
Classification and Integration of
Software Component Models for Robotics

Andrea Luzzana

Thesis

Submitted to the Università degli Studi di Bergamo

for the degree of

Doctor of Philosophy

Advisor: Prof. Davide Brugali

Ph.D. course in Mechatronics, Information Technology,

New Technologies and Mathematical Methods

February 2013

To Renata, Maurizio,
Paolo and Chiara

Abstract

The Component Based Software Engineering (CBSE) allows the realization

of modular and flexible systems composed by reusable software components.

In the robotics field, the CBSE principles struggle to become spread used

due to the extreme variability in functionality, applications and involved

hardware that characterize the domain. This variability directly impacts

on the component implementations limiting their reuse capability. The

component model concept plays a fundamental role since it defines the rules

that supervise the components definitions and their interactions. These rules

strongly influences the capability of components to cope with the variability

of the robotics domain.

The high number of proposed component models, both in literature and in

the industrial field, claims for a model for their comparison and classification

in order to highlight commonalities and differences among different approaches.

In this work we propose a feature-based classification model that exploits

a clear separation of concerns when analyzing different component models.

The four identified concerns refer to the Communication, the Computation,

the Configuration and the Coordination aspects. This approach allows for a

better understanding of the constructs provided by different models in order

to manage the variability of the system.

From the classification, it results clear that robotic domain specific models

offer constructs that are well suited for addressing the specific issues of

v

vi

robotics although they lack in providing a sufficient level of flexibility. On

the other hand, general purpose models offer a higher level of flexibility

without offering relevant robotic specific features. We propose the integration

of component models as a key to overcome this limitation. In particular,

the integration between the Service Component Architecture (SCA) and the

Robot Operating System (ROS) allows the developers to fully exploit the

benefits of both approaches while mitigating their deficiencies. We present

the control software of the BART robot as a proof of the benefits of this

approach.

Acknowledgements

There are so many people that I would like to thank for helping me in the

past three years that I will surely forget someone.

The work presented in this thesis would not have been possible without

the guidance and the encouragement of my supervisor prof. Davide Brugali,

my thanks goes to him for giving me the opportunity to be a Ph.D. student.

My deepest thanks are for Renata and Maurizio, my parents. Thank you

for having supported me during these years and for constantly guiding me

through life. A special thank goes to my brother Paolo who has always been

close to me.

I would like to thank my girlfriend Chiara. I am extremely lucky since I

can rely on a person who can understand me, often before I speak, and with

whom I can share joys, and sometimes sorrows, of life.

I cannot forget my companion in this adventure Luca, I wish you the best

for your future and I am sure that you will reach great results. I am grateful

also to Aldo for his help and for his friendship.

Finally, I would like to thank all the people who have offered me their help

over these years. Among them, the staff of the laboratories of the university

and, in particular, Ercole, Sergio, Daniele and Luca.

Andrea Luzzana

Dalmine, February, 2013

vii

Contents

1 Introduction 1

1.1 Component Model for Robotics 3

1.1.1 Challenges in Robotics Software Engineering 4

1.2 The Proposed Approach . 6

1.3 Structure of the Thesis . 7

1.4 Acknowledgements . 8

2 The “4C” Classification Model 9

2.1 Related Work . 10

2.2 Feature Models . 15

2.2.1 Basic Feature Models 16

2.3 Feature-based 4C Classification 21

2.3.1 Separation of concerns 21

2.3.2 Communication . 23

2.3.3 Computation . 30

2.3.4 Configuration . 37

2.3.5 Coordination . 45

3 Component Models Survey 51

3.1 Corba Component Model (CCM) 52

3.2 Fractal . 54

ix

x

3.3 Koala . 56

3.4 KobrA . 58

3.5 OpenCOM . 59

3.6 OROCOS . 61

3.7 Orca . 64

3.8 Pin . 67

3.9 Pecos . 69

3.10 Robot Operating System . 70

3.11 Rubus . 72

3.12 SaveComp Component Model 74

3.13 Service Component Architecture 76

3.14 Smartsoft . 79

3.15 SOFA 2.0 . 81

4 Component Models Analysis 85

4.1 Communication . 86

4.1.1 Interface . 86

4.1.2 Anonymity . 90

4.1.3 Synchrony . 92

4.2 Computation . 93

4.2.1 Component Implementation Language 94

4.2.2 Component Behaviour 95

4.2.3 Real-time Support . 96

4.2.4 Distributed System Support 96

4.3 Configuration . 98

4.3.1 Configurable Entities 98

4.3.2 Configuration Model 100

4.3.3 Composition Mechanism 103

4.3.4 Persistence Mechanism 104

4.4 Coordination . 105

4.4.1 Connector Feature . 105

4.4.2 Component Roles . 106

4.5 General Considerations . 107

xi

5 SCA and ROS Integration 113

5.1 The Service Component Architecture 115

5.1.1 Basic Principles . 117

5.1.2 The SCA component model 118

5.1.3 Domains . 119

5.1.4 Components . 121

5.1.5 Services . 122

5.1.6 References . 123

5.1.7 Properties . 124

5.1.8 Bindings . 124

5.1.9 Composite . 125

5.1.10 Wires . 125

5.1.11 SCA Run-time Environments 126

5.2 The Robot Operating System 133

5.2.1 The ROS Component Model 135

5.2.2 ROS tools . 141

5.3 Integration of SCA and ROS 144

5.3.1 Rosjava . 146

5.3.2 The RosGate Component in ROS 147

5.3.3 The RosGate Component in SCA 150

6 The Bart Robot 155

6.1 Mechanical Structure . 156

6.1.1 Motors and Encoders 157

6.1.2 Kinematics . 158

6.2 Electronics and Computation devices 161

6.2.1 Microcontrollers . 162

6.2.2 Embedded PC . 164

6.3 Control Software . 166

6.3.1 Slave Microcontroller Firmware 168

6.3.2 Master Microcontroller Firmware 169

6.3.3 Embedded PC Software 174

6.3.4 Remote Workstation Software 177

xii

7 Conclusions 189

7.1 Future Work . 191

Bibliography 193

List of Figures

2.1 Feature diagram of a car. 16

2.2 Feature modeling symbols. 20

2.3 Top-level feature diagram for component models classification. 22

2.4 The Communication feature diagram. 23

2.5 The Computation feature diagram. 31

2.6 The OROCOS finite state machine. 33

2.7 The Configuration feature diagram. 38

2.8 The Coordination feature diagram. 47

3.1 The Corba Component Model (CCM). 53

3.2 A generic Fractal component. 55

3.3 An OpenCOM capsule example. 61

3.4 The structure of an OROCOS component. 62

3.5 The internal FSM of an OROCOS component. 63

3.6 An example of the Orca ServerPush communication pattern. . 66

3.7 Pin component overview. 68

3.8 SaveCCM features summary. 74

3.9 A SaveCCM system example. 77

3.10 SCA components and composites examples. 78

4.1 Communication summary table. 109

xiii

xiv List of Figures

4.2 Computation summary table. 110

4.3 Configuration summary table. 111

4.4 Coordination summary table. 112

5.1 A SCA composite example. 119

5.2 A SCA domain example. 120

5.3 SCA graphical notation for components 121

5.4 Structure of a SCA run-time. 127

5.5 The Apache Tuscany run-time architecture. 128

5.6 The structure of a FraSCAti container. 130

5.7 A typical ROS network configuration. 134

5.8 Communication between two ROS nodes. 139

5.9 A ROS graph node. 141

5.10 An example of a ROS-Gazebo integrated system. 144

5.11 Conceptual view of the SCA-ROS integration. 145

5.12 UML class diagram of the RosGate component. 148

5.13 Integration between SCA and ROS systems. 151

6.1 The BART robot. 157

6.2 The kinematics scheme of the BART robot. 159

6.3 The overall electronic architecture of the BART robot. 165

6.4 The controllers architecture. 171

6.5 The structure of the payload of Canbus messages. 173

6.6 Serial communication messages. 173

6.7 Graph node of the supervisor component. 177

6.8 The composite diagram of the ROS-SCA integrated system. . 178

6.9 The ROS graph node of the ROS-SCA integrated system. . . . 182

6.10 The RosGateSCA component class diagram. 183

6.11 The BartClient component class diagram. 184

6.12 The GUI provided by the BartClient component. 187

1
Introduction

The Component Based Software Engineering (CBSE) [76] [53] is an approach

for designing and developing software artifacts that has arisen in the software

engineering field in the last years. Its goal is to promote the realization

of software systems by composing reusable off-the-shelf and custom-built

software components. This can be considered to be partially in contrast with

the traditional developing process which is based on well established phases

for requirements analysis, system designing and implementation.

The CBSE approach can dramatically reduce the amount of code that

needs to be written, and tested, by the designers of the software applications.

The result is an improved software development process both regarding the

development and test time and the overall quality of the software.

The reuse of the same component in a large number of different and

heterogeneous systems by several developers makes the knowledge about the

component usage, its efficiency, its reusability and its robustness available

to a potentially large community of users and developers. This exchange

of knowledge can greatly improve the overall quality of developed software

components.

The definition provided by the IEEE Standard Glossary of Software

Engineering Terminology [67] for reuse is “pertaining to a software module

or other work product that can be used in more than one computer program

or software system”. Hence, in software engineering, the reuse of software

is a concept that is older than, and independent from, the CBSE approach.

1

2 Chapter 1 Introduction

Anyhow, the component-based approach has contributed to radically change

the reuse approach form from opportunistic to systematic.

Following the opportunistic approach, the software engineer reuses pre-

viously developed pieces of software implementations that fit the current

problem, typically by reusing libraries or single portions of code. On the

other hand, when the systematic approach is exploited, the research and

development team puts explicit effort in developing software modules that

meet the requirements of a family of related applications. The developed

modules, also called components, can then be used and reused to solve a

larger class of problems.

The Component Based Software Engineering approach is funded on the

concept of component that is, according to Szyperski’s definition: “a unit

of composition with contractually specified interfaces and explicit context

dependencies only. A software component can be deployed independently and

is subject to third-party composition” [76].

This definition, although being broadly accepted, does not take into con-

sideration another fundamental concept: the component model. A component

model defines specific interaction and composition rules that guarantee the

interoperability among components that are developed and used by different

subjects. Keeping in mind the role of the component model, components can

be classified as “software element that conforms to a component model and

can be independently deployed and composed without modification according

to a composition standard” [53].

Component models play a fundamental role in defining component struc-

ture and interactions. The greatest part of the functional and non-functional

characteristics of a component-based software depend from, or are related to,

the adopted component model. In particular, the component model has a

direct impact on the flexibility feature of the system, that is, the ease with

which a component can be modified for use in applications or environment

different from those for which it was designed.

1.1 Component Model for Robotics 3

1.1 Component Model for Robotics

In the robotics field there is a strong need to improve the software reuse

for the construction of robotic software applications. Software reuse allows

researcher and developers to share knowledge about specific fields of the

robotics domain without the need to rewrite each other’s code continuously

for adapting it to different applications. For example, SLAM (Simultaneous

Localization And Mapping) researchers can rely on navigation and obstacle

avoidance functionality encapsulated into third-party components without

the need of rewriting yet another obstacle avoidance algorithm.

The presence of a shared and well tested collection of components provides

to the researchers the possibility to test their newly implemented algorithms

on a common benchmark basis. This results in achieving more objective,

accurate and repeatable results.

Nevertheless, the software reuse in the robotic field is not a wide spread

approach. Most robotic research projects are based on custom software

architectures and the greatest part of software is developed from scratch each

time. As a result, valuable robotic applications are developed as a unique

monolithic software with very poor possibility for reuse of implementations

or algorithms.

These software applications, while offering good algorithms and solutions to

common problems, are often not reusable even in slightly different applications

or scenarios. This is due to the tied coupling between the particular software

implementation and the robot hardware, the computational units and, above

all, because of the use of a non-shared architecture for creating and composing

software components.

The presence of a common underlying specification for component creation

and interaction can greatly improve the reusability of implementations as well

as the communication and the information sharing among different research

communities.

Since specifications and rules for component creation and interactions are

mainly related to the component model, the choice of the most suitable model

is critical. However, this choice is made more difficult for two reasons. The

4 Chapter 1 Introduction

first is the presence of many alternative and, potentially suitable, component

models. The second is the particular nature of the robotic domain.

1.1.1 Challenges in Robotics Software Engineering

A number of issues make the design, the realization and the deployment

of software component models for robotics a challenging task. Robotics is

an experimental science that involves several different disciplines ranging

from mechanics, electronics, control theory, computer science and artificial

intelligence. For this reason, software component models embody functionality

belonging to different fields which must cooperate for achieving a common

goal. Moreover, the technologies on which those different fields are based are

quickly changing due to the relentless progresses in information technology

and electronics.

The research in robotics pursues the goal of studying artificial systems,

focusing in particular in their behaviour and in their interactions with various

environments that span from industrial production cells to outdoor or domestic

environments. This means that robots are experimented and used in many

heterogeneous use cases and scenarios with different functional and non-

functional requirements.

In order to be reusable, the software for robotics needs to be flexible to

effectively cope with the extreme variability in environments, in functionality,

in applications and in hardware-related technologies. The key to achieve

flexibility is the possibility to predict the source of variability and analyze

their impact on the software components.

One of the major source of variability is represented by the hardware

variability. Robotic systems can have onboard computing devices that may

include microcontrollers, programmable logic devices, PLCs, embedded com-

puters and so forth. These devices have to interact with heterogeneous sensors

and actuators in order to carry out their goals. Moreover, embedded compu-

tational hardware is often constrained for what regards computational power,

current consumption, physical dimensions, weight and storage capability. For

this reason, several offboard computational nodes are typically added in order

1.1 Component Model for Robotics 5

to execute computation intensive portions of the robotic task. This opens

for new issues related to the networking technology variability and the data

transfer among nodes.

Robots are artificial agents that are ultimately meant to be integrated

into human environments. This expose the robotic systems to the extreme

variability that is typical of humans environments. This application variability

deeply impacts on the features required to the robotic control software. By

changing the target environment of a robot, functional and non-functional

requirements can change as well. As an example, we can consider the deep

differences between an industrial robot working into a controlled and well

structured environment, e.g. a production cell, and a domestic robot, e.g.

a commercially available robotic vacuum cleaner, that need to operate in a

non-structured, non-controlled and time changing domestic environment that,

surely, was not originally intended to accommodate robots.

Typically, the overall robot functionality is achieved by the cooperation of

many other functionality such as perception for obstacle avoidance and map

building, localization, navigation, motion planning, motion control and so

forth. Each functionality is subjected to different timing requirements, differ-

ent functional, and above all non-functional, requirements. Many functionality

are intrinsically related to real-time requirements.

Different pieces of the overall functionality rely on sensors that are also

exploited by other functionality leading to non-trivial synchronization issues

regarding the concurrent and safe access to shared resources. This scenario

can be even more challenging if real-time constraints are taken into account.

On a mobile manipulator robot, for example, mapping algorithms can rely

on laser scanners and digital camera sensors for map building. The same

cameras can be exploited by a visual servoing algorithm for controlling the

manipulator and by the localization algorithms for estimating the position

of the robot in the environment. This functional variability can have a deep

impact on the software components features and on their design.

6 Chapter 1 Introduction

1.2 The Proposed Approach

To maximize the reusability of component implementations, software com-

ponents should be designed having in mind the variability sources [36] as

illustrated above. This advocates the separation of design concerns into a set

of orthogonal dimensions. We refer to this as the “separation of concerns”

principle. This clear separation allows to effectively analyze how variability

affects the different concerns involved in component design.

The proposed approach aims to improve the reuse-oriented development of

component-based software by clarifying the role of the component model in the

definition of component construction and interaction rules. For this purpose

we propose the “4 Concerns (4C) classification” with the target of highlighting

the four orthogonal concerns that characterize the component design and

finding how different component models face these concerns. The identified

concerns are the Communication, the Computation, the Configuration and

the Coordination.

The proposed classification scheme separately threat each one of the four

concerns, or dimensions, for each analyzed component model by analyzing the

mechanisms and the constructs provided by the component model according

to each dimension.

The classification is based on the Feature Models approach that provides

a mechanisms for clearly represent concepts, features and the relationships

among them. The proposed classification is aimed to be both a mechanism

for comparing different component models and an instrument for choosing

the most appropriate model according to a particular set of requirements.

As already explained, a great part of the capability to reuse software

components directly comes from the characteristics of the adopted component

model, for this reason, we think that the choice of a component model, in

the early stages of the system development, represents a critical phase. This

choice can be difficult because of the great variety of available component

models, for this, we argue that the presence of a compact, and yet complete,

analysis and classification strategy could greatly help in the comparison, and

in the choice, of the most appropriate component model.

1.3 Structure of the Thesis 7

Regarding the particular field of the robotics, we will conclude that domain-

specific component models often lack in the needed flexibility for achieving a

good reusability while general purpose component models do not offer some

of the key requirements that are mandatory for robotics applications.

We argue that, up to know, and probably in the future, a component model

that can meet all possible requirements cannot exist. In our opinion, the key

for achieving the best performances in terms of flexibility, and consequently

reusability of implementations, is the integration of different component

models with the aim of exploiting each other strengths while mitigating their

defects.

To this purpose we propose the integration between the Service Component

Architecture (SCA) and the Robot Operating System (ROS) environments.

We demonstrate the feasibility of this approach and the achieved improved

flexibility by showing the results obtained during the development of the

control software of a new experimental robot, the BART. In particular,

the flexibility of a general-purpose component model, such as SCA, can be

exploited for the design and the realization of higher-level functionality of the

system. On the other hand, we can take advantage of the domain specific

features of ROS when we need to design and implement lower-level and

hardware related functionality.

1.3 Structure of the Thesis

The thesis is structured as follows: in Chapter 2 we show the adopted classifi-

cation model, in particular, in Section 2.1 we analyze similar classifications

presented in literature while in Section 2.2 we describe the feature models

formalism. In Section 2.3 we present the proposed classification scheme.

In Chapter 3 we review a number of component models available in the

community. Five of these models, considered as the most representative, are

analyzed and classified in Chapter 4 by means of the proposed classification

strategy.

In Chapter 5 we propose and explain the integration between SCA and

ROS component models and in Chapter 6 we present the experimental results

8 Chapter 1 Introduction

of this integration by analyzing the software structure of the BART robot.

Finally, in Chapter 7 we summarize the results of the work and we outline

some possible future directions.

1.4 Acknowledgements

The research leading to this thesis has received funding from the European

Community’s Seventh Framework Programme (FP7/2007-2013) under grant

agreement no. FP7-ICT-231940-BRICS (Best Practice in Robotics). The

author would like to thank all the partners of the BRICS project for their

valuable comments.

2
The “4C” Classification Model

In this chapter a classification model to capture a wide spectrum of component

models is presented. To this purpose, feature models [71] are used to compare

different component models and provide a survey and categorization of a

number of existing approaches as presented in Chapters 3 and 4. Feature

models document the result of applying the domain analysis technique to

existing component models.

We propose to separate the analysis in four dimensions or concerns, the

so called “4Cs”, namely: Communication, Computation, Configuration and

Coordination to better focus on the features that make a component model

different from another and, consequently, some component models more

suitable to some contexts and not to other.

The four concerns consist in the “4Cs” already presented in [68] regarding

generic component-based software systems and in [36] focusing on the field of

the component-based software engineering for robotics control software.

The use of the feature models formalisms represent the main novelty in

the classification approach that is being presented.

In Section 2.1 we briefly inspect other proposed classification approaches

presented in literature, in Section 2.2 we give an introduction on the ba-

sic principles of the feature models and feature diagrams, then, in Section

2.3, the classification approach and the feature diagrams developed for the

classification are presented and explained.

9

10 Chapter 2 The “4C” Classification Model

2.1 Related Work

The component models embody the essence of the component-based software

engineering since the component model defines the rules to build compo-

nents and compose them into software systems. Many analysis techniques,

taxonomies and classification strategies have been applied to component

models in literature in the last decade. The need for a classification usually

comes from the fact that component-based software design and development

failed in providing standard principles for the design, the development and

the reusability of software. Other approaches, such as the object-oriented

development, has, on the contrary, succeeded in this task being now well

established in several fields.

In the greatest part of the classification approaches, the main underlying

objective is to achieve a classification of the many available component models

in order to successfully compare them. It is well known that, beside genuine

general purpose component models, a great number of application-specific

models has been developed addressing the issues of a specific field. Application

specific component models can be found in the field of the embedded systems,

telecommunications, Internet-based applications, database applications and

robotics, to name a few.

Given the number of developed models and the great variety of solutions

among them, a good classification model should be general enough to give

instruments to compare and classify them but also specific enough to capture

and highlight the differences and the particularity of each approach. The

extreme variability in the component models is transposed in a great variability

in the classification approaches proposed in literature.

The classification presented in [59] is focused on an idealized component

life-cycle based on a widely accepted set of desiderata. These are given as

follows: first, components should be preexisting reusable software units that

developers can reuse to compose software. Second, components should be

produced and used by different parties. Third, it should be possible to copy

and instantiate components so that their reuse can be maximized. Fourth,

components should be composed into composite components that, in turn,

2.1 Related Work 11

can be composed into even larger composites or subsystems and so on.

Since the component model defines the rules to construct and compose

components, it is considered crucial to identify the key prerequisites to meet

the the above mentioned desiderata. Authors believe that the best starting

point is the study and the classification of current component models. In the

presented paper, thirteen major component models have been analyzed and

classified into a taxonomy with four categories according to the composition

phase of the idealized component life-cycle. The composition phase is intended

to be the most important phase in the whole development process. In

particular, the analysis puts emphasis on the presence and the management

of a repository of components.

The first category is design without repository in which, in the design

phase, no repository is available and components are all constructed from

scratch. Examples of this category of component models are PECOS and

Fractal. The second category is design with deposit-only repository in which

a repository is available in the design phase but it does not offer support for

component retrieval. This category includes EJB, COM, .NET and CCM

component models. The third category comprises component models that

offer a repository from which already-developed components can be retrieved

in the deployment phase (deployment with repository). The last category

is the design with repository in which a repository is available to store and

retrieve components in the design phase. Koala, SOFA and KobrA belong

to this category. Authors put into correlation these four categories with the

different nature of the component concept implied in the analyzed component

models (component as objects or as architectural configurations) and with the

different language adopted for the definition of components (object-oriented

programming language or ADL-like language).

The authors state that the ideal model should allow a repository-based

composition mechanism both in the design phase and in the deployment phase

and it does not exist yet. Encapsulation of functionality and an improved

ability to compose components are identified as key features for an ideal

component model.

This work, when compared with the approach that is being presented, fo-

12 Chapter 2 The “4C” Classification Model

cuses almost exclusively on the design and deployment phases of a component-

based software system. Component models are analyzed and classified accord-

ing to the instruments that they offer to support the developers in designing

and putting together components, the availability and the usability of a

repository seems to be the most important identified key-feature to ease the

software development and reuse. On the other hand, the proposed analysis

disregards what a specific component model offers in terms of constructs and

artifacts to the developer and does not highlight the relation between these

artifacts and the reference application domain of the component model (e.g.

embedded systems or web-based applications).

In [56] the focus is on relating research results to relevant CBSE aspects

and software domains. The authors’ aim is to promote and enhance a

systematic information exchange between researchers and adopters of CBSE

technology through an on-line forum promoted by the European Union with

the CBSEnet project. The goal of this project is to suggest how CBSE

technologies could improve software engineering in different domains and to

propose future research requirements for the development and deployment of

CBSE technologies. To this purpose, a classification model has been developed

in order to relate CBSE aspects, software domains and relevant research results

to a set of reviewed component models. Six types of research results are

identified: conferences and journal articles, technical reports, white papers,

books and tools. The model takes into account eight CBSE aspects comprising

concepts, processes, roles, product concerns, business concerns, technology,

off-the-shelf components and related development paradigms. These aspects

have been decomposed into more than fifty sub-aspects and they have been

put into relation with sixteen application domains ranging from avionics to

embedded systems and utility software. Among the CBSE aspects taken into

account and chosen for the proposed component model classification there

are: the component and the component model concept, contracts among

components, interfaces, services and architectures. A particular emphasis is

placed on the component-based development process which is split into the

concepts of development for reuse and development with reuse. The results

of the adoption of the classification model are presented thorough tables

2.1 Related Work 13

showing, for each reviewed component model, its impact in terms of research

results, the addressed CBSE aspects and the involved software domains.

Compared to the approach described in this work, the classification pro-

posed by Kotonya et al. is strongly focused on the impact of component

models on the research community in terms of research results. The proposed

rich classification framework is complete and succeeds in addressing all the

most relevant features of a component models from the available constructs

to the development cycle. However, a clear separation of concerns between

the analyzed concepts seems lacking.

The classification proposed in [46] aims to provide a complete framework

to classify both general purpose and embedded systems specific component

models. The classification is carried out by first identifying the basic principles

of component models and then designing a framework to differentiate and

classify component models. The classification is divided into four dimensions,

each one of them takes into account both component specification, expressing

component functions and extra-functional properties, and inter-component

communication. This last feature is usually non-explicitly specified although

different types of communication mechanisms are assumed in component

models.

The first dimension is the lifecycle of components and it identifies the

support provided by the component model during the lifecycle of the com-

ponents or the component-based system. The construct dimension identifies

both the component interfaces and the mechanisms of component binding and

communication. The third dimension is represented by the extra-functional

properties, here the authors collect the specification and support for the

provision of property values to components and means for composition and

management of these properties. The domains dimension is related with the

application and business domains in which component models are used or

supposed to be used.

Each one of the above mentioned dimensions is then analyzed and divided

into a set of sub-dimensions allowing for a complete, and in some cases

cumbersome, classification framework. The framework, however, identifies

the minimal criteria for considering a model as a component model and allows

14 Chapter 2 The “4C” Classification Model

to recognize some recurrent patterns and similarities between component

models that are developed and used for similar, or strictly related, application

domains.

This approach is similar to our proposed classification to some extends,

the proposed classification framework considers the separation of concerns

as a key feature to compare and classify component models. The resulting

framework is complete and the four axes of analysis are orthogonal though

they differ from the classification dimension chosen in our work.

In [42] the focus in shifted on the component models for robotic control

systems in order to extract a set of desirable features and compare existing

models with a proposed component model (openRDK) specific for robotics

applications. The analysis is focused on the component models that ensure

modularity and rapid development tools for distributed robotic systems.

The classification model applies the separation of concerns, in particular,

the analysis axes are: concurrency models, information sharing techniques and

available programming and debugging tools. Concurrency models are related

to the approach adopted for the concurrent execution of software modules or

components across the possibly distributed computational nodes involved in

the execution of the control of a robot. According to this classification, com-

ponents can be treated as communicating independent processes, as threads

inside a single process or as scheduled call-backs functions repeatedly called

in response to some events of periodically. Information sharing mechanisms

are strictly related to the concurrency model and deals with the information

sharing among software modules. On the basis of this classification, com-

ponents can centralize the exchange of data in a shared entity (blackboard

approach) or can read and produce data through a set of input and output

ports. According to the authors, the implementation of these paradigms

usually rely on shared memory mechanisms or inter-process communication

services. The last analysis axis take into account the presence, or the lack,

of tools that can speed up the development of robotic software components

such as on-line and off-line configuration utilities, specific debuggers and data

loggers, robotic simulators and tools that enable the interoperability with

other environments or operating systems.

2.2 Feature Models 15

Although the analysis is restricted to the very specific field of the com-

ponent based robotic control software, the proposed approach is interesting

for the separation of concerns adopted to separate the analysis into a set of

orthogonal dimensions allowing for a better classification, and consequently a

better understanding, of component models.

2.2 Feature Models

A feature model [71] is a hierarchical composition of features. In general,

a feature is a distinguishable characteristic of a concept that is relevant

for the concept itself. A concept can be an entire system, for example a

software system, or a component. In the software engineering domain, feature

models were proposed for the first time in 1990 in the context of the Feature

Oriented Domain Analysis approach (FODA) [55]. The FODA approach aims

to identify functionality and properties of a domain-specific software making

a clear distinction between features that are present in all applications and

features that are present only in some applications. For the representation

of these functionality and properties, FODA proposed the Feature Models

formal method. In this context, a feature is a software property representing

an increase in software functionality.

In general, the feature models approach can be useful for classification or

taxonomy purpose. Given a particular domain, that represents the concept of

the feature model, a feature model can be built to represent all the possible

configurations of the domain by representing the set of features that can, or

cannot, be present in each configuration and the relationships among them.

Following this approach, we used feature diagrams to classify the component

models in Chapter 4.

A feature model that defines features, relations and dependencies can be

graphically represented with a diagram that is typically a tree. We refer to

this graphical notation as feature diagram.

Since its introduction, the original feature model formalism has been

extended and several variants of the same formalism are now available in

literature [71]. All these extensions do not impact on the core concerns of the

16 Chapter 2 The “4C” Classification Model

feature models approach but they attempt to compensate purported ambiguity

or lack of precision and expressiveness of the original FODA featured models.

Despite this, the original FODA feature diagrams have a formal semantics

that is has been demonstrated to be precise, unambiguous and expressively

complete [31]. It is to remark that, in some cases, the proposed extensions

simply aim to enrich the semantics of the formalism in order to be more

effective in the representation of some specific domains. Notable examples of

these extensions are the feature cardinality approach[47] and the containment

cardinality approach.

Also the graphical notation of the feature diagrams has been adapted to

coherently represent the extensions to the original formalism or to better

highlight some particular aspects. We are now introducing a specific graphical

formalism, also known as basic feature models.

2.2.1 Basic Feature Models

In this section we will refer to the feature diagram depicted in figure 2.1

in order to exemplify the characteristics of feature models. Features are

Car

Gearbox

Manual Automatic

Air

Conditioning Windows

Manual Electric

Figure 2.1: Feature diagram of a car.

represented as white boxes containing the feature name. Each feature is

connected to its children features by an edge that represents the containment

relationship. Feature diagrams are organized as a tree, where the root feature,

also called concept, defines the domain that is modeled by the feature model.

Features can be divided into two main categories according to their presence

2.2 Feature Models 17

in all possible configuration of the modeled domain:

• Mandatory. Mandatory features have to be present in every possible

configuration of the modeled domain. They represent the core func-

tionality or properties that characterize the modeled domain. In the

example depicted in Figure 2.1, the features “Gearbox” and “Windows”

are considered mandatory in every possible realization of a “Car”. It

means that it cannot exist a car without the gearbox or without the

windows. In the adopted graphical notation for feature diagrams, the

mandatory features are represented by a black circle on the top of the

feature box.

• Optional. Optional features can be present in some configurations of

the modeled domain but they are not mandatory. They represent prop-

erties, functionality or characteristics that are specific to the particular

configuration of the domain. In the example depicted in Figure 2.1,

the feature “Air Conditioning” is optional. It means that particular

configurations of the domain, in this case a particular model of a car,

can have the air conditioning system while other configurations have

not. In the feature diagrams graphical notation the optional features

are represented by a white circle on top of the feature box.

Features can also be classified according to the nature of the containment

relationship between a particular feature and its children. We can identify

three types of containment relationships:

• One-to-one. The One-to-one containment means that the parent

feature can contain the child feature. In particular, if the child feature is

mandatory, this containment relation indicates that the parent feature

has to contain the child feature, otherwise, if the child feature is optional,

it simply indicates that the parent feature can contain the child feature.

In the example in Figure 2.1, a “Car” has to contain a “Gearbox” and

the “Windows” and it can contain the “Air Conditioning” feature. In

the feature diagrams notation, this kind of containment relationship is

depicted as a simple edge from the parent feature to its children.

18 Chapter 2 The “4C” Classification Model

• OR. The OR-containment represent a containment relationship between

the parent feature and a set of children features. It means that the

parent feature has to contain at least one of the children features. In the

example, the relationship between “Windows” and its children “Manual”

and “Electric” is an OR containment in the sense that car windows

can be both manual and electric. According to the semantics of this

relationship, a car can have, for example, electric front windows and

manual rear windows. In the feature diagrams graphical notation, the

OR relationship is depicted as a black semicircle that connects the

edges.

• XOR. As for the OR-containment, the XOR-containment relationship

represents a containment between a parent feature and a set of children

features. It means that the parent feature has to contain only one

of the children features. In the Figure 2.1 example, the relationship

between “Gearbox” and its children “Manual” and “Automatic” is a

XOR containment because a gearbox cannot be automatic and manual

at the same time. In the feature diagrams graphical notation, this

relationship is depicted by means of a white semicircle connecting the

edges.

Some clarifications need to be made when taking into account manda-

tory and optional feature categories in combination with the containment

relationships. Although the XOR-containment between a parent feature and

its children do not explicitly impose any constraint about the presence and

the number of mandatory and optional contained features, the presence of

more than one mandatory child feature has to be considered as an error. The

XOR-containment, indeed, imposes the presence of only one of the contained

features and, consequently, one or more of the remaining mandatory features

cannot be selected and this is in conflict with their mandatory definition.

Without being considered as an error, the presence of exactly one manda-

tory feature in a XOR-containment does not make sense since its selection

is obliged and no other of the eventually present optional features can be

selected at the same time. For this reasons, in the feature diagrams presented

2.2 Feature Models 19

in this work, a XOR-containment relationship will never contain mandatory

features.

On the other hand, the presence of more than one mandatory feature in

an OR-containment relationship is perfectly legal since the OR-containment

imposes the selection of at least one of the contained features, therefore, all the

mandatory contained features will be selected and the other optional features

remain still selectable. The same principle can be extended to the one-to-one

containment relationship. Finally, when an OR-containment relationship

involves only optional features, at least one of them will be selected, hence,

the OR-containment relationship makes one of them virtually mandatory

without specifying which.

An optional parent feature can have one or more mandatory child features.

This is not in contrast with the previous considerations since it means that

if, and only if, the parent feature is selected, the mandatory child features

must be selected too. In contrast, if the parent feature is not selected, no one

of its children can be selected, regardless of whether they are mandatory or

optional.

The basic feature models define also two additional constraints between

features, namely: requires and excludes. These two constraints allows the

definitions of predicates regarding the contemporaneous presence of a set

of features in a valid configuration of the modeled domain. They typically

expressed in the form:

A {requires|excludes} B

where A and b can be simple features or a boolean composition of several

features related by standard boolean operators (AND, OR, XOR, NOT). The

presence of a feature has to be considered as a true value when evaluating

the boolean composition of features.

• Requires. It means that if feature A is present in the particular

configuration of the modeled domain, then, the feature B must be

present as well. In general, if A and B are logical rules, the constraint

imposes that if A is true, then, the rule B must be true as well.

20 Chapter 2 The “4C” Classification Model

Mandatory Feature

Optional

Feature

Reference to

Feature

One-to-one

decomposition edges

XOR-decomposition

edges

OR-decomposition

edges

Notation Description

Feature

Feature

Figure 2.2: Feature modeling symbols.

• Excludes. It means that if feature A is present in the particular

configuration of the domain, then the feature B cannot be present. If

A and B are logical rules, the constraint imposes that if A is true, then,

the rule B must be false.

