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Discrepancy and numerical integration in Sobolev spaces on
metric measure spaces

L. Brandolini, W. W. L. Chen, L. Colzani, G. Gigante, and G. Travaglini

Abstract. We study the error for quasi Monte Carlo quadrature rules on

metric measure spaces adapted to a decomposition of the space into disjoint

subsets. We consider both the error for a single given function, and the worst
case error for all functions in a given class of potentials. The main tools

are the classical Kintchine-Marcinkiewicz-Zygmund inequality and more recent
suitable definitions of Sobolev classes on metric measure spaces.

1. Introduction

Consider the integral of a continuous function f (x) over a metric measure space
M with measure dx, ∫

M
f (x) dx,

and the associated Riemann sums
N∑
j=1

ωjf (xj) ,

where {xj}Nj=1 are points in M and {ωj}Nj=1 are given weights. We are interested
in the rate of decay of the error

E (xj , ωj) f =
∑
j

ωjf (xj)−
∫
M
f(x)dx

as N goes to +∞. It is reasonable to conjecture that this decay depends on some
smoothness of the function f (x) and on the distribution of the nodes {xj}Nj=1 in
M. For references on this problem when the metric space is a torus, a sphere or
more generally a compact symmetric space see, for example, [5], [6], [7], [8], [13],
[17], [18], [19], [20], [21], [24]. For some results related to metric measure spaces
see also [26]. In particular, it has been proved in [4, Corollary 2.15] that when
M is a d-dimensional compact Riemannian manifold and Hα

p (M) is the classical
fractional Sobolev space with regularity index α > d/p and 1 ≤ p ≤ +∞, then
for any choice of N nodes {xj} with comparable minimal separation distance and
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mesh norm (roughly speaking this means that the nodes are uniformly spread out
in the whole manifold), there is a suitable choice of positive weights {ωj} such that

‖E (xj , ωj)‖α,p ≤ cN
−α/d.

Here ‖E (xj , ωj)‖α,p denotes the norm of the functional f → E (xj , ωj) f on the
space Hα

p (M).
The first step in the proof of the above result consists of estimating the decay

of the error of a quadrature rule which is exact on the first, say, r eigenfunctions of
the Laplace-Beltrami operator on M. Previous results when M is the Euclidean
sphere can be found in [18], [19], [21]. The second ingredient is a result in [14],
which proves that for any choice of N points in M satisfying the above mentioned
condition on the minimal separation distance and the mesh norm, there is a choice
of weights that gives an exact quadrature rule for the first r = r (N) eigenfunctions.
A close look at the proof shows furthermore that these N weights can be chosen to
satisfy the condition ωj ≥ cN−1.

On the other hand, N−α/d is the highest possible speed of convergence since,
again in [4, Theorem 2.16], it has been proved that for any choice of N nodes {xj}
and weights {ωj},

‖E (xj , ωj)‖α,p ≥ cN
−α/d.

Again, previous results for the sphere are in [17], [18], [20], while for compact
two-point homogeneous spaces can be found in [24].

A possible way to find N nodes satisfying the minimal separation distance
vs. mesh norm condition is to partition the manifold into N disjoint subsets
M = ∪Nj=1Xj with measure |Xj | ≈ N−1 and diam (Xj) ≈ N−1/d, setting the weights
ωj = |Xj | and picking a node xj in each subset Xj . In particular, see [25] for a
decomposition of the sphere into sets of equal measure and minimal diameter.

The following examples show that the function from the space X1 × · · · × XN
to R,

{xj}Nj=1 → ‖E (xj , |Xj |)‖α,p
may present conspicuous oscillations.

Example 1. The d-dimensional torus Td can be partitioned into N = md con-
gruent cubes with sides 1/m and this partition generates a mesh of points

(
m−1Zd

)
which gives an exact quadrature rule for all exponentials exp (2πikx) with k in the

hypercube
{

max
i=1,...,d

|ki| < m

}
. By Theorem 2.12 in [4] for any α > d/p we have

∥∥E (m−1Zd, 1/N
)∥∥
α,p
≤ cN−α/d.

As mentioned before, this rate of decay is the fastest possible.

Example 2. Fix a smooth function f (x) on the manifold M with a finite
number of stationary points and, as above, divide M into N subsets X1, . . . ,XN
with measures N−1 and diameters N−1/d approximately. Choose points xj ∈ Xj
where f (xj) is close to the supremum in Xj, so that for all indices j,

ωjf (xj)−
∫
Xj
f (z) dz ≥ 0
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and for all Xj’s far away from the stationaty points,

ωjf (xj)−
∫
Xj
f (z) dz ≥ cN−1−1/d.

Since this last inequality holds for the majority of the j’s, one has

E (xj , |Xj |) f =
N∑
j=1

(
ωjf (xj)−

∫
Xj
f (z) dz

)
≥ cN−1/d.

Hence
‖E (xj , |Xj |)‖α,p ≥ cN

−1/d.

For values of α > 1, this gives a rate of decay slower than the best possible N−α/d.
Hence, as expected, the norm of the error in the quadrature rule is sensitive

to the distribution of the nodes. Anyhow, despite this pointwise irregularity, it has
been proved in [4] that at least for a certain range of α and for p = 2, a random
choice of nodes gives the best possible decay. See also [8, Theorem 7 and Theorem
24] for the case of the sphere.

Theorem A (Theorem 2.7 in [4]). If a d dimensional compact Riemannian
manifold M is decomposed into disjoint pieces X1 ∪ . . . ∪ XN , and if d/2 < α <
d/2 + 1, then{∫

X1

. . .

∫
XN
‖E (xj , |Xj |)‖2α,2

dx1

|X1|
· · · dxN
|XN |

}1/2

≤ c max
1≤j≤N

{diam (Xj)α} .

In particular if diam (Xj) ≤ cN−1/d for all j then, by Chebyshev inequality, for
every 0 < ε < 1 there exists a constant c such that a random choice of points {xj}
in {Xj} gives

‖E (xj , |Xj |)‖α,2 ≤ cN
−α/d,

with probability greater than 1− ε.
The proof of the above theorem relies heavily on Hilbert space techniques and

on the Riemannian structure ofM. The main purpose of this paper is to generalize
this result to the Sobolev spaces Hα

p (M) with 1 ≤ p ≤ +∞ and withM an arbitrary
metric measure space. The main ingredient in this generalization is an extension
of the classical Kintchine inequality due to Marcinkiewicz and Zygmund.

The first issue lies in an appropriate definition of Sobolev space in an arbitrary
measure space, and a possible one is in terms of potential spaces. See e.g. [29,
Chapter V] for the Euclidean case. Thus, if M is a measure space and 1 ≤ p, q ≤
+∞ are conjugate exponents, 1/p+ 1/q = 1, let Φ (x, y) be a measurable kernel on
M×M such that for every x the q–th power of the kernel y → Φ (x, y) is integrable,∫
M
|Φ (x, y)|q dy < +∞. Then every function g(x) in Lp (M) has a pointwise well

defined potential

f (x) =
∫
M

Φ (x, y) g (y) dy.

