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Abstract We propose a unified convergence analysis of the generalized Schwarz
method applied to a linear elliptic problem for a general interface (flat, cylin-
drical or spherical) in any dimension. In particular, we provide the exact con-
vergence set of the interface symbols related to the operators involved in the
transmission conditions. We also provide a general procedure to obtain es-
timates of the optimized interface symbols within the constants. Finally, we
apply such general results to a fluid-structure interaction model problem, and
we assess the effectiveness of the theoretical findings through three-dimensional
numerical experiments in the haemodynamic context.
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1 Introduction

The Optimized Schwarz Method (OSM) is a domain decomposition method
based on the splitting of the computational domain into subdomains, on the
linear combination of the interface conditions between subdomains through
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the introduction of interface operators, and on the search of optimized inter-
face operators in a proper subset (e.g. the constants) which guarantee good
convergence properties [19,22].

This method has been considered so far for many problems in the case of
flat interfaces, such as the advection-reaction-diffusion problem [14, 20], the
Helmholtz equation [15, 23], the shallow-water equations [28], the Maxwell’s
equations [6], the fluid-structure interaction problem [16] and the scattering
problem [29]. Recently, in [17] OSM has been considered and analyzed for the
reaction-diffusion problem in the case of cylindrical interfaces.

In this work, we consider a general framework to analyze OSM for linear
elliptic problems. This will allow to consider several situations, namely the
case of flat, cylindrical and spherical interfaces, in any dimension. This is done
by applying a general Fourier transform to the linear elliptic problem allowing
to obtain a synthetic expression of this equation covering all the cited cases,
and to write explicitly its solution.

Once we have derived a general expression for the solution of the elliptic
problem, we provide the exact convergence set of the interface symbols for
the generalized Schwarz method, that is the iterative algorithm obtained for
general, non-optimized interface operators. Then, we propose a new optimiza-
tion strategy, based on looking for optimized constant interface values along
a selected curve in the space of the parameters, which is supposed to lead to
good convergence properties. This allows to obtain an optimization problem
with respect to one scalar parameter and to write explicitly a range of such a
parameter which guarantees that the reduction factor is below a given value.

Finally, we apply the proposed analysis and optimization procedure to
the fluid-structure interaction (FSI) problem, obtaining new estimates for the
interface parameters. We present also some 3D numerical results both in a
simplified and in a real geometry inspired by the haemodynamic applications.

The outline of this work is as follows. In Section 2 we present the general
solution of the linear elliptic problem, whereas in Section 3 we provide the
exact convergence set of the interface symbols. In Section 4 we present the new
optimization procedure, and in Section 5.1 and 5.2 we show two applications
of our strategies to problems introduced so far in the literature. In Section 5.3
we apply our results to the FSI problem, and finally in Section 6 we present
the numerical results.

2 General solution of the elliptic problem

In this section we provide a general discussion about the solution of a linear
elliptic problem. In particular, let n be a positive integer, and d an integer
between 1 and n. Let Ω be a subset of R

n of the form

Ω :=
{
(x,y) : x ∈ R

d, a < ‖x‖ < b, y ∈ R
n−d

}
,

where d ≥ 2 and 0 ≤ a < b ≤ +∞. In the case d = 1, we set

Ω :=
{
(x,y) : a < x < b, y ∈ R

n−1
}

,
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Fig. 1 Possible domain configurations. Left: n = 2, d = 1; Right: n = 3, d = 2.

so that x is a real number and we will assume −∞ ≤ a < b ≤ +∞. For
example, if n = 3, Ω is a spherical shell when d = 3, a cylindrical shell when
d = 2, and a ”thick vertical wall” when d = 1, whereas if n = 2, Ω is a circular
crown for d = 2 and a vertical stripe for d = 1, see Figure 1.

Given a function u, we will use the following notation:

∆xu (x,y) =

d∑

j=1

∂2u

∂x2
j

(x,y) , ∆yu (x,y) =

n−d∑

j=1

∂2u

∂y2
j

(x,y) ,

∇xu (x,y) =

(
∂u

∂x1
(x,y) , . . . ,

∂u

∂xd
(x,y)

)T

,

∇yu (x,y) =

(
∂u

∂y1
(x,y) , . . . ,

∂u

∂yn−d
(x,y)

)T

.

With this notation, given µ > 0, ξ ∈ R and β ∈ R
n, we can introduce the

operator L as follows

Lu = −µ∆u + β · ∇u + ξu = −µ∆xu − µ∆yu + βx · ∇xu + βy · ∇yu + ξu,

where β =
(
βx,βy

)
, with βx = (β1, . . . , βd) and βy = (βd+1, . . . , βn). Through-

out the paper we will assume βx = 0, so that the operator reduces to

Lu = −µ∆xu − µ∆yu + βy · ∇yu + ξu.

We want now to write an explicit expression of the solution of the equation
Lu = 0. Due to the particular shape of Ω, it is natural to write the Laplacian
∆x in terms of the d-dimensional spherical coordinates. Thus, when d ≥ 2,
writing x = rx′, where r = ‖x‖ and x′ = x/ ‖x‖ , we have (see, e.g., [10],
Lemmas 2.62 and 2.63)

∆xu (rx′,y) =
∂2u

∂r2
(rx′,y)+

d − 1

r

∂u

∂r
(rx′,y)+

1

r2
(∆Sd−1u (r·,y)) (x′) , (1)
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where ∆Sd−1 is the Laplace-Beltrami operator on the d−1-dimensional sphere

Sd−1 =
{
x ∈ R

d : ‖x‖ = 1
}

.

If instead d = 1, we call r the variable x and we simply have

∆xu =
∂2u

∂r2
.

Now, let

{Pm,l (x
′)}+∞,km

m=0,l=1

be an orthonormal basis of spherical harmonics of the sphere Sd−1, where km

is the dimension of the eigenspace associated with the eigenvalue λm, whose
expression is given by λm = m(m + d − 2), m = 0, . . . ,+∞, see, e.g., [10],

Corollary 2.55. We have km = (2m + d − 2) (m+d−3)!
m!(d−2)! , which in the case d = 2

leads to km = 2 for any m. Then, for any function u (x,y), let

û (r,m, l,k) =

∫

Rn−d

(∫

Sd−1

u (rx′,y)Pm,l (x′)dσ (x′)

)
e−iy·kdy (2)

be its Fourier transform with respect to x′ and y. Notice that the frequency
variable k related to the spatial variable y is continuous, whereas the frequency
variable m related to the spatial variable x′ is discrete, since Sd−1 is a compact
manifold.

Applying the transform (2) to (1), we obtain

∆̂xu (r,m, l,k) =

∂2û

∂r2
(r,m, l,k) +

d − 1

r

∂û

∂r
(r,m, l,k) − m (m + d − 2)

r2
û (r,m, l,k) ,

and then

L̂u (r,m, l,k)

= −µ

(
∂2û

∂r2
(r,m, l,k) +

d − 1

r

∂û

∂r
(r,m, l,k) − m (m + d − 2)

r2
û (r,m, l,k)

)

+ ‖k‖2
µ û (r,m, l,k) − iβy · k û (r,m, l,k) + ξ û (r,m, l,k) .

Then, the equation L = 0 becomes

∂2û

∂r2
+

d − 1

r

∂û

∂r
−

(
m (m + d − 2)

r2
+ α2

)
û = 0, (3)

where

α =

(
‖k‖2

+
ξ

µ
− i

βy

µ
· k

)1/2
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where γ1/2 is the square root of γ ∈ C satisfying the condition 0 ≤ arg (γ) < π.
Of course, if d = n, the Fourier transform in the variable y disappears and we

have to take k = 0, so that α =
(

ξ
µ

)1/2

and the equation (3) becomes

∂2û

∂r2
+

d − 1

r

∂û

∂r
−

(
m (m + d − 2)

r2
+

ξ

µ

)
û = 0.

Notice that we considered homogeneous forcing term since in the conver-
gence analyses reported in the next sections we will analyze without loss of
generality the convergence to the zero solution. Observe also that the equa-
tion L = 0 needs to be equipped with suitable boundary conditions on ∂Ω,
see Section 3. Finally, we notice that in the case d = 2 (cylindrical domain for
n = 3) equation (3) is exactly the one discussed in [17] whose solutions are
the modified Bessel functions, see Section 2.2.

2.1 Solution of the case d = 1.

When d = 1, the Fourier transform in the variable x′ disappears and in (3)
we have to take m = 0, obtaining

∂2û

∂r2
− α2û = 0.

If α 6= 0, the solutions of this equation are simply

û (r,k) = X1 (k) eαr + X2 (k) e−αr,

for suitable functions X1 and X2 determined by the boundary conditions. In
particular, if βy = 0, we have

û(r,k) = X1 (k) er(‖k‖2+ ξ
µ )

1/2

+ X2 (k) e−r(‖k‖2+ ξ
µ )

1/2

.