Features of a feature diagram can be put into a generic relation with each

other. This is useful to express references between features that cannot be

expressed by the requires/excludes relationship, for example when there is

the need to add some specific information to the feature model. In the feature

diagram graphical notation, these connections are expressed by means of a

dashed arrow connecting a couple of features and, optionally, with a short

textual description of the reference on the arrow edge. Figure 2.2 shows and

2.3 Feature-based 4C Classification 21

summarizes the adopted graphical notation for feature diagrams.

2.3 Feature-based 4C Classification

This section presents the adopted classification strategy through the use of

feature models, represented here by means of the feature diagrams. Essentially,

a feature diagram is a hierarchy of common and variable features characterizing

the set of instances of a concept in a given application domain, in our case the

domain is represented by the component models to be classified and analyzed,

the concepts are: the Communication, the Computation, the Configuration

and the Coordination.

When adopting this approach for the analysis and the classification of

a component model we aim to separate and classify the areas of variation

that make a component model different from another one. Features can be

selected according to the component model characteristics and respecting the

composition rules of the feature models. The outcome is a “pruned” version of

the diagram tree where the unselected features are omitted and the remaining

features represent the concepts addressed by the component model under

analysis. In this sense, the features provide a terminology and representation

of the design choices, the available constructs, artifacts, instruments and

means offered by the component models.

2.3.1 Separation of concerns

We identify the main independent areas of variations of a component model.

This separation of concerns follows the separation of component design princi-

ples defined in [68]. Keeping these four aspects clearly separated is fundamen-

tal for facilitating the development of large maintainable and reusable software

systems as it makes the definition and the implementation of components

as independent as possible from the variability in hardware, in functionality

and in application. Software components developed keeping in mind this

separation of concerns are more reusable and more maintainable. As a matter

of fact, the greatest part of the component models pursue such a separation

22 Chapter 2 The “4C” Classification Model

of concerns but, while having the same goal, they deeply differ in the manner

and in the achieved results.

Component

Model

Computation ConfigurationCoordinationCommunication

Figure 2.3: Top-level feature diagram for component models classification.

Figure 2.3 shows the top-level feature diagram with the five main areas of

variation, namely the 4Cs key features, or concepts, of a component model.

According to the main feature diagram a software component model is a

definition of:

• Communication: expresses the interaction mechanisms and protocols

for the exchange of data among components.

• Computation: represents the semantics of components, that is, what

components are meant to be. It is concerned with the data processing

algorithm required by the application.

• Configuration: expresses the composition of components making their

assembly mechanisms explicit.

• Coordination: is the orchestration of the various system components

to achieve a common goal.

Note that all top-level features are mandatory. Although this is clear

for communication, computation and configuration features, the choice of

presenting the coordination feature as mandatory needs for some clarification.

Every component-based software system needs some kind of coordination

mechanisms to make the components work in an harmonized way achieving

the common goal but, as observed in several available component models and,

2.3 Feature-based 4C Classification 23

as stated in [68], coordination mechanisms are not always made explicit, not

in the application point of view, nor at the component model definition level.

In many systems, the necessary coordination policy is hidden inside the

component implementation, hence, it could be related to the computation

concern. In this work we aim to keep the coordination concept clearly

separated from the computation concern, even when analyzing component

models that do not explicitly provide constructs, artifacts or means for

coordination purpose. This approach lead to a better separation of concerns

in the developed classification framework.

2.3.2 Communication

Communication deals with the exchange of data [68], in particular, the commu-

nication defines how components communicate with each other. Components

need to communicate with each other in order to cooperate and component

cooperation is the basis of any system, hence, the communication concern

plays a fundamental role in defining both functional and non-functional

characteristics of the entire component-based software system.

Interface

Type

Provided Required

Communication

Semantics

Operation-based Data-based

Definition

Programming

Language
IDL

Synchrony

Synchronous Asynchronous

Anonymity

Anonymous
Non-

Anonymous

Figure 2.4: The Communication feature diagram.

24 Chapter 2 The “4C” Classification Model

The diagram shown in Figure 2.4 depicts the feature diagram of the com-

munication concern. We can identify three main sub-features: anonymity,

synchrony and interface. The anonymity feature is related with the space

decoupling concept, the synchrony is related with the synchronization de-

coupling concept and the interface feature deals with the major construct

provided by component models to administrate the communication among

components.

Anonymity

Two communication mechanisms are deeply routed in Object Oriented Pro-

gramming, namely the caller/provider mechanism and the broadcaster/listener

mechanism [48].The former is involved when an object invokes another object

method, the latter gives to the objects the capability of broadcasting and

listening events or data. One the most notable interaction scheme involved

in the broadcaster/listener mechanism is the publish/subscribe interaction

thoroughly analyzed here [48].

Taking into account these two main mechanisms, caller/provider mech-

anisms usually led to an imperative communication style, as in the case of

a command issued by one component to another one. On the other hand

the broadcaster/listener mechanism usually led to a reactive communication

style, as in the case a component reacting to an event notification by calling

a callback function or method.

These two approaches play a fundamental role when taking into account

the anonymity aspects of communication: when the communication between

two or more components is anonymous, the communicating components

do not need to know each other, i.e. the caller does not hold a reference

to the provider, and the publisher does not know which subscribers are

participating in the interaction [36]. In case of anonymous communication,

the communicating components are defined to be “space decoupled”.

When the communication is non-anonymous, the communicating com-

ponents need to have some knowledge about other components involved in

the communication. For example, a caller component may need to hold a

2.3 Feature-based 4C Classification 25

reference to the provider component, or a publisher component needs to know

which and how many interacting components are subscribed. Another kind of

non-anonymous communication is concerned to the addressing mechanisms.

In case of non-anonymous communication, the involve components are defined

to be “space coupled”.

In some cases, the communicating components do not need to hold an

explicit reference to the interlocutor but they still need to know some kind

of address identifying the other components joining the communication i.e.

the IP address and the port number for a socket-based communication. We

can state that, although this kind of coupling is less tight than the previously

introduced cases, the components are still coupled.

Space decoupling strongly increases the component reusability and the

system flexibility because it removes explicit and implicit dependencies among

components allowing for an easier replacement of components and for a more

flexible reconfiguration of component interconnections.

Component models address the anonymity concept with several different

approaches reaching different degrees of anonymity. Data-based communica-

tion style, usually implemented by means of data ports, allows a higher level

of anonymity since each component do not need to know which component

is sending data to its input ports and which component will receive data

written on the output port. Exchanged data is stored into messages without

address. The component may make assumptions about the inter-arrivals time

of input data and about the type and format of the received messages but

this knowledge is not concerned with the interlocutors’ specific instances.

Port-based communication is offered by several component models such as

OROCOS, RUBUS, AADL, Pecos and SaveCCM. In many cases the neces-

sary port binding knowledge is managed outside the component definition.

In OROCOS, for example, the component connections are specified in an

XML-based deployment file where component ports are matched on the ba-

sis of their connections names. When adopting port-based communication,

components can play the role of data consumers, data producers or both.

Another mechanism that allows anonymity is based on the publisher/-

subscriber paradigm. Publisher components can publish messages on topics

26 Chapter 2 The “4C” Classification Model

without knowing explicitly which components are subscribed to these topics.

On the other hand, subscribers components can subscribe, and hence receive

messages, from topics without knowledge of the component that is publishing

on the topic. The topic-based communication offered by the ROS component

model is a clear example of this approach.

When the component interaction and communication is operation-based,

for example when a caller/provider paradigm is adopted, components need

to have some knowledge about the other components that are joining the

communication and hence, the communication is non-anonymous. In these

cases the component model can provide mechanism to reduce the knowledge

needed by a components to carry on the communication. In the Service

Component Architecture (SCA), a component can provide operations through

the service construct and require operations through the reference construct.

References and services are bound in such a way that a component can

call the methods defined by a service through its reference. In this case

the caller component just need to know the interface implemented by the

provider since the binding with the current instance of the provider is managed

by the SCA run-time system following the instructions defined in a SCDL-

XML deployment file (composite file). This reduces the dependencies among

components allowing for better decoupling.

Some component models provide both port-based and operation-based

interface construction, for this reason the two features are connected by

OR-decomposition edges in Figure 2.4.

Synchrony

Synchronization between communicating components is usually related with

the caller/provider communication mechanism. The communication between

two component is synchronous when the caller, after requiring a service to

the provider by calling a function or a method, remains blocked waiting for

the response. The execution time needed by the provider to produce the

response can vary depending on the complexity of the computation, the load

of the system and the communication delay introduced by the communication

2.3 Feature-based 4C Classification 27

mechanism. This kind of blocking communication mechanism is suitable when

a response from the provider is needed immediately or within a certain, and

generally short, period of time. The absolute value of the maximum allowed

response time is an application-specific parameter.

On the contrary, asynchronous requests return immediately after the

provider has received the parameters of the invoked operation and the re-

sult of the request can be retrieved later by the caller. It exists a slightly

different version of the asynchronous request mechanism, the so called deferred-

synchronous request that, when the response is ready, returns a token that

allows the caller to retrieve the operation results when needed.

Component models usually provide means for remote operation call be-

tween components by exploiting communication mechanism supplied by the

underlying middleware, for example the OMG Common Object Request Bro-

ker Architecture (CORBA) [6] or the Java Remote Method Invocation (RMI)

framework. The CORBA framework is used in some component models such

as OROCOS (in non hard real-time application) and in the Corba Component

Model (CCM) itself. Both CORBA and RMI consist in making the remote

operation calls appear as they were done in the caller’s address space. This is

carried out by means of a couple of tied components: the stub and the skeleton.

The stub is a proxy of the provider in the caller’s address space, it exposes the

same interface of the remote provider. The skeleton resides in the provider’s

address space. So doing, the caller can invoke a stub method as it was in its

local address space, then, the stub can serialize the request and transmit it

on the network to the skeleton which will handle the request by calling the

corresponding method of the provider. A similar couple of components is

used to transmit the response back to the caller. This middleware-related

mechanism allows a form of anonymity of communication since the caller

and the provider do not need to know their mutual instances but only the

stubs. Depending on the implementation of the provider, the stub-skeleton

mechanism can offer support both for synchronous and asynchronous requests,

for this reason the features are connected by OR-decomposition edges meaning

that at least one feature must be selected (refer to Figure 2.4).

When the communication between components is data-based, it always

28 Chapter 2 The “4C” Classification Model

allows asynchronous communication since there is no reason for the data

producer to wait for any kind of response from the data consumer, which may

not exist. Component models and execution frameworks usually implement the

data-based data exchange by means of ports that, in turn, are implemented by

shared memory areas, the access to these areas is guarded by mutual exclusion

mechanisms provided by the framework itself or by the underlying middleware

in a way that it is completely transparent to the components implementation.

The same concept can be extended to the topic-based communication provided

by component models like ROS.

Interface

According to Medvidovic et al., a component’s interface is a set of interaction

points between it and the external world [63]. Regardless of the particular

features or of the scope of a component model, the interface concept is

an obligatory part of the component specification, consequently, interfaces

represent first-class entities in all component models, hence the interface

feature is mandatory in the communication feature diagram shown in figure

2.4.

A component has one or more provided interfaces and/or one or more

required interfaces. The provided interfaces of a component represent the

contractually specified functionality that the component offers to their clients.

The required interfaces, instead, specify functionality and resources that the

component needs to perform its own functions and fulfill its own obligations

to its clients. Not all component models offer an explicit notion of required

interfaces, for this reason, in the feature diagram depicted in Figure 2.4 only

the feature corresponding to the provided interface definition is mandatory.

Depending on the underlying semantics involved in the communication,

interfaces can be classified into operation-based interfaces and data-based

interfaces [35]. Operation-based interfaces are defined in terms of functions

and parameters to denote the services provided or required by the component.

Some other component models, instead, introduce the notion of communi-

cation port as interface element for sending and receiving, or providing and

2.3 Feature-based 4C Classification 29

requiring, data from and to the surrounding environment of the component

with a data-oriented behaviour. The surrounding environment, in this case,

can be considered as the set of the other cooperating and communicating

components of the system. In many cases the existence of a data-based

interface definition does not excludes the possibility of having operation-based

interfaces in the same component model like in OROCOS.

Besides the port-based definition, some component models like ROS, pro-

vide another mechanism for data-oriented interface definition: the concept

of topic. Topic-based communication in tightly related to the publisher/sub-

scriber communication paradigm. Components can publish messages to topics

that represent message container artifacts. Other components can subscribe

to topics and being notified when a new message is available. Topics are

defined by an identifier (URI), a message type and a set of publisher and

subscribers components. This mechanism allows a many-to-many anonymous

and asynchronous communication scheme.

Port-based communication and topic-based communication address the

same goals related to the data-based semantics: making the communication

between components anonymous and asynchronous. However, the data-based

semantics for interface definition do not excludes the possibility of defining

other interfaces with operation-based semantics and behaviour by the same

component model. For this reason, operation-based and port-based features

are connected by OR-decomposition edges meaning that at least one of the

features must be selected.

Interfaces can be defined in two ways: by using the same possibly object-

oriented programming language adopted for the component definition or by

using am Interface Definition Language (IDL). Component models supporting

multiple component implementation languages, like the Corba Component

Model, or without a reference implementation language, e.g. Koala, usually

adopt an IDL to define provided and required interfaces. By using an IDL, the

interface definition is made independent from the component implementation

allowing two different scenarios: first, the interface definition can be reused

in various component implementations, second, the interface implementation

can be provided by different component implementations allowing, for exam-

30 Chapter 2 The “4C” Classification Model

ple, the composition of systems with components implemented in different

programming language.

When interfaces are defined using the same object-oriented implementation

language, the semantics of the language can limit the possibility of defining

required interfaces. It is the case of the Java language where the interface

construct can be easily adopted for expressing provided interfaces but no

construct is available for explicitly define the required interface concept. In

these cases the programming language is often enriched by component model

specific notation; this is the case of SCA where Java annotations are used

to express clearly the presence of provided interfaces (services) and required

interfaces (references). Anyhow, the use of an IDL usually excludes the

possibility of using the programming language for the interface definition and

vice versa. For this reason the corresponding features are connected by a

XOR-decomposition edges in the diagram in Figure 2.4.

2.3.3 Computation

Computation is concerned with the data processing algorithms required

by an application [68]. Data processing algorithms are defined in terms

of: data structures, representing what is manipulated by the algorithm,

operations, describing how data is transformed by the algorithm, and behaviour,

describing the order in which operations are performed on the data. A

Software component is a computation unit that encapsulates data structures

and operations to manipulate them.

The diagram shown in Figure 2.5 depicts the feature diagram of the

communication concern. Four main sub-features can be identified: the

component implementation language, the component behaviour, the real-time

support and the distributed system support. The component implementation

language refers to the language offered by the component model to define

the implementation of the components, the component behaviour is related

to the presence of an internal predefined finite states machine managing the

behaviour of the component, the real-time support feature is selected when

the component model provides explicit instruments to manage the real-time

2.3 Feature-based 4C Classification 31

Computation

Component Implementation

Language

Programming

Language

ADL-Like

Language

Multiple

Language

Support

Single

Language

Support

Component

Behaviour

Customizable

Component State

Management

Predefined

State Machine

Real-Time

Support

Soft

Real-Time

Hard

Real-Time

Distributed

System Support

Figure 2.5: The Computation feature diagram.

execution of the components and the distributed system support is selected

when the component model allows the execution of components in more than

one unit of computation composing a distributed system.

Component Implementation Language

A Component is a unit of computation or a data store; i.e., a unit of com-

putation and a state representation of the component. The definition of

components requires a component definition language which may be distinct

from the implementation language, and the associated run-time environment,

used to actually implement components.

In object-based component models where components are defined in terms

of classes, the definition language for components can coincide with the

implementation language, for example, a component is defined as a class both

in JavaBeans and in Enterprise Java Beans (EJB). Component models in which

components are specified by using a programming language can be divided

into two categories: models supporting one single reference programming

language, like JavaBeans, and models supporting more than one programming

language, like ROS and SCA. In ROS, for example, component can be defined

in C++, Python, LISP or Java languages and they can cooperate in the same

(distributed) system. The ROS core itself has been developed in these four

32 Chapter 2 The “4C” Classification Model

languages. The SCA component model is intrinsically multi-language capable

since components can be developed in many languages like C++, Java and

BPEL.

In some models, components are specified and implemented in a pro-

gramming language and a specific IDL is provided to define the interfaces

specifications. In these cases, the IDL is used to enrich the interface definition

capabilities of the programming language and to make the definition of the

interfaces independent from the programming language itself. The use of an

IDL allows the definition of generic interfaces expressing the services offered

by components; as explained in Section 2.3.2 this latter characteristic can be

fundamental when multiple programming language are supported in order to

facilitate the inter-operability among components implemented in different

languages cooperating in the same component-based system, for example in

Internet-based applications.

In general, if components are defined by using a specific programming

language, at least one language must be supported for their definition. This

trivial consideration is made explicit by the mandatory Single Language

Support feature in the diagram in Figure 2.5. In the same diagram the single

and multi-language support are connected by XOR-decomposition edges since

the multi-language support includes the single language support.

In architecture-based component models, where components are architec-

tural units, the definition language is an ADL [63] or a language with ADL-like

features. In such models, the definition language is different from the (possibly

zero or many) implementation languages. The UML modeling language is

a notably example of such an approach since the same ADL-like graphical

notation supports several implementation languages since it has been mapped

on several platforms (like C++, Java, etc.). This can lead to the presence

of more than one supported implementation language as in Fractal where a

C implementation (Think) and a Java implementation (Julia) are available.

OpenCOM provides similar multi-language implementation characteristics.

In other ADL-based models there is no implementation language at all, this

is the case of the Rubus component model.

Component models supporting the use of an ADL-like language to define

2.3 Feature-based 4C Classification 33

components do not allow the simultaneous use of a programming language

for the same purpose, for this reason the two features are connected by

XOR-decomposition edges.

Component Behaviour

The behaviour of a component is often regulated by the execution of a Finite

State Machine, the distinction, in this case, regards the explicit definition

of such a state machine. In the greatest part of component models there is

no explicit notion of component state: components are activated as soon as

they are deployed and then it is a designer task to organize the component

execution.

Figure 2.6: The OROCOS finite state machine.

In other component models, the execution of each component is strictly

regulated by the presence of an explicit finite state machine which default

states are specified by the component model itself. The most notable example

34 Chapter 2 The “4C” Classification Model

of such an approach is embodied by the OROCOS component model. For

each component, the execution is organized into a three-state FSM as shown

in Figure 2.6. In this case, the component behaviour is strongly influenced

by the current machine state. Some operation are available only when the

component is in a particular state, for example the component configuration

can be done only in pre-operational state and, at the end of its operation, the

component is switched in the stopped state. The execution of the function calls

regulating the state switching is done by the OROCOS run-time environment

(the so-called deployer component). The periodic execution provided by the

OROCOS run-time environment is obtained, indeed, by periodically calling

the update function in which the periodic task of the component is specified.

In other component models, the developer is free to provide his own state

machine specification by hard coding it in the component implementation or

using an external tool or library.

Some component models provide instruments to partially manipulate

execution state of the components. In SCA, for example, Java annotations

can be adopted to mark an initialization and a destroyer method that are

called by the run-time environment (e.g. Apache Tuscany) at the component

start-up and at the end of its execution. Other annotations can be used to

specify the component initialization modality.

In general, when a FSM specification is provided, no other means to

manipulate the component state are available, for this reason the features

customizable component state management and predefined state machine are

bound by XOR-decomposition edges in the feature diagram.

Real-time Support

This feature is related to the presence, in the component model, of specific

means for managing the real-time behaviour of components. Real-time

behaviours can be roughly divided into two main categories: hard real-time

and soft real-time. In a real-time software system, the correctness of the

computation depends not only on its logical correctness but also on the time

in which it is performed. Real-time system must carry out tasks within a

2.3 Feature-based 4C Classification 35

certain deadline usually expressed in terms of absolute time (absolute deadline)

or relative time referring to the release time of a task. Real-time systems

are classified by the consequence of missing their deadlines: in soft real-

time systems, the usefulness of a result degrades after its deadline, thereby

degrading the system’s quality of service. In hard real-time systems the

missing of a deadline is considered as a total system failure. Hard real-time

systems are adopted when it is imperative to react to an event within a certain

period of time or when the strict periodic execution of a task is the main

goal. Examples of hard real-time systems medical devices such as pacemakers

or closed-loop control systems where the periodic execution of the control

algorithm is needed to achieve the control goal (e.g. regulating the shaft speed

of an electric motor). If the periodic execution is not observed, the system

can behave unexpectedly or can become unstable and result in damages. Soft

real-time systems are used when the need for a strict periodic execution, or

for a certain reaction time, is still important but the deadline missing is an

acceptable event. Examples of these systems are live audio-video systems

in which violations of timing constraints result in degrades quality, but the

system can continue to operate.

When multitasking is involved, as in the greatest part of software systems,

the execution have to be organized by a scheduler. The scheduling policy

is normally priority-driven and, in a real-time system, the Early Deadline

First (EDF) scheduler is often adopted. With this scheduling policy, the

component with the earliest deadline is scheduled as the higher priority task

to be executed at any time.

A component model supporting the real-time execution of software com-

ponents must, at least, provide means to specify execution periods of periodic

components. The component model and the underlying run-time execution

environment usually relies on real-time operating system dependent constructs

such as real-time timers, interrupt handlers and low-delay communication

infrastructure to meet the component execution constraints. Some of the best

known real-time operating systems are: LynxOS [5], QNX [10], RTLinux [13]

and VxWorks [24]; alongside these, there are real-time extensions for Linux-

based operating systems like RTAI [11] and Xenomai [25].

36 Chapter 2 The “4C” Classification Model

The real-time support is an optional feature for a component model as the

computation feature diagram shows. Only a few component models support

the real-time specification and execution of a component-based software

system and, even when a certain level of real-time behaviour is supported, the

possibility to support hard-real time constraints is very infrequent, even in

those component models which are explicitly designed for embedded systems.

The Robot Operating System, although it does not provide any support for

hard real-time execution, lets the user to specify component periodic execution

and provides to the developers a low-delay topic-based communication that can

be sufficient to accomplish robot control tasks with soft real-time constraints.

On the other hand, OROCOS gives to the developer the possibility to specify

periods and priority constraints for each component allowing for a hard real-

time behaviour. It must be said that, in order to exploit the hard real-time

features, the entire run-time core of OROCOS must be compiled and deployed

on a real-time capable operating system like Linux with RTAI extensions or

Xenomai.

Beside the already mentioned ROS and OROCOS, also Rubus and Pin

provide means to define and manage real-time constraints for a component

based system. However, the greatest part of component models do not

provide this kind of instruments both because this is outside the scope of the

component model, like in SCA, or because the real-time execution definition

and capability is delegated to the developer that is in charge of exploiting

the real-time capability of the underlying operating system.

Distributed System Support

Most of the component models support the execution of component-based

software system on several networked computational nodes. The differences

are related to the constructs, the instruments and the means that the com-

ponent model provides to the developers for supporting the design and the

creation of distributed component-based systems. Anyhow this feature is

marked as optional in the feature diagram since the support for distributed

systems goes beyond the base requirements of a component model.

2.3 Feature-based 4C Classification 37

Component models that refer to a specific middleware, like the Corba

Component Model, exploit the distributed communication mechanisms pro-

vided by the underlying middleware to provide remote communication. In

this cases the exchange of data with remote components is fully transparent

to the components themselves since all the complexity is managed by the

middleware.

Component models like ROS and OROCOS give the possibility to run

the run-time environment on a particular node of the networked distributed

system; this node which plays the role of the master. Knowing the URI of

the master, all components can exchange data transparently as they were all

executed on a local node. Although this mechanism is based on an underlying

middleware (the non-hard real-time version of OROCOS, for example, uses the

Corba request broker for communication) no knowledge about the underlying

system or network configuration is needed by component implementations in

this cases.

Other component models offer more advanced instruments to manage the

communication between remote components. In SCA this is embodied by the

concept of binding. A binding specifies the modality with which the commu-

nication must be carried out between two SCA components separating the

component functionality specification from the communication specification

improving the reusability of components. The binding mechanism also allows

a SCA component to communicate with a non-SCA piece of software. When

used to interconnect components executing on different units, the binding

concept can be exploited to define the communication protocol and more

than one binding can be associated to a single component allowing other

components, or other software elements, to communicate through different

modalities.

2.3.4 Configuration

Configuration determines which system components should exist and how

they are interconnected [68]. The configuration of a component-based soft-

ware system is defined by the component set, by the connection topology

38 Chapter 2 The “4C” Classification Model

between components and by the optional presence of connectors which may

specify interactions and communication patterns. In many component models,

connectors do not correspond to compilation units but manifest themselves

in different ways such as shared variables, parameters, tables and so forth. In

other component models, connectors are first-class entities and they are im-

plemented as dedicated components. Connectors will be thoroughly analyzed

in Section 2.3.5.

The component set and the connections between components define the

architectural configuration or topology of the software system. The architec-

tural configuration of a software system is often kept separated from the

individual component specification since this separation of concerns makes

the description, the comprehension and the manipulation of the entire system

easier, both for humans and for machines [57]. In particular, the behaviour of

a component-based software system depends on both the single components

behaviour and on the connections among them. Hence, the configuration

concern plays a fundamental role in the definition of the system: for this

reason, the coordination has been identified as one of the four fundamental

concepts for classification and analysis of component models. In Figure 2.7

we show the feature diagram of the configuration concern.

Configurable

Entities

Properties Connections

Configuration

Component

Operational

States

Configuration

Model

Compile

Time

Deploy

Time

Composition

Mechanism

Facade

Pattern

Adapter

Pattern
Static

Configuration

Dynamic

Configuration

Persistence

Mechanism

Properties Connections

Component

Operational

States

Figure 2.7: The Configuration feature diagram.

The analysis is divided into four main sub-features: the configurable entities

that indicates which parts of the system specification can be configured; the

2.3 Feature-based 4C Classification 39

configuration model that defines the system development phase in which the

configuration can, or have to, take place; and the composition mechanism

that shows how components can be grouped in aggregated building blocks

composing a system. The configurable entities and the configurable model are

identified as mandatory features of all component models since they represent

respectively the nature of the constructs that can be configured and the

development phase in which the configuration takes place. On the contrary,

the composition mechanism is a mandatory feature because, although it is

a very common feature, not all component models provide instruments and

means to group components.

Configurable entities

As already said, all component models allow some configuration mechanism

but component models strongly differ when analysing the portion of the

system configuration that can be directly configured or customized by the

system developer.

The fundamental role of the configuration is the definition of the inter-

connections among components. If the adopted communication paradigm is

data-based, the configuration defines the wiring between input and output

ports, or the topics publishing and subscriptions, allowing the exchange of

data between components. In component models where the adopted commu-

nication paradigm is service-based, the configuration defines the connection

between required interfaces and provided interfaces. Since the collection of

components and the interconnections among them are the mandatory charac-

teristics for the definition of the component based system, the connections

feature is marked as mandatory in the feature diagram; this means that,

however the model is defined, it must provide the possibility to define inter-

components connections. The specific instruments and tools made available

by the component model for the configuratin of the interconnections may

vary. An XML file is very often used to configure the connections like in

SCA, OROCOS and ROS. Howsoever, component models can offer multiple

ways to configure a system, in OROCOS, for example, the XML deployment

40 Chapter 2 The “4C” Classification Model

file can be substituted by a configuration script written in the Lua scripting

language; in ROS, components, called nodes, can express their intention to

publish or subscribe on topics both by means of a XML-based launch file

or by defining the topics names directly in the implementation code. Hard

coding the configuration of component in the component’s implementation

can seriously hamper the reusability and the flexibility of the system, for this

reason, ROS launch files can be used to remap the hard-coded topic names.

Other component models directly support a graphical aided definition

of components interconnections by providing graphical tools that assist the

user in defining the system wiring. The support for graphical configuration

tools is strongly enforced by the SCA architecture. The availability of an

user friendly graphical tool is not only a comfort for the developer but can

become a fundamental tool when large systems with tens of components need

to be configured.

Components can have tunable parameters or properties that regulates their

behaviour. The set of these parameters with their corresponding values and

the specification of component connections, build up the system configuration.

In all component models these properties can be externally set and, in many

cases, this is done by using the same configuration file adopted for the

connections specification. Since the parametrization of components properties

greatly increase the components reusability and the system flexibility, all

component models provide the possibility of specify properties, for this reason,

the property feature is marked as mandatory.

The presence of a stored and retrievable configuration enhance the concept

of persistency of the system configuration and greatly increases the ease of

deployment, and re-deployment, of the system.

In component models where the behaviour of the components is regulated

by a well defined state machine, it could be possible to specify the initial state

of components. In OROCOS, for example, components can be configured

to enter the “start” state as soon as they are deployed instead of waiting

for an external initialization triggering event provided at run-time. The

same effect can be achieved in SCA with a particular annotation that forces

the early initialization of components. In SCA, indeed, components are by

2.3 Feature-based 4C Classification 41

default initialized by the run-time infrastructure as soon as another component

requests one of the provided services for the first time. In some cases the

initialization of a component can be a time-consuming operation since it may

involve the establish of a remote connection, or the initialization of a database,

and this lead to a delay in the first service call that can be unacceptable. To

overcome this problem, the component initialization can be marked to be

completed at the system start-up.

Configuration model

With the Configuration model we aim to identify the development phases

during which the configuration of a system is possible. The life-cycle of a

component can be divided, at least in first approximation, in three main

phases: compilation, deployment and run-time. During the compilation phase

the component code is translated into an executable entity that can be an

application, a shared object, a dynamic link or static library, or a bytecode.

Then the components are deployed: in this phase they are put into execution

and linked together to form the system. At the end, in the run-time phase,

components are actually executed and the system is operating. These three

fundamental main phases can certainly be divided into sub-phases and further

refined but, for the sake of this analysis, the simplified three-phases component

life-cycle is sufficient.

The configuration of a component-based system can be carried out in

each of these phases, in particular, if the component model offers means

to configure components during the run-time phase, it allows the dynamic

(re)configuration of the system. However, although the reconfigurability

is allowed only by some component models, it cannot be classified as a

mandatory feature. Moreover, the configuration phase can be carried out

before the run-time phase in all the component models, for this reason, static

configuration and dynamic configuration are connected by OR-decomposition

edges.

The static configuration of a system can be done both at compile time,

usually hard-coding the configuration instructions in the components code,

42 Chapter 2 The “4C” Classification Model

or at deploy time. The possibility of defining the configuration of a system

before the compilation of components is an unusual feature and it is restricted

to embedded system domain-specific component models, such as Koala, where

the loss in system flexibility is compensated by a lightweight and run-time

efficient management of the connections between components. In many cases

the compile-time configuration is accompanied by the possibility of refining

and optimizing the configuration at the deployment time.

The deploy time configuration represent the most broadly used strategy

and it is usually implemented by interpreting the already mentioned configu-

ration file. In many component models a special component is in charge of

deploy and configure components on the basis of the configuration instructions.

This is the case of the “deployer” component of OROCOS systems.

The run-time configuration can be performed by some, usually general

purpose, component models. The mechanisms to manage the run-time con-

figuration of a system vary from one model to another. In general the

reconfigurability is managed by dynamically wiring components interfaces.

This operation can be done on request, can be triggered by some external

events or can be guided by the analysis of the system state in terms of load

amount, quality of service, network congestion or other parameters. The

dynamic configuration and reconfiguration is at the basis of the “quality

of service” aware systems in which a certain level of service quality can be

guaranteed by reconfiguring the system. With software qualities we refer to

non-functional qualities such as efficiency, performance, completeness and

exception handling [36]. The quality of the services provided by components

depends on both their specific implementation and on the execution envi-

ronment state. This latter is not known at deployment time, hence, instead

of choosing components with reference to the worst case assumption, this

selection can be made at run-time by the system itself through the analysis

the total amount of system resource available. Knowing the characteristics of

all the available implementations of the components, the system can select

the most appropriate quality of service level for each component. For this, the

presence of a reconfiguration mechanism provided by the component model is

needed.

2.3 Feature-based 4C Classification 43

A less advanced reconfiguration mechanism is provided by those models

which let the components to be added or removed at run-time. This is related

to the run-time nature of each component. In ROS, for example, components,

called nodes, can be deployed as stand-alone processes and hence they can

be put into execution or turned off at run-time. This can be considered as a

reconfiguration facility although there is no notion of quality of service.

Composition mechanism

Components can be grouped into higher level structures called, in general,

assemblies. The configuration of component assemblies usually takes place

at deployment time when binaries of components are loaded into the system.

This enriches the architectural configuration of the system and let the devel-

opers to create groups of components that cooperate for providing a service.

Component assemblies can be used, and also reused, together improving the

modularity of the system.

Some component models do not provide means to group components

and hence they impose a plain architectural configuration of the system

where all components are considered as peers from an architectural point of

view (OROCOS). Other models, instead, provide various means to group

components, we can identify two main categories of composition mechanisms

referring to the well known software design patterns: facade pattern based

and adapter pattern based composition.

The Adapter is a structural design pattern used to convert the interface

of a class into another interface clients expect. Adapter lets classes work

together that couldn’t otherwise because of incompatible interfaces [50]. This

is done by developing a software wrapper that “adapts” the interface provided

by a class to the interface that the class users (clients) expect. This can be

achieve by simply converting data formats or by translating a single method

call into a set of ordered calls and vice versa. When transposed to the

component-based software domain, this approach can be realized by wrapping

a preexisting component, or more often a set of components, into a container

component. The container exposes a different interface to other components

44 Chapter 2 The “4C” Classification Model

of the system by intercepting the method calls and translating them into a

set of calls suitable for the interfaces of the contained components. Hence,

the container carries out some computation for method call ordering or for

data type adaption.

As the Adapter, also the Facade is a structural design pattern. Its intent

is to provide an unified interface to a set of interfaces in a subsystem. Facade

defines an higher-level interface that makes the subsystem easier to use [50].

This is done by just delegating portions of the inner interfaces to the outside.

When transposed to the component-based software domain, this approach can

be realized by wrapping a set of components into a container component that

exposes a subset of the contained components interfaces. This can simplify

the overall interface of the set of components exposing only the operations

that make sense to be seen from the outside.

The main difference between the adapter-like and the facade-like ap-

proaches is that the former adds some computation to the contained compo-

nent set while the latter provides just a subset of the contained components

interfaces. This difference is not negligible since an adapter-like container, or

composite, is a fully fledged component with its own computation features

while a facade-like container is only an architectural construct without its own

computation. The composition mechanism can have impact on component

and composite reusability. In OpenCOM, components can be composed into a

semantically rich set of containers (capsule and caplets) that add composition

and often coordination features to the component set. In SCA, components

can be grouped into composites which are facade-like containers that expose

a subset of the components interfaces to the outside without adding any kind

of computation.