The space HΦ
p (M) is the space of all potentials of functions in Lp (M), with

norm

‖f‖HΦ
p (M) = inf

g

{∫
M
|g (x)|p dx

}1/p

.

Here, the infimum is over all g(x) which give the potential f(x).
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We prove (see Corollary 3 below) the following generalization of Theorem A,
under the hypothesis that the kernel Φ (x, y) has a behaviour similar to the Bessel
kernel on a Riemannian manifold. We need the following definition.

Definition 1. We say that a metric measure spaceM is Ahlfors d-regular, for
some positive constant d, if there exist positive constants a, b such that for every
y ∈M and 0 < t < 1,

atd ≤ |{x ∈M, |x− y| < t}| ≤ btd.

Theorem B. Let M be an Ahlfors d-regular metric measure space of finite
measure and assume that M is decomposed into a finite number of disjoint sets
M = ∪Nj=1Xj with |Xj | ≈ N−1 and diam (Xj) ≈ N−1/d. Assume that for some
0 < α < d, the kernel Φ (x, y) satisfies the conditions

|Φ (x, y)| ≤ c |x− y|α−d for every x and y,

|Φ (x, y)− Φ (z, y)| ≤ c |x− z| |x− y|α−d−1 if |x− y| ≥ 2 |x− z| .

Finally assume that 1 < p ≤ +∞, 1/p+ 1/q = 1, and d/p < α < d. Then{∫
X1

· · ·
∫
XN
‖E (xj , |Xj |)‖qΦ,p

dx1

|X1|
· · · dxN
|XN |

}1/q

≤


cN−α/d if α < d/2 + 1,
cN−1/2−1/d log1/2 (N) if α = d/2 + 1,
cN−1/2−1/d if α > d/2 + 1.

Again, ‖E (xj , |Xj |)‖Φ,p is the norm of the functional f → E (xj , |Xj |) f on the
potential space HΦ

p (M) .
Under natural assumptions on the kernel we also show that this average decay

is sharp in the exponents of N , but notice that in the case α ≥ d/2+1, α > d/p this
average decay is slower than the best possible N−α/d, which can only be obtained
with a suitable choice of nodes and weights. For the case of the sphere and for p = 2
see also [8, Theorem 24 and Theorem 25]. As for the pointwise result, once again
it follows easily from Theorem B that for every 0 < ε < 1 there exists a constant c
such that a random choice of points {xj} in {Xj} gives

‖E (xj , |Xj |)‖Φ,p ≤


cN−α/d if α < d/2 + 1,
cN−1/2−1/d log1/2 (N) if α = d/2 + 1,
cN−1/2−1/d if α > d/2 + 1,

with probability greater than 1− ε.
The techniques in the proofs of the above results can also be used to study

the same problem from a different perspective. Rather than trying to find point
distributions that give good quadrature rules for all functions in a given class, we
can look for point distributions adapted to a given function in a given class. It
turns out that the Haj lasz type Sobolev classes are a natural setting for this type
of problems (see [16]).

Theorem C. Let M be a metric measure space and ϕ (t) a non negative in-
creasing function in t ≥ 0. An upper gradient of a measurable function f (x) is a
function g (x) such that for almost every x and y,

|f (x)− f (y)| ≤ ϕ (dist (x, y)) (g (x) + g (y)) .
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Assume thatM has finite measure and that it is decomposed into a finite or infinite
number of disjoint sets X1 ∪X2 ∪ · · · , with measure |Xj | = ωj and diam (Xj) = δj .
Then, for every 1 ≤ p ≤ +∞ there exists a constant B (p) depending only on p, such
that for every integrable function f (x) with an upper gradient g (x) in Lp (M) ,{∫

X1

∫
X2

· · · |E (xj , ωj) f |p
dx1

ω1

dx2

ω2
· · ·
}1/p

≤


2B (p) sup

{
ω

1−1/p
j

}
ϕ (2 sup {δj})

{∫
M
|g(x)|p dx

}1/p

if 1 ≤ p ≤ 2,

2B (p) |M|1/2−1/p sup
{
ω

1/2
j

}
ϕ (2 sup {δj})

{∫
M
|g(x)|p dx

}1/p

if 2 ≤ p < +∞,

2 |M|1−1/p
ϕ (2 sup {δj}) sup {|g(x)|} if 1 ≤ p ≤ +∞.

See Theorem 3 and the comments that follow. One can easily compare the
decay rates given by the above Theorems B and C by taking ωj ≈ N−1, ϕ (t) = tα

with 0 < α < 1, and δj ≈ N−1/d. Also observe that in the above theorem, the
regularity of the function f (x) is measured in terms of its upper gradient, rather
than looking at it as a potential. All these different definitions and their relations
are illustrated in the next section.

A final comment. In [2], [10] and [11] there are analogues of the above results
for characteristic functions and p an even integer. In [5] and in [13] there are
analogues for 1 ≤ p ≤ 2 and arbitrary functions. The proofs in all these references
depend heavily on Fourier analytic tecniques. On the contrary the tecniques used
in this paper are more elementary and have a wider range of application.

2. Besov, Triebel-Lizorkin and potential spaces

LetM be a metric measure space, that is a metric space equipped with a Borel
regular measure. With a small abuse of notation we denote by |X | the measure
of a measurable set X and by |x− y| the distance between two points x and y.
Simple examples are Riemannian manifolds, or non necessarily smooth surfaces in
a Euclidean space with the inherited measure and distance. In [16] there is a purely
metric definition of a Sobolev space: A measurable function f(x) is in the Sobolev
space W1

p (M), 1 ≤ p ≤ +∞, if there exists a non negative function g (x) in Lp (M)
such that for almost every x, y ∈M,

|f(x)− f(y)| ≤ |x− y| (g(x) + g(y)) .

For example, in a Euclidean space one can choose as an upper gradient g(x)
the Hardy-Littlewood maximal function of the gradient ∇f (x). There are sev-
eral possible generalizations of the above definition. In particular one can replace
the distance |x− y| with more general functions ϕ (|x− y|) and localize the upper
gradients.

Definition 2. Let M be a metric measure space and ϕ (t) a non negative
increasing function in t ≥ 0. A sequence of non negative measurable functions
{gn (x)}n∈Z is an upper gradient of a measurable function f (x) if there exists a set
N with measure zero such that for all x and y in M\N with |x− y| ≤ 2−n,

|f (x)− f (y)| ≤ ϕ
(
2−n

)
(gn (x) + gn (y)) .
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(1) A measurable function f(x) is in the Besov space Bϕp,q (M) , 0 < p ≤ +∞
and 0 < q ≤ +∞, if f(x) has an upper gradient {gn (x)} with{

+∞∑
n=−∞

(∫
M
|gn (x)|p dx

)q/p}1/q

< +∞.

The infimum of the above expression over all upper gradients defines the
semi norm ‖f‖Bϕp,q(M).