If ξ > 0, then ‖k‖2
+ ξ

µ > 0 and the solutions are

û(r,k) = X1 (k) e
r

q

‖k‖2+ ξ
µ + X2 (k) e

−r
q

‖k‖2+ ξ
µ ,

where we have used the symbol
√

γ to indicate the square root of a real non-
negative number γ. If, on the contrary, ξ ≤ 0, then we have three possibilities,
according to ‖k‖:

û (r,k) =





X1 (k) e
r

q

‖k‖2+ ξ
µ + X2 (k) e

−r
q

‖k‖2+ ξ
µ if ‖k‖2

> − ξ
µ ,

X1 (k) + X2 (k) r if ‖k‖2
= − ξ

µ ,

X1 (k) cos
(
r
√
−‖k‖2 − ξ

µ

)

+X2 (k) sin
(
r
√

−‖k‖2 − ξ
µ

)
if ‖k‖2

< − ξ
µ .
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2.2 Solution of the case d > 1.

The equation in this case is (3). If α 6= 0, with the change of variables

û (r) = v (αr) r−
d−2

2 ,

this equation becomes

v′′ (t) +
1

t
v′ (t) −

(
1 +

(
m + d−2

2

)2

t2

)
v (t) = 0.

This is the modified Bessel equation, and the solutions are

v (t) = X1Im+ d−2

2

(t) + X2Km+ d−2

2

(t) ,

where Iν and Kν are the modified Bessel functions, see [21]. Thus, we have

û (r,m, l,k) = X1 (m, l,k)
Im+ d−2

2

(αr)

r
d−2

2

+ X2 (m, l,k)
Km+ d−2

2

(αr)

r
d−2

2

. (4)

Once again, let us look closely to the case βy = 0, so that α =
(
‖k‖2

+ ξ
µ

)1/2

.

If ξ > 0, then α =
√

‖k‖2
+ ξ

µ and the solutions are

û (r,m, l,k)

= X1 (m, l,k)
Im+ d−2

2

(
r
√

‖k‖2
+ ξ

µ

)

r
d−2

2

+X2 (m, l,k)
Km+ d−2

2

(
r
√
‖k‖2

+ ξ
µ

)

r
d−2

2

.

If, on the contrary, ξ ≤ 0, then we have three possibilities, according to ‖k‖:
if ‖k‖2

> − ξ
µ , then

û (r,m, l,k)

= X1 (m, l,k)
Im+ d−2

2

(
r
√

‖k‖2
+ ξ

µ

)

r
d−2

2

+X2 (m, l,k)
Km+ d−2

2

(
r
√
‖k‖2

+ ξ
µ

)

r
d−2

2

;

if ‖k‖2
= − ξ

µ , then

û (r,m, l,k) = X1 (m, l,k)
rm+ d−2

2

r
d−2

2

+ X2 (m, l,k)
r−(m+ d−2

2 )

r
d−2

2

= X1 (m, l,k) rm + X2 (m, l,k) r−d−m+2;
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if ‖k‖2
< − ξ

µ , then

û (r,m, l,k) = X1 (m, l,k)
Jm+ d−2

2

(
r
√
−‖k‖2 − ξ

µ

)

r
d−2

2

+ X2 (m, l,k)
Ym+ d−2

2

(
r
√
−‖k‖2 − ξ

µ

)
.

r
d−2

2

.

Observe that in the case ‖k‖2
< − ξ

µ , in order to avoid complications due to
the presence of complex valued functions, we have taken a different expression
than the one coming from (4), based on the introduction of the Bessel func-
tions Jν and Yν , see [21].

In all the cases considered in the previous two subsections, the solution of
(3) has the general form

û(r,m, l,k) = X1(m, l,k)g1(r,m,k) + X2(m, l,k)g2(r,m,k). (5)

for suitable functions X1 and X2 determined by the boundary conditions.

3 Convergence analysis of the generalized Schwarz method

For any real number L, a ≤ L ≤ b, let ΣL be defined by

ΣL :=
{
(x,y) : x ∈ R

d, ‖x‖ = L, y ∈ R
n−d

}
.

This is a surface for n = 3 and a curve for n = 2. We fix now a real number
R, a < R < b. Then, ΣR divides Ω into two non-overlapping subdomains,
namely

Ω1 :=
{
(x,y) : x ∈ R

d, a < ‖x‖ < R, y ∈ R
n−d

}
,

Ω2 :=
{
(x,y) : x ∈ R

d, R < ‖x‖ < b, y ∈ R
n−d

}
,

see Figure 2. In particular, we have the following cases: n = 2, d = 1, straight
line interface; n = 3, d = 1, plane interface; n = 2, d = 2, circular interface;
n = 3, d = 2, cylindrical interface; n = 3, d = 3, spherical interface.

We are here interested in the solution of the following problem





Lu = 0 (x, y) ∈ Ω,

γu + µ
∂u

∂r
= 0 (x, y) ∈ Σa,

γu + µ
∂u

∂r
= 0 (x, y) ∈ Σb,



8 Giacomo Gigante, Christian Vergara
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Fig. 2 Possible splitting of the domain. Left: n = 2, d = 1; Right: n = 3, d = 2.

where as usual L = −µ∆ + β · ∇ + ξ and with γ ∈ R. We suppose that the
domain Ω is subdivided into the two non-overlapping subdomains Ω1 and Ω2.
Then, the previous problem is equivalent to the following coupled problem:





L1u1 = 0 (x, y) ∈ Ω1,

γ1u1 + µ1
∂u1

∂r
= 0 (x, y) ∈ Σa,

u1 = δu2 + (1 − δ) κDµ2
∂u2

∂r
(x, y) ∈ ΣR,

µ1
∂u1

∂r
= δµ2

∂u2

∂r
+ (1 − δ) κNu2 (x, y) ∈ ΣR,

γ2u2 + µ2
∂u2

∂r
= 0 (x, y) ∈ Σb,

L2u2 = 0 (x, y) ∈ Ω2,

(6)

where Li := −µi∆ + βi · ∇ + ξi, i = 1, 2, µi, βi, ξi, γi are constant within
each subdomain, but they could in principle assume different values in the
two subdomains, κD, κN ∈ R account for possible heterogeneous couplings,
δ = 0, 1, and ∂/∂r is the directional derivative with respect to the outward unit
normal to Σa, ΣR or Σb. The interface conditions (6)3−4 state the continuity of
u = (u1, u2) and of the tractions. Observe that the case δ = 0 arises for example
when coupling the Darcy problem with the wave equation, see Section 5.3. We
observe also that we prescribed Robin conditions on the physical boundaries
Σa and Σb, to make the discussion as general as possible. If d < n, Ω1 and Ω2

are unbounded in the y directions, so that we require that the corresponding
solution decays for ‖y‖ → +∞. Analogously, if Ω1 and/or Ω2 are unbounded
in the x directions, that is if d = 1 and a = −∞, or b = +∞, we again require
that the corresponding solution decays at infinity (γi = +∞). When d ≥ 2
and a = 0, condition (6)2 on Σa should be replaced with

∫

Rn−d

∫

Sd−1

|u1 (rx′,y)| dσ(x′)dy bounded as r → 0+. (7)



Analysis and optimization of the generalized Schwarz method 9

By linearly combining the interface conditions (6)3−4, through the linear
operators Si, i = 1, 2, acting in the tangential direction to ΣR, we obtain the
following equivalent coupled problem [8,22]:





L1u1 = 0 (x,y) ∈ Ω1,

γ1u1 + µ1
∂u1

∂r
= 0 (x,y) ∈ Σa,

S1u1 + µ1
∂u1

∂r
= δS1u2 + (1 − δ)S1κDµ2

∂u2

∂r + δµ2
∂u2

∂r + (1 − δ)κNu2 (x,y) ∈ ΣR,

δS2u2 + (1 − δ)S2κDµ2
∂u2

∂r
+ δµ2

∂u2

∂r
+ (1 − δ)κNu2

= S2u1 + µ1
∂u1

∂r (x,y) ∈ ΣR,

γ2u2 + µ2
∂u2

∂r
= 0 (x,y) ∈ Σb,

L2u2 = 0 (x,y) ∈ Ω2.
(8)

To solve problem (8) we consider the following generalized Schwarz method

at iteration j:





L1u
j
1 = 0 (x,y) ∈ Ω1,

γ1u
j
1 +

∂uj
1

∂r
= 0 (x,y) ∈ Σa,

S1u
j
1 + µ1

∂uj
1

∂r
= δS1u

j−1
2 + (1 − δ)S1κDµ2

∂uj−1

2

∂r + δµ2
∂uj−1

2

∂r + (1 − δ)κNuj−1
2 (x,y) ∈ ΣR,





L2u
j
2 = 0 (x,y) ∈ Ω2,

γ2u
j
2 + µ2

∂uj
2

∂r
= 0 (x,y) ∈ Σb

δS2u
j
2 + (1 − δ)S2κDµ2

∂uj
2

∂r
+ δµ2

∂uj
2

∂r
+ (1 − δ)κNuj

2

= S2u
j
1 + µ1

∂uj
1

∂r (x,y) ∈ ΣR.
(9)

By applying the transform (2) to the previous iterations and thanks to the
boundary conditions, the solution of each of the two equations in (9) has the
general form of (5), that is

ûi
j(r,m, l,k) = Xj

i (m, l,k) gi(r,m,k), i = 1, 2, (10)

for suitable functions Xj
i and gi. Then, we have the following results.

