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Equiconvergence theorems for Sturm Liouville expansions
and sets of divergence for Bochner Riesz means in Sobolev

spaces

Leonardo Colzani, Giacomo Gigante, and Sara Volpi

Abstract. We state some equiconvergence results between Bochner Riesz

means of expansions in eigenfunctions of suitable Sturm Liouville operators.
Then we determine the Hausdorff dimension of the divergence set of Bochner

Riesz means of radial functions in Sobolev classes on Euclidean and non Eu-

clidean spaces.

1. Introduction

The motivation for this paper is the study of the pointwise convergence of
Bochner Riesz means of functions with some smoothness. These means are defined
for suitable functions by the Fourier integrals

SβRf(x) =
∫
{|ξ|<R}

(
1−

∣∣R−1ξ
∣∣2)β f̂(ξ) exp(2πiξx)dξ.

A classical result in this setting is the following:

Bochner Riesz means with index β > (d− 1) |1/p− 1/2| of functions in Lp
(
Rd
)

converge in norm and almost everywhere: limR→+∞

{
SβRf(x)

}
= f(x).

The cases p = 1, 2,+∞ are due to Bochner and the general case 1 ≤ p ≤ +∞
is due to Stein. See [26, Chapter VII.5]. See also [5, 6, 12, 24], for better results
when p > 2, and [27] for the case p < 2. For radial functions more precise results
are known:

Bochner Riesz means with index β > max {d |1/p− 1/2| − 1/2, 0} of radial
functions in Lp

(
Rd
)

converge in norm and almost everywhere.

See [18, 22] and [20] for extensions to symmetric spaces. For end point results
in Lorentz spaces see also [11, 14, 15, 23]. Other classical results on convergence
of Fourier series of functions with some smoothness are due to Beurling, and Salem
and Zygmund:
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If
∑
n2γ

(
|a(n)|2 + |b(n)|2

)
< +∞, then the set of points of divergence of the

series
∑
a(n) cos(nx) + b(n) sin(nx) has outer (1− 2γ) capacity zero if 0 < γ <

1/2, and it has outer logarithmic capacity zero if γ = 1/2.

See [30, Chapter XIII.11]. A consequence of this result is that the sets of
singularities of functions in Sobolev classes have small Hausdorff dimension. These
results have been extended to several dimensions. In particular, it has been proved
in [7, 19] that by putting some smoothness on the function one may decrease the
index of almost everywhere summability. In [21] there is a study of the capacity
and Hausdorff dimension of the divergence set of spherical partial sums of Fourier
integrals. In [8, 9, 10] there is a study of the dimension of the set where the
localization of spherical means fails. The related problem of the dimension of the
set where a solution to a Schrödinger equation does not converge to the boundary
data is considered in [1]. Finally, [13] contains the following result:

Bochner Riesz means with index β > max {(d− 1)/2− γ, 0} of functions with
γ derivatives in L1

(
Rd
)

converge pointwise, with possible exception of sets of points
with Hausdorff dimension at most d−γ. Similarly, Bochner Riesz means with index
β ≥ 0 of functions with γ derivatives in L2

(
Rd
)

converge pointwise, with possible
exception of sets of points with Hausdorff dimension at most d− 2γ.

We do not know a precise analogue of the above results for functions with
derivatives in Lp

(
Rd
)

with 1 ≤ p ≤ +∞, but at least for radial functions there are
some definitive results. In particular, here we want to prove the following:

Let β ≥ 0, γ ≥ 0, 1 ≤ p < +∞, (d− 1− 2β) /2d < 1/p < (d+ 1 + 2β + 2γ) /2d.
Then the Bochner Riesz means with index β of radial functions with γ derivatives
in Lp

(
Rd
)

converge pointwise, with possible exception of sets of points Ω with the
following properties:

(1) if γp ≤ 1, then the Hausdorff dimension of Ω is at most d− γp.
(2) if 1 < γp ≤ d, then Ω either is empty or it reduces to the origin.
(3) if γp > d, then Ω is empty.

Divergence of Bochner Riesz means of radial functions occurs in spheres {|x| = r},
and sets of spheres of dimension d−γp in Rd correspond to sets of radii of dimension
1−γp in R+. Observe that the above results are best possible, since functions with
γ derivatives in Lp

(
Rd
)

can be infinite on sets with dimension d−γp. Also observe
the asymmetry between p < 2 and p > 2. When p < 2 if the smoothness index γ
increases then the critical index β = d (1/p− 1/2) − 1/2 − γ for summability de-
creases, but when p > 2 the critical index β = d (1/2− 1/p)− 1/2 for summability
is independent of the smoothness. Indeed it is even possible to prove more precise
results for Lorentz spaces and for expansions in eigenfunctions of Sturm Liouville
problems, such as Fourier Bessel expansions.

The plan of the paper is the following: The first section contains an equicon-
vergence result between Bochner Riesz means of trigonometric and Bessel expan-
sions: Under appropriate integrability assumptions, the Bochner Riesz means of
the Fourier Bessel expansion of a given function converge at a given point if
and only if the means associated to the Fourier cosine expansion converge at
the point. In particular, this implies equiconvergence between Bochner Riesz
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means of radial functions in one and several dimensions. The second section
generalizes the first, since it contains an equiconvergence result between Bochner
Riesz means of Bessel expansions and expansions in eigenfunctions of Sturm Li-

ouville operators −A(x)−1 d

dx

(
A(x)

d

dx

)
. In particular, when A(x) = xd−1 then

this operator is the radial component of the Laplacian in Rd, and when A(x) =
sinh2α+1(x) cosh2α′+1(x) with suitable α and α′ then it is the radial component
of the Laplace Beltrami operator on non compact rank one symmetric spaces. In
the third section these equiconvergence results are applied to functions in Sobolev
classes.

2. Equiconvergence between trigonometric and Bessel expansions

Trigonometric expansions of radial functions in Rd are particular cases of Fourier
Bessel expansions, and in the sequel we shall deal with this slightly more general
context. The Bessel functions (tx)−α Jα (tx) are analytic eigenfunctions of the ra-
dial component of the Laplace operator,

−
(
d2

dx2
+

2α+ 1
x

d

dx

)
Jα (tx)
(tx)α

= t2
Jα (tx)
(tx)α

.

For α ≥ −1/2 the Fourier Bessel transform and its inversion formula are

Fαf (t) =
∫ +∞

0

f(y)
Jα (ty)
(ty)α

y2α+1dy, f (x) =
∫ +∞

0

Fαf (t)
Jα (tx)
(tx)α

t2α+1dt.

The parameter 2α + 2 plays the role of space dimension and when α = −1/2,
then J−1/2 (z) =

√
2/πz cos(z) and the Fourier Bessel transform reduces to the

cosine transform,

F−1/2f (t) =

√
2
π

∫ +∞

0

f(y) cos (ty) dy, f (x) =

√
2
π

∫ +∞

0

F−1/2f (t) cos (tx) dt.

The Bochner Riesz means of Fourier Bessel expansions of order β ≥ 0 are
defined as

SβRf (x) =
∫ R

0

(
1− (t/R)2

)β
Fαf (t)

Jα (tx)
(tx)α

t2α+1dt

=
∫ +∞

0

(∫ R

0

(
1− (t/R)2

)β Jα (tx)
(tx)α

Jα (ty)
(ty)α

(ty)2α+1
dt

)
f (y) dy.