In the diagram shown in Figure 2.7, facade-like and adapter-like compo-

sition mechanisms are bound by OR-decomposition edges meaning that at

least on of these two mechanism should be provided by component models

that allows component composition. In some cases both of the mechanisms

are provided since a container component can expose a subset of the inter-

nal components interface by promotion and, at the same time, adapt other

parts of the components interfaces, for example regulating the access order

2.3 Feature-based 4C Classification 45

of methods. This is the case of the container concept in Corba Component

Model.

Persistence mechanism

Each component model provides means to store and retrieve a particular

configuration of components, we refer to this feature with the term persistence.

Anyhow, component models strongly differ in tools and methodologies pro-

vided for this purpose as well as in which features can be part of a retrievable

configuration.

The most adopted instrument for configuring and keeping trace of a system

configuration is a configuration file or a set of files. Almost all component

models allow the users to store a configuration in text file, usually XML-

based, that defines the set of components and the properties values of each

component, or refers to a specific property file associated to each component.

This feature is present also in those component models in which components

are standalone processes that can be manually executed. ROS belongs to this

family of component models and, beside the possibility to manually execute

single components, it allows the definition a set of configured and executable

components by means of a launch file.

In this sense, an advanced feature is represented by the possibility of

“freezing” the component operational state making the particular state of a

component instance persistent in time. In this cases, component instances

can be stopped during execution, stored as they are, and retrieved later. This

feature is provided by the Component Implementation Framework (CIF) of

the Corba Component Model.

2.3.5 Coordination

Coordination is concerned with the interaction of various system compo-

nents [68]. It can be considered as the most complex feature to be analyzed in

component model both because a great number of coordination mechanisms

are possible among components and because the emerging behaviour of a

component-based system is strongly influenced by the coordination of the

46 Chapter 2 The “4C” Classification Model

execution of its components.

Coordination is tightly coupled with interaction and concurrency concepts:

components “cooperate” with each other locally or through a communication

network to achieve a common goal and “compete” for the use of shared

resources, computing capabilities and communication infrastructures [27].

In general, components are not insulated applications, instead, they share

resources such as computational capabilities, network bandwidth, memory,

access to shared resources like I/O lines, databases and so forth. Components

also need to share results in order to achieve their common goals, the output

of a component is often the input of another one and services provided by

components are used by others. For these reasons, in each component-based

software system there is the need to coordinate and orchestrate the execution

of components.

Keeping the coordination concern separated from other concerns is a

difficult task because, in many cases, the coordination between components

is achieved by inserting the coordination mechanisms and policies directly

into the component implementation (computation) or into the data exchange

mechanisms (communication) or by properly configuring the components

(configuration). Anyhow the separation of concerns between the coordination

and the other features is one of the most important aspects to achieve

successful reusability, modularity and flexibility characteristics in a component-

based system. For this reason, classify component models on the coordination

axis is convenient.

In Figure 2.8 the coordination feature diagram is depicted. The coordi-

nation concept is composed of two main sub-features: the connector notion

and the component roles. With the term “connector” we refer to all forms of,

implicit and explicit, inter-component connection mechanisms that include

coordination policies. With “component roles”, instead, we refer to any kind

of coordination policy offered by the component model to assign roles to

different components.

2.3 Feature-based 4C Classification 47

Connector

Connector

Definition

Coordination

 Task

Coordination

Implicit
First-class

Entity

Interface

Adaption

Ordering and

Protocol

Filtering

Component Roles

Peer-to-peer

Interaction

Role-based

Interaction

Master/SlaveClient/Server

Figure 2.8: The Coordination feature diagram.

Connector

In most component models, connectors do not correspond to compilation units,

but manifest themselves in different ways such as shared variables, separately

configurable routing components, table entries, buffers, instructions to a linker,

dynamic data structures, sequences of procedure calls embedded in code,

initialization parameters, client-server protocols, pipes, SQL links between a

database and an application, and so forth. This is a typical characteristic of

the field of real-time and hard real-time applications, where software modules,

or components, are usually developed as independent low-level pieces of

software, for example kernel modules of a Linux-like system managing low-

level hardware interfaces (drivers). In these cases the communication among

components is managed by means of Inter Process Communication (IPC)

techniques based on the synchronized and guarded access to shared memory

areas such as FIFOs, message mailboxes, circular and swinging buffers as

explained in [39]. In those cases, the connector concept is embodied in the

adopted data exchange mechanisms, sometimes provided by the underlying

operating system, and there is no specific construct or entity representing the

connector concept.

48 Chapter 2 The “4C” Classification Model

On the contrary, in other component models, e.g. in [30] and [58], connec-

tors are first-class entities modeled and implemented as special components,

which specifically deal with interactions and dependencies among components.

Regardless if they are first-class entities or hidden inside component imple-

mentation, the connector concept is a mandatory feature of each component

model and each connector must have a definition, either implicit or explicit.

The taxonomy of software connectors presented in [64] identifies several

tasks that a connector can perform:

• Interface adaption: connectors can adapt interfaces by transforming

the exchanged data between components or showing a modified view of

a component interfaces to another one. This behaviour is almost the

same of the composite explained in Section 2.3.4 with the difference

that, in this case, components are not grouped into a composite objects

and the interface adaption is directly done by the connector.

• Filtering: connectors can implement auxiliary computation on the data

that is exchanged between communicating components, such as: cryp-

tography, data compression, data segmentation and de-segmentation,

incoming message filtering and forwarding, and so forth.

• Ordering and protocol: connectors can provide mechanisms for the

coordination of requests, the ordering of method calls on component in-

terface and the implementation of queues with various ordering policies.

The last item is particularly important for the coordination concern since

the ordering of the method calls of a component interface is usually defined

by its behavioral specification and it represent the contract between the

component and its clients. A contract can be seen as an explicit roster of

mutual obligations expressed in the form of various kinds of constraints, such

as preconditions, postconditions, invariants, and protocol specifications. For

example, a contract could specify that a method call must be invoked before

another one to obtain correct results. This implies a form of coordination

policy that, without an explicit connector, remains implicit in component

implementation. With the use of connectors, instead, this can be clearly

2.3 Feature-based 4C Classification 49

specified allowing for an easier reuse of the components. Moreover, connectors

are in charge of ensuring the compliance with the protocol of a set of interfaces

by completely mediating the access to the component interface by the clients.

In general, connectors represent the means to achieve the composition of

individual software components into complex component systems.

Component Roles

Coordination is involved in the separation of roles between components com-

posing a system. The definition of roles between components is a mandatory

feature of all component models, even when all components are forced to

be peers like in OROCOS or in ROS. In this kind of component models all

components can produce data for other peers or consume data produced by

other components without denoting an explicit separation of roles between

service providers or petitioners. This is common when components are imple-

mented as “filters” consuming data from input ports (or subscribed topics)

and producing data to output ports (or published topics). In this cases the

coordination among components is defined by the presence, or the absence, of

data on the ports and the execution of a component may be triggered by the

presence of new data on its input ports, independently by which component

produced it. Similarly, the production of data can trigger the execution of

one or more peer components receiving data from the component’s output

ports.

A component model can make a clear distinction between components by

defining roles. In service-oriented component models, like SCA, components

can be servers that provide services to clients components or can be clients

that use services provided by other servers or can behave as clients for some

components and as servers with respect to others. This separation of roles let

the developer of the system to define which component will require services

and which other will provide them allowing for an explicit coordination policy.

In other component models, the execution of a component can be totally

controlled by another component leading to a master/slave configuration.

When such a kind of separation of roles is enforced, some components can

50 Chapter 2 The “4C” Classification Model

become controllers of others and then they can explicitly implement a coordina-

tion strategy. Usually, slave components actually carry out the functionality of

the system and these pieces of functionality can be reusable in several different

applications. At the same time, master component embody the control logic

which is typically strongly application dependent. This separation between

slaves and masters helps in clearly separating the application-independent

specification from the application-dependent behaviour specification of the

system and can make the reuse of single components, or entire parts of the

system, much easier and effective.

3
Component Models Survey

A great number of component models have been presented and analyzed in

literature. A certain number of them are specifically designed for particular

applications, for example: Internet-based applications, embedded systems,

robotic systems, database or data intensive systems and so on. Generally, these

models try to address the application specific requirements at the component

model definition level by introducing specific constructs or implicitly assuming

the adoption of a particular programming language or a specific middleware.

Other component models are instead deliberately general purpose in the

sense that their level of generality allows them to adapt to a wide range of

different applications with different requirements. Generally, these component

models do not impose a specific programming language or paradigm and they

do not depend on a specific middleware or, at least, they can be supported

by a widely used and well known middlewares, such as CORBA.

Hereafter, a set of component models is presented. For each of them a

brief description is given. In Chapter 4 we will analyze five of them, namely:

SCA, ROS, OROCOS, OpenCOM and Corba Component Model by applying

the analysis and classification model presented in Chapter 2.

When listing (in alphabetical order) the component models we do not

provide any product name or version number except for the cases in which

the version number denote significant differences from previous versions of

the same component model.

51

52 Chapter 3 Component Models Survey

3.1 Corba Component Model (CCM)

Since 1989, the Object Management Group [6] has been standardizing an open

middleware specification to support distributed applications. The CORBA

Component model (CCM) [79] [78] [43] is an object-based component model

evolved from OMG-CORBA Object Model. The CCM specifications define

an abstract model, a programming model, a packaging model, a deployment

model, an execution model and a metamodel. The metamodel defines the

concepts and the relationship related to the models. Component are specified

through an object-based component definition language which uses an IDL

for interface description. Once components are fully defined, they can be

implemented using the Component Implementation Framework (CID) which

relies on the Component Implementation Definition Language (CIDL). The

CID describes how component parts should interact with each other. The

resulting component implementations can then be packaged into assembly

files such as shared library or JAR files and linked dynamically. Finally, a

CCM deployment mechanism is used to deploy the component in a CORBA

component server that hosts the component implementation. Deployment

and packaging instructions are specified by particular XML descriptors. In

CCM, as in other object-based component modes, connectors are not first

class entities and there is no explicit notion of architectural configuration or

hierarchical composition mechanisms.

Just like a standard CORBA object, a CCM component instance is

uniquely identified by an equivalent interface. Other components, or even

component-unaware software, can invoke operation via a reference to a com-

ponent’s equivalent interface. As with regular CORBA objects, a CCM

component’s equivalent interface can inherit from other interfaces called sup-

ported interfaces. Each CCM component has a home interface. A client can

access the home interface to control the life-cycle of each component instances

it is currently using. This operation include the creation the destruction and

the retrieval of instances.

A CCM component can interact with other CORBA artifacts, such as

clients or other collaborating components, through ports. CCM specifies four

3.1 Corba Component Model (CCM) 53

Figure 3.1: The Corba Component Model (CCM).

port mechanism, namely: facets, receptacles, event sources and sinks and

attributes. Facets are provided interfaces that represent the functionality

contractually provided by the component to its clients. A provided interface

define operations that can be invoked synchronously by using CORBA two-

way operations, or asynchronously by using CORBA asynchronous method

invocation (AMI), by component clients.

A component receptacle represent a reference to other components in-

stances. Using these receptacles, components can connect to other components

or CORBA objects and invoke operations synchronously or asynchronously.

Event sources and sinks supports asynchronous event-based communica-

tion between components. A component declares its interest to publish or

subscribe to events by specifying event sources or event sinks.

CCM extends the notion of attributes defined in CORBA. Components

can expose attributes that can be set by a configuration tool during the system

configuration, CCM allows operations that access component attributes to

raise exceptions if an attempt to change a configuration is made after the

system configuration has been completed. In figure 3.1 we show an example

of CCM component with interfaces and attributes.

54 Chapter 3 Component Models Survey

3.2 Fractal

Fractal [37] [49] is a hierarchical and reflective ADL-like component model

developed by France Telecom R&D and INRIA. It is based on a XML-based

ADL describing component types, implementations, hierarchies and bindings.

The ADL provides an XML DTD that can be extended to integrate other user-

defined architectural concerns. The use of a language independent Interface

Definition Language (IDL) allows Fractal to be implemented in various

programming languages; in particular, there are two reference implementations

of the component model: Julia, which is written in Java, and Think, which is

written in C.

A Fractal component is an encapsulated run-time entity described by

Fractal ADL, each component is composed of a membrane and a content.

The content of a component consists of a finite set of other components

called sub-components, each one of them can be composed of other sub-

components creating a tree-style hierarchical structure. The membrane of a

component collects all of its interfaces.

Interfaces are the only way of interaction among Fractal components.

Interfaces can be of two kinds: server interfaces, which correspond to access

point accepting incoming operation invocations, hence, they can be considered

as provided interfaces; and client interfaces, which correspond to access point

supporting outgoing operation invocations and can be considered as required

interfaces.

As mentioned above, all component interfaces lie in the membrane of the

component, in particular interfaces can be external or internal. External

interfaces are accessible from outside the component while internal ones are

accessible only from the sub-components.

In addition to the component specific interfaces, the component mem-

brane may contain several controllers objects implementing control interfaces.

Controllers are used to monitor and control the behaviour and the life-cycle

of components by suspending, stopping and resuming the component itself or

its sub-components. Controllers can also be used to dynamically configure or

re-configure components implementing the reflective characteristics of Fractal.

3.2 Fractal 55

Interceptor objects are a particular type of controllers that can intercept the

incoming and outgoing operation invocations of an interface adding additional

behaviour to the handling of such invocations. In figure 3.2 we show a typical

Fractal component highlighting interfaces and sub-components.

Figure 3.2: A generic Fractal component.

Communication between Fractal objects is only possible if their interfaces

are bound through a binding component. A binding is a normal Fractal

component whose role is to mediate communication between components,

the model proposes two types of bindings: a primitive binding represent a

binding between a client and a server interface that lie in the same address

space, in this case the operation invocations emitted by the client interface

are directly accepted by the bound server interface. A composite binding is a

communication path between an arbitrary number of component interfaces

composed of a set of primitive bindings and custom binding components. Com-

posite bindings are used to build up complex synchronous and asynchronous

communication scheme (stub/skeleton, client/server, publish/subscribe and

others).

In Fractal there is no predefined set of bindings, except for primitive

56 Chapter 3 Component Models Survey

bindings. Since bindings are Fractal components, composite bindings can be

built by composition, just like other components.

All Fractal components can be composed of sub-components organized in

a hierarchical tree structure where the parent-child relationship represents a

composition relationship. A particular feature of Fractal component model is

that a component can be included in several other components becoming a

shared component. Shared components can be useful when representing shared

resources like low-level system devices. More generally, shared components

can avoid code duplication every time a single component has to be included

in two or more containing components.

3.3 Koala

Koala [77] component model was developed and adopted by Philips for build-

ing software for consumer electronics like DVD players or TV systems. Koala

has a set of modelling languages: Koala IDL is used to specify Koala com-

ponents interfaces, Koala CDI (Component Definition Language) is adopted

to define the components and Koala DDL (Data Definition Language) is

used to specify local data of components. Koala supports C language for the

implementation of components.

Koala components are architectural units of design, development and

reuse. Components are able to communicate with the environment and with

other components only through their interfaces. Components are defined by

Koala CDI which supports both a textual and a graphical notation.

Components can be grouped into compound components in an hierarchical

way. Compounds components are defined with the same CDI used for the

specification of single components.

Interfaces are the only mean of communication between components, in

particular, all Koala interfaces are operation-based in the sense that they are

defined by a group of functions and parameters. As in COM and Java, a

Koala interface is a small set of semantically related functions. A compo-

nent offers functionality to other components through its provided interfaces.

Functionality can be required by the component through required interfaces.

3.3 Koala 57

Interfaces are defined using a simple IDL in which functionality are listed

as prototypes in C syntax. In the component definition, each interface is

labelled with two names. The first one is the interface type name that must

be unique, the other one is the instance name and refers to the particular

instance of the interface. This convention allows to have many interfaces of

the same type on the border of a component as long as the instance name

are different.

Koala supports both service interface and data interface, in particular

service interfaces usually operate on the parameters passed as arguments

while data interfaces expose state information of the related component.

In Koala components are designed independently from each other and can

be linked through interfaces. When two interfaces are bound, their functions

are connected on the basis of their name. Koala supports a static binding

mechanism that is implemented using a simple tool also called Koala that,

starting from components and interface descriptions, instantiates components

and generates appropriate renaming macro in C header files.

Koala interfaces can also be bound using modules which are interface-

less components that can be used to glue interfaces. Modules can also be

used to implement basic components forming the leaves of the hierarchical

decomposition of the model.

Koala also supports a limited form of dynamic binding achieved by the

evaluation of a small subset of C expressions used to configure a particular

type of component called switch. Switches are able to route function calls

to different components on the basis of a conditional expression. If this

expression can be evaluated at compile time, the dynamic connection may

be turned into a normal function call without run-time overhead. More

complex binding mechanism are implemented by diversity interfaces through

which components can require information and properties describing their

configuration.

As mentioned above, components can be grouped in an hierarchical way

into compound components. A configuration is a set of components and

compound components connected together to form a product. All required

interfaces of a component must be bound to precisely one provided interface,

58 Chapter 3 Component Models Survey

each provided interface can be bound to zero or more required interfaces.

Developed components and compound components are collected into a global

web-based repository for reuse purpose.

3.4 KobrA

KobrA (KOmponentenBasieRte Anwendungsentwicklung) [28] [29] is a hi-

erarchical component model that supports UML-based representation of

components developed by the Fraunhofer Institute for Experimental Software

Engineering (IESE). Distinctive features of this model are the intensive use of

UML diagrams for the representation of components and frameworks and the

integrated support for software product line engineering and development.

KobrA components (often called “Komponents”) are architectural units

defined with various UML diagrams capturing particular aspects of their

structures, behaviour and functionality. No specific implementation language

is proposed and the UML representation lets the developers choose the

implementation language and the component technology that best fits the

requirements.

The description of a Komponent is split into two main parts: the specifi-

cation, which describes the externally visible characteristics of the component

and thus defines the requirements which it is expected to meet, and the

realization which describes how the Komponent satisfies this requirements.

Component specification is described by four UML-based models (struc-

tural, behavioural, functional and decisional) while component realization is

based on other four UML-based models (interaction, structural, activity and

decision).

KobrA supports component reuse by replacing the realization of Kompo-

nents with COTS or pre-existing components. Because of the hierarchical

nature of the model, each KobrA component realizes its specification in terms

of interactions with lower-level sub-components. Komponents are organized

into hierarchical tree-like structures called frameworks where each parent-child

relationship represents a composition.

KobrA components are stored into a file-system repository which collects

3.5 OpenCOM 59

implemented components and UML diagrams describing their features and

textual documentation. They are composed by direct method calls in the

design phase.

At the highest level of the KobrA hierarchy lies the concept of product-line,

this means that all components related to a family of products are organized

into a generic and reusable framework. This framework is then instantiated

in a controlled way to provide specific software product as needed.

In contrast with most other approaches, a KobrA framework embodies

all concrete variants of a family and not just the common parts. When

the framework engineering phase is completed, specific applications can be

instantiated from the framework selecting the needed features from a generic

set. The instantiation of a framework is guided by a decision model describing

the choices that distinguish distinct members of the product-line. The result

is an application with the same structure of the framework but with all the

unrequired features been removed. The application can then be transformed

into an equivalent implementation that contains the instructions for automated

compilation tools or can be manual translated into source code.

3.5 OpenCOM

OpenCOM [45] [44] is a lightweight ADL-like component model developed at

Lancaster University targeting poor resourced systems like embedded systems.

The component model uses a particular component definition language for the

specification of components and OMG IDL for the description of interfaces.

OpenCOM component model is language independent, a C and a Java

reference implementations are available.

At the heart of the OpenCOM architecture there is a component runtime

kernel that supports the services of loading and binding components. The

kernel is able to support the run-time reconfigurability of components. For

static systems, the kernel is used at deploy time to initially configure compo-

nents and, after the configuration phase, it can be unloaded from the system

in order to reduce computation and memory footprint. In dynamic systems,

in which components need to be reconfigured or reloaded at run-time, the

60 Chapter 3 Component Models Survey

kernel is kept running.

Above the kernel the extensions layer is present. Extensions are collected

in two classes: platform extensions provide support for configuration of

components at deployment time while reflective extensions provide support for

dynamic inspection, reconfiguration and adaption of the component structure

and behaviour at run-time.

An OpenCOM component is an encapsulated unit of functionality defined

within an unit of scope and management named capsule. Components can

be composed of other sub-components in a hierarchical way. The component

model supports the notions of caplets, loaders and binders which are first

class entities implemented as components. Caplets are nested sub-scopes

within a capsule supporting encapsulation of components whose functionality

are tightly-coupled. Loaders provides various ways for loading and unloading

components into various types of caplets during run-time execution. Binders

are used to bind interfaces and receptacles within a single caplet or across

different caplets.

Components can support any number of interfaces and receptacles. An

interface represent a functionality that a component offers to other client and

it can be seen as a provided interface. A receptacle represent a functionality,

or a resource, needed by the component to perform its specific task, it can

be seen as a required interface. In OpenCOM there is no explicit distinction

between data interfaces and service interfaces but all interfaces are defined in

terms of functions and parameters in an operation-based way.

As mentioned above, the binding between receptacles and interfaces is

managed by binders. The motivation for the use of binders is to represent

different binding mechanism in the underlying system. For example, different

binders can abstract over binding mechanism such as interrupts, buses, shared

memory, remote method invocation and so on. Binders can vary widely in their

complexity, especially when the binding is between components that reside in

different caplets; in this cases a binder can include various communication

mechanism like caller-provider or broadcaster-listener.

As well as in capsules and caplets, OpenCOM components can be organized

into component frameworks which are a tightly-coupled sets of components

3.6 OROCOS 61

that can cooperate to address some specific area of concern. A component

framework is implemented as a composite that can accept additional “plug-in”

components that can increase or modify the behaviour of the whole composite.

Figure 3.3: An OpenCOM capsule example.

Figure 3.3 shows three caplets within a capsule. Loaders (L1 and L2) and

binders (B1 and B2) are defined in the root caplet; binder B1 manages the

binding between components C1 and C2 in the first slave caplet while B2

manages the cross-caplet binding between C2 and C3. Loaders L1 and L2

allow the root caplet to load components of other caplets within the same

capsule.

3.6 OROCOS

The Open RObot COntrol Software (OROCOS) [18] is a component-based,

distributed and configurable software framework specific for the development

of hard real-time systems e.g. data acquisition, signal processing, PLC

functionality, waveform generation and robot motion control. The project

was started at the University of Leuven (Belgium) in 2001 [38] and became

usable in research environment in 2003 when a first version of a complete

real-time motion control core for industrial robots was developed [40].

62 Chapter 3 Component Models Survey

The emphasis of the project has always been on: flexibility, separation

between software structure and functionality, distributed architecture of the

control and hard real-time performances. The OROCOS framework is portable

over several real-time and non real-time operating systems. In particular:

Linux, RTAI, RTLinux and Xenomai.

Figure 3.4: The structure of an OROCOS component.

The framework is based on a component model supporting loose coupling

between components, separation between structure and functionality and

event-driven interaction. An OROCOS system is composed of several task

context representing software components implemented in C/C++ program-

ming language. Each component, as depicted in Figure 3.4, is composed

of:

• one activity: it is the component task and it defines its execution fre-

quency, that can be null for non-periodic components, and its execution

priority.

• n ports: The data exchange is based on the port artifact. Ports allow

the flow of data among components from the output port of a component

3.6 OROCOS 63

to the input port of another one. Input ports can be defined as event

port allowing the event-based communication paradigm.

• m operations: represent the functionality offered by the component

to its peers. An operation can be considered as a provided interface

and it is implemented as a method callable by other components.

• j properties: are parameters that allow the configuration of the com-

ponent.

• k peers: represent the set of the other component of the system that

offer operations that the current component can invoke.

The system is configured by declaring all the components and their re-

spective properties, the ports connections, eventually defining a connection

policy that regulates the data exchange, and the peers. The configuration is

managed by a special component called deployer that configures the system

following the instructions loaded from an XML file or by following a scripted

procedure.

Figure 3.5: The internal FSM of an OROCOS component.

64 Chapter 3 Component Models Survey

The execution of each component strictly follows an internal Finite State

Machine (FSM) represented in Figure 3.5. At the startup the component

is in the PreOperational state and it is ready to receive the configuration

instructions. Once it has been configured (configure() or configureHook() calls

trigger state transition) the component enters the Stopped state in which

it can be re-configured or it can be put into the Running operational state

by the start() or the startHook() calls. Once the component reaches the

Running state, it will execute the defined task defined in the update() or in

the updateHook() methods. To achieve a periodic behaviour, the deployer

will periodically call the update method according to the execution frequency

and the priority of the component. The stop or stopHook methods allows the

component to return to the Stopped state and the cleanup or the cleanupHook

methods make the component return to the PreOperational state cleaning

the current configuration.

Being strongly oriented to the embedded systems and robotics domains,

the OROCOS framework provides software libraries for the FSM definition

and execution (rFSM library), for the bayesian filtering (BFL Library) and

for the kinematic and dynamic chains computation (KDL library).

The OROCOS framework is distributed as a standalone framework under

the LGPL license or as a part of the ROS environment. In particular, a

ROS-OROCOS integration tool has been developed allowing the realization

of mixed systems where OROCOS components can share data with ROS

topics using ROS messages.

3.7 Orca

Orca [33] [62] is an open-source project developed by the Australian Centre for

Field Robotics in the University of Sydney. It aims to apply component-based

software engineering to robotics, focusing on application software development

for mobile robots. Orca framework imposes as few constraints as possible

to system developers who are free to design components that can provide

or require any set of interfaces, implement those interfaces in any way they

choose and compose a system from any set of components without architecture

3.7 Orca 65

constraints except from interfaces concordance between components.

Orca Framework must rely on a middleware addressing issues such as

implementing application layer communication protocols and provide means

for inter-component communication. First releases of Orca were essentially

CORBA-based while newer versions are based on the Internet Communication

Environment (ICE).

Orca Component Framework provides an ADL-like component model

which defines interaction and composition standard for components. Interfaces

descriptions and interactions are defined by a single XML configuration file

per component. The component model follows the Orca’s principles imposing

as few constraints as possible to component definition and interaction.

In Orca, a component represents the implementations of algorithms and

services for various types of hardware. To better understand the definition of

component, object and communication pattern concept must be presented.

An Orca object is an abstract definition of data that can be passed between

components; Orca communication patterns are abstract policies describing

how objects are sent between components. Consequently, a component can

be implemented with knowledge only of objects and communication patterns.

As an example, Figure 3.6 shows the ServerPush communication pattern: a

single server can push objects asynchronously to many clients, in this case

there must be a single Sender and n Receivers. In this context the term

“client-server” implies only that the connection is one-to-many. Orca provides

an on-line component repository of reusable components distributed under

GNU-GPL licence.

Individual Orca components are free to provide or require any set of valid

interfaces. There is no particular interface which all components must provide

or require. However, some predefined provided and required interfaces are

available and may be useful to access middleware-related features even if their

use is optional. All Orca interfaces are operation based and developers are

free to provide or require both data and service interfaces. All component

interfaces are described in a particular section of the XML configuration file

associated with the component.

A transport mechanism represent the method used to physically trans-

66 Chapter 3 Component Models Survey

Figure 3.6: An example of the Orca ServerPush communication pattern.

port the data objects between the components composing an Orca system.

Examples of those transport mechanism could be raw TCP/IP protocols,

CORBA-based communication features for first releases of Orca or ICE -

IceStorm mechanism used to implement event based communication in earlier

Orca versions. Each component configuration file has a section for each in-

terface describing: the binding between the current component interface and

other interfaces, the transport mechanism used to implement the exchange of

data and any necessary parameters needed to establish the connection. As

already said, component implementations are transport mechanism indepen-

dent, changing the transport mechanism between two or more components

may require to add to or change the configuration file.

Orca does not specify any system architecture and so any architecture style

defined by the system developers should be implementable. Because of this

choice, there is no special component which is required to be implemented by

all systems. Orca framework provides a set of optional predefined components

addressing middleware-related features. Orca do not enforce the use of

particular design patterns for either system or components but guidelines and

working code for well-working designs are available on Orca on-line repository.

The set of all XML configuration files of all components composing a systems

3.8 Pin 67

represent the global architecture configuration of the system.

3.8 Pin

The Pin Component Technology [65] [54] has been developed by the Carnegie

Mellon University for use in Prediction Enabled Component Technology

(PECTs). The core of Pin is a basic and simple component model for

developing time and safety critical software for embedded systems.

Pin components are defined in an ADL-like language named CCL (Con-

struction and Composition Language). UML Component Diagrams can be

used to achieve a graphical notation of Pin Components while their run-time

behaviour is represented with UML statecharts. Components are implemented

in C language and distributed as dynamic link libraries (DLL). A component

run-time environment provides services to access the underlying platform; for

example file systems, timers, interrupts and I/O devices. The entire envi-

ronment is based on a commercial real-time operating system or a standard

operating system with real-time extensions.

A Pin component consists of two parts: an user-supplied custom piece of

code and a Pin-supplied container. The interface structure of a Pin component

is displayed in Figure 3.7.

Pin implements the container idiom for software components. Containers

wrap the custom code and all interactions with the environment and other

components are mediated by the container which may impose specific coor-

dination policies. Referring to Figure 3.7, the custom code must provide an

interface (user code API) that is used by the container to invoke, through the

user code plug-in required interface, user supplied code in response to requests

coming from other components or run-time environment. The container

itself provides and interface (container API) used by custom code to request

services from the run-time environment or other components. The container

also provides a single interface to the environment (Component API) and

two required interfaces (not depicted).

Each Pin component is independently implemented as a distributable

dynamic library (DLL). Since components are totally encapsulated, all envi-

68 Chapter 3 Component Models Survey

Figure 3.7: Pin component overview.

ronmental dependencies are fully explicit.

The custom code of a Pin component is organized as a set of one or more

reactions, each one of them is executed in a dedicated thread created by the

container. Custom code can have one or more sink pins and zero or more

source pins. The execution thread waits for the arrival of a stimulus provided

by a source pin, when the stimulus is received, the container executes the user

code containing the reaction associated to the particular stimulus, at the end

of the process the control is returned to the container which then checks for

further stimuli and so on. During the execution, each reaction can generate a

certain number of stimuli propagated to other components by source pins.

Pin supports synchronous and asynchronous interaction model. The

former is implemented using a procedure-call mechanism, the latter has an

event-based semantics.

Pin applications are constructed by connecting components using a reper-

toire of predefined connectors. Each connector can link a source pin to a sink

pin. Connectors may impose coordination policies beyond those provided by

containers, for example a FIFO policy on stimuli received on a sink pin. Pin

supports a model of “pure” assembly in the sense that custom interaction

code (glue code) is not permitted although the same effect can be achieved

3.9 Pecos 69

encapsulating the interaction code in a new Pin component.

3.9 Pecos

The PECOS Component Model [80] have been carried within the Pecos

Project (PErvasive COmponent Systems) with the support of ABB and

academic partners. The project aims to enable component-based software

development for embedded systems, specifically for field devices. PECOS is

based upon an ADL called CoCo. The language is intended to be used for

the specification of components, entire field device applications and system

families. PECOS supports the formalization of the execution model of the

components with Petri nets and their implementation with C++ or Java

language. The behaviour of a PECOS component is not specified in CoCo

but it is directly implemented in the target language.

In Pecos a component is an unit of design with a specification and an

implementation. Each component has a name, a number of property bundles

and a set of ports. The model expresses three types of components: active

components which are characterized by having their own thread of control,

passive components that do not have a thread of control and are used to

encapsulate services that can be executed synchronously and event component

whose functionality is triggered by an event. All of three kinds of compo-

nents are characterized by properties encoding functional and non-functional

information like timing requirements and memory usage. All components

can be composed into composite components, hence, the whole application

is often represented as an unique composite component. The behaviour of a

component is a function or algorithm that takes, as input, data available on

the component ports and produces results on output ports after computation.

Since PECOS is used for specifying and developing embedded systems, each

component usually represents a field device (an actuator, a controller or a

sensor). A complete system typically represents a composite device running

in a single periodic control loop. The execution is controlled by a schedule

which defines the behaviour and the execution periods of the components.

PECOS is totally data flow oriented and ports are the only means of

70 Chapter 3 Component Models Survey

interaction between components and their environment or other components.

Because of this, all PECOS ports are data oriented an they are specified by:

a unique name within the component, the type and the range of values of

data passed over the port and the direction of the communication that can be

in or out. According to this distinction, input ports can be seen as required

interfaces since they collect data needed by the component for the execution

of its specific function. At the end of the execution, the results are provided

by output ports that can be considered as provided interfaces.

A port can only be connected to another port having the same type,

compatible range and complementary direction through the use of a connector.

Connectors can be implemented as shared instance variables describing the

data-sharing relationship between ports. Ports of components can only be

connected if they belong to the same parent component (composite), so,

connectors may not cross the component boundaries.

As mentioned above, components can be grouped into composites in

an hierarchical way. To increase the possibility of reuse of components,

PECOS provides the concept of abstract component to specify families of

components or architectural styles. This kind of component identify a template

component. An abstract component can specify roles which are placeholders

for concrete instances. Abstracts components and roles become concrete

during the implementation of the component when they are filled in with the

implementation of a specific component instance.

3.10 Robot Operating System

The Robot Operating System (ROS) [66] [20] is a free and open-source (BSD

licence) robotic specific framework developed by Willow Garage 1. ROS is

not an operating system in the traditional sense since it does not manage

the execution and scheduling of processes, rather, it provides a structured

communication layer above the host operating system which is typically a

Linux distribution.

1http://pr.willowgarage.com

3.10 Robot Operating System 71

ROS is designed to be language-neutral and it currently supports five

programming languages: C++, Python, Octave, LISP and Java. The ROS

run-time manager (roscore) is developed natively in each supported program-

ming language. The ROS specification is located at the communication layer

and gives to the developers a set of instruments for the exchange of messages.

The entire ROS framework is based on a component model which is

presented in current section and then deeply analyzed in Chapters 4 and in

Section 5.2. The component model defines nodes, packages, messages, topics

and services. Nodes represent the software components and they are deployed

as independent processes running on a local machine or on a set of networked

machines. The full set of cooperative nodes running on the network at a given

time represent a ROS system.

Nodes communicates with each others’ by passing messages. In ROS a

message is a strictly typed data structure defined by means of a language-

independent IDL. Custom messages can be created starting from primitive

data types supported by the framework (integer, floating points, boolean,

arrays, etc.) and then composed by nesting them at an arbitrary deep.

Messages defined with the IDL are translated into serializable data structures

at compile time.

The Robot Operating System supports both asynchronous and syn-

chronous communication between nodes. The former paradigm is supported

by the concept of topic while the latter is supported by the concept of service.

Nodes can send messages by publishing them to a given topic which is

represented, at the developer point of view, as a string expressing the topic

name. A node that is interested in a certain kind of data can subscribe to

the appropriate topic. In general, there can be any number of publisher

and subscriber nodes for each topic and nodes are not aware of each other’

existence. When a new message is written on a topic, a callback function is

asynchronously called in each subscriber node allowing it to fetch the new

message.

