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Abstract

We propose a TransCo model for coordinating transmission expansion planning with com-
petitive generation capacity planning in electricity markets. Our purpose is to provide a tool
to simulate the equilibrium interplay regarding strategic decisions of a set of power producers
and a single transmission operator. The solution represents an iterative process for defining
the optimal transmission expansion program together with a correct guess of the power plants
expansion program for each GenCo involved. The composition of new investments in power
plants guessed by the TransCo must coincide with the optimal expansion plan defined by each
GenCo. We illustrate the methodology by means of an example depicting a zonal electricity
market with two zones.

1 Introduction

After liberalization of Electricity Markets, private companies started entering the power generation
market, offering power at lower costs and laying the groundwork for the introduction of a compe-
tition pattern which, in turn, will pass a larger share of benefits on to consumers. Such a widening
of competition within the electricity market gives rise to the problem of coordination of generation
systems with transmission lines. With no longer vertical structure ensuring automatic coordination
of such activities it becomes necessary to develop mechanisms to align production and expansion
decisions of the market actors covering these two roles.

When planning over the expansion of the transmission grid, it is important for the TransCo to
take into account possible responses provided by GenCos. Not accounting for such reactions could
most likely lead to potential over and under-investments beared by the TransCo across the different
market areas. This would in turn lead to congestion and/or violation of the security standard, and
ultimately to a rise in social costs. In this framework, a more integrated policy could be achieved
by requiring the TransCo to account for responses given by GenCos with respect to changes in
transmission capacity location in planned grid locations. This would result in a better exploitation
of the existing transmission facilities [10].

We propose a model for analysis of transmission grid expansion planning with competitive
generation capacity planning in electricity markets. The purpose of the model is providing a tool
to define the optimal grid upgrading program in a market driven environment. Interplay between
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TransCo and several independent GenCos is treated as a leader-followers Stackelberg game. Such
game is expressed as the following sequential decision pattern: the TransCo decides on the best
possible upgrades of transmission lines and the GenCos modify their production plans and potential
capacity expansion accordingly, reaching an equilibrium together with the Market Operator, which
clears the market providing new zonal prices. Reaction of GenCos lead to an electricity production
equilibrium that is properly taken into account within the TransCo decision problem, which receives
back new zonal prices used to meter the amount of social costs.

Due to its intrinsic complexity and multi-objective nature the problem of coordinating electricity
transmission and generation has been tackled using many different techniques. The first attempts
to solve such problem date back to the late sixties and were based on a centralized approach [6], [9].
Linear programming was mainly used with the aim of minimizing the pooled costs for the system.
A centralized approach is also taken by [1].

Interactive behaviour of electricity transmission and generation has gained more and more im-
portance as game theoretic models have made their appearence within the realm of optimization
theory. An example of application of such mixture of equilibrium concepts and optimization the-
ory in analysis of electricity market equilibrium can be found in Hobbs [12]. Recent approaches
encompass the use of bilevel programming [3], [7], [8],[17],[11] where the transmission planner takes
its decision taking the benefits of the first mover advantage, while generating companies have to
decide accordingly, together with the market operator.

A rather different approach is taken by [15], [16], which consider a coordination model where the
Independent System Operator (ISO), which takes care of system security sends economical signals
to TransCos and GenCos to incentivate a coordinated expansion of transmission and generation.
Incentives are computed via Benders decomposition and Lagrangean Relaxation techniques.

The remainder of the article is organized as follows. In section 2 we introduce the decision
problems up to each player involved in the production and delivery of electric power. Section 3
describes a reformulation of the problem providing lower bounds for the TransCo problem. In section
4 we introduce an algorithm to provide steadily larger lower bounds for the relaxation introduced in
section 3, until a feasible solution for the original problem is found. Finally we provide a numerical
analysis of the problem based on a two-zones system in section 5 and we draw conclusion in section
6.

2 General model

The model introduced in this article aims at capturing the strategies stemming by a sequencial
game between three players: the Transmission Company, a group of Generating Companies and
the Market Operator. The model is structured in two different, interrelated decision levels which
represent the sequencial nature of the decisions up to each player. Namely, the TransCo will take its
decision on transmission structure as first mover, then each GenCo will decide on power production
levels and potential new investments accordingly to the choice made by the TransCo. Bids provided
by each GenCo are collected and sorted by a Market Operator, which takes care of clearing the
market.