Bessel functions have simple asymptotic expansions in terms of trigonomet-
ric functions. Using these asymptotic expansions, we shall prove that the means
SβRf (x) are equiconvergent with the Bochner Riesz means of the cosine expansion
of f(x). Let 0 < ε < η < +∞ and let χ (x) be a smooth cut off with χ (x) = 1 if
ε/2 < x < 2η and χ (x) = 0 if x < ε/3 or x > 3η. Define

T βRf (x) =
√

2/π
∫ R

0

(
1− (t/R)2

)β
F−1/2 (χf) (t) cos (tx) dt

=
∫ +∞

0

(
(2/π)χ (y)

∫ R

0

(
1− (t/R)2

)β
cos (tx) cos (ty) dt

)
f(y)dy.

The following is an equiconvergence result between SβRf (x) and T βRf (x).
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Theorem 1. Let α ≥ −1/2, β ≥ 0, λ = min {α+ 1/2, β}, and assume that∫ +∞

0

|f(x)| xα+λ+1/2

(1 + x)β+λ+1
dx < +∞.

Then the means SβRf (x) and T βRf (x) are uniformly equiconvergent in 0 < ε < x <
η < +∞ as R→ +∞, that is

lim
R→+∞

{
sup
ε<x<η

∣∣∣SβRf (x)− T βRf (x)
∣∣∣} = 0.

Proof. The case β = 0 is already in [14] and the case β > 0 is implicitly but
essentially contained in [15]. The idea is that the main term in the asymptotic
expansion of the kernel associated to the operator SβR is independent of α and it
coincides with the kernel of the operator T βR and, under appropriate assumptions,
the contribution of the remainder in the asymptotic expansion of the kernel is
negligible. Write

SβRf (x) =
∫ +∞

0

SβR (x, y) f (y) dy,

T βRf (x) =
∫ +∞

0

T βR (x, y) f (y) dy,

with the kernels SβR (x, y) and T βR (x, y) defined by

SβR (x, y) =
∫ R

0

(
1− (t/R)2

)β Jα (tx)
(tx)α

Jα (ty)
(ty)α

(ty)2α+1
dt,

T βR (x, y) = (2/π)χ (y)
∫ R

0

(
1− (t/R)2

)β
cos (tx) cos (ty) dt.

Now, for every function f(x) and g(x),∣∣∣SβRf (x)− T βRf (x)
∣∣∣ ≤ ∣∣∣(SβR − T βR) (f − g) (x)

∣∣∣+
∣∣∣(SβR − T βR) g (x)

∣∣∣ .
Then the theorem follows from the following claims:

(1) If g(x) is a smooth function with compact support and if ε < x < η, then

lim
R→+∞

{
SβRg (x)

}
= lim
R→+∞

{
T βRg (x)

}
= g(x).

(2) If ε < x < η, then∣∣∣SβR (x, y)− T βR (x, y)
∣∣∣ ≤ c yα+λ+1/2

(1 + y)β+λ+1
.

The first claim is the classical Fourier inversion formula for smooth functions. For
a short and elementary proof see [14]. The proof of the second claim is contained
in the following lemmas, and it is finished after Lemma 3.
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Lemma 1. The kernel of the operator T βR is

T βR (x, y) = π−1χ (y)
∫ R

0

(
1− (t/R)2

)β
cos (t (x− y)) dt

+π−1χ (y)
∫ R

0

(
1− (t/R)2

)β
cos (t (x+ y)) dt

= χ (y)
2βΓ (β + 1)√

2π
R

(
Jβ+1/2 (R |x− y|)
(R |x− y|)β+1/2

+
Jβ+1/2 (R |x+ y|)
(R |x+ y|)β+1/2

)
.

Proof. This follows from the integral representation of Bessel functions:

Jβ+1/2 (z) = 21/2−βπ−1/2Γ (β + 1)−1
zβ+1/2

∫ 1

0

(
1− t2

)β
cos (zt) dt.

�

Lemma 2. The kernel of the operator SβR is

SβR (x, y) =
∫ R

0

(
1− (t/R)2

)β Jα (tx)
(tx)α

Jα (ty)
(ty)α

(ty)2α+1
dt.

This kernel satisfies the estimates:

(1)
∣∣∣SβR (x, y)

∣∣∣ ≤ cR2α+2y2α+1 (1 +R |x− y|)−α−β−3/2
,

(2)
∣∣∣SβR (x, y)

∣∣∣ ≤ cR−βx−α−β−3/2yα+1/2 if 2y < x,

(3)
∣∣∣SβR (x, y)

∣∣∣ ≤ cR−βx−α−1/2yα−β−1/2 if 2x < y,

(4)

∣∣∣∣∣SβR (x, y)− 2βΓ (β + 1)√
2π

R
Jβ+1/2 (R |x− y|)
(R |x− y|)β+1/2

∣∣∣∣∣ ≤ c
if 0 < ε < x, y < η < +∞.

Proof. This has been proved in [15]. Here we just hint at the proof of (4),
which is the main ingredient in what follows. The asymptotic expansion of Bessel
functions is

Jα (z) =
√

2/πz cos (z − απ/2− π/4) + ....

Hence the asymptotic expansion of the kernel SβR (x, y) is∫ R

0

(
1− (t/R)2

)β Jα (tx)
(tx)α

Jα (ty)
(ty)α

(ty)2α+1
dt

= x−αyα+1R2

∫ 1

0

s
(
1− s2

)β
Jα (Rxs) Jα (Rys) ds

= π−1 (y/x)α+1/2
R

∫ 1

0

(
1− s2

)β
cos (R (x− y) s) ds

+π−1 (y/x)α+1/2
R

∫ 1

0

(
1− s2

)β
sin (R (x+ y) s− απ) ds+ ...

=
2βΓ (β + 1)√

2π

(y
x

)α+1/2

R
Jβ+1/2 (R |x− y|)
(R |x− y|)β+1/2

+ ....
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Indeed, when α = n + 1/2 is a half integer, the asymptotic expansions of Jα (z)
and SβR (x, y) are finite equalities, and the desired estimates are easily verified. The
terms with x+ y are more oscillating than the ones with x− y, hence they are less
singular. Finally, when ε < x, y < η one can get rid of the factor (y/x)α+1/2,∣∣∣∣∣(yx)α+1/2

R
Jβ+1/2 (R |x− y|)
(R |x− y|)β+1/2

−R
Jβ+1/2 (R |x− y|)
(R |x− y|)β+1/2

∣∣∣∣∣
= R

∣∣∣(y/x)α+1/2 − 1
∣∣∣ ∣∣∣(R |x− y|)−β−1/2

Jβ+1/2 (R |x− y|)
∣∣∣

≤ c (R |x− y|)−β+1/2 ∣∣Jβ+1/2 (R |x− y|)
∣∣

≤
{
c (R |x− y|) if R |x− y| ≤ 1,
c (R |x− y|)−β if R |x− y| ≥ 1.

�

Lemma 3. There exists a constant c such that for every ε < x < η,∣∣∣SβR (x, y)− T βR (x, y)
∣∣∣ ≤ c yα+λ+1/2

(1 + y)β+λ+1
.

Proof. We may assume R > 3/ε. If 0 < y < 1/R then, by Lemma 2 (1),∣∣∣SβR (x, y)− T βR (x, y)
∣∣∣ =

∣∣∣SβR (x, y)
∣∣∣ ≤ cRα−β+1/2y2α+1 ≤ cyα+λ+1/2.