ROS provides the service concept for supporting the synchronous com-

munication between nodes. A service is defined by an unique string name

(URI) and a couple of typed messages representing the service request and

72 Chapter 3 Component Models Survey

the service response.

Nodes can be grouped into packages that allow the developer to compile,

run and debug an entire set of components at the same time without adding

any computational capability to the set. Packages are also used to wrap

external libraries and they represent the minimal compilable unit of ROS.

Packages are represented by a XML file containing the description of the

interacting nodes and topics. At the top level of the hierarchy, a cluster

of packages implementing a particular functionality can be grouped and

distributed into a stack.

The Robot Operating System is a robotic application specific middleware,

hence, it is enriched by a set of small yet useful tools for running, stopping,

debugging nodes, for logging and visualizing message data, for managing

geometric 3D transformation between frames and for automate compilation

and link phases.

3.11 Rubus

The Rubus component model [52] was developed by Mälardalen University

and industrial partners. It is a part of the Rubus Project and it was first

introduced in 1996 for industrial purpose. The Rubus component model is

intended for development of software architectures expressing data-flow and

synchronization between software entities in single or multi-node systems. The

component model is intentionally simple but can give enough expressiveness

for development and analysis of resource constrained systems with a mix of

hard and soft real-time requirements. The Rubus component model does

not specify any particular language for the implementation of components,

however the C language should be considered as the reference language for

this kind of models.

Software Circuits (SWC) are the basic units of hierarchical decomposition

in Rubus. SWC are defined by an ADL-based graphical component defini-

tion language, each one of them is characterized by its own behaviour, its

interfaces and its internal state data. Interfaces are ACME-like ports that

manage interactions between software circuits supporting the exchange of

3.11 Rubus 73

data and the control flow among them. Software circuits can be composed into

aggregate components named assemblies and composites. A certain number

of assemblies, composites and software circuits form a system which is the

top level hierarchical entity.

Output Data Ports and Output Trigger Ports can be conditioned or

unconditioned, they can be considered as provided interfaces since they

represent the functionality that the software circuits offer to their client. Input

data ports and input trigger ports can be considered as required interfaces

since they specify functionality, resources and data flow that the software

circuit need to perform its own tasks. Interfaces can also be divided into other

two orthogonal main categories: data interfaces and service interfaces. Input

and output data ports belong to the former category since they provide a way

to set or retrieve a property of a software circuit interacting with its internal

state. Trigger Ports are instead a particular type of service interfaces that

allow the control flow among the SWCs. Using C language as implementation

language, interfaces are expressed as C header files containing the prototypes

for functions provided by components.

Connectors are architectural building blocks that model interaction be-

tween components, in Rubus several items are used for this purpose. We can

divide Rubus connectors into two main categories according to services they

provide. Communication connectors support the exchange of data among

the software circuits providing shared variables and initialization parameters.

Examples of these connectors are the source items (input data ports), the sink

items (terminator data port) and named data items. Coordination connectors

deal with the synchronization of the control flow, in Rubus this aspect is

embodied by the trigger signals. Trigger items like clocks, interrupt generators

and event generators provide the support for the synchronization aspects,

control flow items like the down sampling block and the precedence block are

used to manage precedence and concurrency aspects regarding the execution

of the software circuits.

74 Chapter 3 Component Models Survey

3.12 SaveComp Component Model

The SaveComp Component Model (SaveCCM) [26] formalises the SaveComp

Component Technology (SaveCCT) concept. Both SaveCCT and SaveCCM

has been carried within the SAVE project. The goal of this project is

the establishing of an engineering discipline for the systematic deployment

of component-based software for embedded systems like vehicular systems.

SaveCCT provides a component technology for the component-based develop-

ment of software with support for accurate functional analysis and verification

of safety critical software systems. SaveCCM provides a component model

defining how component can be combined to create systems. According to

the SAVE project requirements, this model supports the development of

resource-efficient systems with a predictable behaviour.

The syntax of SaveCCM is based on a textual XML syntax. A modified

subset of UML2 component diagrams is used as a graphical component

definition language. The semantics is formally defined by a language called

SaveCCM-Core and the transformed into timed automata with tasks.

In SaveCCM, components are built from interconnected elements called

Components with port interfaces. The functionality of each component is

typically provided by a single C function but the model allows the use of

more complex components consisting of a number of communicating tasks.

Figure 3.8: SaveCCM features summary.

The model is based on the “pipes and filters” paradigm with a rigid

3.12 SaveComp Component Model 75

distinction between data transfer and control flow. The former is captured

by data input and output ports, the latter by trigger input and output ports.

Components follows a “read-execute-write” semantics; at the beginning of

the execution a component is inactive, it remains in this state until all input

triggers ports have been activated. Once it is activated, the component

reads all input data ports and performs the associated computations on

the basis of the input values and its internal state. When the computing

phase is over the output is written on the output ports and the trigger is

propagated through the output trigger port, after that the component returns

to the idle state. This strict semantics ensures that once a component is

triggered, the execution is independent from any other concurrent activity

in a non-preemptive way. The “read-execute-write” semantics facilitates the

component functional analysis according to the SaveCCT goal.

Input data and input trigger ports can be viewed as required interfaces

that specify functionality and resources needed by the component to perform

its own functionality. Output data and output trigger ports are provided

interfaces that represent the functionality made available by the component

to its client. SaveCCM also offers an aggregate type of ports called “data and

trigger port” that can be both input or output. In this case the data values

and the trigger signals are available at the same time on the interface of the

component.

SaveCCM ports can be divided into other two families: data ports are data

interfaces that expose state information of components and make it available

to the clients. Trigger ports are instead service interfaces that regulate the

control flow among the components.

In SaveCCM, each port can offer two types of connections. immediate

connections represent atomic loss-less transfer of data or trigger signals from

an output port to an input port. This is the typical mechanism of interaction

between two components located on the same physical node. For distributed

systems, like vehicular ones, SaveCCM offers a more sophisticated connection

concept provided by the so-called complex connections that represent data

or control transfer over a real channel characterized by possible delay or

information loss. In this cases the communication mechanism is modelled

76 Chapter 3 Component Models Survey

with a finite state automaton describing the behaviour of the connection.

The model offers a particular type of connector construct named switch.

Switches provide the means to change the component interconnection structure

either statically (before compilation) or dynamically (at compile-time). Each

switch specify a number of connection patterns managed by logical expression

over the data available at the input ports of the switch. Switches can operate

on data ports or on trigger ports and can use partial evaluation to identify the

part of the switch that will not change during run-time. Such static parts are

optimized into normal connections and the components that are unreachable

are omitted in the final system. Switches are not triggered by any signal,

they respond directly to the arrival of data or trigger signals shortening or

opening connections according to the evaluated logical expressions.

Components can be encapsulated into sub-systems called assemblies. The

internal components and interconnections of an assembly are hidden from the

rest of the system and can be accessed only in an indirect way through the

ports of the assembly. As in UML2, a connection from an assembly I/O port

to an internal component I/O port is denoted by a delegation arrow even if

they are semantically the same as ordinary connections. Since assemblies do

not provide any additional functionality, they should be seen as a mean for

obtaining a collection of components hiding their internal state rather than a

component composition mechanism. A number of components and assemblies

wired together form a system that is the top level entity of a SaveCCM system

as shown in Figure 3.9.

3.13 Service Component Architecture

The Service Component Architecture (SCA) [14] provides a set of specifications

for the construction of distributed applications following the principles of the

Component Based Software Engineering and the Service Oriented Computing

(SOC). The SCA model was promoted by a group of enterprises operating in

the field of the Information Technology such as IMP, SAP, Oracle and SUN.

The first release of the SCA specification was published in 2005 and then

refined in 2006 and 2007. The SCA specification will be deeply analyzed in

3.13 Service Component Architecture 77

Figure 3.9: A SaveCCM system example.

Chapters 4 and Section 5.1.

SCA offers an environment which takes care of the communication issues

(wiring) between components. It does not deal with the implementation

details of the components that can be implemented in several object-oriented

programming language such as Java or C++. The result is a service-oriented

application characterized by a high level of cohesion and by a low level of

coupling between components.

Key features of SCA are components that can provide interfaces (services),

representing the contract of the provided services, require interfaces through

the definition of references, and expose properties. Services and references

are connected by links called wires in the SCA language. In figure 3.10 an

example of a SCA composite with two components inside is shown.

The entire model has an embedded hierarchical nature as each compo-

nent can be implemented as a software entity developed in a supported

programming language or as the result of the composition of a number of

sub-components realizing a composite.

Components can be composed and configured by means of a simple XML-

based language named Service Component Definition Language (SCDL). A

set of composed and configured components form a SCA application named

contribution.

78 Chapter 3 Component Models Survey

Figure 3.10: SCA components and composites examples.

A SCA composite represent an assembly of components from a logical

point of view. The components of a composite can be deployed as an unique

process on a local machine or distributed across several process running

on a number of networked machines. Moreover, components composing a

composite can be implemented by means of several different technologies and

programming language and can communicate using different communication

mechanisms.

The binding concept encapsulates the communication mechanisms across

two or more components. When defining references and services, no specifica-

tion regarding how the communication is carried out is given. This is very

important since it keeps the component specification completely independent

from the adopted communication protocol making their deployment and their

reuse easier.

Furthermore, the binding concept allows one of the key-features of the

Service Component Architecture: the possibility to interface a SCA application

to non-SCA software. A SCA application can interact with non-SCA software,

for example a JSP page, a web service client or a plain Java class through

remote method call methods such as Java RMI. A SCA application can also

access persistent data in several ways using Service Data Objects (SDO) in

combination with some standard technology as JDBC or the Java Persistence

API (JPA).

As mentioned above, the SCA technology, and the SCA component model

itself, do not make assumptions about the underlying implementation tech-

3.14 Smartsoft 79

nology that ensures the inter-component communication and the correct

deployment of the application. Several SCA run-time environments are avail-

able both in free and in commercial form, for example: Apache Tuscany

[1] [60], OW2 FraSCAti [9] [72] [73], Fabric3 [2] and IBM Websphere [3].

3.14 Smartsoft

SmartSoft [74] [70] [69] is a component approach for robotic software de-

veloped by Ulm University. The SmartSoft component model is based on

the intensive use of communication patterns and it is characterized by the

explicit support for dynamic wiring of components at run-time. According

to the SmartSoft developers, the market of software component for robotics

is hampered by the lack of a specific component model targeting robotics,

the great challenge of SmartSoft is to provide a generic software architecture

without enforcing a particular robot architecture. The SmartSoft component

model can be considered as an ADL-like model due to the explicit concept of

required interface (service requestor) and it can be implemented in several

object-oriented programming language. The Corba based reference implemen-

tation called Corba SmartSoft is written in C++ and uses the TAO ORB

implementation of Corba. The ACE package provides the operating system

abstractions ensuring the interoperability across most operating systems.

A SmartSoft component is implemented as a set of threads and interacts

with other components via predefined communication patterns. The use of

communication patterns let the component to overcome process and computer

boundaries. Components can be dynamically wired at run-time using a

specific communication pattern.

SmartSoft components interact with each others via predefined communi-

cation patterns that define the semantics of the interfaces. A communication

patterns also provides predefined access methods, hides the synchronization

issues and defines the communication mode that can be one-way, two-way,

synchronous or asynchronous. A communication pattern always consists in

two complementary parts: the service requestor, that can be intended as a

required interface, and the service provider similar to a provided interfaces.

80 Chapter 3 Component Models Survey

Ports are interface elements for sending and receiving data encapsulated

into communication objects which are ordinary objects decorated with addi-

tional member functions. They represent the content to be transmitted by

communicating components through a communication pattern. This allows

to wrap all middleware-related features into communication objects with-

out polluting components with middleware details such as Corba AMI and

valuetypes. Communication objects can also be extended using inheritance

without affecting the components.

All SmartSoft interfaces are service based, a service is a concrete instanti-

ation of a communication pattern and it is represented by the communication

pattern used to establish the connection and the communication objects

exchanged between components.

SmartSoft provides a set of communication patterns supporting several

interaction modes like one-way communication (send pattern), two-way com-

munication (query pattern), 1-to-n data distribution (push newest and push

timed pattern) and event based asynchronous communication (event pattern).

The use of communication patterns to manage the exchange of data among

components no longer leaves to the component builder to decide whether to

invoke a remote service synchronously or asynchronously but defines a freely

usable fixed and well tested set of access modes. In particular, the concur-

rency and the synchrony are fully handled inside the communication pattern

without the need of dealing with these issues in each user defined component.

The state pattern provides a mechanism for coordination among components

while the wiring pattern supports the dynamic wiring of components.

Only compatible components can be connected, in particular, a service

requestor and a service provider are compatible if both the communication

pattern and the communication objects types match.

In SmartSoft there is no explicit support for component hierarchy, the

architectural configuration of components is defined in the deployment phase

when components are connected through communication patterns. Compo-

nents can also be connected at run-time using the wiring pattern, this is

one of the major difference between SmartSoft and other approaches. In

order to support the dynamic wiring, a broker service is implemented as a

3.15 SOFA 2.0 81

standalone component. Each service provider can register its services to the

broker, after that, the broker returns tuples describing all compatible service

providers. These tuples can be used directly by the service requestors to

choose a compatible service provider.

3.15 SOFA 2.0

SOFA 2.0 (Software Appliance) [41] [75] is an architecture-based component

model developed at Charles University in Prague. This component model is

based on its predecessor SOFA but it incorporates a number of enhancements

and improvements. In particular it now supports dynamic reconfiguration of

components, multiple communications styles and control interfaces managing

non functional features like life cycle of components and reconfiguration

mechanism.

In the old SOFA component model, the key features were defined by an

ADL language. In SOFA 2.0 the ADL is associated with a meta-model based

definition. The implementation language proposed is Java, however, the meta-

model and SOFA 2.0 abstractions are programming language independent.

Each SOFA 2.0 application is executed in a run-time environment called

SOFAnode which consists of a number of deployment docks providing run-

time functionality for executing components. SOFAnode provides also a

repository containing components descriptions and implementations.

In SOFA 2.0 a component is described by its frame and architecture.

The frame is a black-box view of the component describing its provided

and required interfaces. The frame of a component is implemented by an

architecture, which represent a gray-box view of the component. A single

frame can be implemented by several architectures, at the same time, a single

architecture can implement multiple frames. If the component is a composite,

the architecture specifies the sub-components and their interconnection on

the first level of nesting.

Run-time structure of a SOFA 2.0 component is composed of a control part,

which consist of the component manager that administrates the component

life-cycle, and a functional part, which, in case of a primitive component,

82 Chapter 3 Component Models Survey

contains the code of the component and, in case of a composite component,

contains other sub-components implementations.

SOFA 2.0 supports both provided and required interfaces. The type of an

interfaces is defined by a signature which can be a reference to an interface

definition in the underlying language. All SOFA interfaces are operation-based

and they are defined by a set of functions and parameters indicating the

services provided or required by the component.

Interfaces can have a cardinality parameter indicating the number of

bindings that the interface can join. In SOFA 2.0 in fact, both provided

and required interfaces can be bound to a number of other interfaces of the

same type. Moreover, SOFA 2.0 allows provided-to-provided and required-to-

required bindings. This feature is used to “forward” a component interface

to sub-components, in particular there is a delegation relationship when a

provided interface of a component is bound to a provided interface of a

sub-component and a subsuption relationship when a sub-component required

interface is bound to a required interface of the containing component. This

characteristic come from the strong focus put by SOFA 2.0 on component

hierarchy.

Components are interconnected with bindings among interfaces and bind-

ings are provided with connectors which are first class entities like components.

The functionality of each connector is a communication style. In SOFA 2.0

four communication styles are supported: method invocation, message pass-

ing, streaming and distributed memory. Supporting different communication

styles can be an advantage taking into account the run-time environment.

From the knowledge of the communication style, in fact, the inter-component

communication can be optimized by choosing an appropriate middleware, for

example CORBA for remote method invocation or TCP/IP for streaming.

Connectors can be further divided into two categories: design connectors

and run-time connectors. Design connectors are used in the SOFA 2.0

component model to explain the connections between interfaces defining

the communication style and other features associated with the interfaces

involved in the communication. Run-time connectors are code artifacts used

at run-time to implement the above mentioned design connectors. SOFA 2.0

3.15 SOFA 2.0 83

strongly focuses on nested hierarchical architectures.

Each component can be a composition of a number of sub-components and

each one of these sub-components can be divided into other sub-components

and so on. SOFA 2.0 aims to enhance the support for nested hierarchical

structure of components by putting emphasis on dynamic reconfiguration,

multiple communication styles and life-cycle management of components.

4
Component Models Analysis

In this chapter we adopt the analysis and classification model presented in

Chapter 2 for the classification of five component models. The analysis is

conducted by reviewing the component models along the four main concepts:

Computation, Configuration, Communication and Coordination.

We have chosen five component models: ROS, OROCOS, SCA, CCM and

OpenCOM since they can be considered examples of five main approaches in

proposing, designing and developing a component model in terms of provided

mechanisms and different application domains.

ROS and OROCOS mainly refer to robotics and embedded systems

domains. Although their target domains are similar and in most cases

overlapping, they present quite different approaches. OROCOS is targeted to

hard real-time performances and the main concerns are related to the strict

periodic execution of periodic components. ROS, instead, is less focused on

real-time performances and, on the contrary, it offers tools and instruments

to speed up the development of complex robotic control systems by making

available a large collection of reusable implementations and offering to the

users a framework of tools for making the design, the development and the

debugging of software components easier.

The SCA component model is far more generic and it is much influenced

by the Service Oriented Computing principles. The Corba Component Model

embodies the Corba inter-process communication principles and mechanisms

in a component model. The OpenCOM component model is general-purpose

85

86 Chapter 4 Component Models Analysis

model although it is well suited for resource-poor environments such as em-

bedded systems. It offers a lightweight run-time kernel and a rich component

model that “mediates” the access to the kernel API.

These five component models embody five different approaches. The

objective of the classification that we are presenting are twofold: first, we would

validate the proposed approach by successfully applying it to five different

models, second, we would highlight the similarities and differences between

five component models that can be considered iconic of five approaches.

The expected outcome is a classification that can be considered as model

for the user who wants to easily analyze and compare several component

models in order to identify one or more models that are well suited for his

needs.

For each main concepts, we refer to them as the “4Cs”, we explore the

corresponding feature diagram highlighting the characteristics of component

models by means of present (selected) or non present (unselected) features

in the diagram. For each model and for each selected feature we present

the constructs, the mechanisms or the tools, both theoretical and practical,

provided by the model to address that particular concept. We will summarize

the collected results into tables to make the comparison between components

easier.

4.1 Communication

Along the communication analysis axis, components can be classified according

to three main features: Synchrony, Anonymity and Interface (refer to Section

2.3.2).

4.1.1 Interface

In all component models the interface construct is the mean by which the

communication between components is carried out. Even though the required

interface concept is, in general, not mandatory for a component model, all

the five analyzed models allow to define required interfaces. This explicit

4.1 Communication 87

definition greatly improves the clearness of the component model in showing

the dependencies of each component in terms of needed input data or services.

Component models differ both in interface definition and semantics. First

of all, even if the underlying concept is almost the same, different models

use different names to define both provided and required interfaces: provided

interfaces are called “facets” in the Corba Component Model (CCM), “services”

in SCA and simply “interfaces” in the OpenCOM component model. This

difference is reflected also in the required interface concept since they are

called “receptacles” in CCM and in OpenCOM and “references” in SCA.

ROS and OROCOS slightly differ from other component models since their

interface concept is embodied by topics and ports respectively. Subscribed

topics can be considered as required interfaces for ROS while published

topics are provided interfaces. In OROCOS the input ports and the event

input ports can be classified as required interfaces while the output ports are

provided interfaces. These definitions can be explained by interpreting the

provided interfaces as constructs by which a component make its computation

services available to other components. Similarly, required interfaces represent

dependencies of the component to carry out its computation or task. Hence,

from this point of view, input ports and subscribed topics represent sources

of data needed by the components while output ports and published topics

represent data output used by the component to deliver the results of its

computation.

It must be noted that, along with the ports and topics constructs, both

ROS and OROCOS provide the concepts of service and operations respectively,

we will discuss about it hereafter.

Component models interfaces can be constructed in different ways. Re-

garding this feature we can identify the deepest differences in component

models interface semantics. The operation based construction represents

the operation-oriented semantics in communication and data delivery be-

tween components. For CCM, OpenCOM and SCA this is the only allowed

mechanism for defining interfaces. In SCA, above all, this concept is deeply

routed into the followed service-oriented approach. When this semantics

is adopted, components offer their functionality to other components, and

88 Chapter 4 Component Models Analysis

require functionality from others, in terms of callable operations. Models

may however differ in terms of provided communication mechanisms and in

decoupling level but the underlying semantics involved in operation-based

interface concept does not change.

In ROS and OROCOS the communication semantics, and hence the

interface construction, is deeply different. The focus is shifted to the pure

data exchange mechanisms: components behaves as data producers and

consumers rather than operation callers and providers. From this point of

view, topics and ports represent two different artifacts for implementing

the same underlying approach. The provided services of a component are

delivered in the form of computation results provided by a component to

another, on the other hand, the dependencies of a component from others are

expressed in terms of needed input data rather than needed services.

However, the data-oriented semantics embodied by topic-based and port-

based interface construction can make the request response interaction scheme

quite tricky to implement as some forms of request/response mechanisms

should be provided above the port or topic concepts. In this case there

is the concrete risk of loosing the intrinsic simplicity and flexibility of the

data-oriented approach. For this reason, both OROCOS and ROS offer

means to carry out some forms of request/response-oriented communication.

In OROCOS this is embodied by the concept of operations provided by a

component and callable by others. Operations are plain C/C++ functions

running in the provider thread or in the caller thread and can be grouped

into service objects. ROS services are implemented as message couples (one

for the request and one for the response). A component can advertise a

service making it available to other components that can invoke it by sending

the appropriate message and receive the response through another message.

Each service has an interface that defines the function signature that must be

known to components that want to call it. It must be said that both the ROS

services and the OROCOS operations should be considered as extensions to

the standard communication mechanisms represented by topics and ports

respectively.

Interfaces can be defined by using the same programming language adopted

4.1 Communication 89

for the component implementation or by means of a specialized Interface

Definition Language. The use of an IDL makes the interface definition

independent from the adopted programming language and helps in keeping the

component implementation separated from its interface definition. However,

the use of an IDL can differ from a component model to another.

CCM and OpenCOM refer to OMG-IDL for the definition of component

implementations, so doing, the interface definition is totally independent from

the chosen implementation language.

ROS defines topic names in the component implementation code although

these names can be remapped when deploying the components as described in

Section 4.3, on the other hand, messages are defined by means of the Message

Definition Language (MDL) that is a simplified strongly typed IDL adopted

for defining message structure and fields data types. Similarly, services are

defined by means of the Service Definition Language that is an extension of

the MDL defining the couple of messages involved in the request/response

interaction.

In SCA interfaces can be defined in several ways. The composite file,

written in the SCDL XML-based language, defines the names of references

and services of each component appearing in the composite. Each one of

these interfaces often refers to an implementation language file containing

the details of the implementation. If the implementation language is capable

of defining interfaces, like Java, this can be used for the interface definition,

if not, a specific interface definition language can be used instead. For web-

service interfaces, for example, the Web Service Definition Language (WSDL)

is typically exploited.

OROCOS is the only one of the five analyzed models that mainly defines

the interfaces (ports and operations) in the component implementation code.

Being the OROCOS component implemented in C/C++ language, the ports

and operations definitions are done in the source header files. In the deploy-

ment file, however, ports and operations are also mentioned and, in the same

file, they are wired with other components.

90 Chapter 4 Component Models Analysis

4.1.2 Anonymity

The anonymity feature is related on the amount of information that one

component must know for interacting with other components. The anonymity

concept is deeply routed into component-based software engineering since it

is one of the key features that makes single components independent from

others and reusable. For this reason most component models provide means

for making the communication between components anonymous, however, the

level of anonymity can be much variable from a component model to another

one.

In general, data-oriented mechanisms should provide a greater degree of

anonymity since, during the interaction, the focus is on the data exchanged,

no matters which component is producing or consuming it. For operation-

based mechanisms a certain level of knowledge is needed for invoking the

right service, in these cases, this knowledge is held by the run-time system

associated with the component model. Interacting components may only

need to know each other interfaces to interact ignoring the details of the

components instances.

The Corba Component Model allows two kinds of interactions with dif-

ferent levels of anonymity. When event-based interaction is adopted, compo-

nents can generate events (event sources) and/or react to events (event sinks).

Events are transported by an event channel provided by the Corba framework

that lets the components to publish and consume events. Event consumers

components only need to know which event channel is transporting events and

subscribe to it. This mechanism provide a fully anonymous communication al-

though this possibility is restricted to events. When communication is carried

out through operation-based interfaces (facets and receptacles), the operation

caller, or client, needs to have some information about the component instance

that it is providing the invoked operation (server). In CCM this information

is hidden by the underlying Corba framework that provides to the client the

stubs objects. Stubs are automatically created by the Corba infrastructure

by interpreting the IDL-based definitions of components interfaces, this way,

the information needed by a client to exploit functionality offered by a server

4.1 Communication 91

is restricted to the server interface.

Similarly, in OpenCOM interfaces are defined by means of OMG-IDL

files. The binding between a provided interface (interface) and a required

interface (receptacle) is provided by binding components that are OpenCOM

components specialized in providing the connections between cooperating

components. The binding components can be manually created by the devel-

opers or dynamically loaded by binders from a set of already defined bindings.

Binders exploits low-level binding features provided by the OpenCOM kernel

for connecting interfaces to receptacles. The kernel is in charge of interpreting

the IDL definitions giving to the binding components the correct instances of

the communicating objects. This mechanism allows OpenCOM components

to obtain a level of anonymity that is comparable to the anonymity offered by

Corba since components only need to know each other interface definitions

while the binding components keep the interfaces decoupled.

In SCA the anonymity is guaranteed by the run-time environment that

interprets the interface definitions provided by composite files referring, if

necessary, to separate interface definitions. When defining a reference, com-

ponents only need to know the name of the service, as it is defined in the

composite file, and the interface definition since the current component in-

stances are fully managed by the run-time.

In ROS, when topic based communication is exploited, components, called

nodes, only need to know the URI of the topics and the associated message

definition. URIs are expressed as plain strings that must be unique in the

entire ROS system. When a node interact with a topic by publishing or

subscribing, it totally ignores the presence of other nodes interacting with the

same topic. The communication is managed by the ROS master node that

exploits the transport mechanism offered by the ROS run-time system. The

transport mechanism is based on TCP/IP sockets (TCPROS) or UDP/IP

communication (UDPROS).

When service-based communication is adopted in ROS, communicating

components only need to share information regarding the interface of the

service operation that is provided or required and the format of the request/re-

sponse messages. In a C++ implementation, for example, the interface of the

92 Chapter 4 Component Models Analysis

operation is stored in a C++ header file defining the prototype of the function

while the messages formats are defined in special files that are automatically

translated into executable code by the ROS framework.

In OROCOS the port-based communication style allows total anonymity

between components. The information needed to connect input to output

ports is stored in the deployment file or script used by the OROCOS deployer

to actually connect components. For this reason, the write operation on an

OROCOS port is said to be “send-and-forget”. Anyway, the anonymity level

reached with the operation mechanism is lower since the invoking component

must explicitly obtain the exact reference of the operation provider instance

by the run-time system.

The concepts related to the configuration files used by the component

models to build a system configuration will be thoroughly analyzed when

discussing the configuration concept in Section 4.3.

4.1.3 Synchrony

The synchrony feature is related to the time coupling between the interacting

components. When the communication is carried out by means of ports or

topics, the communication is always asynchronous. This means that the data

producer component do not need to stay blocked while the consumer reads

the received data. On the other hand, in the analyzed component models,

operation-based interfaces usually provide synchronous interaction, with some

exceptions.

In CCM, facets allow components to expose interfaces that can be invoked

synchronously via Corba’s two-way operations or asynchronously via Corba’s

asynchronous method invocation (AMI) that are part of the Corba 3 frame-

work. The desired mechanism is selected by the developer according to the

nature of the particular provided operation. The event-based communication

provided by CCM is, instead, totally asynchronous.

In OpenCOM no particular means for handling the synchrony of invoca-

tions is provided. Moreover, since the binding components usually mediate

the operations invocations, both mechanisms can be provided for the same

4.2 Computation 93

interface by simply changing or reconfiguring the binding component.

In SCA the interaction is synchronous by default although an asynchronous

behavior can be obtained exploiting the callback mechanism. A callback

interface is composed of a bidirectional interface, one part is for the request

and the other side is for the callback. If using callbacks, a client component

can request a service through a reference and continue its flow of execution.

At the same time, the server component processes the request and, when

its computation is finished, it sends back to the client the response via the

callback interface.

In ROS, the topic communication is strictly asynchronous since a compo-

nent can send a message on a topic and continue its execution. The subscribed

components will then be notified by the ROS system and fetch the message

from the subscribed topic. On the other hand, when synchronous commu-

nication is needed, ROS provides the service mechanism that it is strictly

synchronous. Once a component sends a request for a service, it will be

blocked until the service provider will send back the response.

The port-based communication of OROCOS components is asynchronous

since components can write on output ports and continue the execution. Data

on input port is retrieved by polling the port periodically. If event input ports

are exploited, an event can be generated when new data arrive on the input

port triggering the component’s updateHook method or function. In analogy

with ROS services, OROCOS operations allow synchronous interaction since

the operation requester can wait for the completion of the called operation

handled by the operation provider.

4.2 Computation

Computation is related to the components nature, definition and implementa-

tion. All the five analyzed component models support one or more concrete

implementations since we decided to analyze “real-world” component models

and not models that are only proof of concepts or theoretical proposals.

The computation concept can be roughly divided into four main features:

the component implementation language, the component behaviour, the real-

94 Chapter 4 Component Models Analysis

time support and the distributed system support.

4.2.1 Component Implementation Language

For what regards the component implementation languages adopted, analyzed

component models can use an ADL-like language [63] or directly use one

of the supported programming language. When using the programming

language for the definition of components, we can identify two cases: only one

programming language is supported or multiple programming languages are

available. Although the use of an ADL-like language obviously promotes the

support for multiple implementing language, we can observe that component

models that defines components by means of the implementation programming

language can still support several different languages.

In OROCOS, components are defined by means of one the two supported

programming languages which are C and C++. Also in ROS components are

defined by means of programming languages, however, the ROS approach is

slightly different: instead of providing a multi-language run-time environment,

ROS proposes several versions of the same environment for natively supporting

different languages. The same client library, that provides the low-level

instruments to create and manage nodes and topics, is distributed in all the

supported programming languages that are C++, Java, Python, Lua and

LISP. Once separately compiled, components developed in different languages

can seamless interact with each other and with the run-time environment.

The SCA component models theoretically supports all possible object-

oriented languages for component definition. The actual support is however

limited by the adopted run-time environment. Apache Tuscany supports Java,

C++ BPEL and Spring languages and it is distributed in two versions: one

is implemented in Java and the other one is implemented in pure C++ and

it is often called native.

The OpenCOM component model defines component types by means of

an extension of OMG-IDL. Once a component type has been defined and

associated to a component implementation, it can be instantiated becoming

a component. OpenCOM provides extensions for other definition languages

4.2 Computation 95

such as ACME-like and XML based languages, moreover, the extension APIs

can be exploited to provide support for other definition languages. Several

native kernel implementations are available for a number of programming

languages such as Java and C++.

The Corba Component Model has an hybrid approach: components can

be defined by means of a Corba-supported object-oriented language or can

be defined with the Component Implementation and Definition Language

(CIDL). These definitions are then translated by the CIDL compiler into the

so called executors. Executors contain auto-generated implementation stubs

and provide hook methods that can be filled by developers to define specific

components behaviours.

4.2.2 Component Behaviour

The component behaviour feature refers to the presence of a default Finite

State Machine (FSM) that regulates the behaviour of components. Among

the five analyzed component models, the only one that has a mandatory

FSM definition is OROCOS. Each OROCOS component must implement a

default three-state finite state machine and the behaviour specification of

each component is actually carried out by specifying the operations that

have to be executed during the state transitions of the machine as presented

in Section 3.6. This forced behaviour specification reflects the fact that

OROCOS was designed having in mind the embedded and control systems

domains in which common components behaviours, for example a controller,

can be easily defined by means of finite state machines.

In SCA no default state machine need to be implemented but component

initialization and destroy operation can be specified. This can be useful to

allocate and free particular data structures needed by the component or to

save and retrieve persistent data.

OpenCOM, ROS and CCM give to the developers the freedom to fully

define the behaviour of components without having to be compliant with any

default state machine specification.

96 Chapter 4 Component Models Analysis

4.2.3 Real-time Support

The support offered by the component model can be useful when having to

cope with systems that are constrained on the response time. We defined

the differences between soft real-time and hard real-time concepts in Section

2.3.3.

Among analyzed component models, the only one that offers an explicit

support for hard real-time systems is OROCOS. The component specification

includes the definition of an execution period and a priority level for each

component and the run-time framework schedules the execution of the set

of instantiated components in order to execute components at the correct

frequencies meeting all the deadlines. The OROCOS framework can be

compiled both on standard and real-time operating systems, it is obvious

that hard real-time performances can be achieved only when exploiting

the real-time support offered by an underlying real-time operating system.

OROCOS is compatible with several real-time operating system such as RTAI

patched Linux distribution [11] or Xenomai-based systems [25]. However,

when compiled and installed on standard operating systems, the OROCOS

framework can deliver good performances in terms of delay time, periodic

execution and repeatable behaviour. The OROCOS framework installed on a

non real-time system is suitable when soft real-time performances are needed.

The ROS component model allows the definition of the execution frequency

of components, however, no specific support for hard real-time performances

is provided. However, the small memory and computation footprint of the

run-time system allows for good overall performances, hence, ROS can be

effectively adopted when there is no need for high execution frequencies in

soft real-time systems.

On the other hand, neither SCA, nor CCM, nor OpenCOM offer explicit

support for real-time execution.

4.2.4 Distributed System Support

All the analyzed component models provide means to distribute the execution

of components across several networked computation nodes.

4.2 Computation 97

In SCA this is achieved by means of several kinds of available bindings

between references and services that allow to connect components residing

on different machines. One of the possible bindings, when using Java as

implementation language, is the Java Remote Method Invocation (RMI). The

use of web services encourages the distribution of services across the network,

these services, described in WSDL, can then be individuated by means of the

UDDI protocol and invoked by using the SOAP protocol.

In OpenCOM, components can be transparently distributed on a network

since the communication can be managed by binding components provided by

binders elements. A binding component mediates the communication between

two component in such a way that it is invisible to the components lying at

the opposite ends of the communication.

The Corba Component Model provides a standard technique that devel-

opers can apply to make the packaging and the deployment of components

across multiple servers easier and clearer. CCM components can be described

by means of the Open Software Description (OSD) language which is a XML

Document Type Definition (DTD) defined by the W3C. Components are then

packaged into assembly files and OSD files are used to describe the content

of each assembly file and its dependencies.