We assume that electricity shall be delivered to companies and consumers spread over different
market zones. Each zone has different properties in terms of load and possible power production
levels, which in turn depend on the amount of existing power plants and candidate areas for the
installment of new power plants. The modeling framework considered in this paper is displayed
in figure 1. The two-levels Stackelberg game involves only the network planner as the upper level
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Figure 1: Interdependancies between transmission company, generator companies and market op-
erator

player and a group of power generating companies, whose bid-ask mechanism with the consumers
is mediated by a Market Operator, as the lower level. The TransCo aims at lowering the total
social cost, defined as the sum of covered load times the zonal price payed to purchase energy over
the different zones and time periods. Such objective is pursued by allowing more efficient GenCos
selling energy in different areas. TransCo takes a decision on installation of new power transmission
lines which, together with the existing transmission lines, will define new upper and lower bounds
on the line power flow streaming over a intra-zonal connection line l at time t. These bounds are
used by the Market Operator to define how much power can be transferred between zones in order
to accept bids that are supposed to cover the load at a given time t in all the considered areas at
the least possible social cost. Bids are sent to the Market Operator by the GenCos in form of a
pair (bikt, q̃ikt) defining the price bid at time t from generator k belonging to GenCo i and the
related quantity respectively. Such bids are defined on the ground of projected profitability of the
energy production. This latter depends on installed capacity and decisions on installations of new
power plants which concur as decision variables for the GenCos. Market Operator, given the power
flow bounds defined by the TransCo, will define the zonal prices πzt for zone z at time t and the
accepted quantities from each power generator. GenCos aim at maximizing their profit, by deciding
how much power to supply and whether to open new power plants.

A dedicated algorithm has been developed in order to take care of binary decision variables
featured in the equilibrium problem between GenCos and Market Operator. We tackle the problem
by solving a relaxation of the TransCo problem in which all of the investments based binary decision
variables are controlled by the TransCo, while first order conditions are imposed for the continuous
part of the GenCo and Market Operator problems. This returns a lower bound for the TransCo
problem which is normally not consistent with the response given by each GenCo in terms of binary
variables. Therefore the solution is tested for consistency with the solution provided by each GenCo
in order to check whether the binary decision variables up to the GenCos obtained by solving the
relaxation are the same as the ones provided by the solution of each GenCo problem. Should this
not happen, the algorithm creates appropriate cuts in order to prevent the TransCo to choose the
same integer solution for the variables up to the GenCos in subsequent iterations.
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The main task of the Market Operator (MO) is the one of matching energy demand and supply
at each time point. As a consequence of such match, MO will determine hourly zonal prices. Let
us introduce the following notation
Let us denote by T the set of periods t, I the set of oligopolistic producers, Z the set of zones,
LE , LC the set of existing and candidate transmission links, KE

iz and Kc
iz the set of existing and

candidate technologies belonging to producer i ∈ I in zone z ∈ Z.
Let bikt denote price of sell bid of plant k ∈ K belonging to GenCo i ∈ I in period t ∈ T , Azl

the incidence matrix of the system, Czt the load in zone z ∈ Z in period t ∈ T , q̃ikt the power
in MW offered by generator k ∈ K belonging to GenCo i ∈ I at time t ∈ T , TRlt and TRlt the
maximum and minimum capacity of transmission link l ∈ L in period t ∈ T .

Let qikt be accepted bid in MW for technology k ∈ K of producer i ∈ I in period t ∈ T and
TRlt denote the power flow on transmission link l ∈ L in period t ∈ T ;

The Market Operator must enforce the clearing conditions for the perfect competitive system
considered for a group of similar producers, which is given by the solution of the problem1

min
qikt,TRlt

∑
i∈I

∑
t∈T

∑
z∈Z

∑
k∈KE

iz∪KC
iz

biktqikt (1)

subject to ∑
i∈I

∑
k∈KE

iz∪KC
iz

qikt +
∑

l∈LE∪LC

AzlTRlt = Czt : πzt z ∈ Z, t ∈ T (2)

qikt ≤ q̃ikt : λikt i ∈ I, z ∈ Z, k ∈ KE
iz ∪KC

iz, t ∈ T (3)

TRlt ≤ TRlt ≤ TRlt : η+
lt , η

−
lt l ∈ LE ∪ LC , t ∈ T (4)

qikt ≥ 0 (5)

Solution of the introduced problem operates a sorting through the accepted bids, starting from the
cheapest one and ending with the most expensive.