(2) A measurable function f(x) is in the Triebel-Lizorkin space Fϕp,q (M) ,
0 < p < +∞ and 0 < q ≤ +∞, if f(x) has an upper gradient {gn (x)}
with 

∫
M

(
+∞∑

n=−∞
|gn (x)|q

)p/q
dx


1/p

< +∞.

The infimum of the above expression over all upper gradients defines the
semi norm ‖f‖Fϕp,q(M) .

As usual, when q = +∞ the above sum has to be replaced by a supremum,
and when diam (M) ≤ 2−N then the index n may be restricted to the range
N ≤ n < +∞. Moreover, in the definition of Fϕp,∞ (M) one can replace the sequence
{gn (x)} with the single function sup {gn (x)}. In particular, the simplest general-
ization of a Haj lasz-Sobolev space is a Triebel-Lizorkin space. The above spaces
are homogeneous, and constant functions have semi norm zero. If ϕ (t) ≤ ψ (t) then
Bϕp,q (M) ⊆ Bψp,q (M) and Fϕp,q (M) ⊆ Fψp,q (M). Moreover, for fixed ϕ (t) and p,
the largest space in the Besov and Triebel-Lizorkin scales is Bϕp,∞ (M). In partic-
ular, it is proved in [23] that when M is the Euclidean space Rd and ϕ (t) = tα

with 0 < α < 1, then the spaces Bϕp,q (M) and Fϕp,q (M) coincide with the classical
Besov and Triebel-Lizorkin spaces defined via a Littlewood-Paley decomposition.
To be precise, the definition of upper gradient in [23] requires |f (x)− f (y)| ≤
2−αn (gn (x) + gn (y)) only for x and y with 2−n−1 ≤ |x− y| ≤ 2−n, but if one de-

fines Gn (x) =
+∞∑
k=0

2−αkgn+k (x), then |f (x)− f (y)| ≤ 2−αn (Gn (x) +Gn (y)) for

x and y with |x− y| ≤ 2−n, and the seminorms defined via {gn (x)} and {Gn (x)}
are equivalent.

Example 3. Given a measurable set B, it is easy to show that the functions

gn(x) =
{
ϕ (2−n)−1 if x is in B and dist {x, ∂B} ≤ 2−n,
0 otherwise.

are upper gradients of the characteristic function χB (x). Hence,

‖χB‖Bϕp,∞(M) ≤ sup
n

{
ϕ
(
2−n

)−1 ∣∣{x ∈M : dist {x, ∂B} ≤ 2−n
}∣∣1/p} .

In particular, the Besov norm of χB (x) is related to the Minkowski content of the
boundary of B, defined by

ψ (t) = |{x ∈M : dist {x, ∂B} ≤ t}| .

The higher ψ (t) as t → 0, the higher the fractal dimension of the boundary. For
example, if M is a d dimensional Riemannian manifold and if B is a bounded open
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set with regular boundary then ψ (t) ≈ t, while if ψ (t) ≈ td−β then the boundary
has fractal dimension β. In this case, χB (x) is in Bϕp,∞ (M) with ϕ (t) = t(d−β)/p.

Another possible generalization of Sobolev spaces is via potentials.

Definition 3. Let M be a measure space, let 1 ≤ p, q ≤ +∞ with 1/p+ 1/q =
1, and let Φ (x, y) be a measurable kernel on M×M. Assume that for every x the

q–th power of the kernel y → Φ (x, y) is integrable,
∫
M
|Φ (x, y)|q dy < +∞. Then

every function g(x) in Lp (M) has a pointwise well defined potential

f (x) =
∫
M

Φ (x, y) g (y) dy.

The space HΦ
p (M) is the space of all potentials of functions in Lp (M) , with norm

‖f‖HΦ
p (M) = inf

g

{∫
M
|g (x)|p dx

}1/p

.

The infimum is over all g(x) which give the potential f(x).

Observe that the above definition does not even require a metric. Potentials can
also be defined under weaker assumptions on the kernel, but the above assumptions
guarantee that these potentials are defined pointwise everywhere, and this will be
necessary in what follows. In particular, when M is the Euclidean space Rd and
when Φ (x, y) = |x− y|α−d with 0 < α < d is the Riesz kernel, then HΦ

p (M) is the
fractional Sobolev space Hα

p (M). However the cases p = 1 and p = +∞ require
some extra care. For interesting examples of generalized potential spaces see e.g.
[22].

Example 4. Assume that the finite metric measure space M is Ahlfors d-
regular and assume that for some 0 < α < d,

|Φ (x, y)| ≤ c |x− y|α−d for every x and y,

|Φ (x, y)− Φ (z, y)| ≤ c |x− z| |x− y|α−d−1 if |x− y| ≥ 2 |x− z| .

Finally, assume that g(x) is in Lp (M) and that

f (x) =
∫
M

Φ (x, y) g (y) dy.

Then, if 0 < α < 1 and if Mg (x) is the Hardy Littlewood maximal function,

|f (x)− f (z)| ≤
∫
M
|Φ (x, y)− Φ (z, y)| |g (y)| dy

≤ c
∫
{|x−y|≤3|x−z|}

|x− y|α−d |g (y)| dy + c

∫
{|z−y|≤3|x−z|}

|z − y|α−d |g (y)| dy

+c |x− z|
∫
{|x−y|≥2|x−z|}

|x− y|α−d−1 |g (y)| dy

≤ c |x− z|α (Mg (x) +Mg (z)) .

In particular, if 1 < p < +∞ and if ϕ (t) = tα with 0 < α < 1, then HΦ
p (M) ⊆

Fϕp,∞ (M).
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3. Discrepancy and numerical integration

The main ingredient in what follows is the Kintchine-Marcinkiewicz-Zygmund
inequality for sums of independent random variables.

As it is well known, the variance of the sum of independent random variables is
the sum of the variances. More explicitly, for every sequence of probability spaces
{Xj , dxj} and every sequence of measurable functions fj (xj) with mean zero,

∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
+∞∑
j=1

fj (xj)

∣∣∣∣∣∣
2

dx1dx2 . . . =
+∞∑
j=1

∫
Xj
|fj (xj)|2 dxj .

In fact, there is a similar result with the second moment replaced with other
moments and the equality replaced with two inequalities.

Theorem 1 (Kintchine-Marcinkiewicz-Zygmund). For every 1 ≤ p < +∞
there exist two positive constants A (p) and B (p) such that for every sequence of
probability spaces {Xj , dxj} and for every non zero sequence of measurable functions
{fj (xj)} with mean zero,

∫
Xj fj (xj) dxj = 0,

A (p) ≤


∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
+∞∑
j=1

fj (xj)

∣∣∣∣∣∣
p

dx1dx2 . . .


1/p


∫
X1

∫
X2

· · ·

+∞∑
j=1

|fj (xj)|2
p/2

dx1dx2 . . .


1/p
≤ B (p) .

For a proof, see [27] and [28], or [12]. In what follows, special attention will
be paid to the constants, and A (p) and B (p) will denote the best constants in
the Kintchine-Marcinkiewicz-Zygmund inequality. In particular B (p) → +∞ as
p→ +∞. See [15] and [9].