OROCOS allows the execution of components across distributed nodes by

exploiting the supported Corba framework. The hard real-time performances,

in this case, can be penalized due to the inevitable delays introduced by the

networked communication and by the Corba infrastructure itself.

ROS natively supports the definition of distributed systems since the

underlying transport service, that manages both the topic-based and the

service-based interaction, is based on TCP/IP or UDP/IP protocols. By doing

so, the communication between local or remote nodes can be handled without

distinction given that components reside in a common network address space.

Only one ros core application must be running at the same time on a chosen

master node of the ROS system; all other nodes need to know the network

address of the master node.

98 Chapter 4 Component Models Analysis

4.3 Configuration

Configuration defines the architecture of a system in terms of which compo-

nents are present and how they are interconnected (refer to Section 2.3.4).

Along this axis, components can be classified according to four main fea-

tures: configurable entities, the adopted configuration model, the composition

mechanism and the persistence mechanism.

4.3.1 Configurable Entities

Along this feature the five analyzed component models are almost similar. In

all component models both properties and connections among components can

be configured, however, some remarks can be done regarding the component

states configuration. We will discuss about the mechanisms provided by the

models for the static and dynamic configuration in Section 4.3.2.

The possibility of configuring the connections among components embodies

one of the basic principles of component-based software engineering, in fact,

starting from a predefined set of components, different systems can be realized

by simply interconnecting components. In the Corba Component Model these

interconnections are obtained by binding provided interfaces and required

interfaces called facets and receptacles respectively. Other connections may

involve the link between event sources and sinks by means of event channels.

In OROCOS, input ports are connected to output ports building a graph

of interacting components, the same can be said for ROS in which components

can interact by means of subscribed and published topics matched in function

of their URI.

In SCA, inter-component connections are handled by coupling services with

references, these links may, or may not, cross the composite boundaries in a

way that it is transparent to the component implementation. In OpenCOM, a

binding component is usually adopted to mediate the communication between

components but, from a configuration point of view, a component-to-binding

connection is managed exactly as a component-to-component connection since

binding components are fully fledged components.

In all analyzed component models, components can expose parts of their

4.3 Configuration 99

implementations, typically fields, parameters or variables, so that their value

can be set from outside. We refer to these as properties (attributes in the Corba

Component Model). The possibility of setting component parameters greatly

improves the flexibility and the reusability of component implementations,

we will discuss the mechanisms of setting the properties in Section 4.3.2.

The possibility of setting up and configuring the component state is

strongly related to the component implementation defined by the model. Nei-

ther OpenCOM nor ROS nor CCM allow the configuration of the component

state simply because no predefined state machine needs to be implemented

by default within the component implementation. Of course, it is possible,

for the developer, to define a FSM that manages the component behaviour

and the initial execution state of this machine could be set by a property

value, however, this semantics is external to the component model and hence

it is not considered in our classification.

Due to the strong state machine oriented semantics of OROCOS compo-

nents, the initial state of each component’s state machine can be externally

set in the configuration phase. In particular components can be started by

triggering their start transition or stopped by triggering the stop transition

or can be put into a preoperational state in which they can be reconfigured.

These state transitions are managed by the deployer agent.

The SCA component model offers, to some extent, the possibility of

configuring the state of a component by exploiting the scope concept. A

component can be configured to have a stateless scope, a composite scope or

a conversation scope. For Stateless-scoped components a new instance of the

component is created on each service call, for composite-scoped components,

a new instance is created on the first service call and then it is used to serve

all the subsequent service calls, for conversation-scoped components, a new

instance is created for each conversation that represents a series of correlated

server-client interactions. Besides this, in the component implementation,

particular methods can be marked to be called on instance creation and on

instance destruction allowing the developer to manage state and persistence

features of the component.

100 Chapter 4 Component Models Analysis

4.3.2 Configuration Model

The configuration model feature refers to the mechanisms provided by the

component model to support the configuration of the system. On the basis

of which kind of mechanisms are provided, component models can support

the static or dynamic configuration, and reconfiguration, of components.

When dealing with the static configuration, we identify two main phases:

the compile-time and the deploy-time. The five analyzed component models

strongly differ with each other when compared along the configuration model

feature.

In the Corba Component Model the configuration can be carried out both

at the deployment phase and during run-time. The component configuration

is managed by a component server which is in charge of interpreting Interface

Definitions Language (IDL) files and Component Implementation Definition

Language (CIDL) files in order to set up the components by creating stubs and

skeletons and their connections. This operations can be done at deployment

time. For the run-time configuration, CCM offers a number of possibilities

to the developers. Each component expose a home interface that can be

used by other components to manage the component life-cycle, for example

to create and remove components instances. The references to all the home

interfaces of the available components are stored in a centralized database

that can be accessed by clients. Components can be deployed in component

servers that use the standard configurator interfaces to configure components.

Component developers can extend this configuration interface to specify

the custom configuration operation allowed for the particular component.

The port construct is used to enable configuration mechanisms by creating

component connections, establishing component attributes and subscribe or

publish events.

In the OpenCOM component model the configuration of components is

managed by the kernel APIs. These kernel interfaces can be directly called by

component implementation for configuring itself or other components. How-

ever, especially when run-time configuration is needed, OpenCOM provides a

rich infrastructure to manage the components connections, their properties

4.3 Configuration 101

and the overall system structure. Components can be collected into component

frameworks (CF) that are set of correlated components. A set of components,

or component frameworks, can be executed within a capsule and, optionally,

components can be included into caplets constructs. The caplet concept

itself is made available by means of a particular component framework called

caplet CF. Within a caplet, components can be dynamically loaded, unloaded

and instantiated exploiting the caplets’ API that avoid to directly access

the underlying kernel APIs for configuring components. Capsules, Caplets

and Component Framework are parts of the very rich OpenCOM component

model thoroughly analyzed in Section 4.2.

OpenCOM provides the concept of reflective extensions to support the

construction of dynamic target systems that need to change or evolve during

their execution in a controlled and principled manner [45]. This is achieved

by means of three extensions called interface meta-model, architecture meta-

model and interception meta-model. The interface meta-model provides

the capability to discover at run-time the details of the interactions between

components, expressed as operation signatures, and to invoke these operations.

These capabilities enable the components to invoke operations that are not

known at deployment time, concretely altering the system configuration.

The architecture meta-model represents the topology of the actual set of

components and can be used to inspect the topology and the structure of the

system with the possibility to change inter-component connections and add

new components. The interception meta-model give access to the process of

invoking an operation in a component interface. This allows the developers to

add a special object, called interceptor, that intercept operation invocations

between components triggering side-operations such as data logging or routing

the request to other components. When this last possibility is exploited, this

can concretely change the component interaction structure at run-time by

adding other interacting components.

In SCA the system configuration is carried out at deployment time. Config-

urations are defined in terms of allowed components, reference-to-service wires

and component properties. All these information is stored in the XML-SCDL

composite files that represent the main instrument offered by SCA to configure

102 Chapter 4 Component Models Analysis

a system. Wirings between services and references can be user-defined or

system-defined. In the first case the connection is defined by developers who

manually match services and references, in the second case the SCA run-time

is in charge of connecting the interfaces according to their definitions and

types.

The SCA standard defines mechanisms and guide-lines to allow the run-

time reconfigurability of a system but the actual possibility of dynamic

configure and re-configure systems depends on the run-time implementation

that it is adopted. Apache Tuscany does not provide mechanisms for explicitly

reconfigure a system that has been instantiated while, on the other hand,

OW2 FraSCAti run-time allows for reconfigurability and component life-cycle

management as presented in Section 5.1.11.

In OROCOS, components interfaces are defined above all at compile-time

when ports are instantiated. The configuration of port bindings is done

at deploy-time by the OROCOS deployer which is in charge of running

components by loading an XML-based deployment file or by executing a

deployment script. Component properties are stored in XML files associated

to components by means of a particular element in the deployment file.

The possibility of re-configuring a system during run-time is rather limited:

component states can be changed by the deployer at run-time in response of

malfunctioning, by following scripted instructions or by directly interacting

with the user through a command line interface. When components return in

the pre-operational state (after being stopped) they can be re-configured by

the deployer.

In ROS, the publisher-to-subscriber and the services bindings are carried

out on the bases of their respective URIs. The name of a topic or of a service

is defined in the component implementation code, hence, the configuration is

mostly defined at compile-time. However, at least for topic names, a remap

service is available and allows to change the topic names at the system startup.

This is achieved by means of XML launch files containing information about

the graph on nodes which are present in a system, the topic names and

remappings, and the properties values. Once the system has been started, no

further configuration operations are possible except the fact that ROS nodes,

4.3 Configuration 103

being autonomous processes, can be started, killed and restarted by users at

run-time allowing a minimal possibility of dynamic system reconfiguration.

4.3.3 Composition Mechanism

Not all the analyzed component models allow the composition of components

inside structures. In ROS, the stack and package organization is only at

the host filesystem level, once executed, components are organized in a flat

graph of nodes without any containment concern. The same can be stated for

OROCOS in which component cannot be collected in higher-order structures.

In the Corba Component Model, components can be wrapped inside a

container element. Containers contain exactly one component and their role

is twofold. First they expose component interfaces (facets, receptacles and

the home interface) without adding any computation (facade), second, they

mediate the access to both configuration related interfaces, such as ports,

and to callback interfaces used to capture events. In this second case the

container shows an adapter pattern behaviour. However, containers are only

wrappers around single components and they do not provide mechanisms for

organizing components into higher-order structures.

For this reasons, the only component models that present a complete

composition mechanism are SCA and OpenCOM.

In SCA components are collected into composites that do not add any

kind of computation to the component set. Their role is to expose a subset of

the components interfaces to be accessed from the outside. We classify this

approach as a facade pattern.

In OpenCOM the composition mechanism is far more complex. Com-

ponents can be collected into component frameworks, according to Coulson

et al.:“a component framework is a tightly-coupled set of components that

i) cooperates to address some focused area of concerns, ii) provides a well-

defined extension protocol that accepts additional ‘plug-in’ components that

modify component framework’s behaviour iii) constraints how these plug-ins

may be organized” [45]. In this sense component frameworks expose to the

outside a subset of the inner components’ interfaces and, at the same time,

104 Chapter 4 Component Models Analysis

can mediate the access to other parts of the interfaces. The former approach

can be traced back to a facade pattern approach, the second is most similar

to the adapter pattern.

OpenCOM provides the concept of capsule as containing entities in which

components are loaded, instantiated and composed, the role of a capsule is

to give access to OpenCOM kernel API. Components contained in capsules,

however, are not subjected to any hierarchical composition. Finally, in

OpenCOM, components can be associated to caplets that can offer an insulated

environment to components within a capsule. Each capsule can contain a

primary caplet that can contain several other caplets called plug-in extensions,

each one of them is in charge of managing one or more components. Being

the OpenCOM concepts implemented with the OpenCOM component model

itself, caplets are made available within the Caplet Component Framework.

4.3.4 Persistence Mechanism

The persistence feature is related to the possibility of saving and retrieving a

particular configuration or, if possible, the state of the system. For that regards

the persistence of component properties and connections, all component

models provide the same mechanisms that are used for the configuration of a

system, these are: XML-SCDL composite files in SCA, launch files for ROS,

IDL and CIDL files for Corba Component Model, IDL and related extensions

for OpenCOM and deployment files or scripts for OROCOS. The possibility

to store and retrieve the state of a system is only offered by Corba Component

Model through a set of persistence APIs of the Component Implementation

Framework. These APIs manage the persistent state of components in a

system and can be used to construct the implementation of a component-

based software system. The Component Implementation Definition Language

adopted by CCM allows to describe, besides the implementation details

of a system, also its persistent state. This feature is useful when CCM is

exploited to implement entities that have to persist over time and are usually

represented as database entries, such as bank accounts. Components that

need for a persistent state are mapped to a persistent data storage system

4.4 Coordination 105

(e.g. a database) that can be used to reconstruct the state of the system.

4.4 Coordination

The coordination concept is concerned with the interactions among compo-

nents and their roles and can be divided into two features: the connector

feature and the component roles.

4.4.1 Connector Feature

Connectors are special kind of components specialized in managing the inter-

actions between other components. Connectors are present in all component

models, the main difference is that in some models connectors are first-class en-

tities with a special semantics while in other component models their presence

is hidden. The five analyzed component models reflect this distinction.

In CCM connectors are not first-class entities since the handling of the

interactions among interfaces is provided by the underlying Corba framework

by means of the stub-skeleton mechanism. However, developers can provide

their own connectors by developing components that can be placed between

a server and a client to control and manage the communication.

Also in ROS, connectors do not appear as first-class entities since the

communication is fully handled by topics or services and no additional se-

mantics can be added. In particular topic-based communication embodies

the publisher/subscriber semantics while the service-based communication

offers a client/server semantics.

In OpenCOM, instead, the binding components embody the concept of

connector. Binding are provided by binders specialized components and fully

manage the communication between interfaces and receptacles.

The SCA component models clearly separates the service to reference

association from the semantics associated to it. The first concept is embodied

by the wires while the second is provided by the binding concept. Bindings

specify the modality through which components can communicate.

106 Chapter 4 Component Models Analysis

In OROCOS the connector feature is given by the connection policy

associated to each port-to-port link.

Since OpenCOM, SCA and OROCOS provide a concrete concept of con-

nector, we can analyze the coordination tasks associated to these constructs.

In these component models, and in others too, connectors are used to de-

fine coordination policies between components as explained in Section 2.3.5.

The identified coordination tasks are: interface adaption, data filtering and

ordering and protocol operations.

OpenCOM binding components can be adopted to implement a great

variety of functionality: the interface adaption is the most common since

the binding can connect itself to an interface and, at the same time, expose

to other component a modified version of the same interface, for example

varying the data types or the method signatures realizing an adapter pattern.

Ordering, access protocols and filtering can be implemented as well although,

in the OpenCOM specification, the implementation of lossy protocols is

strongly discouraged and connection between interfaces and receptacles are

intended to be “reliable” in all cases.

SCA bindings can be exploited to implement ordering protocols for man-

aging multiple invocation of the same services and, in many systems, the

bindings are in charge of implementing non-functional features like atomic

transactions, security, cryptography and so forth.

OROCOS connection policies defines data buffering, locking mechanisms

and initial state of the communication. The connection policy also allows to

specify a transport mechanism for data, for example the Corba transport can

be needed for ensuring the communication between distributed components.

4.4.2 Component Roles

Another aspect connected with the coordination concept is the presence

of means provided by the component model for a clear separation of roles

between components in a system. Two kinds of separation of roles can be

identified: client/server relationship and master/slave relationship. In case

no means for a separation of roles are provided, components can be considered

4.5 General Considerations 107

as equals entities involved in a peer-to-peer interaction.

All analyzed components provide a service-based interaction scheme in

which some components provide services through their provided interfaces

and other components require services through the required interfaces. This

mechanism embodies a client/server relationship in which the service provider

plays the role of the server with respect to the components that request the

services that are its clients. However, even though this mechanism is provided

by all analyzed component models, it is not the principal interaction scheme

for some of them.

In ROS and OROCOS, components mainly communicate via topics or

ports in a peer-to-peer fashion where one or more components produce

data that it is consumed by consumer components. The Corba Component

Model provide a publisher/subscriber event-based communication semantics

by means of event producers and sinks. This communication pattern do not

define any separation of roles between interacting entities and, hence, it can

be classified as a peer-to-peer interaction.

4.5 General Considerations

From the analysis conducted so far we can correlate the presence, or the

absence, of particular mechanisms and constructs offered by component

models with their specific application domain. The five analyzed component

models can be ordered on the basis of their application domain: SCA and

CCM are fully general purpose models, although the possibility of building

generic applications is pursued by means of different approaches. SCA exploits

the concepts of Service Oriented Applications (SOA) modeling interactions

as services, while, CCM offers a component-based extension to the Corba

framework that it is based on remote method invocation and interoperability

among object-oriented software entities.

On the opposite side, OROCOS is a fully specialized component model

developed keeping in mind the needs of hard real-time embedded systems,

such as controllers and data acquisition systems. ROS can still be classified as

a domain specific component model since it is strictly addressed to the robotic

108 Chapter 4 Component Models Analysis

control system development. The robotic control domain is still focused on

control and data acquisition but, at the same time, it spans from low-level

controllers to high-level software for motion planning, mapping, navigation

and SLAM. For this reason, ROS is less narrowly targeted on low-level control

software and provide means to design and develop more generic applications

involving, besides controllers, higher-level applications.

The OpenCOM component model lies in the middle: it is intrinsically

a general purpose component model since it does not provide instruments

for accomplishing typical controller or hardware related tasks such as the

possibility of imposing periodic execution of components. Yet, it is still

intended for embedded software domain spanning from data acquisition

systems to network devices. For this reason it provides a lightweight kernel

implementation and the possibility to deploy OpenCOM systems both on

general purpose machines (PCs) and on application specific devices, like

network processors and microcontrollers.

This difference in application domains is manifested in the constructs and

mechanisms provided by the component models for addressing the four areas

of concerns that we identified: the communication, the computation, the

configuration and the coordination.

The interface nature of the analyzed component model reflects the chosen

communication style of each model. OROCOS ports and ROS topics represent

constructs for data-oriented communication that is typical for embedded sys-

tem oriented component models. Operation based interfaces are represented

by means of services, interfaces or facets depending on the particular language

adopted by component models. All component models, except for OROCOS,

use some kind of interface definition languages for expressing the presence

and the general information associated to interfaces, being them ports, topics

or operation-based. This makes the definition of the component interfaces

independent from the implementation language. The fact that OROCOS

directly defines interfaces in the source code of components is related to the

fact that it supports only C/C++ implementation languages for components.

Anonymity in inter-component communication is a widely achieved fea-

ture in all analyzed component models since it makes components more

4.5 General Considerations 109

Figure 4.1: Communication summary table.

independent from each other and, hence, more reusable.

The asynchronous communication mechanisms is provided, above all, by

embedded system specific component models since it helps in developing

time constrained software systems. The possibility of achieving synchronous

communication, when needed, is still provided both by ROS and OROCOS

via services and operations respectively. Figure 4.1 summarizes the communi-

cation features.

All component models, except for OROCOS, provide support for multi-

ple implementation languages. General purpose component models support

the presence of multiple languages by providing a framework that can na-

tively execute heterogeneous component implementations, on the other hand,

OpenCOM and ROS provide several implementations of the same run-time

environment in different programming languages. This choice should be put

into relation with the goal of achieving good run-time performances together

with a small footprint for the run-time environment. These features can be

110 Chapter 4 Component Models Analysis

very important when developing software for resource constrained embedded

systems. Along with this feature, the support for real-time execution is

provided by components which are focused on embedded system domain.

In this case, OpenCOM do not explicitly provides means for real-time exe-

cution even if the lightweight kernel implementation could be exploited for

obtaining low execution latencies on resource poor systems. General purpose

component models exploit the use of ADL-like languages for defining compo-

nents in a language-independent way improving the independence from any

implementation technology.

The OROCOS component model is the only which constraints the imple-

mentation of components into a default FSM. This, again, is related to the

strong focus of this model to the controllers and embedded system domains

in which the greatest part of the control tasks can be effectively modeled by

means of finite state machines.

Figure 4.2: Computation summary table.

The support for distributed systems is provided by all component models

since, nowadays, systems are often distributed across several computation

nodes. This is true both for general purpose systems, such as Internet-

based applications, and for embedded systems where the control tasks are

4.5 General Considerations 111

carried out by a set of networked heterogeneous nodes such as standard PCs,

microcontrollers, network processors and so forth. In Figure 4.2 computation

features are summarized.

Regarding configuration, all component models, regardless of the specific

domain they are intended for, offer file-based mechanisms for defining and

making persistent the configuration of a component-based system, however,

they still differ in adopted languages and formalisms. General purpose models

offer mechanisms for dynamic reconfiguration of a component system while

this feature is not so supported in domain specific component models even

though a limited possibility for stopping and restarting components is still

provided. Figure 4.3 summarizes the configuration features.

Figure 4.3: Configuration summary table.

For what regards composition mechanisms the distinction between general

purpose and domain specific models is blurred. ROS and OROCOS do

not provide means to organize and compose components into hierarchical

structures, general purpose models, instead, offer composition mechanisms

but each one of them present strong differences in the adopted approach.

CCM containers can contain only a single component and they are intended

for facilitating the life-cycle management of the component, SCA composites

112 Chapter 4 Component Models Analysis

are containers that collect related components by simply hiding or exposing

parts of their interfaces, without adding any kind of computation or additional

services. OpenCOM offers the richest composition mechanism that allows to

create complex containers that can extend the contained component interfaces

by adding a variety of services.

Figure 4.4: Coordination summary table.

When dealing with the coordination concern, domain specific models,

in this case ROS and OROCOS, foster a peer-to-peer interaction among

components. A separation fo roles (client and server) is still possible although

the main interaction scheme is peer-to-peer oriented. A the same time, in these

component models the connector concept, if explicit, is not associated to strong

coordination tasks but, as for OROCOS connection policies, it only provides

means for data buffering. On the other hand, general purpose component

models foster a client/server role based interaction style supported by the

presence of explicit connector constructs that handle and order component

interactions. In this sense, OpenCOM appears to be more similar to general

purpose models. In Figure 4.4 coordination features are summarized.

5
SCA and ROS Integration

In this chapter we describe the integration between the ROS framework and

SCA. The aim of the integration between two quite different component

models is to combine the robotic-oriented features and the provided toolset of

the ROS infrastructure with the flexibility offered by the SCA environment.

In the classification presented in Chapter 4 we found that component

models which are focused on different application domain tend to give greater

emphasis on some feature while neglecting others. In OROCOS, for example,

great attention is put on the periodic execution of components while the

support for multiple programming languages and the possibility of composing

components into higher order structures is lacking.

On the other hand, general-purpose component models allow a more

flexible building of software systems where components can be easily col-

lected into higher-order structures, developed with different programming

languages, deployed on different nodes and the interconnection among them

are more flexible. These component models, such as the Corba Component

Model, lack in giving some of the features that can be determinants when

developing robotic software, for example the possibility of exploiting data-flow

communication or imposing an execution frequency for periodic components.

It is anyhow clear that a component model that fits perfectly each need

cannot exist. The particular nature of robotic software exacerbates the

problem since, this kind of software applications, are usually composed by

113

114 Chapter 5 SCA and ROS Integration

low-level and hardware related pieces of software that need to cooperate with

higher-order memory and computation intensive functionality in order to

carry out the given control task.

Another critical concerns regards the hardware variability that is present

in almost all robotic systems as we described in Chapter 1. General purpose

component models usually assume that computational nodes involved in a

distributed system are standard PCs with sufficient computational capabilities

and a large bandwidth network connection. This is not true for robotics

since, in particular for mobile robotics, the payload and current consumption

constraints force the developers to choose lightweight and resource-poor

hardware systems, at least for what regards the on-board computational units

installed on the robot.

The increasing capability of the nowadays hardware devices allows to

implement PC-based control systems in a range of applications in which the

use of specific, and often exotic, hardware was mandatory until a few years ago.

However, the continuous growth of hardware capability and the progressive

reduction of its dimensions and power consumption is compensate by the

increasing complexity of robot software in terms of more complex functionality

and consequent computational power requirements. This leads to divide the

functionality of the system on a number of cooperating networked units

ranging from industrial or embedded low power PCs to remote high-powered

machines.

In this context, the features offered by the component model are critical

since it should be lightweight for being effectively used on on-board-resource

constrained machines and, at the same time, it should allow the developers

to fully exploit the computational resources of the remote nodes.

For this reason we explored the possibility of integrating different compo-

nent models in order to exploit the robotic-oriented functionality of a domain

specific component model and, at the same time, benefit from the flexibility

offered by a general purpose model.

For achieving a good flexibility together with robotic specific features we

choose to integrate the Robot Operating System with the Service Component

Architecture. In particular we intend to exploit the Java implementation of

5.1 The Service Component Architecture 115

ROS, called rosjava [12], that allow to develop ROS nodes as Java applications.

For what concerns SCA we adopt the Apache Tuscany environment that is

natively implemented in pure Java language.

In our opinion, the use of the Java language itself gives a greater flexibility

in developing applications since it allows to take advantage of the large

collection of libraries and tools expressly developed and distributed for Java-

based software. The Java language also offers the possibility to write fully

portable code.

As we will discuss later in this chapter, the C++ programming language

will be adopted only for computation critical and low-level components that

need to directly interact with the robot hardware. A working example of this

integration will be presented in Chapter 6.

In Section 5.1 we give a more detailed description of the Service Compo-

nent Architecture and its major run-time environments. In Section 5.1 we

describe the Robot Operating System giving a more detailed description of

the filesystem organization and run-time structure. Finally, in Section 5.3,

we analyze the implementation details of the SCA-ROS integration.

5.1 The Service Component Architecture

In this section we introduce the Service Component Architecture [14] as it is

a part of the proposed SCA-ROS integration.

Since the SCA technology has been developed to address the Service Ori-

ented Computing requirements by providing a technological service-oriented

framework, the basics concepts of the service-oriented computing are intro-

duced. The Service Component Architecture (SOC) is a paradigm for the

design and the development of software that aims to evolve software systems

from products to services. Following this approach, a software is considered

as a set of services offered to the final users which can be humans or other

software systems. The SOC approach is based on the development systems

by composing heterogeneous software services, a software service is an ele-

ment that offers reusable and self-contained functionality that can be easily

integrated with other services. By heterogeneous services we intend services

116 Chapter 5 SCA and ROS Integration

that can be defined, developed and integrated using different languages and

implementation technologies.

SOC is not an entirely new concept, several already existing technologies,

such as CORBA, COM, J2EE and .NET can be considered, to some extend,

service-oriented. A particular implementation of the SOC approach, which

is receiving increasing success, are the web services. They are autonomous

applications offering software services that can be recalled both from users

and from other services by using standard formats, based on the XML, for

the exchange of messages over the Internet.

The web service architecture defines four main roles: the service provider

which is in charge of implementing and making available a service; the service

consumer, or client, that invokes the service; the service locator which is a

specific service provider that works as a registry that collect a list of available

services and the service broker that is another type of service provider that

manages the service requests from the clients forwarding them to the providers.

The increasing success of SOC lead to the definition of the Service Ori-

ented Architecture (SOA) standard in 2006 [15] by the OASIS group [8]. As

defined by the standard, the SOA is a methodology for the development of

applications based on the composition and interaction of services through

standard protocols. For example, web services define their own interfaces

using WSDL [22], they can be located using the UDDI protocol [21] and they

can be invoked using SOAP [16]. Services are concretely realized by means

of software components structured in a business process that can be defined

simply referring to their interactions without focusing on the underlying im-

plementation. This composition of services is called service orchestration and

can be expressed with specific languages such as WS-BPEL [23], XLANG2

and Jolie [4].

In the service-oriented methodology, software components expose their

functionality as services keeping the specific implementation well separated

from the exposed interface. To this purpose, a component model is needed

for defining the component construction and composition rules, however, the

SOA standard provides only principles and guide lines for developing service-

oriented systems without providing any specific implementation technology.

5.1 The Service Component Architecture 117

The Service Component Architecture (SCA) aims to meet those needs by

defining a technology-independent and service-oriented framework. SCA is a

set of specifications for the realization of distributed applications following the

principles of both the service oriented computing and the component-based

software engineering (CBSE). This model has been promoted by a consortium

of IT industries such as IBM, Oracle, Sun and SAP and its standardization

is promoted by the Open Service Oriented Architecture (OSOA) group.

The first release of SCA (version 0.9) has been published in November

2005 defining the main characteristics of a SCA system and referring to Java

and C++ as implementation languages. In July 2006, SCA has been improved

by adding the support for other programming languages and implementation

technologies. In March 2007 the OSOA committee published the 1.0 version

of SCA and several improvements are programmed to appear in the next

versions of the technology.

5.1.1 Basic Principles

The software components are the constituent elements of SCA and they

can provide interfaces by exposing services, require interfaces by declaring

references and expose properties. Services and references are connected

through connectors called wires. The component model has a hierarchical

nature since each component can be realized by a software entity implemented

in a supported programming language or it can be built by composing a

number of sub-components realizing a composite.

The composition and the configuration of components is realized by

means of a simple XML-based language that defines a SCA application called

contribution.

The SCA design refers to four fundamental principles: programming

language independence, interface definition language independence, commu-

nication protocol independence and non-functional properties independence.

These principles aims to make possible the definition of a service-oriented

architecture that is as far as possible independent from underlying software

technologies.

118 Chapter 5 SCA and ROS Integration

• Programming language independence: SCA do not assumes that

components are implemented in a unique programming language, map-

ping to different programming languages are supported instead, the

most important are Java, C++, BPEL and Spring.

• Interface definition language independence: the components of a

SCA application can provide and require functionality through interfaces

that define a contract between the service provider and its clients. To

this purpose, more than one interface definition language (IDL) are

supported, the most used are Java and WSDL.

• Communication protocol independence: Generally, the most used

communication modality is the web services technology, anyway, there

can be cases in which this solution is not well suited. For this reason,

SCA provides the binding notion that let the services and references to

be associated to a particular communication protocol such as SOAP,

Java RMI, JMS or JSON.

• Non-functional properties independence: A certain number of

non-functional properties can be associated to a SCA component through

the concept of policy set or intent. The basic idea is that a component

can declare a set of non-functional features demanding to the SCA

platform the task for ensuring that they comply. At the moment, in

the SCA specification are included policies for security and atomicity

of transactions. Moreover, because there could be different needs, the

policy set can be extended by users.

5.1.2 The SCA component model

A SCA contribution is composed by one or more components whose interac-

tions are modeled as services, this allows the developers to clearly separate

the implementation technology from the provided functionality. Components

can be combined and grouped into aggregate structure called composites.

A SCA composite represents an assembly of components from a logical

point of view. From a functional point of view, components inside a composite

5.1 The Service Component Architecture 119

Figure 5.1: A SCA composite example.

can be executed in a single process on a single machine or they can be

distributed across a set of processes executed on a network of computers. A

complete application can be composed of a single composite or of a set of

composites as well.

As shown in Figure 5.1 a SCA application can interact with software that

do not belong to SCA such as a JSP page, a web service client or a Java

class through RMI. SCA components can access data in several ways, for

example through Service Data Objects (SDO), JDBC and Java Persistence

API (JPA).

A SCA composite is usually described within an associated configuration

file with .composite extension. This file uses a particular instance of the

XML language called Service Component Definition Language (SCDL) that is

used to describe the components, the services, the references and the wirings

between them.

5.1.3 Domains

A domain is a specific instantiation of a SCA run-time environment executing

one or more components. A domain can contain one or more composites,

which, in turn, can contain more than one components executed in one or

120 Chapter 5 SCA and ROS Integration

more processes on a set of computers.

Figure 5.2: A SCA domain example.

Figure 5.2 shows an example of a SCA domain containing three composites

and displaced on three computers. The first composite, in the upper part

of the image, is composed of five components executed into three process

distributed across two machines. The other two composites are executed

by a single machine and they are divided into three separated processes.

The interaction mechanisms between components are usually defined by the

adopted SCA run-time environment, for example Apache Tuscany.

5.1 The Service Component Architecture 121

5.1.4 Components

Components are the base elements of a SCA contribution. Each component

has a precise behaviour expressed in terms of provided and required services,

hence, the functionality of the system depends on the on the configuration of

its components.

In the SCA meaning, a component is an implementation instance properly

configured with an XML-SCDL file defining the interaction mechanisms

between the component and other components or external applications. Hence,

several components can use the same implementation configuring it in different

ways. Figure 5.3 shows the graphical notation adopted for the description of

a SCA component.

Figure 5.3: SCA graphical notation for components

SCA defines four different modes for the component instantiation:

• stateless: all instances of the same component are equivalent.

• request: a new instance is created for each request.

• conversation: a new instance of the component is created for each

conversation that is requested by a client.

122 Chapter 5 SCA and ROS Integration

• composite: a singleton object is created for each composite.

On the basis of the selected mode, the run-time manages the creation and

the initialization of new instances of components.

5.1.5 Services

Each component implements a piece of the functionality of the application

and exposes one or more services represented as green arrows in figure 5.3.

Services provide a certain number of operations, also called business functions,

that can be accessed by associated clients. Generally, the modality with

which services are defined depends on the technology used for the component

implementation: Java components will expose services as Java interfaces while

BPEL components will use WSDL to describe services.

In the SCDL file, the XML element expressing a component can have one or

more children elements and attributes representing the services configuration,

the principal are:

• name: it is a mandatory attribute corresponding to the name of the

service as defined in the implementation.

• requires: it is an optional attribute list of non-functional features such

as confidentiality, atomicity of transactions and security.

• policySets: it is an optional element listing additional policy sets.

• interface: each service can have an interface element describing the

provided operations. This is a sub element of the service element. If

no interface is specified, the interface specified in the service implemen-

tation is adopted. In any case, this interface, when specified, must be

compatible with the implementation interface.

• binding: each service element can have a binding that specifies the

communication protocol to be used for the interactions with the service.

If no binding has been specified, the specific protocol defined in the

service implementation is adopted. The communication protocol must

5.1 The Service Component Architecture 123

satisfy the policy set and the non-functional features specified for the

service.

5.1.6 References

In addition to providing services to software clients, a component can also

depend from services provided by other components. To describe this depen-

dency, a component can express which services it needs through the reference

concept. In Figure 5.3, references are depicted with a purple arrow exiting

from the component frame. Differently from the concept of service, the con-

cept of reference can be used to explicitly and formally show the dependency

of a component from others helping the developers to clearly express the

functional relationships between the components of the system.

The XML-SCDL element that represent a service can have the following

attributes:

• name: it is the mandatory name of the reference, it must correspond

to the reference name defined in the implementation.

• autowire: it can optionally specify if the reference should be automat-

ically connected to the corresponding reference.

• requires: it is an optional attribute defining an additional list of policies

and non-functional features for the reference.

• policySets: it is an optional attribute listing a set of additional policies.

• multiplicity: optionally, it is possible to define the number of possible

connection between the current reference and the available services.

The default value is one.

• target: it is an optional list of services addresses (the number depends

on the multiplicity) linking the reference to one or more service provided

by another component. The form is NameOfComponent/NameOfService.

• wiredByImpl: optionally, this boolean value can specify whether the

implementation of component should automatically wire the reference

124 Chapter 5 SCA and ROS Integration

at run-time. If the value is false it means that the wire that links the

reference to the service is defined before the execution, if true, the link

is left undefined waiting for a dynamic match that can be provided, for

example, by a service broker.

An interface may be optionally associated to a reference with the purpose

of describing the required operations, this can be done in the SCDL file by

defining the element interface as a child of the reference element. The defined

interface must agree with the implementation interface which, if no interface

is specified, is used by default.

5.1.7 Properties

A component can specify one or more properties. Each property is read from

the SCDL configuration file when the implementation is instantiated. The

properties allow to parametrize the behaviour of the component avoiding the

need of making modifications on the component’s implementation code.