If 1/R < y < ε/3 then, by Lemma 2 (2),∣∣∣SβR (x, y)− T βR (x, y)
∣∣∣ =

∣∣∣SβR (x, y)
∣∣∣ ≤ cR−βyα+1/2 ≤ cyα+λ+1/2.

If ε/3 < y < ε/2 then, by Lemma 1 and Lemma 2 (2), and the estimate
∣∣Jβ+1/2 (z)

∣∣ ≤
cz−1/2, ∣∣∣SβR (x, y)− T βR (x, y)

∣∣∣ ≤ ∣∣∣SβR (x, y)
∣∣∣+
∣∣∣T βR (x, y)

∣∣∣ ≤ cR−β .
If ε/2 < y < 2η then, by Lemma 1 and Lemma 2 (4),∣∣∣SβR (x, y)− T βR (x, y)

∣∣∣ ≤ c.
If 2η < y < 3η then, by Lemma 1 and Lemma 2 (3),∣∣∣SβR (x, y)− T βR (x, y)

∣∣∣ ≤ ∣∣∣SβR (x, y)
∣∣∣+
∣∣∣T βR (x, y)

∣∣∣ ≤ cR−β .
Finally, if y > 3η then, by Lemma 2 (3),∣∣∣SβR (x, y)− T βR (x, y)

∣∣∣ =
∣∣∣SβR (x, y)

∣∣∣ ≤ cR−βyα−β−1/2.

�

Corollary 1. Let 1 ≤ p ≤ +∞ and (2α− 2β + 1) / (4α+ 4) < 1/p <
(2α+ 2β + 3) / (4α+ 4). Then for every function f(x) in Lp

(
R+, x

2α+1dx
)

the
means SβRf (x) and T βRf (x) are equiconvergent in ε < x < η.
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Proof. It suffices to show that the hypotheses in Theorem 1 are satisfied.
Indeed, by Hölder inequality with 1/p+ 1/q = 1,∫ +∞

0

|f(x)| xα+λ+1/2

(1 + x)β+λ+1
dx

≤
{∫ +∞

0

|f(x)|p x2α+1dx

}1/p
{∫ +∞

0

∣∣∣∣∣ xλ−α−1/2

(1 + x)β+λ+1

∣∣∣∣∣
q

x2α+1dx

}1/q

.

The second integral is easily seen to be finite for the given set of parameters. �

Remark 1. The factor R−β in the proof of Lemma 3 suggests the possibility
of an improvement. Indeed, when β > 0 then equiconvergence holds also at the
lower critical index p = (4α+ 4) / (2α+ 2β + 3). On the other hand, when p <
(4α+ 4) / (2α+ 2β + 3) there exist functions in Lp

(
R+, x

2α+1dx
)

with Bochner
Riesz means of order β diverging everywhere, and when p ≥ (4α+ 4) / (2α− 2β + 1)
these means are not even defined as tempered distributions. Finally, more precise re-
sults hold when the size of functions is measured by Lorentz norms. When β > 0 and
p = (4α+ 4) / (2α+ 2β + 3) then equiconvergence holds for functions in the closure
of test functions in Lp,∞

(
R+, x

2α+1dx
)
, and when p = (4α+ 4) / (2α− 2β + 1)

then equiconvergence holds in Lp,1
(
R+, x

2α+1dx
)
. See [14, 15, 28], and the re-

marks in the following sections.

3. Sturm Liouville expansions

In this section we consider expansions in eigenfunctions of Sturm Liouville
operators on 0 < x < +∞ of the form

L = −A−1(x)
d

dx

(
A(x)

d

dx

)
.

This operator is formally self adjoint with respect to the measure A(x)dx. For
example, when A(x) = xd−1 then L is the radial component of the Laplacian in
Rd, when A(x) = x2α+1 then L is the Bessel operator of the previous section, and
when A(x) = sinh2α+1(x) cosh2α′+1(x) with suitable α and α′ then L is the radial
component of the Laplace Beltrami operator on non compact rank one symmetric
spaces. In what follows we assume that the operator L is a perturbation of the
Bessel operator. More precisely, as in [4] we assume the following:

(1) A(x) is continuous in 0 ≤ x < +∞, positive non decreasing and smooth in
0 < x < +∞, and limx→+∞A(x) = +∞.

(2) A′(x)/A(x) is decreasing in 0 < x < +∞ and there exists α > −1/2 and a
smooth odd function B(x) such that

A′(x)
A(x)

=
2α+ 1
x

+B(x).

In particular, A(x) ≈ cx2α+1 as x→ 0+, and with a change of variable one can
assume that c = 1. Set limx→+∞A′(x)/A(x) = 2ρ. For every t ∈ C the Cauchy
problem {

Lu(x) =
(
t2 + ρ2

)
u(x),

u(0) = 1, u′(0) = 0,
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has a unique solution ϕt(x) defined in 0 ≤ x < +∞, and if t is real then |ϕt(x)| ≤ 1.
Moreover, there exists a function c(t), the Harish-Chandra function, such that for
every test function one can define the Fourier transform and an inversion formula

Ff (t) =
∫ +∞

0

f(y)ϕt(y)A(y)dy, f (x) =
∫ +∞

0

Ff (t)ϕt(x)
dt

2π |c(t)|2
.

By means of the Liouville transformation
√
A(x)u(x) = v(x), the equation

Lu(x) =
(
t2 + ρ2

)
u(x) becomes(

d2

dx2
+ t2

)
v(x) = q(x)v(x),

with

q(x) =
1
2
d

dx

(
A′(x)
A(x)

)
+

1
4

(
A′(x)
A(x)

)2

− ρ2.

We also assume the following:
(3) There exists a ≥ 0 such that when x→ +∞,

q(x) =
a2 − 1/4

x2
+ ζ(x),

with
∫ +∞
1
|ζ(x)|x log(x)dx < +∞ if a = 0, or

∫ +∞
1
|ζ(x)|xdx < +∞ if a > 0.

Under these assumptions, it is proved in [4] that when a > 0 then
√
A(x)ϕ0(x) ≈

cx1/2+b as x → +∞, for some b > −1/2 and |b| = a. On the other hand, when
a = 0 then

√
A(x)ϕ0(x) ≈ cx1/2 or cx1/2 log(x) as x → +∞, and in this case we

set b = 0. Observe that if ρ = 0 then ϕ0(x) = 1.
Finally, we also assume the following:
(4) If −1/2 < b < 0, then∫ +∞

1

|ζ(x)|x2|b|+1dx < +∞.

If b = 0 and
√
A(x)ϕ0(x) ≈ cx1/2 as x→ +∞, then∫ +∞

1

|ζ(x)|x log2(x)dx < +∞.

This last assumption b ≤ 0 occurs only if ρ = 0. It turns out that, as in the
case of Bessel expansions, the constant 2α + 2 plays the role of the dimensions of
the space at 0, while when ρ = 0, then 2b + 2 plays the role of the dimensions of
the space at +∞.