The following result on the discrepancy of a random set of points extends [10,
Lemma 5].

Theorem 2. Let M be a metric measure space, let B be a measurable subset
of M, and let

ψ (t) = |{x ∈M : dist {x, ∂B} ≤ t}| .

Assume that M is decomposed into a finite or infinite number of disjoint sets X1 ∪
X2 ∪ · · · , with measure 0 < |Xj | = ωj < +∞ and 0 < diam (Xj) = δj < +∞. If J
is the set of indices j such that Xj intersects both B and its complement, then the
following hold:

(i): For every choice of points {xj} in {Xj} ,∣∣∣∣∣∣
∑
j

ωjχB (xj)− |B|

∣∣∣∣∣∣ ≤ ψ
(

sup
j∈J
{δj}

)
.
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(ii): For every 1 ≤ p < +∞,
∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

ωjχB (xj)− |B|

∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

≤ B (p)

√
sup
j∈J
{ωj}ψ

(
sup
j∈J
{δj}

)
.

Observe that supj∈J {ωj} ≤ ψ
(
supj∈J {δj}

)
, and that the estimate (ii) is

better than (i) when

B (p) ≤

√
ψ
(
supj∈J {δj}

)
supj∈J {ωj}

.

On the other hand, recall that B (p)→ +∞ as p→ +∞, hence eventually estimate
(i) wins.

Proof. The proof of (i) is elementary. For every choice of xj ∈ Xj one has∑
j

ωjχB (xj)− |B| =
∑
j

(
ωjχB∩Xj (xj)− |B ∩ Xj |

)
.

If Xj ⊆ B or if B ∩ Xj = ∅ then ωjχB∩Xj (xj) − |B ∩ Xj | = 0. In particular, this
happens if dist {xj , ∂B} > diam (Xj). Moreover,∣∣ωjχB∩Xj (xj)− |B ∩ Xj |

∣∣ ≤ ωj
for every xj . For every j the function ωjχB∩Xj (xj) − |B ∩ Xj | has mean zero on
Xj . Then, by the triangle inequality,∣∣∣∣∣∣

∑
j

(
ωjχB∩Xj (xj)− |B ∩ Xj |

)∣∣∣∣∣∣ ≤
∑
j∈J

ωj

≤
∣∣∣∣{x ∈M : dist {x, ∂B} ≤ sup

j∈J
{δj}

}∣∣∣∣ .
The proof of (ii) is similar, as long as one replaces the triangle inequality with

the Kintchine-Marcinkiewicz-Zygmund inequality,
∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

(
ωjχB∩Xj (xj)− |B ∩ Xj |

)∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

≤ B (p)

∑
j∈J

ω2
j


1/2

≤ B (p) sup
j∈J

{
ω

1/2
j

}∑
j∈J

ωj


1/2

≤ B (p) sup
j∈J

{
ω

1/2
j

} ∣∣∣∣{x ∈M : dist {x, ∂B} ≤ sup
j∈J
{δj}

}∣∣∣∣1/2 .
�

The following is just a restatement of the above theorem in the relevant case
of an Ahlfors regular space.
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Corollary 1. Let M be an Ahlfors d-regular metric measure space of finite
measure and assume that M is decomposed into a finite number of disjoint sets
M = ∪Nj=1Xj with ωj = |Xj | ≈ N−1 and diam (Xj) ≈ N−1/d. Finally, assume that
a measurable set B has boundary of Minkowski dimension α > 0,

|{x ∈M : dist {x, ∂B} ≤ t}| ≤ ctα.

Then for every 0 < ε < 1 there exists a constant c such that a random choice of
points {xj} in {Xj} gives∣∣∣∣∣∣

N∑
j=1

ωjχB (xj)− |B|

∣∣∣∣∣∣ ≤ cN−1/2−α/2d

with probability greater than 1− ε.

Proof. This follows from the above theorem via Chebyshev inequality. �

The above theorem is a particular case of a more general estimate of the dis-
crepancy between integrals and random Riemann sums.

Theorem 3. Assume that a metric measure space M of finite measure is de-
composed into a finite or infinite number of disjoint sets X1∪X2∪· · · , with measure
0 < |Xj | = ωj < +∞ and 0 < diam (Xj) = δj < +∞. Also let ϕ (t) be a non nega-
tive increasing function in t ≥ 0, and let Bϕp,∞ (M) be the associated Besov space.
Then the following hold:

(i): For every 1 ≤ p ≤ +∞,{∫
X1

∫
X2

· · · |E (xj , ωj) f |p
dx1

ω1

dx2

ω2
· · ·
}1/p

≤ 2 |M|1−1/p
ϕ (2 sup {δj}) ‖f‖Bϕp,∞(M) .

(ii): If 1 ≤ p ≤ 2,{∫
X1

∫
X2

· · · |E (xj , ωj) f |p
dx1

ω1

dx2

ω2
· · ·
}1/p

≤ 2B (p) sup
{
ω

1−1/p
j

}
ϕ (2 sup {δj}) ‖f‖Bϕp,∞(M) .

(iii): If 2 ≤ p < +∞,{∫
X1

∫
X2

· · · |E (xj , ωj) f |p
dx1

ω1

dx2

ω2
· · ·
}1/p

≤ 2B (p) |M|1/2−1/p sup
{
ω

1/2
j

}
ϕ (2 sup {δj}) ‖f‖Bϕp,∞(M) .

Observe that the estimate (i) is of some interest only for p large. Indeed
if 1 ≤ p ≤ 2 then (ii) is better than (i), and if 2 ≤ p < +∞ and B (p) ≤
|M|1/2 / sup

{
ω

1/2
j

}
then (iii) is better than (i).

Proof. The proof of (i) is elementary. Functions in Bϕp,∞ (M) satisfy a Poincaré
inequality. Indeed, assume that {gn (x)} is an upper gradient of f (x), that is for
almost every x and y with |x− y| ≤ 2−n,

|f (x)− f (y)| ≤ ϕ
(
2−n

)
(gn (x) + gn (y)) .
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If X is a measurable subset with 0 < |X | = ω and diam (X ) = δ ≤ 2−n, then for
every 1 ≤ q < +∞,

{∫
X

∣∣∣∣f (x)−
∫
X
f(y)

dy

ω

∣∣∣∣q dxω
}1/q

≤
{∫
X

∫
X
|f (x)− f(y)|q dx

ω

dy

ω

}1/q

≤ ϕ
(
2−n

){∫
X

∫
X
|gn (x) + gn (y)|q dx

ω

dy

ω

}1/q

≤ 2ϕ
(
2−n

){∫
X
|gn (x)|q dx

ω

}1/q

.