At the same level as the Market Operator one finds the set of GenCos. These actors aim at
maximizing their own profit by submitting bids (bikt, q̃ikt) to the Market Operator and defining
their optimal expansion plan according to the structure of the grid. The problem of the i-th GenCo
involves the following notation

Let πzt be zonal price in area z ∈ Z at time t ∈ T , δ denote the discount factor, cik the
generation cost of technology k ∈ K for producer i ∈ I, fGik the investment cost of technology k for
producer i, ΓCik and ΓEik denote the capacity of candidate technology k ∈ K of producer i ∈ I and
qikt define accepted bid in MW for technology k ∈ K of producer i ∈ I in period t ∈ T ;

Let us define Yik as the binary variable set to 1 if producer i ∈ I activates technology k ∈ K,
q̃ikt as the power in MW offered by generator k ∈ K belonging to GenCo i ∈ I at time t ∈ T and
bikt as the price of sell bid of technology k ∈ K belonging to GenCo i ∈ I in period t ∈ T

The decision problem up to each GenCo is the following

max
q̃ikt,bikt,Yik

∑
t∈T

δ−t
∑
z∈Z

πzt ∑
k∈KE

iz∪KC
iz

q̃ikt −
∑

k∈KE
iz∪KC

iz

cikq̃ikt

−∑
z∈Z

∑
k∈KC

iz

fGikYik (6)

1We report the dual variables of each constraint right after the constraint itself preceded by a colon.
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subject to
q̃ikt ≤ ΓCikYik : µΓC

ikt z ∈ Z, k ∈ KC
iz, t ∈ T (7)

q̃ikt ≤ ΓEik : µΓC
ikt z ∈ Z, k ∈ KE

iz, t ∈ T (8)

q̃ikt ≤ qikt : µq̃+ikt z ∈ Z, k ∈ KE
iz ∪KC

iz, t ∈ T (9)

q̃ikt, bikt ≥ 0, Yik ∈ {0, 1} (10)

In this problem, πzt represents electricity price in zone z in period t and is defined as the shadow
price of load covering constraint (2). The last constraint defines an upper bound on the power
accepted by the Market Operator.

The solution of each GenCo problem changes accordingly to the bid level that can be accepted
by the Market Operator in each market zone and accordingly to the decision taken by the TransCo
in terms of transmission capacity over the transmission lines. We will refer to the GenCo problem
as GPi

(
TRlt, TRlt

)
in order to stress out the aforementioned relation.

TransCo aims at minimizing the sum of social costs given the expansion investment budget. High
social costs derive by high bids settled by GenCos which can be reduced by removing congestions
over the transmission grid. We assume that only upgrade of existing lines is considered by the
TransCo. The problem is formalized as follows.

Let us define the parameters Czt as load in zone z ∈ Z in period t ∈ T , Λ
E

l ,Λ
E
l as upper and

lower bound on existing line capacity, Λ
C

l ,Λ
C
l as upper and lower bound on candidate line capacity

with voltage w ∈ W , fTwl as investment cost for opening line l ∈ L with voltage w ∈ W and B as
the total budget for lines expansion.

Decision variables for the TransCo are πzt which denotes the zonal price in area z ∈ Z at time
t ∈ T , Xwl which denotes a binary variable set to 1 if line l ∈ L of type w ∈ W is built and
TRlt, TRlt, denoting the overall upper and lower bound line capacity. TransCo problem can be
formulated as

min
πzt,TRlt,TRlt,Xwl

∑
t∈T

∑
z∈Z

Cztπzt (11)

subject to

TRlt = Λ
E

l +
∑
w∈W

Λ
C

wlXwl l ∈ LE ∩ LC , t ∈ T (12)

TRlt = ΛEl +
∑
w∈W

ΛCwlXwl l ∈ LE ∩ LC , t ∈ T (13)

∑
w∈W

∑
l∈LC

fTwlXwl ≤ B (14)

πzt ∈ Ω
(
TRlt, TRlt

)
z ∈ Z, t ∈ T (15)