As we said, an explicit example relevant to the harmonic analysis on hyperbolic
spaces is A(x) = sinh2α+1(x) cosh2α′+1(x). In this case ϕt(x) is a Jacobi function,

ϕt(x) = F
(
(α+ α′ + 1− it) /2, (α+ α′ + 1 + it) /2;α+ 1;− sinh2(t)

)
,

and c(t) is the Harish-Chandra function

c(t) =
Γ (α+ 1) Γ (it/2) Γ ((1 + it) /2)

2
√
πΓ ((α− α′ + 1 + it) /2) Γ ((α+ α′ + 1 + it) /2)

.

One can easily check that A′(x)/A(x) is decreasing if and only if α ≥ α′, and

2ρ = lim
x→+∞

A′(x)
A(x)

= lim
x→+∞

(2α+ 2α′ + 2) cosh2 (x)− 2α′ − 1
sinh (x) cosh (x)

= 2α+ 2α′ + 2.
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The Bochner Riesz means with index β of Sturm Liouville expansions are

W β
Rf (x) =

∫ R

0

(
1− (t/R)2

)β
Ff (t)ϕt(x)

dt

2π |c(t)|2

=
∫ +∞

0

(
A(y)

∫ R

0

(
1− (t/R)2

)β
ϕt(x)ϕt(y)

dt

2π |c(t)|2

)
f (y) dy.

As we said, L is a perturbation of the Bessel operator, and the eigenfunctions
ϕt(x) have asymptotic expansions in terms of Bessel functions. This suggests the
possibility of equiconvergence between these Sturm Liouville and cosine expansions
W β
Rf (x) and T βRf (x) defined in the previous section.

Theorem 2. Let A(x) satisfy the above conditions (1) through (4) with α >
−1/2, and let β ≥ 0 and λ = min {α+ 1/2, β} . Finally, assume that∫ +∞

0

|f(x)|
√
A(x)xλ

(1 + x)λ+β+1
dx < +∞.

Then the means W β
Rf (x) and T βRf (x) are uniformly equiconvergent in 0 < ε < x <

η < +∞ as R→ +∞, that is

lim
R→+∞

sup
ε<x<η

{∣∣∣W β
Rf (x)− T βRf (x)

∣∣∣} = 0.

Proof. The case β = 0 of this theorem is already in [4]. The proof of the case
β > 0 is similar. With the notation of the previous section, define

V βR f (x) =
√
x2α+1/A(x)SβR

(√
A(y)/y2α+1f(y)

)
(x)

=
∫ +∞

0

(√
A(y)/A(x)

∫ R

0

(
1− (t/R)2

)β √
txJα (tx)

√
tyJα (ty) dt

)
f (y) dy.

It suffices to show that the Sturm Liouville expansions W β
Rf (x) are equiconvergent

with the Bessel expansions V βR f (x), and that these Bessel expansions V βR f (x) are
equiconvergent with the trigonometric expansions T βRf (x). This is done in the
following lemmas.

Lemma 4. (1) Let V βR (x, y) and W β
R(x, y) be the kernels of the operators V βR

and W β
R,

V βR (x, y) =
√
A(y)/A(x)

∫ R

0

(
1− (t/R)2

)β √
txJα (tx)

√
tyJα (ty) dt,

W β
R (x, y) = A(y)

∫ R

0

(
1− (t/R)2

)β
ϕt(x)ϕt(y)

dt

2π |c(t)|2
.

Then for every 0 < x < +∞ there exists a constant c such that∣∣∣V βR (x, y)−W β
R (x, y)

∣∣∣ ≤ c √
A(y)yλ

(1 + y)λ+β+1
.

(2) Assume that ∫ +∞

0

|f(x)|
√
A(x)xλ

(1 + x)λ+β+1
dx < +∞.
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Then for every 0 < x < +∞,

lim
R→+∞

{∣∣∣W β
Rf (x)− V βR f (x)

∣∣∣} = 0.

Moreover, in (1) one can choose the same constant for all ε < x < η and in (2) the
convergence is uniform in ε < x < η.

Proof. The following proof relies heavily on [4]. As it is well known, for every
t ∈ C−{0} the differential equation

Lu(x) =
(
t2 + ρ2

)
u(x)

has a unique solution Φt (x) over 0 < x < +∞ twice continuously differentiable and
satisfying the condition at infinity√

A (x)Φt (x) = eitx (1 +R (t, x)) ,

with R (t, x) → 0 and ∂R (t, x) /∂x → 0 as t → +∞. For any t in C−{0}, Φt (x)
and Φ−t (x) are two independent solutions of Lu(x) =

(
t2 + ρ2

)
u(x), and the

Harish-Chandra function is defined precisely as the coefficient c (t) that realizes the
identity

ϕt (x) = c (t) Φt (x) + c (−t) Φ−t (x) .

Assume 0 < y < x. If t is real, then c (−t) = c (t). Hence,

W β
R (x, y) = A (y)

∫ R

0

(
1− (t/R)2

)β
ϕt (x)ϕt (y)

dt

2π |c (t)|2

= A (y)
∫ R

0

(
1− (t/R)2

)β
(c (t) Φt (x) + c (−t) Φ−t (x))ϕt (y)

dt

2π |c (t)|2

= A (y)
∫ R

−R

(
1− (t/R)2

)β
Φ−t (x)ϕt (y)

dt

2πc (t)
.

The above formula holds also in the particular case A (t) = t2α+1, with the functions
Φ−t (x), ϕt (y), and c (t) replaced respectively by

Φ̃−t (x) =

√
πt

2
ei
π
4 (2α+1)x−αH(2)

α (tx) ,

ϕ̃t (y) = 2αΓ (α+ 1)
Jα (ty)
(ty)α

,

c̃ (t) =
2αΓ (α+ 1) e−i

π
4 (2α+1)

√
2πtα+ 1

2
.

Here H(2)
α (z) is the Bessel function of third kind, or Hankel function of order α.

Thus

SβR (x, y) = y2α+1

∫ R

−R

(
1− (t/R)2

)β
Φ̃−t (x) ϕ̃t (y)

dt

2πc̃ (t)
.

Therefore

V βR (x, y) =
√
x2α+1y2α+1A (y) /A(x)

∫ R

−R

(
1− (t/R)2

)β
Φ̃−t (x) ϕ̃t (y)

dt

2πc̃ (t)
.
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It then follows that

W β
R (x, y)− V βR (x, y)

=
√
A (y) /A(x)

∫ R

−R

(
1− (t/R)2

)β
×

(√
A (y)ϕt (y)

√
A (x)

Φ−t (x)
2πc (t)

−
√
y2α+1ϕ̃t (y)

√
x2α+1

Φ̃−t (x)
2πc̃ (t)

)
dt.

In our hypotheses, the eigenfunctions ϕt (y) and ϕ̃t (y) are entire in t, while Φ−t (x) /c (t)
and Φ̃−t (x) /c̃ (t) are continuous in {Imt ≤ 0} and analytic in {Imt < 0}. See The-
orems 1.19 and 2.4 in [4]. We can therefore estimate the above integral after a
modification of the path of integration. If ω =

{
Reiθ : −π ≤ θ ≤ 0

}
, then

W β
R (x, y)− V βR (x, y)

=
√
A (y) /A (x)

∫
ω

(
1− (t/R)2

)β
×

(√
A (y)ϕt (y)

√
A (x)

Φ−t (x)
2πc (t)

−
√
y2α+1ϕ̃t (y)

√
x2α+1

Φ̃−t (x)
2πc̃ (t)

)
dt.