Hence if 2−n−1 < sup {δj} ≤ 2−n, by the Poincaré and the triangle inequalities we
have


∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

ωjf (xj)−
∫
M
f(x)dx

∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

≤
∑
j

ωj

{∫
Xj

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
p
dxj
ωj

}1/p

≤ 2ϕ
(
2−n

)∑
j

ωj

{∫
Xj
|gn (xj)|p

dxj
ωj

}1/p

≤ 2ϕ
(
2−n

)∑
j

ωj


1−1/p∑

j

∫
Xj
|gn (xj)|p dxj


1/p

≤ 2ϕ (2 sup {δj}) |M|1−1/p

{∫
M
|gn (x)|p dx

}1/p

.

The proofs of (ii) and (iii) are similar. By the Kintchine-Marcinkiewicz-Zygmund
inequality,


∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

ωjf (xj)−
∫
M
f(x)dx

∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

=


∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

ωj

(
f (xj)−

∫
Xj
f(yj)

dyj
ωj

)∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

≤ B (p)


∫
X1

∫
X2

· · ·

∑
j

ω2
j

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
2
p/2

dx1

ω1

dx2

ω2
· · ·


1/p

.
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If 2−n−1 < sup {δj} ≤ 2−n and 1 ≤ p ≤ 2, the Poincaré inequality gives
∫
X1

∫
X2

· · ·

∑
j

ω2
j

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
2
p/2

dx1

ω1

dx2

ω2
· · ·


1/p

≤


∫
X1

∫
X2

· · ·

∑
j

ωpj

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
p
 dx1

ω1

dx2

ω2
· · ·


1/p

=

∑
j

ωpj

∫
Xj

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
p
dxj
ωj


1/p

≤ 2ϕ
(
2−n

)∑
j

ωpj

∫
Xj
|gn (xj)|p

dxj
ωj


1/p

≤ 2 sup
{
ω

1−1/p
j

}
ϕ (2 sup {δj})

{∫
M
|gn (x)|p dx

}1/p

.

Similarly, if 2 ≤ p < +∞ then
∫
X1

∫
X2

· · ·

∑
j

ω2
j

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
2
p/2

dx1

ω1

dx2

ω2
· · ·


1/p

≤

∑
j

ω
(2p−2)/(p−2)
j


(p−2)/2p∑

j

ωj

∫
Xj

∣∣∣∣∣f (xj)−
∫
Xj
f(yj)

dyj
ωj

∣∣∣∣∣
p
dxj
ωj


1/p

≤ sup
{
ω

1/2
j

}∑
j

ωj


(p−2)/2p

2ϕ
(
2−n

)∑
j

ωj

∫
Xj
|gn (xj)|p

dxj
ωj


1/p

≤ 2 |M|1/2−1/p sup
{
ω

1/2
j

}
ϕ (2 sup {δj})

{∫
M
|gn (x)|p dx

}1/p

.

�

Corollary 2. Let M be an Ahlfors d-regular metric measure space of finite
measure and assume that M is decomposed into a finite number of disjoint sets
M = ∪Nj=1Xj with ωj = |Xj | ≈ N−1 and diam (Xj) ≈ N−1/d. Then for every
1 ≤ p < +∞ and for every 0 < ε < 1 there exists a constant c with the following
property. For every function f (x) in the Besov space Bϕp,∞ (M) , ϕ (t) = tα and
α > 0, a random choice of points {xj} in {Xj} gives∣∣∣∣∣∣

N∑
j=1

ωjf (xj)−
∫
M
f(x)dx

∣∣∣∣∣∣ ≤
{

c ‖f‖Bϕp,∞(M)N
1/p−1−α/d if 1 ≤ p ≤ 2,

c ‖f‖Bϕp,∞(M)N
−1/2−α/d if 2 ≤ p < +∞,

with probability greater than 1− ε.

Proof. This follows from the above theorem via Chebyshev inequality. �
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The following example shows that the above theorem is essentially sharp.

Example 5. Decompose the torus Td = Rd/Zd = [0, 1)d into md = N equal
cubes {Xj} with centers {zj} and sides of length m−1 = N−1/d. Choose a smooth
function g(x) on Rd with support in the cube (−1/2, 1/2)d and mean zero,∫

Rd
g(x)dx = 0.

Shrink and copy g(x) into a single Xj and define

f (x) = g
(
N1/d (x− zj)

)
.

Then for every 1 ≤ p ≤ +∞,{∫
Td
|f (x)|p dx

}1/p

= N−1/p

{∫
Rd
|g (x)|p dx

}1/p

,{∫
Td
|∇f (x)|p dx

}1/p

= N1/d−1/p

{∫
Rd
|∇g (x)|p dx

}1/p

.

It then follows by interpolation that if ϕ (t) = tα with 0 < α < 1, then

‖f‖Bϕp,∞(Td) ≤ cN
α/d−1/p.

Moreover, since f(x) has mean zero,
∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
N∑
j=1

ωjf (xj)−
∫

Td
f(x)dx

∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

=

{∫
Xj
|ωjf (xj)|p

dxj
ωj

}1/p

= N−1

{∫
Rd
|g (x)|p dx

}1/p

.

Finally,

N−1 = N1/p−1N−α/dNα/d−1/p ≥ c sup
{
ω

1−1/p
j

}
ϕ (2 sup {δj}) ‖f‖Bϕp,∞(Td) .

In particular, this estimate shows that Theorem 3 with 1 ≤ p ≤ 2 is sharp.
Similarly, shrink and copy g(x) on each Xj and define

f (x) =
N∑
j=1

g
(
N1/d (x− zj)

)
.

Then for every 1 ≤ p ≤ +∞,{∫
Td
|f (x)|p dx

}1/p

=
{∫

Rd
|g (x)|p dx

}1/p

,{∫
Td
|∇f (x)|p dx

}1/p

= N1/d

{∫
Rd
|∇g (x)|p dx

}1/p

.

It then follows by interpolation that if ϕ (t) = tα with 0 < α < 1, then

‖f‖Bϕp,∞(Td) ≤ cN
α/d.
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See [1]. Moreover, the Kintchine-Marcinkiewicz-Zygmund inequality gives, for 2 ≤
p < +∞, 

∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
N∑
j=1

ωjf (xj)−
∫

Td
f(x)dx

∣∣∣∣∣∣
p

dx1

ω1

dx2

ω2
· · ·


1/p

≥ A (p)


∫
X1

∫
X2

· · ·

 N∑
j=1

|ωjf (xj)|2
p/2

dx1

ω1

dx2

ω2
· · ·


1/p

≥ A (p)


∫
X1

∫
X2

· · ·

 N∑
j=1

|ωjf (xj)|2
 dx1

ω1

dx2

ω2
· · ·


1/2

= A (p)N−1/2

{∫
Rd
|g (x)|2 dx

}1/2

.

Finally,

N−1/2 = N−1/2N−α/dNα/d ≥ c sup
{
ω

1/2
j

}
ϕ (2 sup {δj}) ‖f‖Bϕp,∞(Td) .

In particular, this estimate shows that Theorem 3 with 2 ≤ p < +∞ is sharp.