TRlt, TRlt ≥ 0, Xwl ∈ {0, 1} (16)

where the first two constraints define the upper and lower bounds on power flows in a given line

l and at a given time t. These bounds are given by the sum of the existing bounds Λ
E

l plus a
potential bound upgrade, added to the existing bound if a candidate line is opened. The TransCo
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can choose among different types of transmission lines, depending on their voltage. W is the set
of possible types of available transmission lines. The third constraint represents the upper bound
on the capital expenses for lines expansion. Finally, Ω

(
TRlt, TRlt

)
represents the space of joint

solutions of problems (1)-(5) and (6)-(10) parametrized by TRlt and TRlt. Such set contains the
possible equilibria, defined in terms of decision variables q̃ikt, bikt, Yik for the involved GenCos,
decision variables qikt, TRlt for the market operator and dual variables for both the aforementioned
problems. Dual variables for problems (1)-(5) and (6)-(10) are the following. Namely we define πzt
and λikt as the dual variables for constraints (2)-(3) respectively and η+

lt and η−lt as the positive

and negative part of the dual variable for constraint (4) and µΓC
ikt , µ

ΓE
ikt and µq̃+ikt as dual variables for

constraints (7), (8) and (9). All of the aforementioned variables belong to the set Ω
(
TRlt, TRlt

)
,

which is paramatrized by the choice of upper and lower bounds for power transmission decided by
the TransCo. Variables fGik and fTwl have been divided by 8750, which represent the yearly operating
hours for a plant. This is in order to harmonize the definition of load and offered quantity which
are represented under a hourly time horizon with the investment costs, which must consider the
whole energy sold in a time horizon expressed in years in order to be a valuable measure to be used
for assessment of investment decisions.

3 Model Reformulation

As no strategic bidding is considered in the model, bids will reflect marginal costs cik of the
production from a given plant k plus a GenCo specific bid up χi. This implies that the structure
of the offer curve is completely determined by the marginal costs up to each power plant of each
GenCo and there will be no interplay to determine an equilibrium on offer prices. Under this
assumption, GenCos could find beneficial expand their capacity for a given load request over time,
allowing a larger amount of energy to be accepted by the Market Operator for load covering. This
implies that GenCos selected by the Market Operator will be willing to offer power as long as their
capacity limit is not hit. Capacity of each GenCo needs to be considered when the Market Operator
defines a candidate value for the amount of power produced by each GenCo. In this respect, one
needs to assure that Market Operator takes care of such constraints when setting up the electricity
exchanges. This can be done by explicitly inserting capacity expansion constraints (7)-(8) of GenCos
into the MO problem. For a given arrangement of candidate power plants for each GenCo the MO
will know which are the bounds on power generation. Such bounds are iteratively updated after
getting the optimal response from each GenCo, in case the two solutions do not coincide.

1. Market Operator problem is explicitly considered in the TransCo decision model by means of
its Karush-Kuhn-Tucker conditions considering decisions on new installments of power plants
as parameters.

2. TransCo solves a mathematical program with complementarity constraints with mixed integer
structure due to the presence of binary variables defining the state of new power plants. Such
problem is a relaxation of the original bilevel problem in the sense that it provides a lower
bound for the minimization of the social costs and the solution of the original bilevel problem
is feasible for such problem. The solution of such problem returns a tentative decision on the
candidate power plants to be opened and bounds on the quantities accepted by the Market
Operator, besides the value for the transmission bounds on each line.
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3. GenCos solve their decision problems with bounds on the power accepted by the MO. The
unit margin for the profit of GenCos whose bids are accepted by the MO is positive, therefore
GenCos will increase the production until they hit an upper bound. Such upper bound can
be their maximum production capacity or the maximum accepted quantity by the MO. The
result of the decision problem up to the GenCos is their actual decisions on capacity expansion
and power generated and injected into the grid.

4. Solutions on candidate power plants provided by TransCo and GenCos are compared. If the
decisions coincide then the candidate solution is optimal, otherwise a procedure will prevent
the TransCo choosing the same solution in a subsequent iteration of the problem by means
of a cut and an additive penalty term in the objective function.