Now observe that, under the hypotheses (1), (2), (3) and (4) above, by [4, Theorems
1.2, 1.17 and 2.1], the following estimates hold uniformly in |t| ≥ 1, x > ε > 0 and
y > 0,√

A (y)ϕt (y) =
√
y2α+1ϕ̃t (y) +R0 (t, y) , |R0 (t, y)| ≤ c |t|−α−3/2

e|Im(ty)|,√
A (x)Φ−t (x) = e−itx (1 +R1 (t, x)) , |R1 (t, x)| ≤ c |t|−1

,√
A (x)Φ̃−t (x) = e−itx (1 +R2 (t, x)) , |R2 (t, x)| ≤ c |t|−1

,

c (t)−1 = c̃ (t)−1 (1 + E (t)) , |E (t)| ≤ c |t|−1
.

Therefore

W β
R (x, y)− V βR (x, y) =

1
2π

√
A (y) /A(x) (I1 + I2 + I3) ,

where

I1 =
∫
ω

(
1− (t/R)2

)β√
y2α+1ϕ̃t (y) e−itx (R1 (t, x)−R2 (t, x)) c̃ (t)−1

dt,

I2 =
∫
ω

(
1− (t/R)2

)β√
y2α+1ϕ̃t (y) e−itx (1 +R1 (t, x)) c̃ (t)−1

E (t) dt,

I3 =
∫
ω

(
1− (t/R)2

)β
R0 (t, y) e−itx (1 +R1 (t, x)) c̃ (t)−1 (1 + E (t)) dt.

The desired estimate now follows by taking absolute values inside the integral sign,
along with well known estimates for Bessel functions,

|ϕ̃t (y)| ≤ c (1 + |ty|)−α−1/2
e|Imt|y, y > 0, t ∈ C−{0} .
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Let us show the case of I1, the other two cases being similar:

|I1| ≤ c
(

Ry

1 +Ry

)α+1/2 ∫ π

0

∣∣1− e−2iθ
∣∣β e−R(x−y) sin θdθ

≤ c
(

Ry

1 +Ry

)α+1/2

(1 +R (x− y))−β−1
.

If, on the other hand, 0 < x < y, then switching variables,∣∣∣W β
R (x, y)− V βR (x, y)

∣∣∣ =
A (y)
A (x)

∣∣∣W β
R (y, x)− V βR (y, x)

∣∣∣
≤ c

(
Ry

1 +Ry

)α+1/2√
A(y)/A(x) (1 +R (y − x))−β−1

.

In particular, for every 0 < x < +∞ and 0 < y < +∞,∣∣∣V βR (x, y)−W β
R (x, y)

∣∣∣ ≤ c( Ry

1 +Ry

)α+1/2 √
A(y)/A(x)

(1 +R |x− y|)β+1
.

It remains to show that if ε < x < +∞, 0 < y < +∞, and R is large, then(
Ry

1 +Ry

)α+1/2 √
A(y)/A(x)

(1 +R |x− y|)β+1
≤ c

√
A(y)yλ

(1 + y)λ+β+1
.

This inequality is elementary. It suffices to consider separately the cases 0 < y ≤
1/R, 1/R ≤ y ≤ x/2, x/2 ≤ y ≤ 2x, and y ≥ 2x. This proves (1), and (2) follows
from the inversion formula for smooth rapidly decreasing functions. �

Lemma 5. For every ε < x < η and every function f(x),

lim
R→+∞

{∣∣∣V βR f (x)− T βRf (x)
∣∣∣} = 0.

Proof. It just suffices to check that under the assumptions of Theorem 2, also
Theorem 1 applies. Recall that

V βR f (x) =
√
x2α+1/A(x)SβR

(√
A(y)/y2α+1f(y)

)
(x) .

Then define

UβRf(x) =
√
x2α+1/A(x)T βR

(√
A(y)/y2α+1f(y)

)
(x) .

By Theorem 1, V βR f (x) and UβRf(x) are equiconvergent. Moreover, as in the proof
of Lemma 2, one can easily get rid of the factor

√
A(y)/y2α+1. Hence also UβRf(x)

and T βRf(x) are equiconvergent. �

Corollary 2. For every f(x) in Lp (R+, A(x)dx), 1 ≤ p ≤ +∞, and every
ε < x < η the means W β

Rf (x) and T βRf (x) are equiconvergent under the following
assumptions:

(1) ρ = 0 and
2b− 2β + 1

4b+ 4
<

1
p
<

2α+ 2β + 3
4α+ 4

,

(2) ρ > 0 and
1
2
≤ 1
p
<

2α+ 2β + 3
4α+ 4

.
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Proof. This follows from Hölder’s inequality. It suffices to recall that when
ρ = 0 thenA(x) ≈ cx2b+1 as x→ +∞, while from the identity limx→+∞A′(x)/A(x) =
2ρ it follows that when ρ > 0 then c1 exp ((2ρ− ε)x) ≤ A(x) ≤ c2 exp ((2ρ+ ε)x)
as x→ +∞, with c1 and c2 depending on ε. �

4. Bochner Riesz means in Sobolev spaces

The fractional powers of the differential operator L = −A−1(x)
d

dx

(
A(x)

d

dx

)
are defined spectrally for any complex γ by

(I + L)−γ/2 g (x) =
∫ +∞

0

(
1 + ρ2 + t2

)−γ/2 Fg (t)ϕt(x)
dt

2π |c(t)|2
.

The Sobolev spaces Wγ,p (R+, A(x)dx), γ ≥ 0 and 1 ≤ p ≤ +∞, are de-
fined as the spaces of all distributions f (x) = (I + L)−γ/2 g (x), with g(x) in
Lp (R+, A(x)dx) and with norm ‖f‖Wγ,p = ‖g‖Lp . In particular, f (x) is in W2n,p (R+, A(x)dx)
if and only if Ljf (x) is in Lp (R+, A(x)dx) for all j = 0, 1, ..., n. Another possible
definition of Wγ,p (R+, A(x)dx), 0 < γ < 2n, is the complex interpolation space
[X0,Xn]γ/2n, with Xk defined by the norm

‖f‖Xk =
k∑
j=0

{∫ +∞

0

∣∣Ljf (x)
∣∣pA(x)dx

}1/p

.

In what follows we shall assume that these Sobolev spaces and fractional inte-
gral operators satisfy some classical imbedding properties:

(1) If 1 = p < q < +∞ and γ > (2α+ 2) (1/p− 1/q), or if 1 < p < q < +∞
and γ ≥ (2α+ 2) (1/p− 1/q), then (I + L)−γ/2 is bounded from Lp (R+, A(x)dx)
into Lp (R+, A(x)dx) ∩ Lq (R+, A(x)dx).

(2) If 1 < p < +∞ and−∞ < τ < +∞, then the imaginary powers (I + L)−iτ/2

are bounded on Lp (R+, A(x)dx), with norm of polynomial growth in τ .
These properties are known to hold in a number of significant cases. They hold

when limx→+∞A′(x)/A(x) = 2ρ > 0, and when ρ = 0 and A(x) = x2α+1, and we
suspect that they hold in general also when ρ = 0. In particular, this covers the
analysis of radial functions in Euclidean and non Euclidean spaces. The classical
proof of (1) follows from Gaussian estimates for the heat kernel exp (−tL) and the
subordination

(I + L)−γ/2 =
1

Γ (γ/2)

∫ +∞

0

exp (−tL) exp (−t) tγ/2 dt
t
.