Proposition 1. Let

A(m,k) :=
−δµ2

∂g2

∂r (R,m,k) − (1 − δ)κNg2(R,m,k)

δg2(R,m,k) + (1 − δ)κDµ2
∂g2

∂r (R,m,k)
,

B(m,k) := − µ1

g1(R,m,k)

∂g1

∂r
(R,m,k).

(11)
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Then, the reduction factor related to iterations (9) is given by

ρ(m, l,k) =

∣∣∣∣
σ1(m, l,k) − A(m,k)

σ2(m, l,k) − A(m,k)
· σ2(m, l,k) − B(m,k)

σ1(m, l,k) − B(m,k)

∣∣∣∣ , (12)

where σi are the symbols related to the operators Si, i = 1, 2.

Proof We start by noticing that the reduction factor could be defined as ρ =∣∣∣ Xj
2

Xj−1

2

∣∣∣, see, e.g., [14]. After the application of the Fourier transform to problem

(9), we have that the interface conditions (9)3,6 read as follows:

σ1û1
j
(R) + µ1

∂û1
j

∂r
(R)

= (δσ1 + (1 − δ)κN ) û2
j−1

(R) + ((1 − δ)σ1κD + δ) µ2
∂û2

j−1

∂r
(R),

(δσ2 + (1 − δ)κN ) û2
j
(R) + ((1 − δ)σ2κD + δ) µ2

∂û2
j

∂r
(R)

= σ2û1
j
(R) + µ1

∂û1
j

∂r
(R).

Then, substituting the solutions (10) into the above interface conditions and
eliminating Xj

1 , the thesis easily follows. ¤

In the following result, we provide the exact convergence sets for the sym-
bols σ1 and σ2.

Theorem 1. Fix m and k. Then, under the assumption A > B, with A and
B given by (11), the inequality

|ρ(m, l,k)| =

∣∣∣∣
σ1(m, l,k) − A(m,k)

σ2(m, l,k) − A(m,k)
· σ2(m, l,k) − B(m,k)

σ1(m, l,k) − B(m,k)

∣∣∣∣ < 1 (13)

holds if and only if (σ1, σ2) ∈ Θ (A,B) := Θ1 (A,B) ∪ Θ2 (A,B), where

Θ1 (A,B) =
{

(σ1, σ2) : σ2 < σ1 and
(
σ1 − A+B

2

) (
σ2 − A+B

2

)
<

(
B−A

2

)2
}

,

Θ2 (A,B) =
{

(σ1, σ2) : σ2 > σ1 and
(
σ1 − A+B

2

) (
σ2 − A+B

2

)
>

(
B−A

2

)2
}

.

(14)
Furthermore, |ρ| = 0 if and only if σ1(m, l,k) = σopt

1 (m,k) := A(m,k) and
σ2(m, l,k) 6= A(m,k), or σ2(m, l,k) = σopt

2 (m,k) := B(m,k) and σ1(m, l,k) 6=
B(m,k), whereas |ρ| = 1 if and only if (σ1, σ2) ∈ ∂Θ (A,B)\{(A,A) , (B,B)} .

Proof Inequality (13) can be rewritten as

|(σ1 − A)(σ2 − B)| < |(σ1 − B)(σ2 − A)| ,
|σ1σ2 − Aσ2 − Bσ1 + AB| < |σ1σ2 − Aσ1 − Bσ2 + AB| .
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Now, by analyzing the sign of the two terms, we have that the above inequality
becomes





(A − B) (σ1 − σ2) < 0
if (σ1 − A) (σ2 − B) ≥ 0 and (σ1 − B) (σ2 − A) > 0,

2σ1σ2 − (A + B)σ1 − (A + B)σ2 + 2AB < 0
if (σ1 − A) (σ2 − B) ≥ 0 and (σ1 − B) (σ2 − A) < 0,

2σ1σ2 − (A + B)σ1 − (A + B)σ2 + 2AB > 0
if (σ1 − A) (σ2 − B) < 0 and (σ1 − B) (σ2 − A) > 0,

(A − B) (σ1 − σ2) > 0
if (σ1 − A) (σ2 − B) < 0 and (σ1 − B) (σ2 − A) < 0.

By exploiting the assumption A > B, we obtain




σ1 − σ2 < 0
if σ1 ≥ A, σ2 > A or σ1 < B, σ2 ≤ B,

2σ1σ2 − (A + B)σ1 − (A + B)σ2 + 2AB < 0
if B ≤ σ2 < A, σ1 ≥ A or B < σ1 ≤ A, σ2 ≤ B,

2σ1σ2 − (A + B)σ1 − (A + B)σ2 + 2AB > 0
if B < σ2 < A, σ1 < B or B < σ1 < A, σ2 > A,

σ1 − σ2 > 0
if σ1 > A, σ2 < B or σ1 < B, σ2 > A, or B < σ1, σ2 < A.

(15)
Now, if σ2 < σ1 the above reduces to





σ1 − σ2 < 0
if σ1 > σ2 > A, or σ2 < σ1 < B,

2σ1σ2 − (A + B)σ1 − (A + B)σ2 + 2AB < 0
if B ≤ σ2 < A, σ1 ≥ A or B < σ1 ≤ A, σ2 ≤ B,

σ1 − σ2 > 0
if σ1 > A, σ2 < B, or B < σ2 < σ1 < A,

or equivalently




2σ1σ2 − (A + B)σ1 − (A + B)σ2 + 2AB < 0
if B ≤ σ2 < A, σ1 ≥ A or B < σ1 ≤ A, σ2 ≤ B,

any (σ1, σ2)
if σ1 > A, σ2 < B, or B < σ2 < σ1 < A.

This is equivalent to require (σ1, σ2) ∈ Θ1 (A,B) defined in (14)1. If σ2 > σ1,
analogous steps, starting from (15), lead to require (σ1, σ2) ∈ Θ2 (A,B) defined
in (14)2. This concludes the first part of the Theorem. The second part of the
Theorem follows straightforwardly. ¤

Remark 1. We observe that Θ1 and Θ2 defined in (14) are limited by the line
σ1 = σ2 and by the hyperbola

(
σ1 −

A + B

2

) (
σ2 −

A + B

2

)
=

(
B − A

2

)2

,
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Fig. 3 Convergence set Θ(A, B) given by (14) (in blue) for the particular choice A =
12, B = −4.

see Figure 3. Since the latter curve depends on m and k, we have that also the
regions Θ1 and Θ2 depend on m and k.

We also observe that |ρ| = 1 for (σ1, σ2) ∈ ∂Θ (A,B) \ {(A,A) , (B,B)}
and for (σ1, σ2) → ∞ inside Θ(A,B).

In the next result, we provide a better characterization of the regions Θ1

and Θ2.

Lemma 1. Fix m and k. If 0 < θ < 1, then the level sets
∣∣∣∣
σ1 − A

σ2 − A

σ2 − B

σ1 − B

∣∣∣∣ = θ (16)

are the hyperbolae

(
σ1 − M − 1 + θ

1 − θ
D

) (
σ2 − M +

1 + θ

1 − θ
D

)
= − 4θ

(1 − θ)
2 D2,

(
σ1 − M − 1 − θ

1 + θ
D

) (
σ2 − M +

1 − θ

1 + θ
D

)
=

4θ

(1 + θ)
2 D2,

where

M =
A + B

2
, D =

A − B

2
.



Analysis and optimization of the generalized Schwarz method 13

For a given θ, the above hyperbolae, restricted to Θ1 (A,B), delimit a region
Θ1,θ (A,B), containing the point (A,B) , where

∣∣∣∣
σ1 − A

σ2 − A

σ2 − B

σ1 − B

∣∣∣∣ ≤ θ. (17)

More precisely

Θ1,θ (A,B) = Θ++
θ (A,B) ∪ Θ−−

θ (A,B) ∪ Θ+−
θ (A,B) ∪ Θ−+

θ (A,B) ,

where

Θ++
θ (A,B) = {(σ1, σ2) : σ1 ≥ A, σ2 ≥ B,

(
σ1 − M − 1 − θ

1 + θ
D

) (
σ2 − M +

1 − θ

1 + θ
D

)
≤ 4θ

(1 + θ)
2 D2

}
,

Θ−−
θ (A,B) = {(σ1, σ2) : σ1 ≤ A, σ2 ≤ B,

(
σ1 − M − 1 − θ

1 + θ
D

) (
σ2 − M +

1 − θ

1 + θ
D

)
≤ 4θ

(1 + θ)
2 D2

}
,

Θ+−
θ (A,B) = {(σ1, σ2) : σ1 ≥ A, σ2 ≤ B,

(
σ1 − M − 1 + θ

1 − θ
D

) (
σ2 − M +

1 + θ

1 − θ
D

)
≥ − 4θ

(1 − θ)
2 D2

}
,

Θ−+
θ (A,B) = {(σ1, σ2) : σ1 ≤ A, σ2 ≥ B,

(
σ1 − M − 1 + θ

1 − θ
D

) (
σ2 − M +

1 + θ

1 − θ
D

)
≥ − 4θ

(1 − θ)
2 D2

}
.