The problem solved by the Market Operator is therefore given by (1)-(5) with the inclusion of
constraints (7) and (8) with q̃ikt replaced by qikt. We call such problem MO(TRlt, TRlt) in order
to stress out its dependancy on the upper and lower bounds on power transmission provided by
TransCo. In such a problem Yik is a parameter defined by the TransCo as a tentative value2 and
corrected or confirmed by GenCos after the solution of their decision problem.

Problem up to the generic i-th GenCo is given by (6)-(10) We stress out that the GenCos are
willing to provide as much power as they possibly can as their profit increases with power supplied.
We call such problem GPi(TRlt, TRlt) for the i-th Genco.

Finally the problem to be solved is the TransCo problem, defined as (11)-(16), which defines
a mathematical problem with bilevel structure entailing one leader (TransCo) and multiple fol-
lowers (GenCos and Market Operator). As explained earlier, the lack of interplay in the defi-
nition of the price bids allows us to consider only the MO problem as the lower level. Accord-
ingly, if we define dualMO

(
TRlt, TRlt

)
as the dual problem for the Market Operator problem

MO(TRlt, TRlt) parametrized by the upper and lower bounds on transmission capacity and on
the value of binary variables Yik we have that Ω

(
TRlt, TRlt

)
=
{
πzt |

(
πzt, σ

C
ikt, σ

E
ikt, η

+
lt , η

−
lt , λikt

)
is optimal solution to dualMO

(
TRlt, TRlt

)}
.

Following such approach we can formulate the Integer Leader Relaxation (ILR) as the follow-
ing mathematical program with complementarity constraints and mixed integer structure where

2The decision on tentative values for candidate power plants is up to the TransCo. This is true because the
Market Operator problem is integrated into the TransCo problem through its first order conditions.
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responses of the MO are replaced by the related Karush-Kuhn-Tucker conditions

min
∑
t∈T

∑
z∈Z

Cztπzt

s.t. TRlt = Λ
E

l +
∑
w∈W

Λ
C

wlXwl l ∈ LE ∩ LC , t ∈ T

TRlt = ΛEl +
∑
w∈W

ΛCwlXwl l ∈ LE ∩ LC , t ∈ T∑
w∈W

∑
l∈LC

fTwlXwl ≤ B∑
z∈Z

Azlπzt − η+
lt + η−lt = 0 l ∈ LE ∪ LC , t ∈ T∑

i∈I

∑
k∈KE

iz∪KC
iz

qikt +
∑

l∈LE∪LC

AzlTRlt = Czt z ∈ Z, t ∈ T

0 ≤ bikt + σCikt + σEikt − πzt ⊥ qikt ≥ 0 i ∈ I, z ∈ Z, k ∈ KE
iz ∪KC

iz, t ∈ T
0 ≤ ΓCikYik − qikt ⊥ σCikt ≥ 0 i ∈ I, z ∈ Z, k ∈ KC

iz, t ∈ T
0 ≤ ΓEik − qikt ⊥ σEikt ≥ 0 i ∈ I, z ∈ Z, k ∈ KE

iz, t ∈ T
0 ≤ TRlt − TRlt ⊥ η+

lt ≥ 0 l ∈ LE ∪ LC , t ∈ T
0 ≤ TRlt − TRlt ⊥ η−lt ≥ 0 l ∈ LE ∪ LC , t ∈ T
TRlt, TRlt ≥ 0, πzt, TRlt ∈ <
Xwl, Yik ∈ {0, 1}

(17)

When this problem is solved one is left with optimal values q∗ikt and Y ∗ik, besides the incumbent
value for the zonal prices π∗zt and the candidate value for the i-th GenCo profit v∗i . Such values
can be used to perform a comparison with the GenCo problems. Namely one has to solve problem
GPi(TRlt, TRlt) with πzt = π∗zt. Once one obtains the solution of problem GPi(TRlt, TRlt) it
will be possible to compare the decision on opening of candidate power plants stemming from
GPi(TRlt, TRlt) which we denote by Ȳik and the candidate value provided by the solution of (17),
which we denote by Y ∗ik. In addition one will compare the candidate profit value obtained by solving
(17) and denoted by v̄i with the actual optimal profit v∗i . If the comparison returns that Ȳik 6= Y ∗ik
or | v∗i − v̄i |> ε with ε > 0 and small, then a cut and penalty shall be inserted in problem (17). The
details of such procedure shall be explained in some more detail in the remainder of the article.