Moreover, (2) follows from the Hörmander multiplier theorem. For a proof in
the Euclidean case see [25], and for Sturm Liouville expansions see [2].

The set of divergence of Bochner Riesz means is defined by

D(β, f) =
{

0 ≤ x < +∞, lim
R→+∞

{
W β
Rf(x)

}
does not exists

}
.

Theorem 3. Let 1 ≤ p < +∞, β ≥ 0, γ ≥ 0, and assume that one of the
following holds:

(1) ρ = 0 and
2b− 2β + 1

4b+ 4
<

1
p
<

2α+ 2β + 2γ + 3
4α+ 4

,
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(2) ρ > 0 and
1
2
≤ 1
p
<

2α+ 2β + 2γ + 3
4α+ 4

.

Then, for every f(x) = (I + L)−γ/2 g(x), with g(x) in Lp (R+, A(x)dx), one
has:

(A) If 0 ≤ γ ≤ 1/p, the divergence set of W β
Rf(x) has Hausdorff dimension at

most 1− γp.
(B) If 1/p < γ ≤ (2α+ 2) /p, the divergence set either is empty or reduces to

the origin.
(C) If γ > (2α+ 2) /p and if 1 ≤ p ≤ 2, the convergence holds everywhere.

Observe that when p < 2 then the critical index for summability β improves
when the index of smoothness γ increases, but when p ≥ 2 then the smoothness
does not lower the critical index. Also observe that the lower bound for the index
p depends on the local space dimension 2α+ 2, while the upper bound depends on
the space dimension 2b+ 2 at infinity.

Proof. The case p = 1 and γ = 0 in (1) for trigonometric expansions is
the classical result of Bochner, and for Sturm Liouville expansions it follows from
Corollary 2. The case p = 1 and γ > 0 follows from the case 1 < p < +∞. Indeed
a function with γ derivatives in L1 (R+, A(x)dx) has 0 ≤ δ < γ derivatives in
Lp (R+, A(x)dx) for every p < (2α+ 2) / (2α+ 2 + δ − γ). When p > 1 it suffices
to prove that the divergence set D(β, f) ∩ (ε, η) has Hausdorff dimension at most
1 − γp for every 0 < ε < η < +∞. In order to prove this, first we shall prove
that, under the above assumptions, the 2α + 2 dimensional means W β

Rf(x) are
equiconvergent in ε < x < η with the 1 dimensional means T βRf(x), then we shall
prove that functions with γ derivatives in Lp (R+, A(x)dx) can be defined up to
sets with Hausdorff dimension 1 − γp, and that the divergence set of T βRf(x) has
dimension at most 1− γp. As before, in order to simplify the exposition, the proof
is splitted into a series of lemmas.

Lemma 6. Under the assumptions (1) and (2) of Theorem 3, if f(x) = (I + L)−γ/2 g(x)
with g(x) in Lp (R+, A(x)dx), then the means W β

Rf (x) and T βRf (x) are equicon-
vergent in ε < x < η.

Proof. The case γ = 0 is Corollary 2. The case γ > 0 follows from the case
γ = 0 and the imbedding properties of the fractional integral operators. �

In order to prove (A) in Theorem 3, it then suffices to show that if g(x) is in
Lp (R+, A(x)dx), then (I + L)−γ/2 g (x) and limR→+∞

{
T βR

(
(I + L)−γ/2 g

)
(x)
}

exist up to sets with Hausdorff dimension at most 1− γp.
Lemma 7. Let χ(x) be a smooth function with support in 0 < ε/3 ≤ x ≤

3η < +∞, and let 1 < p < +∞ and γ ≥ 0. Then for every function g(x) in
Lp (R+, A(x)dx) there exists a function h(x) in Lp (R+, dx) such that

χ(x) (I + L)−γ/2 g (x) =
(
I − d2/dx2

)−γ/2
h (x) .

Proof. The meaning of the lemma is quite simple. On the support of χ(x)
the measures dx and A(x)dx are comparable and on this support the associated
Sobolev classes coincide. The details of the proof are more complicated. Denote by
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χ the operator of multiplication by χ(x). It suffices to prove the boundedness from
Lp (R+, A(x)dx) into Lp (R+, dx) of the operator

P γg(x) =
(
I − d2/dx2

)γ/2
χ (I + L)−γ/2 g (x) .

First assume that γ = 2. Observe that
(
I − d2/dx2

)
= (I + L)+H and (I + L)χ =

χ (I + L) +K, with H and K first order differential operators. Hence,

P 2g(x) =
(
I − d2/dx2

)
χ (I + L)−1

g (x)

= (I + L)χ (I + L)−1
g (x) +Hχ (I + L)−1

g (x)

= χg (x) + (K +Hχ) (I + L)−1
g (x)

= A (x) (I + L)−1
g (x) +B(x) (d/dx) (I + L)−1

g(x) + C(x)g (x) .

Then assume that γ = 2n is an even integer. By iterating the above argument one
obtains that, for some smooth compactly supported functions Aj(x) and Bj(x),

P 2ng(x) =
n∑
j=0

Aj(x) (I + L)−j g(x) +
n∑
j=1

Bj(x) (d/dx) (I + L)−j g(x).

By our assumptions, the fractional integral operators (I + L)−j are bounded on
Lp (R+, A(x)dx), hence the operatorsAj(x) (I + L)−j g(x) are bounded from Lp (R+, A(x)dx)
into Lp (R+, dx). In order to show that also the operatorsBj(x) (d/dx) (I + L)−j g(x)
are bounded, it suffices to show that the norm of Bj(x) (d/dx) (I + L)−j g(x) is con-
trolled by the norms of (I + L)−j g(x) and (I + L)1−j g(x). More precisely, writing
(I + L)−j g(x) = G(x), it suffices to show that{∫ 3η

ε/3

∣∣∣∣ ddxG(x)
∣∣∣∣p dx

}1/p

≤ c

{∫ 3η

ε/3

|G(x)|p dx

}1/p

+

{∫ 3η

ε/3

∣∣∣∣(1− A′(x)
A(x)

d

dx
− d2

dx2

)
G(x)

∣∣∣∣p dx
}1/p

 .

This follows from the classical inequality, see [17, Theorem 5.6, Chapter 2],{∫ 3η

ε/3

∣∣∣∣ ddxG(x)
∣∣∣∣p dx

}1/p

≤ c

t−1

{∫ 3η

ε/3

|G(x)|p dx

}1/p

+ t

{∫ 3η

ε/3

∣∣∣∣ d2

dx2
G(x)

∣∣∣∣p dx
}1/p

 .

Hence P 2n is a bounded operator from Lp (R+, A(x)dx) into Lp (R+, dx). Moreover,
by the assumptions that

(
I − d2/dx2

)iτ/2 and (I + L)−iτ/2 are bounded operators
on Lp (R+, dx) and Lp (R+, A(x)dx) with norm of polynomial growth in τ , it also
follows that P 2n+iτ =

(
I − d2/dx2

)iτ/2
P 2n (I + L)−iτ/2 is a bounded operator

from Lp (R+, A(x)dx) into Lp (R+, dx), with norm of polynomial growth in τ . Fi-
nally, the boundedness of P γ with 0 < γ < 2n follows by complex interpolation
between 0 + iτ and 2n+ iτ . �
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Recall that the (γ, p) capacity of a set X ⊆ R+, 0 ≤ γ ≤ 1/p and 1 < p < +∞,
is defined by

C (γ, p,X) = inf
{
‖h‖pLp(R+,dx)

,
(
I − d2/dx2

)−γ/2
h(x) ≥ 1 for every x in X

}
.

