year 2009, air pollution over Scotland remained low with the exception
of 3 events spread over 7 days during March and April. All the events can be associated
with moderate concentration levels of PM10 due to adverse meteorological conditions. Note,
moreover, that the decisive pollutants are O3 and PM10 while NO2 is identified in the graph
of Figure 4 only three times.

5.4. Population exposure and risk
In the previous paragraph, the global air quality indicator I3(t) has been considered in
order to assess the air quality over Scotland for the year 2009. The use of global air quality
indicators like those defined in Section 3 should be encouraged for at least two reasons:
they provide an easily interpretable picture of the air quality of a region over time and they
can be evaluated rapidly if compared to the dynamic kriging results. On the other hand,
if population exposure and risk are to be evaluated, it is important to retain the spatial
information on the pollutant concentrations. Indeed, global air quality indicators would
be adequate to assess exposure and risk only if the population were distributed uniformly
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Table 2. estimated parameters for the univariate DCMs and respec-
tive cross-validation mean squared error (c-mse).

β̂pop β̂slp β̂t β̂sh β̂ws β̂blh

NO2 0.464 −0.040 0.321 −0.473 −0.197 −0.220
std 0.005 0.021 0.065 0.055 0.015 0.017

O3 −0.090 −0.229 0.392 −0.297 0.216 0.166
std 0.016 0.026 0.082 0.069 0.018 0.021

PM10 0.121 0.224 0.289 −0.294 −0.084 −0.222
std 0.006 0.038 0.078 0.068 0.020 0.021

σ̂2
ε ĝ σ̂2

η γ̂ θ̂ c-mse
NO2 0.367 0.901 0.010 0.463 62.30 0.483
std 0.003 0.038 0.001 0.010 4.28

O3 0.274 0.951 0.027 0.427 136.47 0.561
std 0.014 0.019 0.002 0.020 21.96

PM10 0.286 0.674 0.137 0.516 88.36 0.366
std 0.002 0.054 0.019 0.017 8.91

Table 3. subset of the estimated parameters for the multivariate DCM.
β̂pop β̂slp β̂t β̂sh β̂ws β̂blh σ̂2

ε δ̂ c-mse
NO2 0.447 0.309 −0.415 −0.192 −0.211 0.317 0.567 0.439
O3 −0.166 −0.196 0.368 −0.251 0.208 0.188 0.243 0.451 0.478
PM10 0.089 0.266 0.382 −0.285 −0.064 −0.227 0.244 0.571 0.339

Fig. 4. Scotland daily air quality assessment through the air quality indicator I3 for the year 2009.
95% confidence interval as vertical lines. Pollutant that give rise to the maximum indicated by the
marker.
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Fig. 5. monthly and yearly (dashed line) average population exposure.

over the region. In this paragraph, population exposure and risk as defined in Section 4 are
evaluated by considering the spatial population distribution of Scotland and the collection
of dynamic maps estimated for each pollutant.

Figure 5 shows the monthly and the yearly average population exposure evaluated by
considering the exposure indicator (15). Note that the exposure values in the graphs can be
related to an average Scottish person with respect to where Scottish people live. Figure 6
displays, for each pollutant, the yearly average pollutant concentration density h(y) evalu-
ated by kernel smoothing of (16). By looking at the results of Figure 6, it can be noted that
the pollutant concentration density differs greatly across pollutants. In particular, most of
the Scottish people share the yearly average PM10 concentration while this is not true for
NO2 which is very distributed. Moreover, the pollutant concentration density related to
ozone is characterized by a prominent right tail representing people living in rural areas
(where the ozone concentration is higher). Note that, although the graphs are reported on
the same axis, they are not directly comparable in terms of their health effects.

The daily time series of the number of people exposed to a concentration higher than a
threshold (cfr eq. 17) are reported in Figure 7. The thresholds are 105, 87 and 50 µgm−3 for
NO2, O3 and PM10 respectively and they have been derived from the Air Quality Standards
Scotland Regulations 2007 following arguments similar to those of the previous paragraph.
The time series disappear between day 190 and day 315 as a consequence of the fact that
the thresholds are never exceeded during July, August, September and October.
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Fig. 6. Kernel estimated yearly average pollutant concentration density distribution with respect to
population count.

Fig. 7. Daily time series of the population exposed to a pollutant concentration higher than a thresh-
old (thresholds reported in the graph legend).
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Fig. 8. (left) PM10 exceedance probability map with respect to LPM10 = 50 µgm−3 for March 20,
2009; (right) range of the 95% confidence interval on the exceedance probability.

The exceedance probabilities and their respective confidence intervals have been evalu-
ated for each day and each pollutant at 30” × 30” of resolution. As an example, Figure 8
reports the exceedance probability map and the confidence interval range map for the 20th
of March 2009 (day 79) with respect to the PM10 concentration and the threshold level
LPM10 = 50 µgm−3.

The daily exceedance probability maps are used to evaluate the risk indicator defined
in (18). As an example, figure 9 shows the daily time series of the risk indicator for ozone
and LO3 = 87 µgm−3. The 95% confidence intervals has been evaluated following the same
arguments of paragraph 4.3.1. With regards to the number of days of exceedance, Figure
10 reports, on the left, the map of the average days of exceedance for PM10 (with respect
to LPM10 = 50 µgm−3) evaluated through Monte Carlo simulation, and on the right, the
probability map that the threshold LPM10 has been exceeded for more than 7 days. Note
that the 7 days limit represents one of the objective of the Scotland National Air Quality
Strategy to be achieved by 31 December 2010.

Not surprisingly, the probability that the threshold of 50 µgm−3 has been exceeded for
more than 7 days is higher in the Grampian region (north-east) and along the southern
border of Scotland rather than in cities such as Glasgow or Edinburgh. However, this is a
consequence of the fact that those regions are poorly covered by monitoring stations and
the uncertainty on the estimated pollutant concentration is high. The north-west regions
are not covered as well but they are characterized by a very low PM10 concentration and
the exceedance probability is not so high despite the uncertainty.
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Fig. 9. Ozone daily risk indicator and 95% confidence intervals with respect to LO3 = 87 µgm−3.

Fig. 10. (left) map of the estimated average days of exceedance for PM10 with respect to LPM10 = 50
µgm−3; (right) map of the probability of exceedance of the 7 days limit.
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6. Conclusions

In this paper, the dynamic kriging maps and the respective uncertainty provided by the
Dynamic Coregionalization Model have been used as the basis to develop, on the one hand,
multipollutant air quality indicators at country level, and on the other, exposure and risk
indicators useful to evaluate the impact of pollution on population health.

The DCM is flexible enough to accommodate the data complexity related to ground-
level networks characterized by heterogeneous monitoring stations and it naturally copes
with the inevitable missing data problem. The indicators are accompanied by measures of
uncertainty and they can be provided at different levels of temporal and spatial aggregation
in order to study different aspects of the pollution phenomenon.

The DCM and the set of indicators developed represent a complete statistical frame-
work for air quality assessment and management able to assimilate the current air quality
legislation and to provide easily interpretable results for decision makers. High resolution
exposure and exceedance probability maps provide both an effective way to identify crit-
ical areas with respect to air quality and useful information to improve the ground level
monitoring network.
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