4 Solution Approach

What one can expect is that the solution of (17) will not be the solution of the original problem
(11)-(16). In fact, if we define the i-th GenCo problem with all other players in equilibrium as
GPi(TRlt, TRlt) and given a solution (X∗l , Y

∗
ik) of the (ILR), this coincides with the solution of

(11)-(16) iff
Y ∗ik = arg max GPi(TRlt, TRlt) i ∈ I, z ∈ Z, k ∈ KC

iz (18)

which can be obtained by fixing all the players except i-th’s decision variables to the ones supplied



Paolo Pisciella, Marida Bertocchi, Maria Teresa Vespucci 9

by the solution of the ILR and solving problem GPi(TRlt, TRlt) for the i-th GenCo. If solution of
i-th GenCo problem does not coincide with the one found with the TransCo problem, it is necessary
to devise a procedure to prevent the TransCo choosing the same integer solution when solving the
Integer Leader Relaxation. The purpose is to require the TransCo to pick the second best integer
solution of the ILR. Generally speaking, we want to force the TransCo to choose progressively worse
optimal solutions of the ILR until we find the best solution satisfying the equilibrium problem
between the GenCos. This is done by inserting an appropriate cut and a penalty term for the
incumbent optimal ILR solution.

If at iteration n we denote by Y ∗ik[n−1] the optimal installation plan for GenCo i obtained in the
previous iteration and

a
(n)
ik =

{
1 if Y ∗ik[n−1] = 1

−1 if Y ∗ik[n−1] = 0

b
(n)
ik =

{
0 if Y ∗ik[n−1] = 1

1 if Y ∗ik[n−1] = 0

(19)

we can express the cut as

∑
i∈I

∑
k∈KC

i

a
(n)
ik Yik −

∣∣KC
∣∣un ≤ ∣∣KC

∣∣2 − ∣∣KC
∣∣+ 1

|KC |
−
∑
i∈I

∑
k∈KC

i

b
(n)
ik (20)

with
∣∣KC

∣∣ denoting the total number of candidate plants and un defined as a binary variable.
At iteration n we will have the TransCo solving the Penalized Integer Leader Relaxation problem

(PILR) defined as the ILR problem with the addition, at each iteration n, of an additional cut of
type (20) and with the following modification of the objective function

∑
t∈T

∑
z∈Z

Cztπzt +M

n∑
r=1

ur

After problem PILR is solved, the solution is tested with problem (18), and if the solution
coincides with the one obtained solving the PILR the algorithm stops. Otherwise, a new cut and
penalty term are included in the PILR and the process starts anew. Optimal solution is reached
because the leader will explore all the feasible integer solutions as each optimal solution is fathomed
by the cut and penalty and a second best solution has to be chosen. Since the optimal solution
of the original problem (11)-(16) lies within the feasible set, it has to be eventually picked up as
candidate by the algorithm. One problem that can arise with the described approach is anyway
linked to degenerate solutions of the ILR and PILR problems. Namely such problem could return
a result which is not the same found by the GenCos in terms of profitability and choice of binary
variables only because of degeneracy, i.e. there exists another solution with the same objective
function for the TransCo sharing the same values for profit and choice of binary variables with
the optimal solutions of all the GenCos. This can generate sub-optimal solutions for the problem
(11)-(16).

The idea of the algorithm is to obtain candidate solutions as lower bounds resulting by the
solution of the PILR problem, and test whether such solutions are feasible by solving the Followers
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Problem (FP). The test consists in checking if either the optimal function of each follower is the
same as the value obtained by solving the PILR or the optimal choice of each follower, in terms of
new installed plants, coincides with the ones obtained by solving the PILR problem. If the integer
solution of the FP coincides with the corresponding values obtained solving the PILR problem or
the objective function value is the same as the optimal value of each follower, the result is optimal
for problem (11)-(16). Otherwise a cut and a penalization are included in the constraints and the
objective function of the PILR respectively to prevent the incumbent optimal solution of the PILR
to be chosen again in a new iteration. The algorithm is thus described in the table below, where
symbols vi[n] and v∗i[n] denote the optimal profit of the i-th GenCo at iteration n and the candidate
profit for GenCo i computed by the TransCo at iteration n, while ε is a small positive real number.