Again, define f (x) =
N∑
j=1

g
(
N1/d (x− zj)

)
, fix a point z with g (z) 6= 0, and

choose xj = zj +N−1/dz. Then∣∣∣∣∣∣
N∑
j=1

ωjf (xj)−
∫

Td
f(x)dx

∣∣∣∣∣∣ = |g (z)| ≥ cϕ (2 sup {δj}) ‖f‖Bϕp,∞(M) .

In particular, this estimate shows that Theorem 3 with p = +∞ is sharp.
Finally, similar counterexamples work in any compact Riemannian manifold.
The above theorems state that for every function in a suitable class, a random

distribution of nodes gives a good quadrature rule, with the nodes that depend on
the function. But one can also search for a distribution of nodes which gives good
quadrature rules for all functions in a suitable class. In what follows this suitable
class is a class of potentials.

For every choice of nodes {xj} and weights {ωj} denote by E (xj , ωj) f the
linear functional

E (xj , ωj) f =
∑
j

ωjf (xj)−
∫
M
f(x)dx.

Also denote by ‖E (xj , ωj)‖Φ,p the norm of this functional on HΦ
p (M),

‖E (xj , ωj)‖Φ,p = sup

{
|E (xj , ωj) f |
‖f‖HΦ

p (M)

}
.

Lemma 1. Assume that a measure space M is decomposed into a finite or
infinite number of disjoint sets X1 ∪X2 ∪ · · · , with measure |Xj | = ωj > 0. Assume
that 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞, 1/p+ 1/q = 1, and that for every x∫

M
|Φ (x, y)|q dy < +∞.
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Finally assume that ∫
M

(∫
M
|Φ (x, y)| dx

)q
dy < +∞.

Then the functional E (xj , ωj) is well defined and continuous on HΦ
p (M) and its

norm is

‖E (xj , ωj)‖Φ,p =


∫
M

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ(xj , y)− Φ(x, y)) dx

∣∣∣∣∣∣
q

dy


1/q

.

Proof. Assume that f(x) is the potential of a function g(x) in Lp (M),

f (x) =
∫
M

Φ (x, y) g (y) dy.

Since ∫
M
|Φ (x, y)|q dy < +∞,

f (x) is pointwise well defined, and since∫
M

(∫
M
|Φ (x, y)| dx

)q
dy < +∞,

one can apply Fubini’s theorem and obtain∫
M
f (x) dx =

∫
M

(∫
M

Φ (x, y) g (y) dy
)
dx =

∫
M
g (y)

(∫
M

Φ (x, y) dx
)
dy.

Then the functional E (xj , ωj) f is well defined. Moreover

|E (xj , ωj) f | =

∣∣∣∣∣∣
∑
j

ωjf (xj)−
∫
M
f(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j

ωj

∫
M

Φ (xj , y) g (y) dy −
∫
M
g (y)

(∫
M

Φ (x, y) dx
)
dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
M

∑
j

∫
Xj

(Φ (xj , y)− Φ (x, y)) dx

 g (y) dy

∣∣∣∣∣∣
≤
{∫
M
|g(y)|p dy

}1/p

∫
M

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ (xj , y)− Φ (x, y)) dx

∣∣∣∣∣∣
q

dy


1/q

.

Taking the infimum as g (y) varies among all possible functions g (y) in Lp (M)
with potential f (x), one obtains

‖E (xj , ωj)‖Φ,p ≤


∫
M

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ (xj , y)− Φ (x, y)) dx

∣∣∣∣∣∣
q

dy


1/q

.
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Conversely, set

F (y) =
∑
j

∫
Xj

(Φ (xj , y)− Φ (x, y)) dx,

g (y) =
{
F (y) |F (y)|q/p−1 if F (y) 6= 0,
0 if F (y) = 0,

f (x) =
∫
M

Φ (x, y) g (y) dy.

With this choice one has

|E (xj , ωj) f | =

∣∣∣∣∣∣
∑
j

ωjf (xj)−
∫
M
f(x)dx

∣∣∣∣∣∣
=
∣∣∣∣∫
M
F (y) g (y) dy

∣∣∣∣ =
∫
M
|F (y)|1+q/p

dy

=
{∫
M
|F (y)|q dy

}1/q {∫
M
|F (y)|q dy

}1/p

=
{∫
M
|F (y)|q dy

}1/q {∫
M
|g (y)|p dy

}1/p

≥
{∫
M
|F (y)|q dy

}1/q

‖f‖HΦ
p
.

This implies that

‖E (xj , ωj)‖Φ,p ≥
{∫
M
|F (y)|q dy

}1/q

.

�

Theorem 4. Assume that a measure space M is decomposed into a finite or
infinite number of disjoint sets X1 ∪X2 ∪ · · · , with measure |Xj | = ωj > 0. Assume
that 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞, 1/p+ 1/q = 1, and that for every x∫

M
|Φ (x, y)|q dy < +∞.

Finally assume that ∫
M

(∫
M
|Φ (x, y)| dx

)q
dy < +∞.

Define

Γ (Φ) =
∑
j

{∫
M

∫
Xj

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
q

dy
dxj
ωj

}1/q

,

∆ (Φ) =


∫
M

∫
X1

∫
X2

· · ·

∑
j

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
q/2

dy
dx1

ω1

dx2

ω2
· · ·


1/q

.

Then
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(i): For every 1 ≤ p ≤ +∞,{∫
X1

∫
X2

· · · ‖E (xj , ωj)‖qΦ,p
dx1

ω1

dx2

ω2
· · ·
}1/q

≤ Γ (Φ) .

(ii): For every 1 < p ≤ +∞,

A (q) ∆ (Φ) ≤
{∫
X1

∫
X2

· · · ‖E (xj , ωj)‖qΦ,p
dx1

ω1

dx2

ω2
· · ·
}1/q

≤ B (q) ∆ (Φ) .

In particular, there exist choices of nodes {xj} in {Xj} with the property that for
every function f (x) in the potential space HΦ

p (M) ,∣∣∣∣∣∣
∑
j

ωjf (xj)−
∫
M
f(x)dx

∣∣∣∣∣∣ ≤


Γ (Φ) ‖f‖HΦ
p (M) for every 1 ≤ p ≤ +∞,

B (q) ∆ (Φ) ‖f‖HΦ
p (M) for every 1 < p ≤ +∞.

The constants Γ (Φ) and ∆ (Φ) are related to the smoothness of the kernel
Φ (x, y) and can be estimated in terms of Sobolev norms, as in the proof of Theorem
3. However in the applications the estimates in terms of Sobolev norms are not
always optimal and it is more convenient to keep the above complicated expressions.
As before, the estimate (i) is better than (ii) only when p is close to 1.

Proof. By Lemma 1 and the triangle inequality, the mean value of ‖E (xj , ωj)‖Φ,p
is controlled by

∫
M

∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣∣
q

dy
dx1

ω1

dx2

ω2
· · ·


1/q

≤
∑
j

{∫
M

∫
Xj

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
q

dy
dxj
ωj

}1/q

.