Finally, Θ1,θ (A,B) contains the box ΘB
θ (A,B) with sides parallel to σ2 = σ1

and σ2 = −σ1 and containing the points

E =

(
1 +

√
θ

1 −
√

θ
D + M,−1 +

√
θ

1 −
√

θ
D + M

)
,

F =

(
1 −

√
θ

1 +
√

θ
D + M,−1 −

√
θ

1 +
√

θ
D + M

)
,

G =

(
1 + 2

√
θ − θ

1 + θ
D + M,

−1 + 2
√

θ + θ

1 + θ
D + M

)
,

H =

(
1 − 2

√
θ − θ

1 + θ
D + M,

−1 − 2
√

θ + θ

1 + θ
D + M

)
.

Proof This is an elementary exercise and the proof is left to the reader. ¤

In Figure 4 we depicted the level sets (16) (left) and an example of regions
Θ1,θ and ΘB

θ (right).
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Fig. 4 Left: Level sets given by (16) for different values of θ; Right: set Θ1,θ given by (17)

and box ΘB
θ

for the particular choice θ = 0.3. A = 12, B = −4.

4 Estimates of optimized interface parameters

In general, the optimal symbols σopt
1 = A(m,k) and σopt

2 = B(m,k) are not
effective in the practice since they lead to non-local interface conditions which
are hardly implementable. For this reason, it is a common practice to look for
the best symbols within a specific subset, for example the constants (Optimized
Schwarz Method, see, e.g, [14,16,17]). Given m and k, we have in general that
A(m,k) 6= −B(m,k), so that it does not make sense to look for the constant
optimized value p such that the reduction factor computed for σ1 = p and
σ2 = −p is minimized.

In order to simplify our study, we assume however that σ1 and σ2 are
related. In other words, rather than looking for the best possible point (σ1, σ2)
in R

2, we will look for the best possible (σ1, σ2) belonging to a properly chosen
curve

s(p) =

{
σ̃1(p)
σ̃2(p)

p ∈ R,

so that in fact we obtain a minimization problem over the single scalar pa-
rameter p. In particular, given the curve s(p), we consider the following

Problem 1. Find p̂ ∈ Γ which realizes

max
(m,k)∈K

|ρ (m,k, σ̃1(p̂), σ̃2(p̂))| = max
(m,k)∈K

∣∣∣∣
σ̃1(p̂) − A (m,k)

σ̃2(p̂) − A (m,k)
· σ̃2(p̂) − B (m,k)

σ̂1(p̂) − B (m,k)

∣∣∣∣

= min
p

max
(m,k)∈K

∣∣∣∣
σ̃1(p) − A (m,k)

σ̃2(p) − A (m,k)
· σ̃2(p) − B (m,k)

σ̃1(p) − B (m,k)

∣∣∣∣ ,

where K is the set of the frequencies and Γ ⊂ R is the set where s(p) is defined.
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The problem now is to choose an appropriate curve s(p). Assume (as it
will be the case in our cases) that

B := max
(m,k)∈K

B (m,k) ≤ A := min
(m,k)∈K

A (m,k) . (18)

Then, thanks to the definition of the set Θ1 in (14), we have that the stripe
S

(
A,B

)
= {(σ1, σ2) : σ1 > σ2, and 2B < σ1 + σ2 < 2A} is contained in

Θ1 (A (m,k) , B (m,k)) for all (m,k) ∈ K, so that for all points (σ1, σ2) in
S

(
A,B

)
we have, owing to Theorem 1,

∣∣∣∣
σ1 − A

σ2 − A
· σ2 − B

σ1 − B

∣∣∣∣ < 1.

We decided to look for the curve s(p) within S
(
A,B

)
, thus guaranteeing

|ρ| < 1 for all (m,k) ∈ K. The idea is to consider a curve which is far enough
from the boundary of S

(
A,B

)
. This guarantees that s(p) is far from all the

boundaries ∂Θ1 (A (m,k) , B (m,k)), where |ρ| = 1 for some (m,k). To this
aim, call

M =
1

2

(
A + B

)
(19)

and consider the line s

σ2 = −σ1 + 2M, σ1 ≥ M, (20)

which divides in two equal parts S
(
A,B

)
and then is far from its boundary,

see Figure 5.
Then, as long as the points belonging to s are far from the line σ1 = σ2 and

from infinity, they are far from the boundary of the set Θ1 (A (m,k) , B (m,k))
for whatever (m,k) ∈ K, and therefore give |ρ| < 1 for whatever (m,k) ∈ K.
We look then for the best value of p such that the reduction factor is minimized
by taking σ1 = p, σ2 = −p + 2M . This justifies the study of the following

Problem 2. Minimize the function

p 7→ max
(m,k)∈K

|ρ̂(p,m,k)| := max
(m,k)∈K

∣∣∣∣
p − A (m,k)

−p + 2M − A (m,k)

−p + 2M − B (m,k)

p − B (m,k)

∣∣∣∣

for p ≥ M.

This optimization problem requires that we know exactly the functions
A (m,k) and B (m,k). Nevertheless, one can obtain an interesting quantitative
result even in the general case. Indeed, the following result holds.

Theorem 2. Assume that A (m,k) and B (m,k) are bounded on some set K,
with B < A for all (m,k) ∈ K, and call

D (m,k) =
1

2
(A (m,k) − B (m,k)) , M (m,k) =

1

2
(A (m,k) + B (m,k)) ,

(21)

Q (m,k) =

∣∣M (m,k) − M
∣∣

D (m,k)
, Q = sup

(m,k)∈K

Q (m,k) , N =
inf(m,k)∈K D (m,k)

sup(m,k)∈K D (m,k)
,

(22)
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Fig. 5 Four possible scenarios with the stripe S for the particular choices m = 0, k = 0.6
(top, left); m = 1, k = 0.6 (top, right); m = 0, k = 12.5 (bottom, left); m = 10, k = 12.5
(bottom, right). FSI problem, A and B given by (45)-(48).

with M given by (19). Assume that A and B defined by (18) are such that
B < A and let

ρ0 = max





(
1 −

√
N

1 +
√

N

)2

;


1 −

√
1 − Q

2

Q




2




. (23)

Then, for all (m,k) ∈ K, we have

ρ̂(p,m,k) =

∣∣∣∣
p − A (m,k)

2M − p − A (m,k)

2M − p − B (m,k)

p − B (m,k)

∣∣∣∣ ≤ ρ0, (24)
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if and only if p ∈ [p−, p+] with

p− = M

+sup(m,k)∈K

{
1+ρ0

1−ρ0

D (m,k) −
√(

M − M (m,k)
)2

+ 4ρ0

(1−ρ0)
2 (D (m,k))

2
}

,

p+ = M

+ inf(m,k)∈K

{
1+ρ0

1−ρ0

D (m,k) +
√(

M − M (m,k)
)2

+ 4ρ0

(1−ρ0)
2 (D (m,k))

2
}

.

(25)

Proof The proof is divided in two steps. In the first one, we look for the
minimum value of θ which guarantees that the boxes ΘB

θ have a non-empty
intersection as (m,k) varies in K. This value will be precisely ρ0 defined in
(23), and the intersection will be a box which crosses the line s in a segment.
This means that all the points in this segment give ρ̂ ≤ ρ0. Then, in the second
part of the proof, we extend the endpoints of the box ΘB

ρ0
lying on s as long

as it is still guaranteed that ρ̂ ≤ ρ0.
By hypothesis, D (m,k) ≥

(
A − B

)
/2 > 0, and this implies that Q (m,k)

is well defined and non negative. On the other hand,

2
∣∣M (m,k) − M

∣∣ =
∣∣A (m,k) + B (m,k) − A − B

∣∣
=

∣∣A (m,k) − A −
(
B − B (m,k)

)∣∣
≤ A (m,k) − A +

(
B − B (m,k)

)

= 2D (m,k) −
(
A − B

)
.

This implies

Q (m,k) ≤ D (m,k) −
(
A − B

)
/2

D (m,k)
= 1 − 1

2

(
A − B

)

D (m,k)

≤ 1 − 1

2

(
A − B

)

sup(m,k)∈K D (m,k)
< 1.