Lemma 8. If g(x) is in Lp (R+, A(x)dx), then

(I + L)−γ/2 g (x)

and

lim
R→+∞

{
T βR (I + L)−γ/2 g (x)

}
exist and are finite in sets whose complements have (γ, p) capacity 0.

Proof. Observe that when γ = 0, then the (0, p) capacity coincide with
Lebesgue measure. Also observe that for every h(x) in Lp (R+, dx), then

C
(
γ, p,

{∣∣∣(I − d2/dx2
)−γ/2

h(x)
∣∣∣ ≥ t}) ≤ t−p ‖h‖pLp(R+,dx)

.

It then follows that
(
I − d2/dx2

)−γ/2
h(x) can be infinite only in a set with (γ, p) ca-

pacity 0. Since, by Lemma 7, χ(x) (I + L)−γ/2 g (x) =
(
I − d2/dx2

)−γ/2
h (x), also

(I + L)−γ/2 g (x) can be infinite only in a set with (γ, p) capacity 0. The existence
of limR→+∞

{
T βR (I + L)−γ/2 g (x)

}
follows from the boundedness of the associ-

ated maximal operator. Let T βR be the one dimensional Bochner Riesz operator, so
that T βRf (x) = T βR (χf) (x) and T βR (I + L)−γ/2 g (x) = T βR

(
I − d2/dx2

)−γ/2
h (x).

Since the operators T βR and
(
I − d2/dx2

)−γ/2 commute and since the fractional

integral
(
I − d2/dx2

)−γ/2 is a positive operator, one has

sup
R>0

{∣∣∣T βR (I − d2/dx2
)−γ/2

h (x)
∣∣∣} ≤ (I − d2/dx2

)−γ/2(
sup
R>0

{∣∣∣T βR h∣∣∣}) (x).

Moreover, {∫ +∞

0

∣∣∣∣sup
R>0

{∣∣∣T βR h(x)
∣∣∣}∣∣∣∣p dx}1/p

≤ c
{∫ +∞

0

|h(x)|p dx
}1/p

.

The boundedness of the maximal partial sum operator supR>0

{∣∣∣T βR h(x)
∣∣∣} when

β = 0 and 1 < p < +∞ comes from the Carleson Hunt theorem. The case β > 0 is
simpler. By Lemma 1 and the estimate

∣∣Jβ+1/2 (z)
∣∣ ≤ c |z|−1/2,∣∣∣T βR (x, y)

∣∣∣ ≤ cR (1 +R |x− y|)−β−1
.

It then follows that when β > 0, then the maximal operator supR>0

{∣∣∣T βR h(x)
∣∣∣}

is dominated by the Hardy Littlewood maximal operator, which is bounded on
Lp (R+, dx). For every function w(x) smooth with compact support in R+ and
every x,

lim
R→+∞

{
T βR
(
I − d2/dx2

)−γ/2
w (x)

}
=
(
I − d2/dx2

)−γ/2
w (x) .
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Then, for every ε > 0,

X (ε) ={
x : lim sup

R→+∞

{∣∣∣T βR (I − d2/dx2
)−γ/2

h (x)−
(
I − d2/dx2

)−γ/2
h (x)

∣∣∣} > ε

}
⊆
{
x :

(
I − d2/dx2

)−γ/2
sup
R>0

{∣∣∣T βR (h− w) (x)
∣∣∣} > ε/2

}
∪
{
x :

(
I − d2/dx2

)−γ/2 |h− w| (x) > ε/2
}
.

Hence,

C (γ, p,X (ε)) ≤ cε−p
{∫ +∞

0

|h(x)− w(x)|p dx
}1/p

.

Since
∫ +∞
0
|h(x)− w(x)|p dx can be chosen arbitrarily small, C (γ, p,X (ε)) = 0.

Finally, since capacity is subadditive, also C (γ, p,∪ε>0X (ε)) = 0. �

In order to conclude the proof of (A), it suffices to recall that sets with (γ, p)
capacity 0 have Hausdorff dimension at most 1−γp. See e.g. [29]. (B) in Theorem
3 follows from Corollary 2 and the following lemma.

Lemma 9. If g(x) is in Lp (R+, A(x)dx) and if γ > 1/p, then χ(x) (I + L)−γ/2 g(x)
is bounded and Hölder continuous of order γ − 1/p, and

lim
R→+∞

{
T βR (I + L)−γ/2 g(x)

}
= f(x).

Proof. By Lemma 7, χ(x) (I + L)−γ/2 g (x) =
(
I − d2/dx2

)−γ/2
h (x) with

h(x) is in Lp (R+, dx). By the Sobolev imbedding theorem, functions with γ deriva-
tives in Lp (R+, dx) are Hölder continuous of order γ − 1/p. Finally, the pointwise
convergence of T βR (I + L)−γ/2 g(x) follows from the Dini criterion for convergence
of Fourier series and integrals. �

Finally, in order to prove (C) in Theorem 3 it suffices to prove that the lin-
ear functionals which associate to a function g(x) in Lp (R+, A(x)dx) the num-
bers W β

R (I + L)−γ/2 g(0) are uniformly bounded. This follows from the following
lemma.

Lemma 10. Let

Iγ (x) =
∫ +∞

0

(
1 + ρ2 + t2

)−γ/2
ϕt(x)

dt

2π |c(t)|2
,

W β
RI

γ (x) =
∫ R

0

(
1− (t/R)2

)β (
1 + ρ2 + t2

)−γ/2
ϕt(x)

dt

2π |c(t)|2
.

Then, under the assumptions (1) or (2) of Theorem 3, if γ > (2α+ 2) /p and if
1 ≤ p ≤ 2 and 1/p+ 1/q = 1,

sup
R>0

{∫ +∞

0

∣∣∣W β
RI

γ (x)
∣∣∣q A(x)dx

}1/q

< +∞.
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Proof. The result follows by the Hausdorff Young inequality,{∫ +∞

0

∣∣∣W β
RI

γ (x)
∣∣∣q A(x)dx

}1/q

≤

{∫ R

0

∣∣∣∣(1− (t/R)2
)β (

1 + ρ2 + t2
)−γ/2∣∣∣∣p dt

2π |c(t)|2

}1/p

≤

{∫ +∞

0

∣∣∣(1 + ρ2 + t2
)−γ/2∣∣∣p dt

2π |c(t)|2

}1/p

< +∞.

As in the classical case, this Hausdorff Young inequality follows by interpolation
between (1,+∞) and (2, 2). �

The following remarks show that the ranges of indexes in the above theorem
are best possible, with a possible exception of (C) with ρ = 0 and 2 < p <
(4b+ 4) / (2b− 2β + 1).