This gives the proof with Γ (Φ). The proof with ∆ (Φ) is similar. By the
Kintchine-Marcinkiewicz-Zygmund inequality,

∫
M

∫
X1

∫
X2

· · ·

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣∣
q

dy
dx1

ω1

dx2

ω2
· · ·


1/q

≤ B (q)


∫
M

∫
X1

∫
X2

· · ·

∑
j

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
q/2

dy
dx1

ω1

dx2

ω2
· · ·


1/q

.

The proof for the lower bound is similar. �

As we said in the Introduction, it has been proved in [4, Corollary 2.15] that
when M is a d-dimensional compact Riemannian manifold and Hα

p (M) is the
classical fractional Sobolev space with α > d/p, then for any choice of N nodes
{xj} and weights {ωj},

‖E (xj , ωj)‖α,p ≥ cN
−α/d.
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Moreover, one can achieve this optimal speed of convergence with any choice of
N nodes {xj} with comparable minimal separation distance and mesh norm, and
a suitable choice of positive weights {ωj},

‖E (xj , ωj)‖α,p ≤ cN
−α/d.

The following corollary shows that if M is decomposed into a finite number of
disjoint sets M = ∪Nj=1Xj with ωj = |Xj | ≈ N−1 and diam (Xj) ≈ N−1/d then, at
least for certain values of α, a random choice of nodes {xj} in {Xj} gives again this
best possible exponent.

Corollary 3. Let M be an Ahlfors d-regular metric measure space of finite
measure and assume that M is decomposed into a finite number of disjoint sets
M = ∪Nj=1Xj with ωj = |Xj | ≈ N−1 and δj = diam (Xj) ≈ N−1/d. Assume that for
some 0 < α < d,

|Φ (x, y)| ≤ c |x− y|α−d for every x and y,

|Φ (x, y)− Φ (z, y)| ≤ c |x− z| |x− y|α−d−1 if |x− y| ≥ 2 |x− z| .

Finally assume that 1 < p ≤ +∞, 1/p+ 1/q = 1, and d/p < α < d. Then

{∫
X1

· · ·
∫
XN
‖E (xj , ωj)‖qΦ,p

dx1

ω1
· · · dxN

ωN

}1/q

≤


cN−α/d if α < d/2 + 1,
cN−1/2−1/d log1/2 (N) if α = d/2 + 1,
cN−1/2−1/d if α > d/2 + 1.

Proof. By Theorem 4 it suffices to estimate
∫
M

∫
X1

· · ·
∫
XN

∑
j

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
q/2

dy
dx1

ω1
· · · dx2

ωN


1/q

.

When dist (y,Xj) ≤ 2δj , then for every xj in Xj ,∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣ ≤ c
∫
Xj

(
|xj − y|α−d + |zj − y|α−d

)
dzj

≤ cωj |xj − y|α−d + cδαj ≤ cN−1 |xj − y|α−d .

When dist (y,Xj) ≥ 2δj , then∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣ ≤ c
∫
Xj
|xj − zj | |xj − y|α−d−1

dzj

≤ cδjωj |xj − y|α−d−1 ≤ cN−1−1/d |xj − y|α−d−1
.
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Hence
∫
M

∫
X1

· · ·
∫
XN

∑
j

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
q/2

dy
dx1

ω1
· · · dxN

ωN


1/q

≤ c


∫
M

∫
X1

· · ·
∫
XN

N−2
∑

j:dist(y,Xj)≤2δj

|xj − y|2α−2d

q/2

dy
dx1

ω1
· · · dxN

ωN


1/q

+c


∫
M

∫
X1

· · ·
∫
XN

N−2−2/d
∑

j:dist(y,Xj)>2δj

|xj − y|2α−2d−2

q/2

dy
dx1

ω1
· · · dxN

ωN


1/q

.

Under the assumption that δj ≈ N−1/d there is only a bounded number of Xj with
dist (y,Xj) ≤ 2δj . Hence, since α > d/p,

∫
M

∫
X1

· · ·
∫
XN

N−2
∑

j:dist(y,Xj)≤2δj

|xj − y|2α−2d

q/2

dy
dx1

ω1
· · · dxN

ωN


1/q

≤ c

N−q∑
j

∫
Xj

(∫
{|y−xj |≤cN−1/d}

|xj − y|αq−dq dy

)
dxj
ωj


1/q

≤ cN−α/d.

Moreover,

N−2−2/d
∑

j:dist(y,Xj)>2δj

|xj − y|2α−2d−2

≤ cN−1−2/d
∑

j:dist(y,Xj)>2δj

ωj |xj − y|2α−2d−2

≤ cN−1−2/d

∫
{|x−y|>cN−1/d}

|x− y|2α−2d−2
dx

≤


cN−2α/d if α < 1 + d/2,
cN−1−2/d log (N) if α = 1 + d/2,
cN−1−2/d if α > 1 + d/2.

Hence,
∫
M

∫
X1

· · ·
∫
XN

N−2−2/d
∑

j:dist(y,Xj)>2δj

|xj − y|2α−2d−2

q/2

dy
dx1

ω1
· · · dxN

ωN


1/q

≤


cN−α/d if α < 1 + d/2,
cN−1/2−1/d log1/2 (N) if α = 1 + d/2,
cN−1/2−1/d if α > 1 + d/2.

�

The following result shows that, under some natural assumptions on the kernel,
the mean value estimate in the above corollary is essentially sharp.
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Corollary 4. Let M be an Ahlfors d-regular metric measure space of finite
measure and assume that M is decomposed into a finite number of disjoint sets
M = ∪Nj=1Xj with ωj = |Xj | ≈ N−1 and δj = diam (Xj) ≈ N−1/d. Assume that
there exists an α with 0 < α < d, such that for any j = 1, . . . , N, for any z ∈ Xj ,
and for any y such that dist (y,Xj) ≥ 2δj ,∫

Xj
|Φ (x, y)− Φ (z, y)| dx ≥ cN−1−1/d (dist (y,Xj))α−d−1

.

Also assume that for any y ∈M, the function x→ Φ (x, y) is continuous in x 6= y.
Finally assume that 1 < p ≤ +∞, 1/p+ 1/q = 1, and d/p < α < d. Then{∫

X1

· · ·
∫
XN
‖E (xj , ωj)‖qΦ,p

dx1

ω1
· · · dxN

ωN

}1/q

≥


cN−α/d if α < d/2 + 1,
cN−1/2−1/d log1/2 (N) if α = d/2 + 1,
cN−1/2−1/d if α > d/2 + 1.

Proof. It follows from Lemma 1 that{∫
X1

· · ·
∫
XN
‖E (xj , ωj)‖qΦ,p

dx1

ω1
· · · dxN

ωN

}1/q

=


∫
M

∫
X1

· · ·
∫
XN

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣∣
q

dy
dx1

ω1
· · · dxN

ωN


1/q

≥ |M|−1/p
∫
M

∫
X1

· · ·
∫
XN

∣∣∣∣∣∣
∑
j

∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣∣ dy dx1

ω1
· · · dxN

ωN
.