Next, take ρ0 satisfying

ρ0 ≥
(

1 −
√

N

1 +
√

N

)2

. (26)

This implies
1 −√

ρ0

1 +
√

ρ0
≤

√
N,

so that by the definition of N we have

p̂− := sup
(m,k)∈K

D (m,k)
1 −√

ρ0

1 +
√

ρ0
+M ≤ p̂+ := inf

(m,k)∈K
D (m,k)

1 +
√

ρ0

1 −√
ρ0

+M.

(27)
By noticing that p− ≤ p̂− and p+ ≥ p̂+, we have from the previous inequality
that the interval of p defined by (25) is non empty. Now, we observe that for
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any p ∈ [p̂−, p̂+], and for any (m,k) ∈ K, the points
(
p, 2M − p

)
belong to

the box ΘB
ρ0

(A (m,k) , B (m,k)). This is more easily seen after a rotation of

π/4 (and a dilation of 1/
√

2), given by

ζ

[
x
y

]
=

1

2

[
x − y
x + y

]
.

Thus we have to show that for any p ∈ [p̂−, p̂+] and for any (m,k) ∈ K, the
points

(
p − M,M

)
belong to the axes-parallel box ζΘB

ρ0
(A (m,k) , B (m,k))

with sides containing the points (see Lemma 1)

ζE =

(
1 +

√
ρ0

1 −√
ρ0

D,M

)
, ζF =

(
1 −√

ρ0

1 +
√

ρ0
D,M

)
,

ζG =

(
1 − ρ0

1 + ρ0
D,

2
√

ρ0

1 + ρ0
D + M

)
, ζH =

(
1 − ρ0

1 + ρ0
D,

−2
√

ρ0

1 + ρ0
D + M

)
,

or equivalently that

1 −√
ρ0

1 +
√

ρ0
D ≤ p − M ≤ 1 +

√
ρ0

1 −√
ρ0

D,

and
−2

√
ρ0

1 + ρ0
D + M ≤ M ≤ 2

√
ρ0

1 + ρ0
D + M.

The first condition follows immediately from the definition of p̂− and p̂+, see
(27), while the second reduces to

Q (m,k) =

∣∣M − M (m,k)
∣∣

D (m,k)
≤ 2

√
ρ0

1 + ρ0
.

The latter inequality holds true if

Q ≤ 2
√

ρ0

1 + ρ0

that is for

√
ρ0 ≥

1 −
√

1 − Q
2

Q
.

The latter condition, together with (26), are satisfied under hypothesis (23)
and this concludes the first part of the proof.

The condition p ∈ [p̂−, p̂+] provides a sufficient condition for the satisfac-
tion of (24). We want now to extend such a range so to obtain also a necessary
condition. To this aim, observing that the box ΘB

ρ0
(A (m,k) , B (m,k)) is con-

tained in Θ1,ρ0
(A (m,k) , B (m,k)) (see Lemma 1), we are sure to satisfy (24)

until the line s does not intersect the boundary of Θ1,ρ0
(A (m,k) , B (m,k)),

defined by the two branches of the hyperbola
(

σ1 − M − 1 + ρ0

1 − ρ0
D

)(
σ2 − M +

1 + ρ0

1 − ρ0
D

)
= − 4ρ0

(1 − ρ0)
2 D2,
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see Lemma 1. Thus, replacing σ2 = 2M − σ1 in the above equation gives

(
σ1 − M − 1 + ρ0

1 − ρ0
D

)(
−σ1 + 2M − M +

1 + ρ0

1 − ρ0
D

)
= − 4ρ0

(1 − ρ0)
2 D2

σ2
1 − 2

(
M +

1 + ρ0

1 − ρ0
D

)
σ1 + 2MM − M2 + 2

1 + ρ0

1 − ρ0
DM + D2 = 0,

with solutions

σ1 = M +
1 + ρ0

1 − ρ0
D (m,k) ±

√
(
M − M (m,k)

)2
+

4ρ0

(1 − ρ0)
2 (D (m,k))

2
.

Since we want that the points
(
p, 2M − p

)
∈ Θ1,ρ0

(A (m,k) , B (m,k)) for all
(m,k) ∈ K, then it is necessary and sufficient that p ∈ [p−, p+] defined in
(25). ¤

In Figure 6 we reported four possible sets Θ1,ρ0
for different values of (m,k).

In particular, this figure as well as Figure 5 are related to the fluid-structure
interaction problem described below, where A and B are given by (45)-(48),
and the other parameters are defined in Section 6.2. We notice that the points
(p−, s(p−)) and (p+, s(p+)) are always in such sets.

Remark 2. One could obtain a sharper result in the previous Theorem by
replacing M = 1

2

(
A + B

)
with the number that minimizes the quantity

sup
(m,k)∈K

∣∣M (m,k) − M
∣∣

D (m,k)
.

Of course such a choice can only be done if the functions M (m,k) and D (m,k)
are known.

5 Examples of possible applications

In this section we present three possible applications of the general results
reported above. In particular in Sections 5.1 and 5.2 we present two problems
considered so far in the literature, whereas in Section 5.3 we derive a com-
pletely new analysis and optimization for the fluid-structure interaction (FSI)
problem.

5.1 The diffusion-reaction problem with a flat interface

This problem has been considered and analyzed in [14]. In particular, we have
n = 2, d = 1, a = −∞, b = +∞, R = 0, and problem (8) with L1 = L2 =
−△ + ξ, ξ > 0, Ω = R

2, Ω1 = {(x, y) ∈ R
2 : x < 0, y ∈ R}, Ω2 = {(x, y) ∈

R
2 : x > 0, y ∈ R}, Σ := Σ0 = {(x, y) ∈ R

2 : x = 0, y ∈ R}, γ1 = γ2 = +∞
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Fig. 6 Four possible sets Θ1,ρ0
(ρ0 = 0.32) for the particular choices m = 0, k = 0.6 (top,

left); m = 1, k = 0.6 (top, right); m = 0, k = 12.5 (bottom, left); m = 10, k = 12.5 (bottom,
right). FSI problem, A and B given by (45)-(48).

and δ = 1. The only frequency coordinate is k, that is the one related to the
longitudinal direction y. In this case, the solutions (10) are given by

û1
j
(x, k) = Xj

1(k)ex
√

k2+ξ, û2
j
(x, k) = Xj

2(k)e−x
√

k2+ξ,

for some functions Xj
1 and Xj

2 [14]. Then, the expressions in (11) become

A(k) = −B(k) =
√

k2 + ξ,

and the reduction factor (12) reads

ρ(k) =
σ1(k) −

√
k2 + ξ

σ2(k) −
√

k2 + ξ
· σ2(k) +

√
k2 + ξ

σ1(k) +
√

k2 + ξ
, (28)

see also [14].



Analysis and optimization of the generalized Schwarz method 21

Now, by noticing that A > B for all k, we can can apply Theorem 1, and
we have from (14) that the exact convergence set is given by Θ = Θ1 ∪ Θ2,
where

Θ1 =
{
(σ1, σ2) : σ2 < σ1 and σ1σ2 < k2 + ξ

}
,

Θ2 =
{
(σ1, σ2) : σ2 > σ1 and σ1σ2 > k2 + ξ

}
.

Regarding the optimization procedure, we have from (19) that M = 0, so
that in this case it makes sense to look for the same optimal value, see also [14].
In particular, assuming k ∈ [kmin, kmax], Problem 2 becomes

Problem 3. Minimize the function

p 7→ max
k∈[kmin,kmax]

∣∣∣∣∣
p −

√
k2 + ξ

p +
√

k2 + ξ

∣∣∣∣∣

2

,

for p ≥ 0.

From (21) and (22) we have D(k) =
√

k2 + ξ, M(k) = Q(k) = Q = 0 and

N =
√

k2

min+ξ

k2
max+ξ . Then, by noticing that limx→0

1−
√

1−x2

x = 0, we have from

(23)

ρ0 =


1 − 4

√
k2

min+ξ

k2
max+ξ

1 + 4

√
k2

min+ξ

k2
max+ξ




2

.

Then, since the hypotheses of Theorem 2 hold true, by its application we have

|ρ̂| =

∣∣∣∣∣
p −

√
k2 + ξ

p +
√

k2 + ξ

∣∣∣∣∣

2

≤


1 − 4

√
k2

min+ξ

k2
max+ξ

1 + 4

√
k2

min+ξ

k2
max+ξ




2

for all k ∈ [kmin, kmax], provided that p belongs to the range defined by (25).
Moreover, we have the following characterization of such a range:

√
k2

min + ξ ≤ p ≤
√

k2
max + ξ. (29)

We observe that Problem 3 has been exhaustively studied in [14]. In par-
ticular, the following optimized value has been found:

popt =
((

k2
min + ξ

) (
k2

max + ξ
))1/4

, (30)

leading to the best reduction factor ρopt = ρ(kmin) = ρ(kmax). We observe
that the above value of popt falls in (29).