In the configuration file, the XML element property can have the following

attributes:

• name: represents the name of the property as used by the implementa-

tion.

• type: is the type of the property expressed by a XML schema type.

• many: an optional boolean value expressing whether the property is

multiple or not. Multiple properties are a collection of values.

• mustSupply: if true, the property value must be supplied in the SCDL

file, if false, a default value defined in the implementation can be used.

5.1.8 Bindings

Service and reference concepts define the interactions between components in

a SCA system without specifying the communication mode. This is very im-

portant since it enhances the reuse of components keeping the implementation

5.1 The Service Component Architecture 125

separated from the communication protocols that are typically application

dependent. For the definition of communication aspects, the SCA technology

provides the binding concept.

A binding specifies the modality through which components can communi-

cate with each other or with external applications. Depending on the recipient

of the communication, a component could, or could not, need for a specific

binding. When the communication is carried out between components being

executed on different networked machines, the SCA run-time can determine

the appropriate binding to be used. Moreover, services and references can

have multiple bindings allowing several interaction modality with them.

The binding concept represent an important step in decoupling compo-

nent computation from communication issues improving the software reuse

according to the SOC principles.

5.1.9 Composite

The goal of composites, in the SCA specification, is to group components in

proper schemes that can, in turn, be further composed obtaining a hierarchical

structure with different levels of abstraction. This approach offers several

advantages: first of all, the presence of different levels of abstraction helps the

developers in the design phase of the overall system; moreover, since composite

can be deployed and executed in several ways (one or more processes on one

or more machines), it allows the deployment of the application as an unique

abstract entity. Finally, there is the possibility to use graphical tools for

the assembly, the wiring and configuration of components regardless of any

implementation detail.

5.1.10 Wires

Once references and services has been defined, there is the need to specify, at

the composite configuration level, which are the connections, called wires, that

link a service to a reference. This is important since, in the same composite,

there could be more than one service with a given interface and an automatic

configuration may be ambiguous or impossible.

126 Chapter 5 SCA and ROS Integration

Wires can directly connect services to references in the same composite,

they specify the actors involved in the communication without specifying

the modality (in terms of used protocols) of the communication which is,

instead, defined by the bindings. Wires are also responsible for the promotion

of component services (or references) to composite services (or references).

When a service or a reference is promoted to the composite level, it can be

reached from other composites or other non-SCA software applications.

In the SCDL file, wires are defined by using the wire element.

5.1.11 SCA Run-time Environments

As already explained, the SCA specifications do not take into account the

implementation details of the technology. This is for the purpose of ensuring

the highest level of portability across different run-time environments. For this

reason, several SCA platform implementation are available both in open-source

and in commercial versions. Most common open-source implementations are

Apache Tuscany (Section 5.1.11), OW2 FraSCAti (Section 5.1.11) and Fabric3

(Section 5.1.11). The most spread used proprietary implementation is IBM

WebSphere [3].

Even if it is not binding, almost all run-time implementation of SCA

are structured as shown in Figure 5.4. Each SCA run-time should provide

a certain number of containers, one for each technology supported by the

implementation. The implementation element in the SCDL configuration

file notifies to the run-time which container is necessary for the execution of

each single component. In the example, three components are required for

Java, BPEL and Spring. Moreover, the run-time defines the communication

mechanisms among components independently from their implementation

technology.

The interface between the run-time and the containers is public in many

SCA run-time implementations, allowing a run-time developers to extend the

support for other implementation technologies and programming languages.

5.1 The Service Component Architecture 127

Figure 5.4: Structure of a SCA run-time.

The Apache Tuscany Environment

Tuscany [60] [1] is an open-source run-time environment developed by the

Apache Software Foundation that provides an infrastructure for the develop-

ment and management of SCA systems. Tuscany is integrated with a large

number of languages for component definition, such as C++, Java, BPEL

and Javascript, and a great variety of communication mechanisms.

The Tuscany architecture is focused on a lightweight implementation that

allows its execution both as a standalone system or in association with other

application servers like Apache Tomcat. The entire implementation is modular,

this helps the integration with other technologies and the extendability of

the platform. The run-time environment is implemented both in a pure Java

version and in a C++ version called native.

Figure 5.5 shows the Apache Tuscany architecture that can be divided

into a principal architecture and a set of extensions for other technologies.

Although this makes it possible to extend the Tuscany support for other

128 Chapter 5 SCA and ROS Integration

Figure 5.5: The Apache Tuscany run-time architecture.

technologies, many of them are supported by the default release of the run-

time environment.

The first layer refers to composite application that is in charge of containing

and give support for the execution of components and composites as defined

in the XML-SCDL composite file. The second layer refers to the SCA API

and provides a communication interface between component implementation

and the run-time system. The APIs are specific for each supported component

implementation language.

On the left part of the Figure 5.5 the Tuscany core is shown. This part

of the run-time system is in charge of supporting components and services

creation, the overall application building and their management. In the

middle, the Tuscany SPI offers an interface that makes possible the extension

of the Tuscany functionality by interfacing modules, both custom and default,

with the application core. Finally, on the right, the possible extensions

5.1 The Service Component Architecture 129

are shown. Examples of extensions are: communication protocols (binding

types), exchange of data formats (data-binding types), implementation types,

interface definition languages and policy sets.

The bindings, in particular, provide support for a number of communi-

cation protocols like SOAP, HTTP, RMI and JSONRPC. The data-binding

framework allows a transparent exchange of data between services freeing

the developers from the burden of defining explicit data conversions. The

implementation types extension provides support for different languages, up to

now, the supported languages are: Java, BPEL, Spring and JavaScript. The

interface definition language extension allows the definition of interfaces by

means of different specific languages although, up to now, Tuscany supports

only WSDL and Java.

The FraSCAti Environment

OW2 FraSCAti [72] [73] [9] is an interesting, although less spread used,

run-time environment for SCA. It is characterized by the introduction of

several innovations to the SCA standard approach. This platform integrates

SCA with a set of functionality for the dynamic management of application

extending the component model of SCA. FraSCAti provides a mechanisms

for the handling of events among components through which it is possible to

dynamically manage non-functional features like transaction control.

The FraSCAti approach is aimed by the will to implement the SOA

principles in a more complete way, above all for what it is concerned with

the dynamic configuration and reconfiguration of components. This aspect

is often neglected by other run-time environments such as Tuscany. For

this reason the FraSCAti architecture is based on the container concept.

Containers are wrappers for components that offer several additional services

which are not present in the SCA specifications.

The container is a component meta-level that provides access to various

services. Each service handles a particular facet of the management of a SCA

component. The result is a two-level architecture where each SCA component

is hosted by a container which is itself built in a component-based fashion.

130 Chapter 5 SCA and ROS Integration

Figure 5.6: The structure of a FraSCAti container.

Figure 5.6 shows the structure of a FraSCAti container wrapping a component.

The services provided by containers are:

• Component wiring. This service provides the ability, for each com-

ponent, to query the list of existing wires, to register new wires and to

remove wires. These operations can be performed on a running SCA

application.

• Component instantiation. SCA specification define four modes for

the instantiation of a component: stateless, request, conversation and

composite.

• Component property. This service provide means for component

properties set and retrieval.

• Component identity. Helps the management of components by query-

ing the list of provided services and required references.

• Component hierarchy management. The SCA component model

is hierarchical in the sense that a component can be either primitive

or composite. Composite components contain sub-components which

5.1 The Service Component Architecture 131

can be, in turn, either primitive or composite. The resulting hierarchy

structure is a tree. The management of this hierarchy is performed

by two sub-services: one for adding, querying and removing the sub-

components of a composite, and one for retrieving the parent of a

component.

• Component lifecycle. When dealing with multi-threaded applica-

tions, reconfiguration operations, such as the ones mentioned in the

previous items, cannot be performed in an uncontrolled way. Indeed,

modifying a wire while a client request is being served may lead to

inconsistencies and wrong results or errors returned to clients. For

this reason, the lifecycle service ensures that reconfiguration operations

are performed safely and consistently in insulation with client requests.

This service controls the lifecycle of the components in the sense that

it strictly delimits the time intervals during which reconfiguration op-

erations can be performed and those during which application level

requests can be processed.

• Component intent. This service manages the non-functional proper-

ties and the policies associated to each component.

FraSCAti uses interceptors objects to integrate services with application-

specific business code keeping these concerns separated both at design time

and at run-time. Each interceptor has a registered policy for data exchange

(request for authentication, use of a cipher, certificates, ACID transactions and

so on). Interceptors are placed by the SCA infrastructure between services

and references which are annotated with the SCA annotations. When a

client request is served by the corresponding server component, the request is

first “trapped” and handled by the interceptors that applies the predefined

corresponding logic and then the request is transmitted to the component.

Interceptors act as filters and they are dynamic since they can be added or

removed at run-time.

The FraSCAti platform is implemented in pure Java and uses the same

component model of the FraSCAti SCA applications. The platform has four

132 Chapter 5 SCA and ROS Integration

main components: component factory, wiring & binding factory, middleware

services and assembly factory.

The component factory is in charge of creating containers and components.

The wiring & binding factory is in charge of creating wires between compo-

nents, since SCA is independent from communication protocols, components

are first specified and then they are bound using a selected distribution

technology. This allows to decouple the task of designing the business logic

of the component from the details of the protocol which implements the

communications. Besides creating internal wires in an SCA application, the

wiring & binding factory is also in charge of exporting services and references

to the composite interface. The middleware services is a repository for the

non-functional services which are made available to the applications. The

assembly factory is responsible for parsing the SCA assembly language descrip-

tors, interpreting the XML tags and creating the corresponding component

assemblies. Whenever necessary, the assembly factory relies on the component

factory for creating components, on the wiring & binding factory for creating

wires, exporting services and references, and on the middleware services for

integrating non-functional features into applications.

The Fabric3 Environment

The Fabric3 run-time environment [2] is officially compliant to the SCA 1.1

specifications and offers some interesting and innovative features extending

the SCA concepts. The run-time can be executed as a standalone application

providing a component “deployer” that allows the execution of components.

Components can be put into execution and removed dynamically. Moreover,

the Fabric3 run-time can run on Apache Tomcat application servers or on a

Java EE application server.

When compared to other SCA run-times, Fabric3 offers two main additional

features:

• Event-based communication: Along the common definition of ser-

vices and references, components can also define communication channels

allowing for an event-based communication mechanism. A data-producer

5.2 The Robot Operating System 133

component can write new data on the communication channel and all

the subscribed components can be notified about the presence of new

data. Each subscriber component implements a callback method that

is called by the run-time platform when new data is available on the

communication channel

• Periodic execution: Fabric3 allows the definition of periodic com-

ponents. This can be done by expressing their implementation in

the SCDL file using a particular XML element introduced by Fabric3

(implementation.timer). The run-time is in charge of periodically

executing the timer components at the given frequency.

However, the Fabric3 run-time has strong limitations regarding the use

of periodic components and event-based communication mechanisms. First,

periodic components cannot be event consumers and, hence, they cannot

be notified by the run-time when new data is available on the subscribed

communication channel. Second, timer components cannot be the targets

of a service-to-reference wiring. This strongly limits their usability in SCA

applications.

Moreover, the periodic execution of timer components is not guaranteed

in any way, hence, their real execution frequency is deeply dependent from

system load, complexity of computation and network bandwidth. This leads

to a non sufficient accuracy in the periodic execution in most time-driven

applications, especially when execution periods shorter than one second are

required.

5.2 The Robot Operating System

The Robot Operating System (ROS) [66] is an open-source meta-operating

system for robots developed by Willowgarage [20]. ROS is not an operating

system in traditional sense of management and scheduling of processes, it

rather provides a communication layer above the host operating system

supporting the the execution of components in a distributed and heterogeneous

system.

134 Chapter 5 SCA and ROS Integration

ROS is strongly focused on the robotics field and it provides means for hard-

ware abstraction, message passing, package management, tools and libraries

for most commonly used functionality in the robotics domain. The ROS

framework has been developed keeping in mind five main goals: peer-to-peer

relationship between nodes, tool-based support, multi language compatibility,

lightweight implementation and free and open-source license.

Figure 5.7: A typical ROS network configuration.

A typical configuration of a mobile robotic system is composed by a

set of networked machines. One or more of them are located on the robot

while others are remote and can be accessed through the network as shown

in Figure 5.7. The onboard computers are usually low-powered because of

current consumption, space and weight limitations on the mobile robot while

the remote machines are high-powered and usually run computation-intensive

tasks such as computer vision and Simultaneous Localization And Mapping

(SLAM) algorithms.

A ROS system consists of a number of processes connected at run-time in

a peer-to-peer topology with the aim of avoiding the presence of a central

application server that could become a bottleneck for performance. To support

the cross-language development, ROS uses a simple, language-neutral Interface

Definition Language (IDL) to describe messages that are then autonomously

translated into programming language objects by the framework. ROS

is developed as a set of small tools that can be used to build and run

ROS components, this approach resembles the microkernel approach for the

construction of operating systems. The reusability of implemented components

5.2 The Robot Operating System 135

is enforced by keeping the ROS implementation thin, this, according to its

creators, should make the extraction of code easier. The ROS implementation

is free and open-source and the framework is distributed under the terms of

the BSD license which allows the development of both commercial and non

commercial software. ROS currently runs only on Unix-based systems, above

all Linux and Mac OS X. The ROS core system, default tools and libraries are

developed and distributed into ROS distributions that are regularly released.

5.2.1 The ROS Component Model

The Robot Operating System can be analyzed according to two levels of

abstraction: the filesystem level and the computation graph level. This leads

to a distinction between how software entities are created, stored and managed

in the host filesystem and the run-time nature of the these software entities.

According to this distinction, ROS defines two types of names: package

resource names and graph resource names.

ROS Filesystem level

The filesystem level concepts represent ROS resources that can be distin-

guished on the filesystem of the host operating system, they are: packages,

manifests, stacks, stacks manifests, message types and service types.

ROS software is mainly organized into packages and they represent the

basic unit of compilation of a ROS system. A package can contain one or

more component implementations (nodes), a ROS independent library, a

record of data, a set of configuration files or external software. In general, the

content of a package, constitutes a self contained module that is useful for

some task. The goal of the use and the definition of packages is to provide a

flexible and easy-to-use container for reusable functionality, for this reason,

packages can be created, moved and compiled using the package management

tools provided by ROS.

Manifests provide meta-data describing the packages, each package must

have a manifest file describing it. As a matter of fact, the minimal ROS

package is composed by a filesystem folder with a manifest file associated

136 Chapter 5 SCA and ROS Integration

to it. Manifests are defined in XML language and, in addition to declaring

the package name, the author and the version information, they define the

dependencies of the package in terms of external resources or libraries needed

both for compilation and for execution purposes. The dependencies definition

is language and operating system independent and it is used by ROS command-

line compilation tools to resolve software dependencies. This greatly simplifies

the distribution and the compilation of ROS software across system with

different configurations.

Stacks are organized collections of packages providing complete functional-

ity. An example of stack is the navigation stack that provides functionality for

the navigation of mobile robots in a three-dimensional environment. In other

cases, libraries are distributed as stacks, for example the Point Cloud Library

(PCL) that provides instruments for creating and managing three-dimensional

point clouds.

Stacks are the top level hierarchy entities in a ROS system since they

cannot contain other stacks. They represent the primary mechanism for

distributing code being it a library, a tool or an executable set of nodes.

It must be said that, in recent versions of the ROS framework, the focus

has been moved from stacks to packages and, up to now, packages are often

distributed individually. Similarly to the packages, stacks are described by

stack manifests through which stack information and dependencies can be

obtained both by users and by command-line compilation tools.

ROS messages are described by means of message types files defined by

using a message description language. Each ROS message is a data structure

containing both primitive types (integers, floating point numbers, strings),

arrays of primitive types and/or other messages. Message definition files

are stored in packages and can be added as dependencies to packages and

stacks. At the compile time, message definition files are translated into

executable code and automatically provide means for message serialization

and de-serialization in a way that is completely transparent to the developers.

Services are defined by means of a simplified service description language

encoding the service type. Services enable the request/response commu-

nication between nodes. The service description files are stored inside a

5.2 The Robot Operating System 137

sub-directory of a package. They are essentially similar to messages except

that they always define a couple of messages, one for the request and one for

the response.

ROS Computation Graph level

In ROS a computation graph is a peer-to-peer network of cooperating ROS

components, or nodes. The basic concept related to the computation graph

are: nodes, messages, topics, services, bags, the parameter server and the

master. All these concept are implemented and distributed in an unique ROS

stack (ros comm).

Nodes are running ROS components and they represent the minimal run-

time units in a ROS system. Each node is a process that perform computation

and can operate periodically or in an event-driven way or both. In ROS,

robot control systems are built by composing several nodes, each one of

them is in charge of managing a particular aspect of the control system, for

example: getting data from a laser scanner, control the wheel motors, perform

localization and planning and so forth.

All Running nodes have a graph source name that uniquely identifies them

in the system. Each node has also a package resource name composed by

the package name and by the executable name; this is needed by the ROS

run-time to find the current executable name in the list of system packages.

Hence, in ROS, nodes are simply identified by their names that must be

unique.

A ROS node is written in one of the available programming languages

with the use of a ROS client library such as roscpp per C++ nodes and rospy

for Python nodes. The use of Lua, LISP and Java programming language for

the definition of nodes is also possible.

The ROS framework encourages the division of functionality on several

different nodes in order to achieve a finer-grained modularity. In the author’s

aims this should provide an increased fault tolerance since malfunction are

insulated to individual nodes. Spreading the functionality across many nodes

also reduces the code complexity in comparison to monolithic systems since

138 Chapter 5 SCA and ROS Integration

implementation details are hidden and nodes expose a minimal API to the

rest of the components. By doing so it becomes easier to provide alternate

implementations for nodes that can be easily substituted without the need of

propagating modifications to other nodes.

The Message concept represents the basis for the asynchronous message-

based communication of a ROS system. A message is a data structure with

typed fields. ROS messages are defined by means of a message description

language that allows the definition of primitive types, arrays of primitive

types and nested definition of other messages. Referring to this feature, ROS

messages are similar to C structures.

ROS client libraries (such as roscpp and rospy) implement message gener-

ators that translate message definition files into the target source code. The

source code translation of messages automatically creates serialization and

de-serialization functions for message delivery.

A ROS message can include a special data type called header containing

common data fields such as the timestamp, an integer number describing the

time instant to which the message refers, the frame ID, that represent the

geometric frame to which the message is related, and the sequence number.

The presence of this header is strongly related to the main objective of ROS:

developing robot control systems. Having time and geometric information

attached to each message simplifies the handling of timed sequences of data

coming from several sensors. When dealing with laser scanners, for example,

the frame ID field stores the geometrical frame information that should be

associated with the data and the timestamp field correspond to the time at

which the scan was taken.

Messages can be exchanged via a transport system with a publisher/-

subscriber semantics. Nodes can publish messages to topics and retrieve

messages by subscribing to other topics. Each topic is uniquely identified by a

string name. There may be multiple concurrent nodes publishing on the same

topic and multiple nodes subscribed to the same topic. Moreover, a single

node can publish and subscribe to multiple nodes. In general, publishers and

subscribers are not aware of each others’ existence.

The underlying principle is to fully decouple the production of information

5.2 The Robot Operating System 139

from its consumption decreasing the space and time coupling between nodes.

The only constraint related to the publishing and subscribing operations lies

in the message types: each topic has a supported type and, hence, any node

can publish on a topic as long as messages has compatible types.

The communication is event-based, the client library provides the definition

of a callback function that can be specialized and associated to a subscribed

topic. This function is asynchronously called when a new message is available

on the subscribed topic allowing the subscriber node to retrieve the message

content.

Topics are intended for unidirectional streaming communication, moreover,

ROS allows the request/response semantics for communication by providing

the service concept.

Topics are implemented as TCP/IP-based or UDP-based transport sys-

tems. The default transport system uses TCP/IP sockets and it is known

as TCPROS. It streams data over persistent TCP/IP lossless connections.

Since TCPROS is the default data transport, all ROS client libraries have to

support it. The UDP/IP transport, known as UDPROS is a lossy low-latency

transport supported only by the roscpp client library. Using an IP based

communication system, the message transfer between local or remote nodes

is fully transparent and the same node can be executed and reached either

locally or remotely. Local and remotes computation systems running ROS

nodes only need to lie on a commonly addressable network segment.

Figure 5.8: Communication between two ROS nodes.

Although the publisher/subscriber model is flexible and ensures time and

space decoupling between communicating components, it is not well suited

140 Chapter 5 SCA and ROS Integration

for request/reply interactions, for this purpose, ROS provides the service

concept.

Services are defined by a pair of message structures, one for the service

request and one for the reply. A service provider node can define a service

name that can be used by its clients to send request messages. Once the

request has been sent, the client waits for the reply.

Client libraries present this form of interaction with the same semantics

of a remote procedure call although the ROS infrastructure implements it

with a message exchange over the same TCP/IP transport used for messages.

Services are defined using a simplified service definition language that

indicate the request and response message formats. These definitions are then

automatically translated into source code by the client library that adds the

serialization and de-serialization functions as it is done for ROS messages.

Bags are data collection structures. They can subscribe to one or more

topics and store the received message data into a file. This bag files can then

be played back to the same topics they were received from or on a different

topic.

From this point of view, the use of a bag file is no different from the

presence of a ROS node sending the same data types. Bags can be very useful

when testing or debugging control systems: the same data, representing for

example the complete scan of a real-world environment, can be recorded once

and used several times to test different mapping algorithms. Bags can also be

used as advanced logging instruments collecting output from working robots.

A parameter server is a shared dictionary of variables and constants

accessible through the network. Nodes can use this server to store and retrieve

parameters at run-time, i.e. configuration data or properties. The parameter

server is implemented using XMLRPC and its API are accessible through

standard XMLRPC libraries by nodes. Parameters are stored with the same

naming convention adopted for identifying nodes and topics in a ROS system.

This leads to a hierarchical structure of parameters that can be accessed

individually or as a tree.

The Master is the central concept of a ROS run-time system. It is a

ROS node that provides naming and registration services to other nodes. It

5.2 The Robot Operating System 141

keeps trace of publishers and subscribers to topics and services. The master

allows nodes to locate other nodes enabling the peer-to-peer communication.

It also provides and maintains the parameter server.

The ROS master functionality can be accessed through a XMLRPC-based

API that it is used by client libraries to call and retrieve information about

the graph node. However, the access to this low-level functionality is fully

hidden by the client libraries and, hence, custom nodes do not need to directly

access the master API.

Nodes connect to other nodes directly, the master only provides lookup

information so that nodes that subscribe to a topic will request connections

from nodes that publish on that particular topic. This architecture allows

for decoupled operation where actors (topics or nodes) are referred by their

names that must be unique in the entire ROS system. For this purpose, the

naming convention adopted by ROS allows for the definition of nested names

organized in a tree-like structure.

The implementation of the ROS master is provided by the rosmaster

package.

Figure 5.9: A ROS graph node.

Figure 5.9 shows a running ROS graph node. Nodes are elliptical blocks

marked with their names, topics are rectangle shaped blocks and arrows show

the sense of the communication. In this basic example the “/Publisher”

node is publishing data on the “/data topic” topic and the “/Subscriber”

node is subscribed to the same topic. The image was taken using the rxgraph

tool.

5.2.2 ROS tools

ROS is one of the most spread used framework for component-based robotics

software. One of the key-feature that led to such a success is the presence of

142 Chapter 5 SCA and ROS Integration

several tools for helping the development, the debugging and the deployment

of robotics applications. These tools perform various tasks, e.g., navigate the

source code three, set and get configuration parameters, visualize graph node

and connection topology, logging of input and output data, graphically plot

message data, generate documentation, and so on.

All this services are implemented by tools that are not part of the ROS

master, everything is put into separated modules keeping the master imple-

mentation reasonably simple and efficient.

ROS provides tools for compilation and execution management of compo-

nents. The rosmake is a compilation tool based on CMake that explores the

dependencies defined in package and stacks manifest files and resolves the

compilation dependencies between packages and external libraries. If properly

configured, rosmake is also in charge of translating messages and services

definitions into target component’s source code. The rosdep tool works in

collaboration with rosmake and it is in charge of finding the dependencies

between the package to be compiled and other ROS packages. In the case in

which some dependent packages are missing on the target system, rosdep can

be configured to retrieve their source code from the ROS on-line repository

and automatically download and compile the needed sources.

Components configurations, expressed in terms of active components and

involved communication topics, can be stored in XML launch files. In this

files it is also possible to “remap” the name of topics to other names making

their reuse easier. Without the remap feature, in fact, the topic names are

hard-coded inside the component implementation files an this can hamper

the reusability of implementations and the flexibility of the entire system.

Launch files are executed by the roslaunch tool that analyzes the file, loads

all needed components and remaps topic names.

ROS offers a set of tools for data visualization and logging. In particular,

geometric data can be visualized through the rviz program that allows to

subscribe to topics exchanging three-dimensional robot models, laser scans,

images and point clouds. Rviz behaves as a standard node offering a graphical

user interface to the user who wants to visualize data by simply subscribing

to interested topics. The rxplot tool offers a simplified graphical instrument

5.2 The Robot Operating System 143

to plot and compare timed data as it could be done with MATLAB-Simulink

scopes or similar tools. The rostopic tool allows to print data traffic from a

topic into a textual UNIX-like console and allows the user to manually insert

new data for debugging purpose.

To simplify and harmonize the treatment of spatial three-dimensional

frames, ROS provides a geometric transformation system called tf. Robotic

systems, in fact, often need to deal with spatial relationships between sensor

and robots, between robots and fixed environment frames and between ma-

nipulators joints. For this purpose, the tf builds a dynamic transformation

tree which relates all frames of reference of the system building a tree-like

representation. The tool can be used to obtain the geometric path between a

frame and another one avoiding tedious, error prone and difficult to debug

manual implementation of geometric transformations.

All ROS packages are open-sourced and this greatly improves the possibility

to interface ROS with other spread-used frameworks or libraries. In many

cases external tools can be wrapped into ROS packages; this is the case of

the OpenCV [7] computer vision library or the Player [19] software. The

entire OROCOS framework [18] has been integrated into ROS and a complete

working OROCOS environment can be installed in a ROS system. The ROS-

OROCOS integration allows to directly connect ROS topics to OROCOS

ports obtaining an hybrid system in which, typically, hard real-time tasks

are carried out by OROCOS and soft real-time tasks, such as the motion

planning, are managed by ROS.

The well known Gazebo robot simulator [17] has been fully integrated

with ROS providing a flexible dynamic simulator for both manipulators and

mobile robots. The simulation model can be interfaced with the ROS system

by subscribing and publishing data from and to topics. In Figure 5.10 a

screenshot taken from the rxgraph tool is shown.

In this case, the KUKA Youbot Arm with its gripper is simulated with

the Gazebo simulator. The gazebo node publishes several topics including

the joint states (joint states) of the robot containing positions, speeds and

torques of the simulated arm and the tf transformations representing the

geometric transformations among the five joints of the robot arm.

144 Chapter 5 SCA and ROS Integration

Figure 5.10: An example of a ROS-Gazebo integrated system.

The YoubotSimulatorDriverROS node publishes positions, velocities and

torques commands on the corresponding topics which are subscribed by

the simulator and reads the joint states from the already mentioned topic

published by the simulator.

The kinematic and dynamic model of the robot is stored in a XML file

(URDF) that can be loaded by the simulator for obtaining the dynamic and

geometric features of the arm including the inertial matrix, the joints limit

angles, the link dimensions and so forth.

5.3 Integration of SCA and ROS

An integrated software system comprising both SCA and ROS is composed

by two almost separate subsystems, the first is composed by ROS nodes

handling the low-level functionality of the robot and interfacing with the

robot hardware composed by sensors and actuators. The second subsystem

is composed by SCA components implementing higher-level functionality

such as mapping, navigation, visual object recognition and graphical user

interfaces.

The components of the SCA subsystem are implemented in Java or in any

5.3 Integration of SCA and ROS 145

other language which is supported by the run-time environment while ROS

subsystem components will be mainly implemented in C++ and, if needed,

in Java language.

Figure 5.11: Conceptual view of the SCA-ROS integration.

The core of the integration process is a component that should belong

both to the ROS subsystem and, at the same time, to the SCA subsystem.

This is actually the approach adopted for integrating SCA and ROS in this

work.

The RosGate component embodies the link between the ROS and SCA

subsystems. It is implemented as a Java class that uses the rosjava API to

interface the ROS subsystem and exposes a Java interface that can be easily

146 Chapter 5 SCA and ROS Integration

integrated into a standard SCA Java component.

5.3.1 Rosjava

As already mentioned, the RosGate component exploits the rosjava APIs to

interface with the ROS subsystem. Rosjava is an alternative implementation

of ROS written in pure Java language. It provides a client library, which

behaves similarly to the standard C++ or Python ROS client libraries, that

enables developers to interface with ROS topics, services and parameters. A

Java native implementation of the roscore is also available although rosjava

nodes can be executed and handled by the Python or C++ roscore.

Unlike the standard ROS client libraries, in which each node is an inde-

pendent process, a certain number of rosjava nodes can run in a thread pool

into a single Java Virtual Machine. Each rosjava node must implement the

NodeMain interface shown in Listing 5.1.

• getDefaultNodeName: it returns the name of the current node as ex-

pected by the ROS system to build the graph node.

• onStart: this method represent the entry point of the node execution

program. The ConnectedNode parameter is used to build publisher and

listeners for topics.

• onShutdown: this is the first of the possible exit points of the node

execution program. This method will be executed when the shutdown

procedure is started.

• onShutdownComplete: it represent the final exit point of the node exe-

cution. This method is intended for managing the clean-up operations.

• onError: this method is called when an internal error occurs.

Publish and Subscribe operations are managed by means of dedicated

objects, called publishers and subscribers respectively. Each publisher

object is associated with a topic name expressed by means of a plain string

and a data type. Java data types for messages can be generated automatically

5.3 Integration of SCA and ROS 147

by the ROS message generator starting from message definition written in

the ROS Message Description Language. Similarly, each subscriber object is

associated with a topic name and a data type. In addition, each subscriber can

be associated to one or more listeners implementing the MessageListener

interface. This interface provides the definition of the onNewMessage method

that is called when a new message arrives in such a way that is similar to

the callbacks of C++ ROS nodes. A ROS Java node can then manage any

number of subscribed or published topics by means of a set of dedicated

objects.

� �
public GraphName getDefaultNodeName();

public void onStart(ConnectedNode node);

public void onShutdown(Node node);

public void onShutdownComplete(Node node);

public void onError(Node node, Throwable throwable);� �
Listing 5.1: The NodeMain interface.

5.3.2 The RosGate Component in ROS

The RosGate implementation exploits the rosjava APIs, figure 5.12 shows

the UML class diagram of the RosGate component.

The implementation is organized in three main classes and one interface.

The RosGateNode class actually implements a rosjava node and, besides

implementing the NodeMain interface it also implements the methods specified

by the RosGateIntf. The main methods are:

• createListener(String, String):void: this method subscribes the

topic which name is specified as first argument. If the topic is not

existing yet, it will be created. The second argument is a text string

representing the description of the data type exchanged on the topic.

• addObserverElement(String, Observer):void: adds to the topic

specified as first argument the observer object passed as second ar-

148 Chapter 5 SCA and ROS Integration

Figure 5.12: UML class diagram of the RosGate component.

gument. This observer will be notified when new data is received on

the listened topic.

• createPublisher(String, Observer):void: this method publish the

topic which name is specified as first argument. If the topic is not

existing yet, it will be created. The second argument is a text string

representing the description of the data type exchanged on the topic.

• publish(Message, String):void: this method publishes the Message

object passed as first argument on the topic identified by the string

5.3 Integration of SCA and ROS 149

provided as second argument. The Message interface is implemented

by all objects that can be sent or received via topics. Message imple-

mentations are created by the rosjava client library by translating the

message definition files.

Other methods are available for supporting the configuration phase and

for debug purpose. The RosGateNode implementation keeps trace of all sub-

scribed and published topics. Subscribed topics are automatically connected

to a TopicMessageListener objects that implements the MessageListener

interface provided by rosjava APIs. These onNewMessage methods of these

objects are automatically called by the rosjava run-time environment when

new messages are received on the associated subscriber’s topics. In the pro-

posed implementation, this object is in charge of notifying all observer objects

associated to the topic, by doing so, the new message events and the message

data can be received by objects outside the ROS subsystem.

The RosGate class is used to mediate the access to the RosGateNode

object. It offers the same methods for publishing and subscribing topics, it

intercepts the exceptions that may be raised by the node and it manages the

node creation and configuration phases. Due to limitations on the current

release of the rosjava client library, topics publishers and subscribers must

be known before the node execution. In order to overcome this limitation,

the RosGate class supports two separate phases: the configuration and the

run-time.

The configuration phase spans from the creation of the RosGate object by

calling one of the provided constructors to the setup method call. Once the

RosGate object has been instantiated, it looks for a running roscore on the

network node specified by the URI passed as parameter or on the default URI

if no parameters are passed. Once the connection is established, it allows its

clients to add topic subscribers, associate observers and add topic publishers.

Once all publishers and subscribers have been created, the setup method

can be called. This method creates the concrete instance of the ROS node

and notifies it to the ROS system. After the setup, the class can be used as a

unique access point to the ROS infrastructure and the RosGate node is fully

integrated with the remaining parts of the underlying ROS system.

150 Chapter 5 SCA and ROS Integration

The RosGateNode class can raise four dedicated Java exceptions that are

omitted in Figure 5.12.

• AlreadyConfiguredNodeException: this is raised when an attempt of

adding a topic publisher, or a subscriber, or an observer is made on a

node that has been already configured.

• NotYetConfiguredException: this exception is thrown when an at-

tempt of publishing data is made before the end of the configuration

phase.

• TopicAlreadyExistingException: this is raised when the client tries

to create more than one publisher (or subscriber) on the same topic.

• TopicNotExistingException: this exception is thrown when the client

tries to publish or to add an observer on a topic that it is not existing

yet.

The RosGate class provides also a message factory mechanism that encap-

sulates the creation of objects representing ROS messages. By doing so the

user can obtain an instance of any supported message type, being it default

or user defined, by providing its string standard representation, without any

knowledge about its implementation details. This functionality is available

during the entire life-cycle of the class.

5.3.3 The RosGate Component in SCA

From the SCA point of view, the RosGate component is nothing more

than a standard SCA component that uses the RosGate Java class in its

implementation. The interactions with ROS are all encapsulated into the

component implementation, hence, no knowledge related to ROS needs to be

shared with other SCA components.

The core of the RosGate component in SCA is a class. The initialization

method is in charge of instantiating the RosGate Java class, creating publisher,

subscribers and adding external observers to capture the incoming data on

subscribed topics.

5.3 Integration of SCA and ROS 151

Since no standard mechanisms supporting event-based communication are

provided by the standard SCA component model, each operation related to

data publishing and subscribing is made available to the remaining part of

the SCA system as a service provided by the RosGate SCA component. For

this reason, this component is viewed a server for all other components that

need to interact with the ROS subsystem.