Remark 2. The upper value for the dimension of divergence sets in Theorem
3 is optimal. Indeed, functions with γ ≤ (2α+ 2) /p derivatives in Lp (R+, A(x)dx)
may be unbounded at the origin. This follows from the non integrability of the
Fourier transform of such functions. Moreover, if γ < 1/p then they may be infinite
on sets with Hausdorff dimension 1 − γp. In order to see this, observe that, by
Lemma 7, it suffices to prove this when A (x) = 1 and with R instead of R+. Next
observe that a set X has (γ, p) capacity 0 if and only if there exists a function h (x)
in Lp (R+, dx) with

(
I − d2/dx2

)−γ/2
h(x) = +∞ for every x in X. Finally recall

that sets with (γ, p) capacity 0 have 1−γp+ε Hausdorff measure 0 for every ε > 0.
See e.g. [29, Theorem 2.6.16.]. For completeness we present a construction of such
functions. For simplicity, we use the Riesz capacity instead of the Bessel one, but
sets of Bessel or Riesz capacity zero are the same. Let X be a compact set in R
with positive and finite δ dimensional Hausdorff measure and let dµ(x) be the δ
dimensional Hausdorff measure restricted to X, so that

µ {|x− y| < t} ≤ tδ for every x ∈ R and t > 0,

lim sup
t 0+

{
µ {|x− y| < t}

tδ

}
> 0 for µ almost every x ∈ X.

For every 0 < ε < 1, the Riesz potential

Rε ∗ µ (x) =
∫
X

|x− y|ε−1
dµ (y)

is locally integrable. This follows from the local integrability of |x− y|ε−1. Moreover,
if ε > 1 − δ then Rε ∗ µ (x) is uniformly bounded. This follows from the estimate
µ {|x− y| < t} ≤ tδ. By Hölder’s inequality, if ε+ (1− δ) (1− 1/p) < 1, then

Rε+(1−δ)(1−1/p) ∗ µ (x) =
∫
X

|x− y|ε+(1−δ)(1−1/p)−1
dµ (y)

≤
{∫

X

|x− y|ε+(1−δ)−1
dµ (y)

}1−1/p{∫
X

|x− y|ε−1
dµ (y)

}1/p

.

The first factor is uniformly bounded and the p power of the second factor is locally
integrable, hence Rε+(1−δ)(1−1/p) ∗ µ (x) is locally in Lp (R, dx). Finally, if γ + ε+
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(1− δ) (1− 1/p) < 1 then

Rγ ∗Rε+(1−δ)(1−1/p) ∗ µ (x) = cRγ+ε+(1−δ)(1−1/p) ∗ µ (x)

is locally in Wγ,p (R, dx). On the other hand,

Rγ+ε+(1−δ)(1−1/p) ∗ µ (x) =
∫
X

|x− y|γ+ε+(1−δ)(1−1/p)−1
dµ (y)

≥ lim sup
t 0+

{
tγ+ε+(1−δ)(1−1/p)−1µ {|x− y| < t}

}
= lim sup

t 0+

{
t(δ−1+γp+εp)/pµ {|x− y| < t}

tδ

}
.

If δ < 1−γp, and if ε is so small that δ−1 +γp+ εp < 0, then Rγ+ε+(1−δ)(1−1/p) ∗
µ (x) = +∞ for µ almost every x in X.

Remark 3. The function Iδ(x) with Fourier Bessel transform
(
1 + t2

)−δ/2
shows that the indexes for Bochner Riesz summability in Theorem 3 are best possible
when p < 2. This function is positive and smooth away from the origin, Iδ(x) ≈
c |x|δ−2α−2 when x → 0, and it has an exponential decay at infinity. See [25,
Chapter V.3]. It then follows that this function is in Wγ,p

(
R+, x

2α+1dx
)

provided
that γ < δ − (2α+ 2) (1− 1/p). Let ϕ(t) be a smooth function with ϕ(t) = 1 if
t ≤ 1/3 and ϕ(t) = 0 if t ≥ 2/3. Then

SβRI
δ (x)

=
∫ 2R/3

0

ϕ (t/R)
(

1− (t/R)2
)β (

1 + t2
)−δ/2 Jα (tx)

(tx)α
t2α+1dt

+
∫ R

R/3

(1− ϕ (t/R))
(

1− (t/R)2
)β (

1 + t2
)−δ/2 Jα (tx)

(tx)α
t2α+1dt.

The multiplier ϕ (t)
(
1− t2

)β is smooth and for almost every x,

lim
R→+∞

{∫ 2R/3

0

ϕ (t/R)
(

1− (t/R)2
)β (

1 + t2
)−δ/2 Jα (tx)

(tx)α
t2α+1dt

}
= Iδ (x) .

Moreover, by the asymptotic expansion of the Bessel functions, for an appropriate
function Φ (t), phases ζ and ϑ, one has∫ R

R/3

(1− ϕ (t/R))
(

1− (t/R)2
)β (

1 + t2
)−δ/2 Jα (tx)

(tx)α
t2α+1dt

≈ Rα−δ+3/2x−α−1/2

∫ 1

1/3

Φ (t) (1− t)β cos (Rxt− ζ) dt

≈ Rα−β−δ+1/2x−α−β−3/2 cos (Rx− ϑ) .

In particular, if α − β − δ + 1/2 ≥ 0 this term does not converge when R →
∞. Hence a necessary condition for convergence is β > α − δ + 1/2. Finally,
since δ > γ + (2α+ 2) (1− 1/p), a necessary condition for convergence is β + γ ≥
(2α+ 2) (1/p− 1/2)− 1/2.

Remark 4. When p > 2 an argument of Rubio de Francia shows that Bochner
Riesz means of index β ≤ (2α+ 2) (1/2− 1/p)−1/2 of functions in Wγ,p

(
R+, x

2α+1dx
)

are not tempered distributions. Suppose the contrary. Then by duality SβR is also
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bounded from the space of test functions into W−γ,q
(
R+, x

2α+1dx
)

with 1/p +
1/q = 1, and (I + L)−γ/2 SβR is bounded from the space of test functions into
Lq
(
R+, x

2α+1dx
)
. On the other hand, if f(x) is a test function with Fαf (t) =(

1 + t2
)γ/2 for all t ≤ R, then

(I + L)−γ/2 SβRf (x) =
∫ R

0

(
1− (t/R)2

)β Jα (tx)
(tx)α

t2α+1dt = cSβR (x, 0) .

If β ≤ (2α+ 2) (1/p− 1/2) − 1/2 then this function is not in Lq
(
R+, x

2α+1dx
)
.

Indeed, by Lemma 2 (1), as |x| → +∞,∣∣∣SβR (x, 0)
∣∣∣ ≈ cRα−β+1/2 |x|−α−β−3/2

.

Remark 5. For Fourier Bessel expansions the full range of indexes p in Lemma
10, hence in part (C) of Theorem 3, is 1 ≤ p < (4α+ 4) / (2α− 2β + 1). The case
1 ≤ p ≤ 2 is already in the lemma. When (2α− 2β + 1) / (4α+ 4) < 1/p ≤ 1/2
and β ≥ 0, then the operators SβR are uniformly bounded on Lq

(
R+, x

2α+1dx
)
. See

[22, 23] for the case β = 0, and [15, 18] for the case β > 0. Moreover, the kernel
Iγ(x) is asymptotic to cxγ−2α−2 at the origin with an exponential decay at infinity.
Hence, if γ > (2α+ 2)/p then Iγ (x) is in Lq

(
R+, x

2α+1dx
)

and{∫ +∞

0

∣∣∣SβRIγ (x)
∣∣∣q x2α+1dx

}1/q

≤ c
{∫ +∞

0

|Iγ (x)|q x2α+1dx

}1/q

< +∞.

Remark 6. Bochner Riesz means with negative index in Sobolev spaces have
been considered in [3].
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