By the Kintchine-Marcinkiewicz-Zygmund inequality, this is bounded from below
by

|M|−1/p
A (1)

∫
M

∫
X1

· · ·
∫
XN

∑
j

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
1/2

dy
dx1

ω1
· · · dxN

ωN

≥ |M|−1/p
A (1)

∫
M

∫
X1

· · ·
∫
XN

 ∑
j:dist(y,Xj)≥2δj

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
1/2

dy
dx1

ω1
· · · dxN

ωN
.

By the continuity of zj → Φ(zj , y), there exists a point x∗j depending on y such

that
∫
Xj

Φ(zj , y)dzj = ωjΦ(x∗j , y). Thus we have

∫
X1

· · ·
∫
XN

 ∑
j:dist(y,Xj)≥2δj

∣∣∣∣∣
∫
Xj

(Φ(xj , y)− Φ(zj , y)) dzj

∣∣∣∣∣
2
1/2

dx1

ω1
· · · dxN

ωN

=
∫
X1

· · ·
∫
XN

 ∑
j:dist(y,Xj)≥2δj

ω2
j

∣∣Φ(xj , y)− Φ(x∗j , y)
∣∣21/2

dx1

ω1
· · · dxN

ωN
.
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Now let {αj} and {βj} be two sequences, and let A =
∑
α2
j < +∞. Then∑

j

α2
jβ

2
j

1/2

= A1/2

∑
j

α2
j

A
β2
j

1/2

≥ A1/2
∑
j

α2
j

A
|βj | = A−1/2

∑
j

α2
j |βj | .

Thus, if vj is a point of the closure of Xj that minimizes the distance from y,

∫
X1

· · ·
∫
XN

 ∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2

∣∣Φ(xj , y)− Φ(x∗j , y)
∣∣2

|vj − y|2α−2d−2

1/2

dx1

ω1
· · · dxN

ωN

≥
∫
X1

· · ·
∫
XN


 ∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2

−1/2

×

∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2

∣∣Φ(xj , y)− Φ(x∗j , y)
∣∣

|vj − y|α−d−1

 dx1

ω1
· · · dxN

ωN

=

 ∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2

−1/2

×

∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

α−d−1

(∫
X1

· · ·
∫
XN

∣∣Φ(xj , y)− Φ(x∗j , y)
∣∣ dx1

ω1
· · · dxN

ωN

)

≥ c

 ∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2

−1/2 ∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2
N−1/d

= c

 ∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2

1/2

N−1/d.

The desired result now follows from the simple estimates∑
j:dist(y,Xj)≥2δj

ω2
j |vj − y|

2α−2d−2 ≥ cN−1

∫ 1

N−1/d
ρ2α−2d−2ρd−1dρ

≥


cN−1 if α > 1 + d/2,
cN−1 log (N) if α = 1 + d/2,
cN−2α/d+2/d if α < 1 + d/2.

�

Example 6. Let M be a d dimensional compact Riemannian manifold with
total measure one. Let

{
λ2
}

and {ϕλ(x)} be the eigenvalues and an orthonor-
mal complete system of eigenfunctions of the Laplace Beltrami operator ∆. Every
tempered distribution on M has Fourier transform and series,

Ff(λ) =
∫
M
f(y)ϕλ(y)dy, f(x) =

∑
λ

Ff(λ)ϕλ(x).
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The Bessel kernel Bα(x, y), −∞ < α < +∞, is a distribution defined by the
expansion

Bα(x, y) =
∑
λ

(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

A distribution f(x) is the Bessel potential of a distribution g(x) if

f(x) =
∫
M
Bα(x, y)g(y)dy =

∑
λ

(
1 + λ2

)−α/2 Fg(λ)ϕλ(x).

Bessel potentials of functions in Lp (M) define the fractional Sobolev space
Hα
p (M). If 0 < α < d, then the Bessel kernel satisfies the estimate

|Bα(x, y)| ≤ c |x− y|α−d , |∇Bα(x, y)| ≤ c |x− y|α−d−1
.

See [4]. In particular, Corollary 3 applies. Indeed, an application of the tech-
nique of the Hadamard parametrix (see e.g. [3]) gives a more precise result: there
is a smooth positive function C (y) and positive constants ε and c such that

Bα (x, y) = C (y) |x− y|α−d + E (x, y) ,

with

|E (x, y)| ≤ c |x− y|α−d+ε

|∇E (x, y)| ≤ c |x− y|α−d−1+ε
.

It then follows from this lemma that Corollary 4 applies to the Bessel kernel
(see also [8, Theorems 24 and 25] for the case of the Euclidean sphere with p = 2).

Finally, the classical Besov spaces Bαp,q (M) defined via a Littlewood Paley de-
composition are interpolation spaces between Bessel potential spaces. If 1 < p <
+∞, 1 ≤ q ≤ +∞, 0 < ϑ < 1, α = (1− ϑ)α0 + ϑα1, then in the real method of
interpolation (

Hα0
p (M) ,Hα1

p (M)
)
ϑ,q

= Bαp,q (M) .

See [1]. In particular, interpolating the results in Corollary 3, one proves that
for every 0 < ε < 1 there is a positive constant c such that a random choice of
points {xj} in {Xj} has the property that for every function f (x) in the Besov
space Bαp,∞ (M),

|E (xj , ωj) f | ≤


c ‖f‖Bαp,∞(M)N

−α/d if α < d/2 + 1,
c ‖f‖Bαp,∞(M)N

−1/2−1/d+γ if α = d/2 + 1 and γ > 0,
c ‖f‖Bαp,∞(M)N

−1/2−1/d if α > d/2 + 1,

with probability greater than 1− ε.
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[1] Bergh, J., Löfström, J.: Interpolation spaces. Springer Verlag (1976)
[2] Beck, J., Chen, W.W.L.: Note on irregularities of distribution II, Proc. London Math. Soc.

61, 251–272 (1990)
[3] Brandolini, L., Colzani, L.: Decay of Fourier transforms and summability of eigenfunction

expansions. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 29, 611–638 (2000)
[4] Brandolini, L., Choirat, C., Colzani, L., Gigante G., Seri R., Travaglini, G.: Quadrature

rules and distribution of points on manifolds. To appear in Ann. Sc. Norm. Super. Pisa Cl.
Sci.

[5] Brandolini, L., Chen, W.W.L., Gigante, G., Travaglini, G.: Discrepancy for randomized
Riemann sums. Proc. Amer. Math. Soc. 137, 3187–3196 (2009)



DISCREPANCY AND NUMERICAL INTEGRATION IN SOBOLEV SPACES 23

[6] Brandolini, L., Colzani, L., Gigante, G., Travaglini, G.: On the Koksma–Hlawka inequality,

J. Complexity 29, 158–172 (2013)

[7] Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr.
Approx. 25, 41-71(2007)

[8] Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC design: optimal order quasi

Monte Carlo integration schemes on the sphere. arXiv:1208.3267 (2012)
[9] Burkholder, D.: Sharp inequalities for martingales and stochastic integrals. Astérisque 157-
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