Figure 5.13: Integration between SCA and ROS systems.

To avoid the use of Java implementations of ROS messages outside the

RosGate component, the data transfer object (DTO or TO) design pattern

is adopted. A Data Transfer Object is an object that carries data between

software actors, being them process, classes, components or other. The

concrete implementation of a transfer object is a simple class that does not

offer any behaviour except for the methods dedicated to the storage and

retrieval of its internal data (“getter” and “setter” methods). A transfer

object can be associated to each ROS message and it can be used to make the

content, or payload, of ROS messages available to other components without

the need to share any knowledge related to ROS. By means of this pattern,

152 Chapter 5 SCA and ROS Integration

more sophisticated approaches for data serialization and de-serialization can

be implemented to exchange efficiently large data objects, such as images.

In the conceptual example shown in figure 5.13 a couple of SCA components

communicate with other two ROS components, that can be developed in Java,

C++ or in any other supported language and deployed on any computational

node of the network.

The SCA components exchange data by means of services and references.

Exchange data is encapsulated into Transfer Objects with the RosGate, this

allows a complete independence from the ROS-dependent messages. On

the other hand, the RosGate component exchange data with the ROS node

through topics by using ROS messages. The RosGate class (filled in yellow

in the image) provide means for publishing and subscribing data and for

creating ROS messages.

The current implementation of the SCA integration component defines a

property that indicates the URI of the roscore.

� �
1 public class RosGateSCA implements SendTwist, ReceiveOdometry{

2 private RosGate rosGate;

3 private OdometryMessageObs odoObserver;

4 private MessageManager msgManager;

5

6 @Property(name="RosMasterURI", required=true)

7 protected String RosMasterURI;

8

9 @Init

10 public void init(){

11 RosGate = new Ros(RosMasterURI);

12 RosGate.createPublisher("twist_command",geometry_msgs.Twist._TYPE);

13 odoObserver = new OdometryMessageObserver(msgManager);

14 RosGate.createListener("odometry_data",nav_msgs.Odometry._TYPE);

15 RosGate.addObserver("odometry_data",odoObserver);

16 RosGate.setup();� �
Listing 5.2: The RosGateSCA initialization.

5.3 Integration of SCA and ROS 153

Listing 5.2 shows the initialization method of a RosGateSCA component

that interacts with a generic robot driver implemented in ROS by exchanging

Odometry and Twist messages. The RosMasterURI property identifies the

URI of the current master in the system. A new RosProxy object is firstly

created (line 11) and then used to define a published “twist command” topic

(line 12) and to define a subscribed topic “odometry data” (line 14). A

message observer is associated to the “odometry” topic at line 15. Listing 5.3

shows the definitions of the services offered by the RosGateSCA component.

� �
public interface SendTwist {

public void sendTwist(TwistTO twist);

}

public interface ReceiveOdometry {

public OdometryTO receiveOdometry();

}� �
Listing 5.3: The RosGateSCA services.

Transfer objects (whose name ends with “TO”) are exploited in order

to exchange ROS-independent data with the RosGateSCA component. The

MessageManager object associated to the odometry message observer at

line 12 is in charge of filling transfer objects with the message content and

managing the message queue.

Some clarifications need to be provided about the deployment of the SCA-

ROS integrated system. As we said before, ROS nodes can be deployed on a

distributed system composed of several networked machines. The RosGate

node does not make an exception to this since it can be deployed on any

computation node of the ROS network. On the other hand, SCA components

can be deployed on any machine given that they can access the same network

address space. The only constraint added by the integration is that the

RosGate must be deployed on a machine that lies both in the ROS and in

the SCA network, since it is a ROS node and a SCA component at the same

time. In real-world systems this should not represent a limitation since both

154 Chapter 5 SCA and ROS Integration

ROS and SCA networks are LAN based and, hence, all machines lie in the

same network segment or in reachable networks.

6
The Bart Robot

The BART (Bergamo Advanced Robotic Transit) is a wheeled mobile robot

developed at the Software for Experimental Robotics Laboratory (SERL)1 of

the department of Engineering of the University of Bergamo2. The main goal

of the robot is to provide an experimental platform to test the development

of control software on a distributed system.

The robot mechanical structure is similar to a tricycle but, instead of

having an actuated steering axis and a traction wheel, it has a differential

drive block with two independently actuated wheels connected to the frame

by means of a rotation joint. This rotation joint, that represent the steering

mechanism, is fully passive since it is not actuated by a dedicated motor.

The possibility of changing the steer angle is given by the on-place rotation

capability of the differential drive system. A couple of fixed wheels on the

rear part of the robot provide the needed support for the entire mechanical

structure.

The two wheel of the differential drive block are actuated by a couple of

independent DC motors with gearboxes and incremental encoders, the steer

position is measured by a third rotary encoder.

The robot has three on-board computational units: two 32-bit microcon-

trollers and a compact embedded PC. One or more remote machines can

interact with the robot by means of a wireless 802.11 connection. The first

1http://www.unibg.it/serl
2http://www.unibg.it

155

156 Chapter 6 The Bart Robot

microcontroller, which plays the role of slave, is placed on the differential

drive block and it is in charge of controlling the wheels speeds and reading

the steer rotary encoder position, the second microcontroller, that is the

master, computes the kinematics relations while the PC supervise the robot

functioning and gives access to the wireless network.

The microcontrollers communicate with each other by means of a CANBUS

connection, the embedded PC can interact with the master by exchanging data

through a serial RS-232 communication interface. The robot communicates

with the other remote machines by means of the wireless LAN connection

made available by the embedded PC.

In this chapter we will present the mechanical structure, the on-board

electronics and computation devices, and the communication system and we

will focus on the architecture of the component-based software control system.

6.1 Mechanical Structure

The robot frame is realized with a lightweight triangular structure of alu-

minium bars. Each side of the triangle measures approximately sixty cen-

timeters and the steer axis of the differential-drive block is placed close to

the front triangle vertex. The central part of the frame houses two shelves on

which batteries and electronics boards are placed.

The differential-drive steering block is fully realized in aluminium and

it houses, besides motors and encoders, the slave microcontroller and the

interface boards for motors and encoders. A couple of ball bearings are

mounted on the steer axis for smoother movements. The steer axis can rotate

continuously, this is made possible by the presence of a slip ring collector that

carries both power supply lines and Canbus lines outside the differential-drive

steering block.

Figure 6.1 shows a picture of the BART robot. The driving wheels are

made of PVC and have a rubber tread to increase the grip, the diameter is

100 millimeters. The rear support wheels are mounted on a spring suspension

that helps in keeping a good contact between the wheels and the floor in case

of roughness surfaces.

6.1 Mechanical Structure 157

Figure 6.1: The BART robot.

6.1.1 Motors and Encoders

Each wheel is actuated by a brushed DC motor 3. The nominal voltage of

these motors is 12 V and the output power is 79.2 W. The weight of each

motor is 242 g.

Motors are equipped with angular gearboxes4 with a reduction ration of

25 and an efficiency of 55%. The driving wheels are directly connected to

the output shaft of the gearbox in order to reduce the backlash that would

adversely affect the precision of the motion measurements.

The position of the motor shaft can be measured by means of a magnetic

rotary encoder5 with a resolution of 512 pulses for revolution. Output data is

provided by a dual channel digital output line. By reading output pulses in

quadrature mode, the effective resolution reaches 2048 steps per revolution

3Faulhaber model 3257 012 CR
4Gysin model GSR 17
5Faulhaber model IE2-512

158 Chapter 6 The Bart Robot

with rotation sense information. The encoders are incremental and no zero

signal is provided as output.

The steer axis position is measured by means of an optical incremental

rotary encoder6 with a resolution of 2048 pulses per revolution that leads to

an effective resolution of 8192 steps per revolution due to the just mentioned

quadrature reading mode. The outputs are provided by a push-pull circuitry

driving a dual channel output line. The information regarding the rotation

sense can be estimated by analyzing the phase between the two channels

during the rotation. A third push-pull output gives a single pulse on each

complete rotation of the encoder shaft. This signal can be used to find the

zero position of the encoder at the robot start-up phase (homing).

6.1.2 Kinematics

The kinematic structure of the BART robot is very similar to a tricycle

in which the actuated steer mechanisms is replaced by a differential drive

mechanism. The robot can move along arches of circumference which centre

represents the Instantaneous Centre of Rotation (ICR) of the robot.

The ICR is the cross point of all axes of the wheels. This point must be

unique instant by instant since this condition guarantees that no translational

slip occurs between the wheel and the floor.

Given the kinematic structure of the BART robot, the ICR position can

lie at any point of the straight line passing through the rear wheels axes.

Since the ICR must lie on this line and the rear wheels are not steerable,

the position can be unambiguously expressed by the distance between the

ICR and the robot centre assuming that positive values represent left handed

positions and negative values represent right handed positions. For the same

reason, the ICR position determines, or can be determined, by the steer

position of the robot.

According to the ICR position, the robot can only rotate around that

point drawing a circumference. Two notable configurations can be identified:

if the ICR is overlaid on the robot centre, and hence the steer angle is 90◦

6Eltra model EL50FA

6.1 Mechanical Structure 159

and the ICR radius is null, the robot will rotate on place. Instead, if the ICR

is infinitely far from robot, and hence the steer angle is null and the ICR

radius tends to infinity, the robot will move straight. In all other cases, the

robot will rotate along a circumference at a given angular speed ω as shown

in Figure 6.2.

ICR

Robot
Centre

Vright

Vleft

Vsteer

ω

R

D

L

Figure 6.2: The kinematics scheme of the BART robot.

The robot can be driven by providing the ICR position and the desired

angular speed ω or by providing a desired relative forward speed V and a

desired angular speed ω. We will refer to this kind of command as twist later

on in this chapter. This couple of values (V, ω) will unambiguously define an

ICR radius R since:

R =
V

ω

Once the ICR position has been determined, the target speed of the wheels

in order to achieve the target rotation can be computed in a way that is similar

160 Chapter 6 The Bart Robot

to a standard differential-drive robot, in fact, given D the distance between

the differential-drive centre and the ICR and L the wheel axis distance:

Vright = ω ·
(
D +

L

2

)

Vleft = ω ·
(
D − L

2

)

The relation between the Vsteer, the input ω and the speeds:

ω =
Vright − Vleft

L

Vsteer =
Vright + Vleft

2

The D distance is equals to the ratio between the Vsteer and the ω speed,

so:

D =
L

2
· Vright + Vleft
Vright − Vleft

Given the the wheel radius r the Vleft and Vright speeds can be expressed

in terms of angular speed of the gearbox output shaft:

Vright = ωright · r Vleft = ωleft · r

Hence, given a couple of speeds V and ω, it is possible, after having found

the distance D between the steer axis and the ICR, compute the target speeds

to drive correctly the robot.

Now assume that the robot steer centre is at some position (x, y), headed

in a direction making an angle θ with the X axis of the environment absolute

reference system. By manipulating ωright and ωleft we can get the steer centre

point to move to different positions and orientations. The ICR position can

be computed as:

6.2 Electronics and Computation devices 161

(
ICRx, ICRy

)
=
[
x−Dsin(θ), y +Dcos(θ)

]
At time t+ δt the steer centre pose will be:


x′

y′

θ′

 =


cos(ωδt) −sin(ωδt) 0

sin(ωδt) cos(ωδt) 0

0 0 1



x− ICRx

y − ICRy

θ

+


ICRx

ICRy

ωδt


Accordingly, the the robot centre position can be easily found by applying

the geometric rigid transformation that links the steer centre and the robot

centre. This transformation is determined by the geometrical dimensions

of the robot and by the angle between the steer centre axis and the robot

frame; this angle is exactly the same measured by the steer encoder. This

pose estimation procedure is involved in the odometry computation.

6.2 Electronics and Computation devices

The entire robot is power supplied by lead acid rechargeable batteries providing

up to 28 Ah at a nominal voltage of 12 V. In standard conditions this is

sufficient for several hours of robot functioning. Normally the robot is fitted

out with only two batteries that guarantee a couple of hours of functioning.

The robot is equipped with several electronic boards including for power

supply, motors management, encoder data acquisition and microcontrollers

boards.

The motors are actuated by a Pololu MD03A7 board based on two H-

Bridge motor drivers8 that can deliver up to 30 A to each motor. The control is

in pulse width modulation (PWM) for each motor, one input line is exploited

for providing the modulated enable signal while two input lines are dedicated

to the rotation sense control. Other digital lines are available to detect board

7http://www.pololu.com/catalog/product/707
8VNH2SP30-E devices developed by ST Microelectronics

162 Chapter 6 The Bart Robot

faults such as overcurrent and over temperature. Two analog outputs can

be used for obtaining a measure of the instantaneous current absorption of

each motor. The interface board is directly connected to the digital input

and output lines of the microcontroller.

The digital outputs coming from the encoders are level shifted in order to

meet the correct input voltages of the microcontroller by means of a custom

made interface board. The stabilized 5 V supply for the motor board and

for the encoder devices is obtained from the 12 V nominal supply provided

by the lead acid batteries by means of a custom switching DC-DC voltage

regulator board with a maximum current rating of 1 A. Another similar

voltage regulator board is adopted to obtain the 6 V supply line needed by

the microcontroller boards.

A custom power distribution board is installed on the robot principal

frame in order to provide fuse protected 12 V outputs for motors and external

devices. The board can connect up to four 12 V lead acid batteries managing

their recharge. A tension clamping and a polarity inversion protection circuits

protect all the electronics devices, and the power board itself, from overvoltages

and batteries connection faults.

6.2.1 Microcontrollers

Two identical microcontrollers are installed on the BART robot: the STM32

F103 32-bit microcontrollers developed by ST Microelectronics. The micro-

controllers are based on a Cortex M3 RISC CPU with a frequency of 72

MHz. 128 Kbytes of FLASH memory are available for storing persistent

data and code and 20 Kbyte of RAM are packed on the same chip. The

microcontrollers offer a wide range of integrated peripherals, in particular: up

to 80 I/O ports (the available number depends on the mapping configuration),

three 16 bit configurable timers with PWM output mode, 2 watchdog timers,

a 24 bit system counter, a 16 bit PWM generator and two 12 bit A/D convert-

ers. Nine communication interfaces are available: two I2C interfaces, three

universal synchronous/asynchronous receiver-transmitter (USART), two SPI

interfaces, a CAN 2.0B interface and an USB interface. The greatest part

6.2 Electronics and Computation devices 163

of the integrated peripherals can be interfaced with the DMA controller and

can be associated to an advanced interrupt controller with the possibility of

managing nested interrupts on the basis of their associated priority.

The slave microcontroller installed on the differential drive block is

mounted on a motherboard (Olimex STM32-P103 board) that provides the

necessary power supply circuitry, external oscillators, control leds, integrated

circuits for interfacing the microcontroller with several communication physical

layers such as the CANBUS, RS-232 serial and USB, and a small prototyping

area. The entire board is power supplied by a 6 V DC line.

The master microcontroller is mounted on a custom made motherboard

that is quite similar to the Olimex board already described. In addition it

offer a larger number of connectors both for interfacing hardware and for

debug purpose.

ST Microelectronics provides an open driver library which comprises

the drivers for each integrated peripheral. Each integrated device can be

activated, deactivated and configured as regards its functioning parameters

by exploiting a set of functions and predefined parameters that mask the

actual low-level register configuration to the developer. For what regards

the I/O devices, besides configuring the peripheral, a proper configuration

of the input and output lines is needed too. After the configuration, the

firmware of the microcontroller can be developed by filling the interrupt

handlers functions and by implementing the main function provided by the

library. The peripheral driver library is implemented and distributed in pure

ANSI C language.

The firmware sources are cross-compiled and transferred on the micro-

controller FLASH memory by means of a third-party free and open source

toolchain. To this purpose the Open On-Chip Debugger Toolchain has been

used. This tool provides an Eclipse-based set of plugins for compiling, linking

and debugging source code, and for loading the binary implementation of the

firmware on the microcontroller FLASH memory.

The toolchain is composed of several independent programs:

164 Chapter 6 The Bart Robot

Eclipse IDE The Eclipse platform9 offers an integrated environment for

software development. It was originally designed for the development

of Java programs although a large number of plug-ins has extended the

possibility of using Eclipse for other programming languages.

Zylin CDT plug-in The Zylin-CDT10 plug-in is a third party version of

the standard Eclipse CDT plug-in for C/C++ development. The

Zylin-CDT is specifically developed to assist the developer in the the

cross-compilation of software for microcontrollers. In this case firmware

was developed on a windows 32 bit machine and then compiled for an

ARM 32 bit machine.

GNU Tools The Zylin-CDT plug-in exploits the GNU binutils, the GNU

Compiler Collection and the GNU Debugger for compiling, linking and

debugging source code. In particular the YAGARTO11 redistribution of

the binutils and the debugger are used together with the Sourcery G++

Lite edition from Codesourcery12 of the GNU Compiler Collection.

OpenOCD OpenOCD13 is a set of tools for the FLASH programming,

the functional test and the on-chip debugging of microcontrollers. It

provides the means for interfacing with the microcontroller through

the JTAG (Joint Test Action Group) interface. To this purpose, a

commercially available USB to JTAG adapter was adopted.

6.2.2 Embedded PC

Together with the microcontrollers, the robot is equipped with a single-board

compact embedded PC (Compulab’s Fit-PC2). The machine is based on an

Intel Atom 1.6 GHz 32-bit CPU (x86) with 1 GByte of RAM memory. It

can be power supplied by a 12 V unregulated source directly coming from

robot’s batteries. The entire PC is packaged into an aluminium package with

9http://www.eclipse.org
10http://opensource.zylin.com/embeddedcdt.html
11http://www.yagarto.de
12http://elinux.org/ARMCompilers
13http://openocd.sourceforge.net/

6.2 Electronics and Computation devices 165

very small dimensions (104 x 100 x 23 millimeters including connectors and

button) and the weight is of 90 g. The power consumption is rated from 6

to 9 W depending on the load. The small dimensions, the low weight and

the low power consumption made this PC suitable for being installed on the

battery-powered mobile robot.

The FitPC2 offers six USB interfaces, a SD memory slot, an IrDA interface,

an Ethernet interface, a 802.11 WiFi interface and HDMI video output.

The hardware is compatible both with Microsoft Windows and Linux-based

operating systems, for this robot, a 32 bit distribution of Ubuntu 12.04

operating system has been installed and configured.

Embedded PC

Master
MicrocontrollerSlave Microcontroller

Motor
Driver
Board

Encoder
Interface

Board

Steer
Encoder

DC
Motor

Encoder

DC
Motor

Encoder

Analog

Analog

Raw Data

Digital
I/O

Digital
I/O

Canbus

RS-232

Figure 6.3: The overall electronic architecture of the BART robot.

The Figure 6.3 summarizes the overall electronic architecture of the BART

robot.

166 Chapter 6 The Bart Robot

The slave microcontroller is interfaced with the hardware devices through

its digital I/O channels and interface boards, the communication among the

slave and the master microcontroller is provided by the Canbus protocol which

allows a robust and deterministic mechanism for data exchange and execution

timing, the bitrate is 1 Mbit/s. The master microcontroller exchanges data

with the embedded PC by means of a standard RS-232 serial line adopting a

custom communication protocol and a bitrate of 115200 bit/s. The embedded

PC can communicate with other remote machines through its 802.11 WLAN

interface.

6.3 Control Software

The control software of the BART robot is distributed among four units of

computation: the master and the slave microcontrollers, the embedded PC

and the remote machine. This distribution of the functionality leads to two

important issues: first, the communication among the units have an important

and critical importance, especially considering the real-time requirements

related to the control of the robot. Second, the heterogeneity of the involved

computational units force to design software in a more flexible way.

In designing and developing the control software of the robot we exploited

the integration between the Robot Operating System (ROS) and the Service

Component Architecture (SCA) presented in Chapter 5. As already stated,

this provides the possibility to exploit the strengths of both the approaches.

ROS offers the possibility to easily define components with a periodic

behaviour and provides a set of tools that can strongly speed-up and simplify

the development and the debugging of robotic applications. Moreover, it

provides a wide set of libraries for interfacing different hardware devices,

such as sensors and actuators, and for higher-level functionality such as pose

tracking, navigation, mapping and so forth.

On the other hand, SCA provides an extremely flexible environment

supporting the seamless distribution of software components among several

networked computational nodes making it possible a scenario in which many

nodes can cooperate for a common goal, each one of them offering a specific

6.3 Control Software 167

service. Moreover, it cannot be ignored that the use of a SCA environment,

such as Apache Tuscany, gives the possibility to fully exploit the portability

of the Java language and environment.

The use of such a high-level programming language is not a common

practice in robotics and this can be attributed to performances issues. Though

Java performances can get closer to C++ performances in some cases [51], the

Java environment still lacks in predictability. This lack is mainly caused by

the unavoidable presence of the garbage collector. Although several attempts

to make Java effective in embedded and real-time domain have been proposed,

mainly involving the use of a real-time Java Virtual Machine and a real-

time capable operating system, the Java language is not spread used in

embedded domain nowadays. Is such kind of domains, the developers prefer

to adopt lower-level languages such as C++ and, often, ANSI C. This strongly

influences the flexibility and, above all, the portability of software.

By using Java, instead, a greater level of portability can be reached and,

additionally, one can exploit the wide set of libraries, framework and tools

allowing to interface with databases, web-based resource, advanced networking

and so forth.

In this work we tackle these issues by splitting the functionality on different

nodes deployed into specialized environments, this allows us to take advantage

of the strengths of each one of them while minimizing the drawbacks.

In particular, hard real-time computation is confined into the two micro-

controllers that directly interface the hardware devices providing the low-level

and time critical computations needed for the correct handling of control

algorithms. Slightly higher-level computation, with less rigid time constraints,

are carried out by the embedded PC through the use of the ROS framework.

The highest-level functionality that do not need for real-time execution but,

instead, can be computation intensive, are carried out by one or more remote

machines.

In particular, these higher level activities are those that can take a greater

advantage in exploiting the flexibility that the use of a general-purpose

component model as SCA can offer.

Concluding, the overall approach can be synthesized in splitting the func-

168 Chapter 6 The Bart Robot

tionality and adopting the software instruments that best fit their particular

requirements.

We some details about the design and the implementation of individual

computational nodes are given.

6.3.1 Slave Microcontroller Firmware

The main tasks of the slave microcontroller firmware are: controlling the

speed of the actuated wheels on the basis of the speed references provided by

the master and periodically give to the same master the functioning state of

the differential drive block.

The speed control algorithm of the wheels is carried out by two independent

PID controllers that are synchronously executed with a frequency of 500 Hz.

The correct execution period is obtained by a properly configured internal

timer of the STM32 microcontroller. The timer, in turn, obtain its operating

frequency from the system frequency defined by a physical oscillator by means

of a configurable frequency divisor. At defined and constant time intervals,

the timer triggers its associated interrupt and the associated handler function

is called as well. In this function the implementation of the two control

algorithms is provided.

The speed feedback is obtained by properly decoding the changes of the

logical states of the digital inputs ports connected to the outputs of the encoder

interface board. Each microcontroller’s digital input is associated, by properly

configuring the peripheral driver, to an interrupt handler that is sensitive

both on rising and falling edges of the signal. By correctly interpreting the

state transitions it is possible to decode both the angle increment and the

direction of the rotation. This is carried out by implementing a quadrature

reading strategy for each encoder, as introduced in Section 6.1.

The firmware observes three encoders, two are associated to motors and

hence, this feedback, is used to estimate the current speed of the wheels,

providing the speed feedback to the closed-loop controllers. The third encoder

measures the steer angle.

The control output, periodically generated by the controllers, is used to

6.3 Control Software 169

generate a PWM output for the motor driver board. On the basis of the sign

of the output, a couple of digital outputs for each motor are set for imposing

the rotation sense or the braking modality to the motors. The PWM waves

are actually generated by a properly configured timer offering this Specific

functionality.

Finally, at the end of each control step, a new Canbus frame containing

the current measured speeds and the steer position is generated and sent to

the master microcontroller.

The slave firmware strongly exploits the Nester Vectorized Interrupt

Controller (NVIC) peripheral of the microcontroller. Each interrupt line, and

the affiliated interrupt handler, can be associated with a priority level. If

during the execution of a handler, an interrupt with a higher priority occurs,

the execution is interrupted in order to handle the new interrupt and returns

when the handling has finished. On the other hand, if an interrupt with a

lower priority occurs, the current handler is kept in execution and the new

interrupt is stored in a queue. The interrupt queue is ordered on the basis of

the priority.

This mechanism is made efficient by a particular functionality offered by

the STM32 architecture that manages the change of registers context from

one interrupt to another by means of a dedicated set of low-level assembly

instructions. The context switch, that involves the storing of all CPU registers,

is carried out in about 150 ns on a CPU running at 72 Mhz.

6.3.2 Master Microcontroller Firmware

The main tasks of the firmware running on the master microcontroller are

the control of the steer position of the differential-drive block, the inverse

kinematics computation and the pose estimation of the robot (odometry).

Moreover, the master microcontroller implements a bridge between the slave

and the embedded PC that plays the role of supervisor.

All master’s activities are carried out by periodic functions since the

master do not have to interact with physical devices. The overall timing

is provided by the slave microcontrollers by means of the incoming Canbus

170 Chapter 6 The Bart Robot

messages sequences, this provides a tight time-coupling between the two

microcontrollers and avoids the need for a difficult and critical high-precision

frequency synchronization between the devices.

The robot position estimation, known as odometry computation, is carried

out at a frequency of 500 Hz. The computation is triggered by the arrival

of a new Canbus message from the slave carrying new data representing the

estimated wheel speeds and the steer position. On the basis of these data,

and given the mechanical structure and the dimensions of the robot, the

master recomputes the estimation of the robot pose. The pose is expressed by

means of the rototranslation transformation between the robot relative frame,

centered on the robot centre, and the fixed environment reference frame. At

the system start, the two frames are overlapping.

Since the odometry estimation is based on the numerical integration

of wheels speed, the uncertainty of the estimation is constantly growing.

However, it is not the task of the microcontroller to correct this estimation

since this operation involves the use of higher-level functionality such as

localization and mapping. Typically, these higher-level task are carried out

by taking into account other sources of measurements, for example, laser

scanners, sonars, inertial platforms or vision-based pose estimation. The

needed filtering and data fusion algorithms, such as the extended Kalman

filter or the particle filter, are typically computation intensive and, in most

systems, are carried out by high-powered CPUs mainly located on remote

machines. In order to support the refinement of the odometry estimation,

the estimated position made by the master microcontroller can be externally

reset.

The motion control of the robot is a task that involves both control and

kinematic inversion and it is executed periodically with a frequency of 100

Hz. According to the last robot speed reference (twist) received on the

serial interface, the target wheel speeds and the goal steer angle are obtained

by computing the inverse kinematics. However, these references cannot be

directly set to the slave microcontroller since it must be guaranteed, at any

time, that the kinematic constraint must be respected. As we discussed in

Section 6.1.2, there must be an unique Instantaneous Centre of Rotation

6.3 Control Software 171

(ICR). This point is defined both by the velocities of the wheels and by the

current position of the steer, in any case, these two values must be coherent.

On the contrary, if wheels speeds are not coherent with the current steer

position, the constraint is no more respected and this can lead to wheels

slipping, excessive motor effort or both.

For this reason, the controller is in charge of continuously monitor the

steer position and the wheels speeds and estimate the ICR position in order

to respect the kinematic constraint and, at the same time, follow the given

reference. Figure 6.4 shows the overall controllers architecture involved in the

robot control. The robot target is expressed as a couple of values Vrobot and

ωrobot. The two speeds provided as output by the inverse kinematics block

(ω
′
R and ω

′
L) are used as inputs by the robot controller block that produces the

actual references for the control loops (ωR and ωL). This operation is carried

out by estimating the ICR position from the estimated wheel speeds (ωR,est

and ωL,est) and the steer position φsteer. The closed loop PID controllers

use the wheels speed feedback estimated from the position readings of the

encoders (PL and PR).

Figure 6.4: The controllers architecture.

The master microcontroller sends the new speed references to the slave with

a frequency of 100 Hz through the Canbus, at the end of each control period.

The communication from the master to the embedded PC is triggered every

100 ms (10 Hz). The data packet sent on the RS-232 communication interface

172 Chapter 6 The Bart Robot

contains the odometry estimation and other data useful for monitoring the

operational state of the robot. The data transmission takes a long time,

due to the poor bandwidth offered by the serial interface. For this reason,

the send operation is carried out by artificially triggering a timer interrupt

handler with a low priority. The execution of this handler is interrupted by

all other handlers and, hence, its execution runs in background filling the

time intervals in which the microcontroller CPU would be in idle state.

In addition to this, the master microcontroller’s firmware manages the

initialization phase of the robot by properly sending target speeds to the

actuated wheels in order to find the steer zero position. This operation is

needed at the system power-on since the steer encoder is incremental, although

provided with an additional signal indicating the zero position. Since, at

the power-on phase, the steer position is not know, the master sends two

reference speeds to the differential-drive block in order to make it rotate on

place. When the encoder reaches the zero position, the steer is moved back

to the centre and the robot enters in fully operational state.

Communication

As mentioned above, the communication between the slave and master micro-

controller is carried out by Canbus interfaces. This interface was chosen due

to the great robustness that it offers, this feature become more important

considering that the wires carrying data have to pass through the slip ring col-

lector that, inevitably, injects electronic noise. The outstanding determinism

of the Canbus communication can be exploited by using the message exchange

as a mean to synchronize the execution flow of the two microcontrollers.

However, the use of Canbus communication has some drawbacks, in

particular when taking into account the payload dimension that is limited to

only eight bytes. This obliged to define an algorithm for serializing data into

small data packets that would fit into the payload of a single message. Figure

6.5 shows the structure of the two messages: the first represents the message

sent from the master to the slave microcontroller, the second is the message

sent from the slave to the master. Each data field has been serialized into a

6.3 Control Software 173

Byte 6 Byte 7Byte 4 Byte 5Byte 2 Byte 3Byte 0 Byte 1

Steer
Position
(MSB)

State

Left
Wheel
Speed
(MSB)

Steer
Position

(LSB)

Right
Wheel
Speed
(MSB)

Left
Wheel
Speed
(LSB)

ID

Right
Wheel
Speed
(LSB)

Byte 6 Byte 7Byte 4 Byte 5Byte 2 Byte 3Byte 0 Byte 1

n/a n/a

Left
Wheel
Target
Speed
(MSB)

n/a

Right
Wheel
Target
Speed
(MSB)

Left
Wheel
Target
Speed
(LSB)

ID

Right
Wheel
Target
Speed
(LSB)

Figure 6.5: The structure of the payload of Canbus messages.

couple of bytes allowing for a 16 bit resolution for data representation, that

is sufficient for the purpose. Each message carries an identifier that uniquely

identifies the type of message that can be useful for defining new messages

for future works.

Byte 18 Byte 19Byte 4Byte 2 Byte 3Byte 0 Byte 1

PAYLOAD ENDPAYLOADCHECK PAYLOADSTART MSG ID

Byte 14 Byte 15Byte 4Byte 2 Byte 3Byte 0 Byte 1

PAYLOAD ENDPAYLOADCHECK PAYLOADSTART MSG ID

Figure 6.6: Serial communication messages.

The communication between the master microcontroller and the embedded

PC is managed by a serial RS-232 interface. This interface is still widespread

on modern PC and embedded computers and, if a serial interface is not

available, it can be easily replaced by a USB to serial converter as in this

174 Chapter 6 The Bart Robot

case. The use of the RS-232 can beneficially impact on the flexibility of

the hardware configuration since the embedded PC can be substituted with

another machine, for example a more powerful embedded computer, or another

microcontroller or it can be removed at all by making the serial communication

wireless by means of a commercial available serial to ZigBee or Bluetooth

converter.

However, the use of RS-232 has in low bitrate its major drawback and,

in this application, the same serialization algorithm adopted for the Canbus

has been implemented. In this case, however, not for limiting the payload

dimension needed for the data transfer but for limiting the overall amount of

data to be transferred. In Figure 6.6 we show the serial message structure.

The first message represents the packet sent from the embedded PC to the

master microcontroller containing the velocity set-point, the second is the

message that periodically the master sends to the superivisor containing the

robot state. Each message contains a checksum field computed on the basis

of the message payload that is checked by the receiver in order to detect

the presence of corrupted data, and a message identifier code that identifies

different possible type of messages. Each message has also a recipient field that

can be useful in case of experiments with multi-master or multi-superivisor

alternative scenarios. Messages starts and ends with two predefined codes

that simplify the parsing operations when they are received by recipients.

6.3.3 Embedded PC Software

The supervisor software running on the embedded PC is implemented as a

ROS node in the C++ programming language. Its main goal is to supervising

the robot functioning and providing a bridge between the robot hardware

and the higher-level tasks.

The software has a dedicated thread of execution for handling incoming

messages from the serial port. The thread waits for the arrival of new bytes

on the port and, once a complete message has been received, it proceeds

with the verification of the message structure and the checksum field. If the

message is correct, the thread updates the local representation of the robot

6.3 Control Software 175

state stored in a dedicated class.

The use of a dedicated thread for the serial communication handling

provides time decoupling between the ROS node execution and the data

arrival timing allowing for an increased flexibility when defining the operational

frequencies of the microcontroller firmware and the supervisor node. The

thread is created and managed by using the POSIX Thread APIs that are

part of the Portable Operating System Interface for Unix (POSIX) standard

IEEE 1003.

The ROS supervisor node is fully asynchronous, when new data is received

from the robot’s microcontrollers, it generates the output messages that

are written on the node’s output topics. In particular, the node publishes

two separate topics: the bart odometry output and the bart state output.

The odometry topic exchanges odometry standard messages provided by the

ROS navigation stack (nav msgs), Listing 6.1 shows the declaration of the

odometry message type in the ROS message definition language (MDL).

As many other ROS messages, the Odometry contains the nested def-

inition of other messages, in this case the PoseWithCovariance and the

TwistWithCovariance, their declaration is shown in Listings 6.2 and 6.3

respectively.

� �
Header header

string child_frame_id

geometry_msgs/PoseWithCovariance pose

geometry_msgs/TwistWithCovariance twist� �
Listing 6.1: The nav msgs/Odometry message.

The geometry msgs/PoseWithCovariance message represents a position

in the free space with uncertainty, the position itself is stored in the Pose

field, while the uncertainty is represented by the 6 × 6 covariance matrix

stored in the array of floating point values.

Similarly, the geometry msgs/TwistWithCovariance represents a twist,

that is a representation of the velocity in the free space with uncertainty.

176 Chapter 6 The Bart Robot

As for the geometry msgs/PoseWithCovariance message, the uncertainly is

expressed by means of a 6× 6 covariance matrix.

The Pose message contains a ROS Point message and a ROS Quaternion

message. The Point represents the position of a point in a free space by

means of three parameters (x, y, z), while the Quaternion message is the rep-

resentation of the orientation in the free space in quaternion form (x, y, z, w).