Just to provide a quantitative result, referring to the numerical simulations
reported in [14], Table 6.3, we consider the diffusion-reaction problem solved
in the unit square with ξ = 100 and h = 1/50. We then have kmin = π/H = π,
with H the dimension of the domain, and kmax = π/h = 50π, with h the space



22 Giacomo Gigante, Christian Vergara

discretization parameter. Then our estimates, using the range defined by (29),
tell us that the reduction factor satisfies

|ρ̂| =

∣∣∣∣∣
p −

√
k2 + ξ

p +
√

k2 + ξ

∣∣∣∣∣

2

≤ 0.35 (31)

for all k ∈ [π, 50π], provided that

10.5 ≤ p ≤ 157.4.

Moreover, from (30) we have popt = 40.6 with ρopt = 0.35. This highlights the
optimality of estimate (31).

Remark 3. Observe that equation (3) does not depend on n but only on d.
This means that the same analysis and optimization of above is obtained by
considering the diffusion-reaction problem with a flat interface in 3D. Accord-
ingly, in [17] the convergence factor (28) has been obtained also in the 3D
case, provided that k is substituted by (k1, k2) with k1 and k2 the frequency
coordinates related to the variables y1 and y2.

5.2 The diffusion-reaction problem with a cylindrical interface

This problem has been introduced and studied in [17] to consider those situa-
tions where the interface is not flat but of cylindrical type, see Figure 2, right.
In particular, we have n = 3, d = 2, a = 0, b = +∞, and problem (8) with
L1 = L2 = −△ + ξ, Ω = R

3, Ω1 := {(x1, x2, y) ∈ R
3 : x2

1 + x2
2 < R2}, Ω2 :=

{(x1, x2, y) ∈ R
3 : x2

1 + x2
2 > R2}, ΣR = {(x1, x2, y) ∈ R

3 : x2
1 + x2

2 =
R2}, γ2 = +∞, δ = 1, and condition (7) holds. The frequency coordinates
are k ∈ R, related to the longitudinal direction y, and m ∈ Z, related to the
one-dimensional torus S1 = {x2

1 + x2
2 = 1}. In this case, the solutions (10) are

given by

û1
j
(r,m, k) = Xj

1(k)Im(αr), û2
j
(r,m, k) = Xj

2(k)Km(αr),

for some functions Xj
1 and Xj

2 , where α =
√

k2 + ξ, Im and Km are the

modified Bessel functions, see [21], and r =
√

x2
1 + x2

2, as usual. Then, the
expressions in (11) become

A(m, k) = −α
K ′

m(αR)

Km(αR)
, B(m, k) = −α

I ′m(αR)

Im(αR)
, (32)

see also [17]. Notice that owing to the properties of the modified Bessel func-
tions, we have A(m, k) > 0, ∀k,m, and B(m, k) < 0, ∀k,m. Then, the reduc-
tion factor (12) reads

ρ(m, k) =

∣∣∣∣∣∣
σ1(m, k) + α

K′

m(αR)
Km(αR)

σ2(m, k) + α
K′

m(αR)
Km(αR)

·
σ2(m, k) + α

I′

m(αR)
Im(αR)

σ1(m, k) + α
I′

m(αR)
Im(αR)

∣∣∣∣∣∣
,
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see also [17].
Now, we can apply again Theorem 1, and we have from (14) that the exact

convergence set is given by Θ = Θ1 ∪ Θ2, where

Θ1 = {(σ1, σ2) : σ2 < σ1 and
(

σ1 +
α

2

(
K ′

m(αR)

Km(αR)
+

I ′m(αR)

Im(αR)

))(
σ2 +

α

2

(
K ′

m(αR)

Km(αR)
+

I ′m(αR)

Im(αR)

))
<

(
α

2

(
K ′

m(αR)

Km(αR)
− I ′m(αR)

Im(αR)

))2
}

,

Θ2 = {(σ1, σ2) : σ2 > σ1 and
(

σ1 +
α

2

(
K ′

m(αR)

Km(αR)
+

I ′m(αR)

Im(αR)

))(
σ2 +

α

2

(
K ′

m(αR)

Km(αR)
+

I ′m(αR)

Im(αR)

))
>

(
α

2

(
K ′

m(αR)

Km(αR)
− I ′m(αR)

Im(αR)

))2
}

.

Regarding the optimization procedure, first of all we notice that the func-
tion A is increasing both in k and in m, whereas B is decreasing both in k and
in m, see [17]. Then, assuming k ∈ [kmin, kmax] and m ∈ [mmin,mmax], from

(18) we have A = −αmin
K′

mmin
(αminR)

Kmmin
(αminR) and B = −αmin

I′

mmin
(αminR)

Immin
(αminR) , where

we have set αmin =
√

k2
min + ξ. Then, (19) gives

M = −αmin

2

(
K ′

mmin
(αminR)

Kmmin
(αminR)

+
I ′mmin

(αminR)

Immin
(αminR)

)
, (33)

so that Problem 2 becomes

Problem 4. Minimize the function

p 7→ max
m∈[mmin,mmax]
k∈[kmin,kmax]

∣∣∣∣∣∣
p + α

K′

m(αR)
Km(αR)

−p + 2M + α
K′

m(αR)
Km(αR)

−p + 2M + α
I′

m(αR)
Im(αR)

p + α
I′

m(αR)
Im(αR)

∣∣∣∣∣∣
,

for p ≥ M and with M given by (33).

We can then compute numerically from (22) the values of Q and N and
apply again Theorem 2 obtaining a quantitative convergence result.

We observe that Problem 4 has been studied in [17] under the assumption
M = 0. Indeed, it has been there noticed that A ≃ −B for general frequen-
cies, apart for small values of m, k and ξ at the same time. In particular, the
following optimized value has been found:

popt =

√
−A+B+ (A− − B−) + A−B− (A+ − B+)

A+ − B+ − A− + B−
, (34)
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where A− := A (mmin, kmin) , B− := B (mmin, kmin) , A+ := A (mmax, kmax) ,
B+ := B (mmax, kmax) , and A,B given by (32).

Referring to the numerical results shown in [17], we report here again a
quantitative example to illustrate the application of our results. Take a cylinder
whose length is 5 cm and radius 1 cm and where the interface is located at
R = 0.5. For ξ = 1, kmin = 0, kmax = 62, mmin = 0, mmax = 20, we obtain
A = 1.79, B = −0.24, M = 0.77 so that our estimate based on (27) gives that

|ρ̂| =

∣∣∣∣∣∣
p + α

K′

m(αR)
Km(αR)

−p + 1.54 + α
K′

m(αR)
Km(αR)

−p + 1.54 + α
I′

m(αR)
Im(αR)

p + α
I′

m(αR)
Im(αR)

∣∣∣∣∣∣
≤ 0.62

for all k ∈ [0, 62] and m ∈ [0, 20], provided that

9.437 ≤ p ≤ 9.439.

Moreover, from (34) we have popt = 8.70 with ρopt = 0.62. Observe that in
this case popt does not fall in the range estimated by our result. This is not
surprising, since the two optimization procedures have been performed with
different values of M . However, we observe that ρopt is precisely equal to ρ0.

5.3 The fluid-structure interaction problem with a cylindrical interface

5.3.1 Problem setting

We are in the case of a cylindrical interface, that is n = 3, d = 2. We consider
the problem arising from the interaction between an incompressible, inviscid
and linear fluid occupying the domain Ωf := {(x1, x2, y) ∈ R

3 : x2
1+x2

2 < R2},
and a linear elastic structure modeled with the wave equation occupying the
domain Ωs := {(x1, x2, y) ∈ R

3 : R2 < x2
1 + x2

2 < (R + H)2}. The two
subproblems interact at the common interface ΣR = {(x1, x2, y) ∈ R

3 : x2
1 +

x2
2 = R2}. In particular, after a time discretization (for the sake of simplicity

we consider here a BDF1 scheme for both subproblems, see [18]), the coupled
problem at time tn+1 := (n+1)∆t, ∆t being the time discretization parameter,
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reads 



ρfδtu + ∇p = 0 in Ωf ,

∇ · u = 0 in Ωf ,

∫ ∞
−∞

∫
S1 |p (rx′,y)| dσ(x′)dy bounded as r → 0+,

u · n = δtη · n on ΣR,

−pn = λ∇η n on ΣR,

η × n = 0 on ΣR

ρsδttη − λ△η = 0 in Ωs,

γST η + λ∇η n = Pext n on Σout,

(35)

where, as usual, r =
√

x2
1 + x2

2, ρf and ρs are the fluid and structure densities,

λ the square of the wave propagation velocity, δtw := w−wn

∆t , δttw := δtw−δtw
n

∆t ,
Σout = ΣR+H = {(x1, x2, y) ∈ R

3 : x2
1+x2

2 = (R+H)2} is the external surface
of the structure domain, n is the unit vector orthogonal to the interface ΣR

or ΣR+H defined by n = (x1,x2,0)√
x2

1
+x2

2

, and we have omitted the time index n + 1.