� �
Pose pose

float64[36] covariance� �
Listing 6.2: The geometry msgs/PoseWithCovariance message.

The Twist message contains two vectors of three elements each, the first,

called linear represent the linear part of the velocity in free space, while the

second, called angular, contains the angular part of the velocity.

The ROS supervisor node receives from the master microcontroller the

robot state containing the odometry information which comprises the instan-

taneous speed estimation of the robot. Once the message is received and

correctly parsed, it is converted into an Odometry message and published on

the bart odometry output topic.

� �
Twist twist

float64[36] covariance� �
Listing 6.3: The geometry msgs/TwistWithCovariance message.

The incoming message from the microcontroller contains also the current

operational state of the robot that can indicate failures, emergency or messages

expressing other situations. In this case data is interpreted and published on

the bart state output that exchanges ROS standard string messages.

The supervisor node is subscribed to two different input topics: the

bart twist input and the bart command input. The first is used to send

6.3 Control Software 177

to the supervisor new target twists while the second is available for sending

other kind of messages, for example for triggering the reset of the odometry.

The bart command input topic exchanges standard ROS strings while the

bart twist input transports the already mentioned Twist message.

Given the kinematic structure of the robot presented in Section 6.1.2, the

twist command allows two fields only: The linear velocity along the x axis of

the robot and the rotational velocity around the z axis of the robot.

All presented messages contains a Header field that stores information

regarding the timestamp, that represent the instant of time associated to

the message according to the ROS global time, and an incremental sequence

number.

When a new message is received on the input topics, the node reacts by

calling a specific callback function that allows to retrieve the message content.

The message is then interpreted, packaged into a serial message, and sent to

the master microcontroller.

Figure 6.7: Graph node of the supervisor component.

The overall behaviour of the supervisor node is fully event-driven and all

actions are triggered by the arrival of new messages, both from the master

through the serial port, and from the other higher-level nodes on the input

topics. In Figure 6.7 the portion of the ROS graph node representing the

execution of the supervisor component is shown.

6.3.4 Remote Workstation Software

The software running on the remote workstation is implemented as a SCA

composite. It contains two separate components: RosGateSCA and the

BartClient. The RosGateSCA is the component that implements the ROS-

178 Chapter 6 The Bart Robot

SCA integration as presented in Chapter 5. The BartClient is a fully fledged

SCA component that, in this example, gives to the user a graphical interface

for sending twist commands to the robot and receiving the odometry and

state information, in addition, it offers a keyboard based console for the

remote control of the robot.

In the example, the components are executed on a single remote machine

although it is possible to deploy components on different machines in such

a way that is fully transparent for the component implementation. For

example, the RosGateSCA could be executed on the robot embedded PC or on

a different machine and the BartClient, that offers a GUI, could be deployed

on a portable device such as a tablet PC.

The machine runs an Apache Tuscany SCA domain that represent the

actual instance of the SCA run-time environment, it is in charge of connecting

components services to references, setting the properties and providing the

connection for the exchange of data.

Figure 6.8: The composite diagram of the ROS-SCA integrated system.

The interactions between the two components are modeled and realized as

reference-to-services interactions, the RosGateSCA component provides four

services for interacting with ROS topics while the BartClient declares four

corresponding references. The exchange of data is carried out by means of

6.3 Control Software 179

transfer objects which encapsulate the content on ROS message in a ROS-

unaware manner. By doing so, no knowledge, and hence no dependencies,

regarding the ROS environment are needed outside the RosGateSCA compo-

nent that, in turn, encapsulate all information related to the interaction with

the ROS environment. Each transfer object is implemented as a storage class

which provides methods for setting and retrieving its content without adding

any kind of computation to the contained data.

Figure 6.8 shows a graphical representation of the composite diagram as

defined in the XML-SCDL composite file reported in Listing 6.4.

� �
<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

xmlns:t="http://tuscany.apache.org/xmlns/sca/1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="BART_NS"

autowire="false">

<component name="RosGateSCA">

<implementation.java

class="rosGateSCA.impl.RosGateSCAImpl"/>

<service name="ReceiveOdometry">

<interface.java

interface="rosGateSCA.intf.ReceiveOdometry"/>

</service>

<service name="ReceiveState">

<interface.java

interface="rosGateSCA.intf.ReceiveState"/>

</service>

<service name="SendTwist">

<interface.java

interface="rosGateSCA.intf.SendTwist"/>

</service>

<service name="SendCommand">

180 Chapter 6 The Bart Robot

<interface.java

interface="rosGateSCA.intf.SendCommand"/>

</service>

<property name="RosMasterURI" type="xsd:string">

http://bart-FitPC2:11311

</property>

</component>

<component name="BartClient">

<implementation.java

class="bartClient.impl.BartClientImpl"/>

<reference name="ReceiveOdometry"></reference>

<reference name="ReceiveState"></reference>

<reference name="SendTwist"></reference>

<reference name="SendCommand"></reference>

</component>

<wire source="BartClient/ReceiveOdometry"

target="RosGate/ReceiveOdometry"/>

<wire source="BartClient/ReceiveState"

target="RosGate/ReceiveState"/>

<wire source="BartClient/SendTwist"

target="RosGate/SendTwist"/>

<wire source="BartClient/SendCommand"

target="RosGate/SendCommand"/>

</composite>� �
Listing 6.4: The remote workstation composite file.

6.3 Control Software 181

Before analyzing the two components in detail, it is important to notice

that the use of services to model the interaction with topics differs from

the the interaction semantics provided by ROS topics. When a client of

the RosGateSCA component wants to publish a message on a topic, it can

simply invoke the operation provided by the corresponding service. On the

other hand, if the client wants to read data from a topic, it has to invoke

the corresponding method of the defined service. This changes the semantics

of ROS topics since communication is no more asynchronous and the client

is no more notified when a new message is available. It is a client’s task to

query the RosGateSCA component to obtain new messages.

This feature has two important consequences: first it strongly enforces

the time-decoupling between the execution of the RosGateSCA component

and the execution of its clients allowing for an improved flexibility, second, it

requires the implementation of a mechanism for handling messages since more

than one message can be received between two consecutive requests from the

client. This mechanism can be an ordered queue, LIFO or FIFO, or any other

kind of structure: the most appropriated strategy should be implemented by

the developer according to the semantics of the messages amd the application

task. In this case, the MessageManager class is in charge of handling the

messages received from the robot and, in this particular implementation, it

keeps in memory only the most recent message for each topic.

The RosGateSCA component is implemented by the class RosGateSCAImpl

contained in the implementation package. The component provides four

services:

• ReceiveOdometry: this service provides means to retrieve the last

odometry message sent from the robot. The implementation is defined

by the Java class rosGateSCA.intf.ReceiveOdometry

• ReceiveState: this service allows clients to retrieve the last state

message sent from the robot. The implementation is defined by the

Java class rosGateSCA.intf.ReceiveState

• SendTwist: this service provide means to send a new twist mes-

sage to the robot. The implementation is defined by the Java class

182 Chapter 6 The Bart Robot

rosGateSCA.intf.SendTwist

• SendCommand: this message allows clients to send a command to the

robot, for example for resetting the odometry estimation. The imple-

mentation is defined by the Java class rosGateSCA.intf.SendCommand

The only required property (RosMasterURI) is a string containing the

URI of the machine which is currently running the ROS master.

The BartClient component is implemented by the Java class contained

in the implementation package (BartClientImpl). It requires four references

that, in this particular case, correspond to the four services of the previous

component. When declaring the references, the specific interface that the

required service must implement is explicitly indicated. For this reason, any

other component that offers a service which implements the specified interface

can be connected to the reference and vice-versa.

The “autowire” option is kept disabled, this makes the specification of

the wiring between services and references mandatory. As it is shown in the

last part of the XML-SCDL file, for each wire, both source component and

reference names and the target component and service names are specified.

Figure 6.9: The ROS graph node of the ROS-SCA integrated system.

Figure 6.9 shows the ROS graph node representation of the integrated

system from the ROS point of view. The RosGate and the supervisor node

interacts by means of the four already mentioned topics.

6.3 Control Software 183

The RosGateSCA Component

The RosGateSCA component embodies the link between the ROS subsystem

and the SCA environment. Its main goal is to encapsulate all ROS related

issues in a single component that offers an unique access point to ROS

independent clients.

Figure 6.10: The RosGateSCA component class diagram.

Figure 6.10 shows the class diagram of the component. As defined in

the composite file (Listing 6.4) the RosGateSCAImpl class represents the

implementation of the RosGateSCA component. The class implements four

interfaces that define the four services provided by the component.

184 Chapter 6 The Bart Robot

The class is associated to two observers: the BARTOdometryMessageObs

and the BARTStateMessageObs. These two observers are in turn associated

to the input topics subscribed by the component as described in Section 5.3.3.

Each one of them implements the standard Observer Java interface and they

are notified every time a new message is received on the respective topics.

Figure 6.11: The BartClient component class diagram.

The MessageManager class provides means for managing the incoming

messages and for encapsulate the content of the received ROS messages into

the associated transfer objects implemented by the classes OdometryTO and

StateTO. The TimeStampTO class is kept apart since this kind of object can

be used by all ROS messages that carry time information. Fields and methods

have been hidden from the diagram for the sake of space.

Listing 6.5 shows a portion of the RosGateSCAImpl class, the code has

been simplified for the sake of space.

6.3 Control Software 185

� �
1 @EagerInit

2 public class RosGateSCAImpl implements SendTwist, SendCommand,

ReceiveOdometry, ReceiveState{

3 private RosGate rosgate;

4 private MessageManager msgMan;

5 private BARTOdometryMessageObs odoObs;

6 private BARTStateMessageObs stateObs;

7 @Property(name="RosMasterURI", required=true)

8 protected String RosMasterURI;

9 private std_msgs.String commandMessage;

10 @Init

11 public void init(){

12 rosgate = new RosGate(RosMasterURI);

13 msgMan = new MessageManager();

14 odoObs = new BARTOdometryMessageObs(msgMan);

15 stateObs = new BARTStateMessageObs(msgMan);

16 rosgate.createListener("bart_odometry_output",

17 nav_msgs.Odometry._TYPE);

18 rosgate.addObserver("bart_odometry_output",this.odoObs);

19 rosgate.createListener("bart_state_output",std_msgs.String._TYPE);

20 rosgate.addObserver("bart_state_output",this.stateObs);

21 rosgate.createPublisher("bart_twist_input",geometry_msgs.Twist._TYPE);

22 rosgate.createPublisher("bart_command_input",std_msgs.String._TYPE);

23 rosgate.setup();

24 /* Message Creations... */

25 commandMessage = (std_msgs.String)

26 rosgate.createMessage(std_msgs.String._TYPE);

27 }

28 /* Services implementations... */

29 public StateTO receiveState() {

30 return msgMan.getStateMessage();

31 }

32 public void sendCommand(CommandTO command) {

33 commandMessage.setData(command.getCommand());

34 rosgate.publishMessage("bart_command_input", this.commandMessage);

35 }� �
Listing 6.5: The RosGateSCAImpl class.

186 Chapter 6 The Bart Robot

The class implements the four interfaces that define its provided ser-

vices: SendTwist, SendCommand, ReceiveOdometry, ReceiveState. The

@EagerInit annotation at line 1 tells to the Tuscany SCA run-time to initial-

ize the component as soon as possible, without waiting for the first invocation

of a service. The SCA property at lines 7 and 8 represents the URI of the

roscore node that it is used by the RosGate object to notify itself to the

roscore at line 12. Lines 14 and 15 show the creation of two observer objects

that will be associated to subscribed topics: “bart odometry output” and

“bart state output”. From line 16 to 22 the listing shows the creation of listen-

ers and publishers objects and the association of the aforementioned observers

to the subscribed topics. The setup method called at line 23 initialize the

RosGateSCAImpl object. Lines 25 and 26 show the creation of a String

message by exploiting the message factory functionality of the RosGate class,

the creation of other messages has been omitted.

From line 29 to 31 the implementation of the receiveState method of the

ReceiveState service is shown. This service is used by clients to retrieve the

state of the BART robot. It is implemented by requiring the corresponding

data from the MessageManager which, in turn, receive data from the observer

associated to the “bart state output” topic, as shown in line 15.

Lines from 32 to 35 show the implementation of the sendCommand method

of the SendCommand service. The information is extracted from the trans-

fer object received as parameter and store into the ROS Java message ob-

tained from the RosGate class. Then, the message is published on the

“bart command input” topic to be transmitted to the robot driver. Other

services implementations are conceptually similar and have been omitted for

the sake of space.

The BartClient Component

The BartClient component implements a GUI that offers to the user the

possibility of sending twist commands to the robot by means of a graphical

interface or by using a standard keyboard. The same interface shows the

odometry data and robot state to the user. Figure 6.11 depicts the UML

6.3 Control Software 187

class diagram of the component. The BartClientImpl class implements the

component, the BartGUI class realizes the graphical user interface while the

KeyboardDispatcher handles the keyboard events coming from the user.

Figure 6.12: The GUI provided by the BartClient component.

The component acts as a client for the RosGateSCA component which pro-

vides the services for interacting with the robot. In particular, the BartClient

execution is timed by a thread that periodically polls the ReceiveState and

the ReceiveOdometry services in order to acquire new messages from the

robot and update the console.

With the same frequency, the BartClient invokes the SendCommand and

the SendTwist services for sending to the robot new commands and velocity

references if the user has provided new inputs through the console depicted

188 Chapter 6 The Bart Robot

in Figure 6.12.

It is important to notice that the client implementation is completely

independent from any ROS related concept or issue. The exchange of data is

carried out by means of the TwistTO and the CommandTO which encapsulate

the ROS message content into ROS-independent classes.

7
Conclusions

Component Based Software Engineering (CBSE) allows the realization of

modular and flexible software systems with a marked focus on software

reusability. In the robotics field the CBSE principles struggle to become spread

used. This is mainly due to the particular features of the robotic domain where

the extreme variability in functionality, applications and involved hardware

directly impacts on the component implementation and, by consequence, on

their reuse capability.

We believe that the component model concern plays a fundamental role in

defining the rules that supervise the components definition and the interaction

among them. Components definitions and interactions strongly influence

the flexibility of software systems and their capability to cope with the

unavoidable variability of the robotic domain. Hence, the component model

features directly influences the flexibility of the system.

The comparison between different available component models and their

classification represents a fundamental step for understanding their features.

The comparison can be carried out both with the objective of choosing the

most appropriate component model with reference to the particular needs

and with the aim of defining a new component model.

Whatever the objective, a good classification strategy should general

enough to be able to analyze and classify heterogeneous models catching

their commonalities and specific enough to effectively capture their specific

features.

189

190 Chapter 7 Conclusions

We have proposed a classification and analysis technique that exploits

the separation of concerns as we consider such an approach as the key to

obtain a good classification framework. The classification is split into four

orthogonal dimensions or concerns: the Communication, the Computation,

the Configuration and the Coordination. Each one captures a particular

aspect of the component model nature.

Each concern is then analyzed across a number of sub-dimensions that

further specify and refine the analysis. By means of the feature model method,

the containment relationships among features can be formalized in a clear

and unambiguous manner keeping the classification simple and compact.

We analyzed five component models that represent five different and iconic

approaches. By means of the developed classification we managed to clearly

identify the differences and the commonalities among them making clearer the

difference between domain-specific and general purpose component models.

The analyzed component models are: the Service Component Architecture

(SCA), the Corba Component Model (CorbaCM), the OpenCOM component

model, the OROCOS component model and the Robot Operating System

(ROS).

From the analysis and the classification of the five component models we

have drawn the conclusion that all the desirable features that maximize the

flexibility of a system cannot be achieved by adopting one single component

model. We proposed the integration of component models as a method to

overcome this limitation. In particular we integrated the ROS component

model and the SCA component model by means of a bridge software compo-

nent that connects a ROS-based subsystem with a SCA-based subsystem in

such a way that this integration is transparent to each others.

We demonstrated the effectiveness of this approach by applying it to a

new mobile robot, the BART. This robot provides a distributed computation

architecture that enables the developers to experiment several different design

approaches. In particular, the robot is provided with two microcontrollers,

an embedded PC and at least one remote workstation composing an hetero-

geneous test system both for what regards the variability in computational

architecture and for what regards the communication infrastructure.

7.1 Future Work 191

When designing and realizing the control software of the BART robot

we exploited the proposed integration strategy and we demonstrated that

this integration, besides being possible, increases the flexibility of the system

and gives to the developers the possibility of reusing preexisting component

implementations or developing new ones. It also allows for the use of pro-

gramming language that best fits the task or the computational environment

such as ANSI C for microcontrollers, C++ for the supervisor and Java for

higher-level tasks on remote machines.

7.1 Future Work

The work presented so far can be extended in several directions, both related

to the classification of component models and for what regards the integration

between ROS and SCA.

The classification can be further refined while maintaining the the “4C”

separation of concerns that represent the core of the entire approach. Each one

of the four concerns can be extended by adding new features or by specializing

the already present ones. However, a “good” classification should be enough

precise to fit well all the analyzed component models and, possibly, others that

are yet to come. A the same time, the classification should remain as generic

as possible since a complex classification scheme, with a very deep hierarchy of

features and sub-features become difficult to use and it is unlikely to be able

to clearly classify new component models. The trade off between generality

and specificity is the main issue of all classifications and the proposed on does

not represent an exception to this.

The classification activity can be further carried on by extending the

analysis to other component models in literature. Up to now we analyzed

models with the goal of finding weakness, strengths and differences between

general-purpose component models and embedded domain specific models but

this is only one of the many possible comparisons that can be made. We think

that the proposed classification is complete and general enough to allow many

other kinds of comparisons, for example between components that are just

theoretical proposals or proofs of concept and industrially used component

192 Chapter 7 Conclusions

models, such as Koala or Pecos to name a few, with the aim of finding the

issues that prevent a large diffusion of some models in the industrial field

Also the integration technique can be improved and extended in several

ways. A possible future direction can be the definition of a standardized

mechanism for configuring the RosGate component that, up to now, still

requires some manual coding operations for the definition and the setup of

topics. A possible solution can be the definition of a XML-based language for

the definition of the RosGate configuration that makes the setup of such a

component automatic while preventing the users to go into the implementation

details.

The Apache Tuscany run-time environment can be extended as discussed

in Section 5.1. This feature could be effectively exploited for including the

ROS-SCA integration directly in the run-time environment making this feature

an integral part of the Tuscany environment.

Since Tuscany can support the execution of C++ components by means

of a particular implementation of the run-time environment (called native),

the possibility of directly integrating C++ native ROS components into C++

SCA components could per pursued. This could lead to a easier integration

since the rosjava client library should not be needed anymore. As as side

effect, the overall performances could be improved allowing the use of SCA

components also for more time constrained tasks.

Finally, the use of SCA allows the exploitation of advanced tools and

libraries that, in some cases, are well suited for the robotics domain. As an

example, in [34], the use of Abstract States Machines (ASM) [32] is exploited

for the definition of a software coordinator for robotic related task. The

ASM formalism allows for formal and rigorous definition of tasks without

the mathematical overkill typical of many other formal methods. To this

purpose, in [61], an extension to the ASM graphical notation (flowchart) is

proposed. This extensions, called pattern-oriented control-state ASM allows

the developers to define patterns of interactions that can be reused and

specialized in many different applications. This considerably speeds-up the

development process of an ASM specification when used to define coordination

mechanisms for software components.

Bibliography

[1] Apache Tuscany web page. http://tuscany.apache.org/, 2013. (Cited

at pages 79 and 127)

[2] Fabric3 web page. http://tuscany.apache.org/, 2013. (Cited at

pages 79 and 132)

[3] IBM Websphere web page. http://www.ibm.com/software/

websphere/, 2013. (Cited at pages 79 and 126)

[4] Java Orchestration Language Interpreter Engine (JOLIE) web page.

http://www.jolie-lang.org/, 2013. (Cited at page 116)

[5] Lynux Works web page. http://www.lynuxworks.com/, 2013. (Cited

at page 35)

[6] Object Management Group web page. http://www.omg.org/, 2013.

(Cited at pages 27 and 52)

[7] OpenCV library web page. http://opencv.willowgarage.com/wiki/,

2013. (Cited at page 143)

[8] Organization for the Advancement of Structured Information Standards

(OASIS) web page. http://www.oasis-open.org, 2013. (Cited at

page 116)

193

194 Bibliography

[9] OW2 - FraSCAti web page. https://wiki.ow2.org/frascati/Wiki.

jsp, 2013. (Cited at pages 79 and 129)

[10] QNX web page. http://www.qnx.com/, 2013. (Cited at page 35)

[11] Real Time Application Interface (RTAI) web page. https://www.rtai.

org/, 2013. (Cited at pages 35 and 96)

[12] Rosjava documentation web page. http://docs.rosjava.googlecode.

com/hg/rosjava_core/html/index.html, 2013. (Cited at page 115)

[13] RT Linux web page. https://rt.wiki.kernel.org, 2013. (Cited at

page 35)

[14] Service Component Architecture (SCA) web page. http://www.

oasis-opencsa.org/sca, 2013. (Cited at pages 76 and 115)

[15] Service Oriented Architecture standard (SOA) web page. http://www.

opengroup.org/subjectareas/soa, 2013. (Cited at page 116)

[16] SOAP protocol web page. http://www.w3.org/TR/soap12-part1/,

2013. (Cited at page 116)

[17] The Gazebo simulator web page. http://gazebosim.org/, 2013. (Cited

at page 143)

[18] The Orocos Project web page. http://www.orocos.org, 2013. (Cited

at pages 61 and 143)

[19] The Player project web page. http://playerstage.sourceforge.net/,

2013. (Cited at page 143)

[20] The Robot Operating System web page. http://www.ros.org, 2013.

(Cited at pages 70 and 133)

[21] Universal Description, Discovery and Integration standard (UDDI) web

page. http://uddi.xml.org/, 2013. (Cited at page 116)

Bibliography 195

[22] W3C Web Services Description Language (WSDL) web page. http:

//www.w3.org/TR/wsdl, 2013. (Cited at page 116)

[23] Web Services Business Process Execution Language (WSBPEL) techni-

cal committee web page. https://www.oasis-open.org/committees/

wsbpel/, 2013. (Cited at page 116)

[24] Wind River VxWorks RTOS web page. http://www.windriver.com/

products/vxworks/, 2013. (Cited at page 35)

[25] Xenomai: real-time framework for Linux web page. http://www.

xenomai.org/, 2013. (Cited at pages 35 and 96)

[26] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J. H̊akansson,

A. Möller, P. Pettersson, and M. Tivoli. The save approach to component-

based development of vehicular systems. J. Syst. Softw., 80(5):655–667,

2007. (Cited at page 74)

[27] F. Arbab. What do you mean, coordination. Bulletin of the Dutch

Association for Theoretical Computer Science, NVTI, 1122:1 – 18, 1998.

(Cited at page 46)

[28] C. Atkinson, J. Bayer, O. Laitenberger, and J. Zettel. Component-

based software engineering: The kobra approach. In ICSE 2000, 22th

International Conference on Software Engineering, 3rd Workshop on

Component-Based Software Engineering, 2000. (Cited at page 58)

[29] C. Atkinson, J. Bayer, and D. Muthig. Component-based product line

development: the kobra approach. In Proceedings of the first conference

on Software product lines : experience and research directions, pages

289–309, Norwell, MA, USA, 2000. Kluwer Academic Publishers. (Cited

at page 58)

[30] D. Bálek and F. Plášil. Software connectors and their role in component

deployment. In 3rd Int. Working Conf. New Developments in Distributed

Applications and Interoperable Systems, pages 69–84. Springer, 2002.

(Cited at page 48)

196 Bibliography

[31] Y. Bontemps, P. Heymans, P. Schobbens, and J. Trigaux. Semantics of

foda feature diagrams. In Proceedings SPLC 2004 Workshop on Software

Variability Management for Product Derivation - Towards Tool Support,

pages 48–58, 2004. (Cited at page 16)

[32] E. Börger and R. Stärk. Abstract state machines: a method for high-level

system design and analysis. Springer, 2003. (Cited at page 192)

[33] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Orebäck. To-

wards component-based robotics. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2005. (IROS2005), pages 163–168,

August 2005. (Cited at page 64)

[34] D. Brugali, L. Gherardi, E. Riccobene, and P. Scandurra. A formal

framework for coordinated simulation of heterogeneous service-oriented

applications. In 8th International Symposium on Formal Aspects of

Component Software (FACS), 2011. (Cited at page 192)

[35] D. Brugali and P. Scandurra. Component-Based Robotic Engineering

(Part 1). IEEE Robotics & Automation Magazine, 9:84–96, December

2009. (Cited at page 28)

[36] D. Brugali and A. Shakhimardanov. Component-Based Robotic Engi-

neering (Part 2). IEEE Robotics & Automation Magazine, 10:100–112,

March 2010. (Cited at pages 6, 9, 24 and 42)

[37] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Stefani. The

fractal component model and its support in java. Software: Practice and

Experience, 36(11-12):1257–1284, 2006. (Cited at page 54)

[38] H. Bruyninckx. Open robot control software: the orocos project. In

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE Interna-

tional Conference on, volume 3, pages 2523–2528. IEEE, 2001. (Cited at

page 61)

[39] H. Bruyninckx. Real-time and embedded guide. KU Leuven, Mechanical

Engineering, 1:1–177, 2002. (Cited at page 47)

Bibliography 197

[40] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion

control core of the orocos project. In Robotics and Automation, 2003.

Proceedings. ICRA’03. IEEE International Conference on, volume 2,

pages 2766–2771. IEEE, 2003. (Cited at page 61)

[41] T. Bureš, P. Hnětynka, and F. Plášil. Sofa 2.0: Balancing advanced

features in a hierarchical component model. In Proc. of SERA 2006,

pages 40–48, 2006. (Cited at page 81)

[42] D. Calisi, A. Censi, L. Iocchi, and D. Nardi. Design choices for modu-

lar and flexible robotic software development: the openrdk viewpoint.

Journal of Software Engineering for Robotics, 3(1):13–27, 2012. (Cited

at page 14)

[43] OMG Corba Component Model documentation web page. http://www.

omg.org/spec/CCM/, 2013. (Cited at page 52)

[44] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama. A com-

ponent model for building systems software. In In Proc. IASTED Software

Engineering and Applications (SEA’04), 2004. (Cited at page 59)

[45] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,

and T. Sivaharan. A generic component model for building systems

software. ACM Trans. Comput. Syst., 26(1):1–42, 2008. (Cited at

pages 59, 101 and 103)

[46] I. Crnkovic, M. Chaudron, S. Sentilles, and A. Vulgarakis. A classification

framework for component models, 2007. (Cited at page 13)

[47] K. Czarnecki. Generative Programming: Methods, Techniques, and

Applications Tutorial Abstract. PhD thesis, Univeristy of Twente, The

Netherlands, 2002. (Cited at page 16)

[48] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many faces

of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131,

2003. (Cited at page 24)

198 Bibliography

[49] The Fractal Project web page. http://fractal.ow2.org/, 2013. (Cited

at page 54)

[50] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:

Elements of reusable object-oriented design, 1995. (Cited at pages 43

and 44)

[51] L. Gherardi, D. Brugali, and D. Comotti. A java vs. c++ performance

evaluation: a 3d modeling benchmark. Simulation, Modeling, and Pro-

gramming for Autonomous Robots, pages 161–172, 2012. (Cited at

page 167)

[52] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lundbäck, and

K. Lundbäck. The rubus component model for resource constrained

real-time systems. In 3rd IEEE International Symposium on Industrial

Embedded Systems, June 2008. (Cited at page 72)

[53] G. Heineman and W. Councill. Component-based software engineering:

putting the pieces together, volume 17. Addison-Wesley USA, 2001. (Cited

at pages 1 and 2)

[54] S. Hissam, J. Ivers, D. Plakosh, and K. Wallnau. Pin component technol-

ogy (v1.0) and its C interface. Technical note, CMU/SEI-2005-TN-001,

Software Engineering Institute - Carnegie Mellon University, Pittsburgh,

PA, April 2005. (Cited at page 67)

[55] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-

oriented domain analysis (foda) feasibility study. Technical report, DTIC

Document, 1990. (Cited at page 15)

[56] G. Kotonya, I. Sommerville, and S. Hall. Towards a classification model

for component-based software engineering research. In Euromicro Con-

ference, 2003. Proceedings. 29th, pages 43–52, 2003. (Cited at page 12)

[57] J. Kramer. Configuration programming - a framework for the development

of distributable systems. In CompEuro’90. Proceedings of the 1990

Bibliography 199

IEEE International Conference on Computer Systems and Software

Engineering, pages 374–384. IEEE, 1990. (Cited at page 38)

[58] K. Lau, L. Ling, V. Ukis, and P. Velasco Elizondo. Composite connectors

for composing software components. In Software Composition, pages

266–280. Springer, 2007. (Cited at page 48)

[59] K. Lau and Z. Wang. Software component models. IEEE Transactions on

Software Engineering, 33(10):709–724, October 2007. (Cited at page 10)

[60] S. Laws, M. Combellack, R. Feng, H. Mahbod, and S. Nash. Tuscany

SCA in action. Manning, 2011. (Cited at pages 79 and 127)

[61] A. Luzzana, M. Rossetti, P. Righettini, and P. Scandurra. Modeling

synchronization/communication patterns in vision-based robot control

applications using asms. In Abstract State Machines, Alloy, B, VDM,

and Z, pages 331–335. Springer, 2012. (Cited at page 192)

[62] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for robotics.

In International Conference on Intelligent Robots and Systems (IROS),

pages 163–168, 2006. (Cited at page 64)

[63] N. Medvidovic and R. N. Taylor. A classification and comparison frame-

work for software architecture description languages. IEEE Transactions

on Software Engineering, 26:70–93, 2000. (Cited at pages 28, 32 and 94)

[64] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of

software connectors. In ICSE ’00: Proceedings of the 22nd international

conference on Software engineering, pages 178–187, New York, NY, USA,

2000. ACM. (Cited at page 48)

[65] G. Moreno. Creating custom containers with generative techniques. In

GPCE ’06: Proceedings of the 5th international conference on Genera-

tive programming and component engineering, pages 29–38. ACM, 2006.

(Cited at page 67)

200 Bibliography

[66] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Ng. Ros: an open-source robot operating system.

In ICRA workshop on open source software, volume 3, 2009. (Cited at

pages 70 and 133)

[67] J. Radatz. IEEE standard glossary of software engineering terminology.

IEEE Std 610121990, 121990, 1990. (Cited at page 1)

[68] M. Radestock and S. Eisenbach. Coordination in evolving systems. In

S. LNCS, editor, Proc. Int. Workshop Trends in Disributed Systems

CORBA and Beyond, volume 1161, pages 162–176, 1996. (Cited at

pages 9, 21, 23, 30, 37 and 45)

[69] C. Schlegel. Navigation and Execution for Mobile Robots in Dynamic

Environments - An Integrated Approach. PhD thesis, University of Ulm,

2004. (Cited at page 79)

[70] C. Schlegel. Software Engineering for Experimental Robotics, volume 30,

chapter Communication Patterns as Key Towards Component Inter-

operability, pages 183–210. Springer, STAR series, 2007. (Cited at

page 79)

[71] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Generic

semantics of feature diagrams. Computer Networks, 51(2):456–479, 2007.

(Cited at pages 9 and 15)

[72] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J. Stefani.

Reconfigurable sca applications with the frascati platform. In Services

Computing, 2009. SCC’09. IEEE International Conference on, pages

268–275. IEEE, 2009. (Cited at pages 79 and 129)

[73] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J. Ste-

fani. A component-based middleware platform for reconfigurable service-

oriented architectures. Software: Practice and Experience, 0:1–26, 2011.

(Cited at pages 79 and 129)

Bibliography 201

[74] SmartSoft web page. http://smart-robotics.sourceforge.net, 2013.

(Cited at page 79)

[75] SOFA 2.0 Project web page. http://sofa.ow2.org, 2013. (Cited at

page 81)

[76] C. Szyperski, D. Gruntz, and S. Murer. Component software: beyond

object-oriented programming. Addison-Wesley, 2002. (Cited at pages 1

and 2)

[77] R. Van Ommering, F. Van der Linden, J. Kramer, and J. Magee. The

Koala component model for consumer electronics software. Computer,

33(3):78–85, 2000. (Cited at page 56)

[78] N. Wang, D. Schmidt, M. Kircher, and K. Parameswaran. Towards a

reflective middleware framework for qos-enabled corba component model

applications. IEEE Distributed Systems Online, 2(5), 2001. (Cited at

page 52)

[79] N. Wang, D. Schmidt, and C. O’Ryan. Overview of the corba component

model. In Component-Based Software Engineering: putting the pieces

together, pages 557–571. Addison-Wesley Longman Publishing Co., Inc.,

2001. (Cited at page 52)

[80] M. Winter, T. Genßler, A. Christoph, O. Nierstrasz, S. Ducasse, R. Wuyts,

G. Arévalo, P. Müller, C. Stich, and B. Schönhage. Components for

embedded software: the PECOS approach. In Proc. International Con-

ference on Compilers, Architecture, and Synthesis for Embedded Systems

(CASES02), pages 19–26, 2002. (Cited at page 69)

	Introduction
	Component Model for Robotics
	Challenges in Robotics Software Engineering

	The Proposed Approach
	Structure of the Thesis
	Acknowledgements

	The ``4C'' Classification Model
	Related Work
	Feature Models
	Basic Feature Models

	Feature-based 4C Classification
	Separation of concerns
	Communication
	Computation
	Configuration
	Coordination

	Component Models Survey
	Corba Component Model (CCM)
	Fractal
	Koala
	KobrA
	OpenCOM
	OROCOS
	Orca
	Pin
	Pecos
	Robot Operating System
	Rubus
	SaveComp Component Model
	Service Component Architecture
	Smartsoft
	SOFA 2.0

	Component Models Analysis
	Communication
	Interface
	Anonymity
	Synchrony

	Computation
	Component Implementation Language
	Component Behaviour
	Real-time Support
	Distributed System Support

	Configuration
	Configurable Entities
	Configuration Model
	Composition Mechanism
	Persistence Mechanism

	Coordination
	Connector Feature
	Component Roles

	General Considerations

	SCA and ROS Integration
	The Service Component Architecture
	Basic Principles
	The SCA component model
	Domains
	Components
	Services
	References
	Properties
	Bindings
	Composite
	Wires
	SCA Run-time Environments

	The Robot Operating System
	The ROS Component Model
	ROS tools

	Integration of SCA and ROS
	Rosjava
	The RosGate Component in ROS
	The RosGate Component in SCA

	The Bart Robot
	Mechanical Structure
	Motors and Encoders
	Kinematics

	Electronics and Computation devices
	Microcontrollers
	Embedded PC

	Control Software
	Slave Microcontroller Firmware
	Master Microcontroller Firmware
	Embedded PC Software
	Remote Workstation Software

	Conclusions
	Future Work

	Bibliography