Problem (35)1−3 is the fluid problem, problem (35)7−8 is the structure problem
equipped with a Robin condition at the external surface to account for the
effect of an elastic surrounding tissue with elasticity modulus γST [24], Pext

is the external pressure, whereas (35)4−6 are the coupling conditions at the
FS interface. The fluid and the structure problems have to be completed with
initial and boundary conditions along the y direction, the latter reducing to
the assumption of decay to zero for |y| → ∞. We also observe that the coupling
at the interface is allowed only in the normal direction.

By combining linearly (35)4 and (35)5 we obtain two generalized Robin
boundary conditions. Observe that in the fluid problem the viscous terms
have been neglected so that the fluid Cauchy stress tensor reduces to the only
pressure. In particular, setting ur = u · n and ηr = η · n and introducing the
operator Sf , we obtain

Sf ur − p = Sf δt ηr + λ∂rηr,

that is
Sf ∆t δtur − p = Sf δt ηr + λ∂rηr − Sf un

r .

Then, the transmission condition for the fluid problem can be rearranged as

Sf∆t δtur − p =
Sf

∆t
ηr + λ∂rηr + F1(u

n
r , ηn

r ), (36)

where F1 accounts for terms at previous time steps. Analogously, by intro-
ducing the operator Ss, we obtain the following interface condition for the



26 Giacomo Gigante, Christian Vergara

structure problem

Ss

∆t
ηr + λ∂rηr = Ss∆t δtur − p + F2(u

n
r , ηn

r ), (37)

where again F2 accounts for terms at previous time steps. Then, at time tn+1,
the corresponding iterative generalized Schwarz method reads:

Given u0, p0, η0, solve for j ≥ 0 until convergence

1. Fluid problem




ρfδtu
j+1 + ∇pj+1 = 0 in Ωf ,

∇ · uj+1 = 0 in Ωf ,

∫ ∞
−∞

∫
S1 |p (rx′,y)| dσ(x′)dy bounded as r → 0+,

Sf∆t δtu
j+1
r − pj+1 =

Sf

∆t
ηj

r + λ∂rη
j
r + F1(u

n
r , ηn

r ) on ΣR;

(38)
2. Structure problem





ρsδttη
j+1 − λ△ηj+1 = 0 in Ωs,

γST ηj+1 + λ∇ηj+1 n = Pext n on Σout,

Ss

∆t
ηj+1

r + λ∂rη
j+1
r = Ss∆t δtu

j+1
r − pj+1 + F2(u

n
r , ηn

r ) on ΣR,

ηj+1 × n = 0 on ΣR

(39)

5.3.2 Convergence analysis

In order to perform a convergence analysis of the generalized Schwarz method
(38)-(39), we need to write the coupled problem (35) in a different manner,
such that it falls in the general framework of problem (8). To this aim, we first
notice that the divergence free condition on u (35)2 allows us to rewrite the
fluid problem (35)1−3 only in the unknown pressure





△p = 0 in Ωf ,

∫ ∞

−∞

∫

S1

|p (rx′,y)| dσ(x′)dy bounded as r → 0+.
(40)

Then, we notice that structure problem (35)7−8 along the r direction reads as
follows 




( ρs

∆t2
− λ△

)
ηr = 0 in Ωs,

γST ηr + λ∂rηr = 0 on Σout,

(41)
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where we have set to zero the forcing term Pext and the quantities at the
previous time steps, since we analyze the convergence to the zero solution.

Following [16], thanks to the relation

∂p

∂r
= −ρfδtur = − ρf

∆t
(ur − un

r ) on ΣR, (42)

obtained by restricting the first equation of the fluid problem (35)1 on the FS
interface, it is possible to rewrite the interface conditions (35)4−5 along the
normal direction in terms of the pressure solely as follows

p = −λ
∂ηr

∂r
on ΣR,

∂p

∂r
= − ρf

∆t2
ηr on ΣR,

(43)

where we have set to zero the terms at time n since we analyze the convergence
to the zero solution. The previous interface conditions are of type (6)3,4 with

u1 = p, u2 = ηr, δ = 0, κD = −1, κN = − ρf

∆t2 . Then, the FSI problem written
in terms of the fluid pressure and structure displacement given by (40), (41),
(43) falls in the general framework of problem (6), where L1 = −△, L2 =
−λ△+ ρs

∆t2 , Ω1 = Ωf , Ω2 = Ωs, γ2 = γST for r = R + H. Analogously, owing
to (42), conditions (36) and (37) could be rewritten as follows

ρf

∆t
Sf

−1p +
∂p

∂r
= − ρf

∆t2
ηr −

ρfλ

∆t
Sf

−1 ∂ηr

∂r
on ΣR,

ρf

∆t2
ηr +

λρf

∆t
S−1

s

∂ηr

∂r
= − ρf

∆t
S−1

s p − ∂p

∂r
on ΣR,

(44)

where we have set F1 = F2 = 0 since we analyze the convergence to the zero
solution. Then, it is easy to check that the FSI problem given by (40), (41) and
(44) falls in the general framework of problem (8) where S1 =

ρf

∆tSf
−1, S2 =

ρf

∆tSs
−1.

We have the following

Proposition 2. Set

A(m, k) = −λ∆tβ (K ′
m(β R) − χ I ′m(β R))

Km(β R) − χ Im(β R)
, B(m, k) = − ρf Im(kR)

∆tk I ′m(kR)
.

(45)
Then, the reduction factor of iterations (38)-(39) is given by

ρj(m, k) = ρ(m, k) =

∣∣∣∣
σf (m, k) − A(m,k)

σs(m, k) − A(m,k)
· σs(m, k) − B(m,k)

σf (m, k) − B(m,k)

∣∣∣∣ , (46)

where σf and σs are the symbols of Sf and Ss, respectively, and where we have
set

β(k) :=

√
k2 +

ρs

λ∆t2
, (47)
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and

χ(m, k) :=
γST Km (β(R + H)) + λβK ′

m(β(R + H))

γST Im(β(R + H)) + λβI ′m(β(R + H))
. (48)

Moreover, the exact convergence set is given by (14) with σ1 = σf , σ2 = σs

and A and B given by (45).

Proof We need to determine the solutions of problems (40) and (41) at it-
eration j. Regarding the fluid problem (40), from (4) with d = 2 we obtain
p̂j+1(r,m, k) = Xj+1

f,1 (m, k) Im(kr) + Xj+1
f,2 (m, k)Km(kr), for suitable func-

tions Xj
f,1 and Xj

f,2, where the dependence on l vanished since for d = 2 the
multiplicity of the eigenvalues related to the spherical harmonics is constant
(km = 2). The boundedness assumption (40)2 on the pressure together with

the properties of the modified Bessel functions entail Xj+1
f,2 (m, k) = 0, ∀j, thus

p̂j+1(r,m, k) = Xj+1
f (m, k) Im(kr),

where, for the sake of simplicity, we have set Xj+1
f,1 (m, k) = Xj+1

f (m, k).
Regarding the structure problem (41)1, from (4) with d = 2 we obtain

η̂j
r(r,m, k) = Xj

s,1(m, k) Im(βr) + Xj
s,2(m, k)Km(βr) for suitable functions

Xj
s,1 and Xj

s,2 and with β given by (47). Now, we impose condition (41)2,
obtaining

γST η̂j
r + λ∂rη̂

j
r = 0 on Σ̂out := {r = R + H,m ∈ N, k ∈ R}.

This leads to

γST

(
Xj

s,1Im(βr) + Xj
s,2Km(βr)

)

+ λβ
(
Xj

s,1I
′
m(βr) + Xj

s,2K
′
m(βr)

)∣∣∣
r=R+H

= 0,

and thus to Xj
s,1 = −χXj

s,2, where χ is given by (48). Therefore, the structure
solution is

η̂j
r(r,m, k) = Xj

s (m, k) [Km(βr) − χ(m, k)Im(βr)] ,

where, for the sake of simplicity, we have set Xj
s,2(m, k) = Xj

s (m, k).
Now, the direct application of Proposition 1 with g1(m, k) = Im(kr) and

g2(m, k) = Km(βr) − χ(m, k)Im(βr) leads to the first part of thesis.
The second part of the thesis is a straightforward application of Theorem

1. ¤

Remark 4. In the case σf → ∞, σs = 0 we obtain the Dirichlet-Neumann

scheme, which is known to be characterized by poor convergence properties
when the fluid and structure densities are similar, as happens in haemody-
namics (added mass effect, see [5,13]) This is confirmed by our analysis which
leads for the Dirichlet-Neumann scheme to the following reduction factor:

ρDN (m, k) =
ρf Im(k R) (Km(β R) − χ Im(β R))

λ∆tβ (K ′
m(β R) − χ I ′m(β R))∆tk I ′m(k R)

,
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which increases for big values of the ratio ρf/β = ρf/
√

ρs/(λ∆t2) + k2, that
is when the fluid and structure densities are similar.

5.3.3 Optimization

The optimal symbols which guarantee that the reduction factor (46) annihi-
lates are σopt

f (m, k) = A(m, k) and σopt
s (m, k) = B(m, k), where A and B are

given by (45). Again, these quantities lead to non-implementable interface con-
ditions, so that we apply the theory developed in Section 4, allowing to obtain
an optimization problem with respect to a scalar variable solely. We observe
that in this case the determination of the maximum and of the minimum of
A(m, k) in (45) is not trivial, so that it is not possible anymore to write an
explicit expression for M , which needs to be computed numerically, see the
next section.

6 Numerical results

In this section we present some numerical results to highlight the effective-
ness of the theoretical findings reported in the previous sections for the FSI
problem.

6.1 Generalities

We considered the coupling between the incompressible Navier-Stokes equa-
tions written in the Arbitrary Lagrangian-Eulerian formulation [7] and the
linear infinitesimal elasticity, see for example [25]. In particular, we studied
the effectiveness of the estimates reported in Section 5.3 and obtained for the
simplified models, when applied to complete fluid and structure models. To
do this, we compared their performance with the one related to the optimized
values of σf and σs reported in [16], where the linear/non-viscous fluid (35)1−2

has been coupled with the independent rings model for a membrane [11, 26],
and where the 2D convergence analysis and optimization have been performed
in the case of a flat interface. In particular, the following optimized values have
been found

σflat
f =

( ρs

∆t
+ ϕ∆t

)
Hs, σflat

s =
2ρf

∆tkmax
,

where ϕ = EHs

(1−ν2)R2 , with Hs the structure thickness, E the Young modulus,

ν the Poisson modulus, and R the fluid domain radius. As noticed in [12],
when the surrounding tissue is considered, the membrane models need to be
rewritten by incorporating the surrounding elasticity coefficient γST in the
membrane elastic coefficient, that is by substituting ϕ with ϕ + γST . Then,
the optimized values related to the 2D/flat analysis become

σflat
f =

( ρs

∆t
+ (ϕ + γST ) ∆t

)
Hs, σflat

s =
2ρf

∆tkmax
. (49)
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In all the numerical experiments, we used the BDF scheme of order 1 for
both the subproblems with a semi-implicit treatment of the fluid convective
term. Moreover, we used the following data: fluid viscosity µ = 0.035 dyne/cm2,
fluid density ρf = 1 g/cm3, structure density ρs = 1.1 g/cm3, Poisson ratio
ν = 0.49, Young modulus E = 3 · 106 dyne/cm2. All these data are inspired
from haemodynamic applications where the computational domains are often
characterized by a cylindrical shape, see, e.g, [11]. We observe that the sim-
plified structure model (35)7 considered in the analysis is characterized by
only two parameters, ρs and λ, whereas the linear infinitesimal elasticity con-
sidered in the numerical experiments by three parameters, ρs and the Lamé
constants λ1 = E/(2(1 + ν)) and λ2. Here, to compute A(m, k) in (45) and
the other quantities needed to build the estimates reported in Theorem 2, we
assumed that the value of λ could be approximated by Gλ1, with G = π2/12
the Timoshenko correction factor.

We prescribed in all the numerical experiments the following pressure Pin

at the inlet

Pin =

{
1000 dyne/cm2 t ≤ 0.08 s,
0 0.08 s < t ≤ T,

where T = 0.20 s, and absorbing resistance conditions at the outlets [25,26].
In all the cases the optimized interface symbols are constant so that the

Optimized Schwarz Method coincides with the Robin-Robin algorithm, intro-
duced in the FSI context in [2] and then also considered in [1,3,27]. The fluid
domain has been treated explicitly (semi-implicit approach, see [4, 9, 25]).

For the numerical discretization, we used P1bubble−P1 finite elements for
the fluid subproblem and P1 finite elements for the structure subproblem, and
a time discretization parameter ∆t = 0.001 s

All the numerical results have been obtained with the parallel Finite Ele-
ment library LIFEV developed at MOX - Politecnico di Milano, INRIA - Paris,
CMCS - EPF of Lausanne and Emory University - Atlanta.

6.2 The case of a straight cylinder

In the first set of numerical experiments, we considered a cylinder with length
L = 5 cm, partitioned in two non-overlapping subdomains, an inner cylin-
der for the fluid problem with radius R = 0.5 cm, 4680 tetrahedra and 1050
vertices (corresponding to 7830 degrees of freedom for the velocity and 1050
for the pressure), and an external cylindrical crown for the structure with
thickness Hs and 1260 vertices (corresponding to 3780 degrees of freedom
for the structure displacement). We studied the performance of the Opti-
mized Schwarz Method when the thickness structure is Hs = 0.1 cm and
Hs = 0.5 cm and the surrounding tissue parameter is γST = 1.5 ·106 dyne/cm3

and γST = 3·106 dyne/cm3. The space discretization parameter is h = 0.25 cm,
and the frequencies vary in the ranges m = 0, . . . , 10 and 0, 6 ≤ k ≤ 12, 5.

The estimates in Theorem 2 provide the following results:

1. Hs = 0.1, γST = 1.5 · 106: M = 793 and ρ0 = 0.42, with p ∈ [1123, 6383];
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2. Hs = 0.1, γST = 3.0 · 106: M = 1323 and ρ0 = 0.32, with p ∈ [1983, 7521];
3. Hs = 0.5, γST = 1.5 · 106: M = 864 and ρ0 = 0.41, with p ∈ [1260, 7209];
4. Hs = 0.5, γST = 3.0 · 106: M = 1008 and ρ0 = 0.38, with p ∈ [1459, 7354].

In all the cases, we ran the simulations with different values of p within
the estimated ranges, in order to find the best one. In Figure 9 we reported
the fluid pressure in the deformed domain at 4 different instants.

Fig. 7 Fluid pressure wave traveling along the deformed computational domain. From left
to right, we have t = 0.001 s, t = 0.004 s, t = 0.009 s, t = 0.013 s.

In Table 1 we reported the average number of iterations per time step
to reach convergence for the values of p within the estimated ranges which
guaranteed the best convergence properties, and for (49). Observe from this

2D/flat 3D/cyl
Hs − γST σf − σs # iter σf − σs # iter

0.1 − 1.5 · 106 3189-160 5.7 2250-664 4.9
0.1 − 3.0 · 106 4689-160 6.7 3375-729 4.6
0.5 − 1.5 · 106 9946-160 24.6 3250-1522 6.3
0.5 − 3.0 · 106 11446-160 21.5 3750-1734 6.4

Table 1 Values of the optimized interface parameters and of (49), and average number of
iterations per time step. Cylindrical simulation.

result the robustness of the optimized values estimated by Theorem 2. Indeed,
the average number of iterations per time step seems to be independent of the
parameters. On the contrary, the optimized interface parameters estimated
with the 2D/flat analysis worked very well for small values of the structure
thickness Hs (obtaining however worst performance with respect to the ones
obtained by our analysis), whereas they did not work as well for a greater value
of Hs. This suggests that the cylindrical analysis and optimization could in
general improve the efficiency of the Robin-Robin scheme for the FSI problem
in haemodynamics.
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6.3 Carotid simulation

In this section we report the numerical results obtained in a real geometry,
namely a human carotid, see Figure 8. The fluid mesh is composed by 9655

Fig. 8 Carotid fluid (left) and structure (right) computational domains.

vertices and 51173 tetrahedra, corresponding to 80138 degrees of freedom for
the velocity and 9655 for the pressure, whereas the structure mesh is composed
by 11052 vertices corresponding to 33156 degrees of freedom for the structure
displacement.

We set γST = 3 · 106 dyne/cm3, the frequencies vary in the ranges m =
0, . . . , 19 and 0, 7 ≤ k ≤ 42, the structure thickness is Hs = 0.06 cm and the
fluid domain radius at the inlet is R = 0.24 cm. In this case we do not have a
uniform value of R along the computational domain, so that we decided to use
the value at the inlet to compute (49) and the estimates provided by Theorem
2. In particular, we have M = 1544, ρ0 = 0.56, with p ∈ [1981, 15034].

We ran the simulations with different values of p within the estimated
range. In Figure 9 we reported the fluid pressure in the deformed domain at
4 different instants. The best performance has been obtained for σf = 4375
and σs = −1287 which allowed to obtain convergence in 12.5 iterations (in
average) per time step. These results confirmed the suitability of the Robin-
Robin scheme in real haemodynamic application and the effectiveness of the
estimates provided by Theorem 2.
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Fig. 9 Fluid pressure wave traveling along the deformed carotid domain. From left to right,
we have t = 0.001 s, t = 0.005 s, t = 0.010 s, t = 0.015 s.
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