Algorithm 1 Progressive Penalization Algorithm

(Step 1)
n← 0
solve ILR→ (TR

∗
lt, TR

∗
lt, q
∗
ikt, Y

∗
ik[n], X

∗
wl, v

∗
i[n])

if ILR is infeasible then
STOP. The problem is infeasible

else
(Step 2)
for i = 1→ |I| do

solve GPi(TR
∗
lt, TR

∗
lt)→ (Ȳik[n], vi[n])

end for
if Ȳik[n] = Y ∗ik[n] or | vi[n] − v∗i[n] |< ε then

(TR
∗
lt, TR

∗
lt, X

∗
wl) is the optimal solution of (11)-(16)

else
(Step 3)
while Ȳik[n] 6= Y ∗ik[n] or | vi[n] − v∗i[n] |≥ ε do
n← n+ 1
solve PILR→ (TR

∗
lt, TR

∗
lt, q
∗
ikt, Y

∗
ik[n], X

∗
wl, v

∗
i[n])

if PILR is infeasible then
STOP. The problem is infeasible

else
for i = 1→ |I| do

solve GPi(TR
∗
lt, TR

∗
lt)→ (Ȳik[n], vi[n])

end for
end if

end while
(TR

∗
lt, TR

∗
lt, X

∗
wl) is the optimal solution of (11)-(16)

end if
end if

The algorithm is composed of a master problem, defined by the PILR, and a sub problem,
defined by the FP, exchanging information about feasibility (and therefore overall optimality) of the
incumbent solution. At generic iteration n, PILR proposes an upper bound for the solution to the
problem, together with the candidate values for incumbent choice for new power plant installments
up to each GenCo and related optimal profit value (Y ∗ik[n], v

∗
i[n]). Such solution is feasible only if
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GenCos involved actually confirm the incumbent values when they solve their decision problem.
Solution of problem GPi for each GenCo will provide the vector (Ȳik[n], vi[n]), where the first element
denotes the optimal value for the variables defining installments of new power plants for GenCo i
when TransCo picks solution (TR

∗
lt, TR

∗
lt), while vi[n] denotes the optimal profit for GenCo i when

TransCo picks solution (TR
∗
lt, TR

∗
lt). Vectors (Ȳik[n], vi[n]) and (Y ∗ik[n], v

∗
i[n]) are therefore compared

and if either Ȳik[n] and Y ∗ik[n] coincide, or vi[n] and v∗i[n] coincide then the problem is feasible and
incumbent solution is optimal. If feasibility requirements are not met, a new cut and a penalty term
are introduced into the PILR to force the next iteration to avoid picking the previous candidate
solution Y ∗ik[n].

Step 1 computes the lowest possible bound, Step 2 checks whether the solution obtained in Step
1 is feasible for the overall problem problem (11)-(16) and while the program is not feasible a new
iteration will add a cut and a new penalty term into the PILR problem. This is done by defining
a loop in Step 3. The algorithm terminates when the first feasible solution is found or concludes
that no feasible solution exists.

The algorithm attains a global optimum for the original Stackelberg-Nash problem up to de-
generate cases for the PILR problem. Namely, a degenerate solution delivers the same objective
function value against many possible combinations of decision variables. Therefore one could obtain
an output profit computed by the TransCo for each GenCo i, v∗i , which is lower than the profit
computed by each GenCo by solving problem (6)-(10) or such that the binary decision variables do
not correspond to the choice that each GenCo would pick under optimality even when there actu-
ally exists another vector of solutions which corresponds to the optimal one for each GenCo and
delivering the same optimal objective function for the TransCo. When this happens, the algorithm
will not recognize it as a feasible solution and it will keep generating cuts reaching a sub-optimal
solution.

5 Numerical analyses

In order to carry out economical and technical analyses we have tested the model using a small
scale example. This has lead to an easier study of optimal responses of all the actors involved in
the provision system to environmental changes, such as an increase of load in a given area or the
introduction of a new generation technology. The second stage of the analysis considers the model
applied to a representation of the Italian market. At this stage, we assume to have a fictional system
composed of two zones, which we refer to as North and South, two generating companies, GenCo1
and GenCo2 each having, besides existing plants, four candidate plants uniformally distributed
over the different zones. GenCo1 only has one candidate plant, located in the North area, while
GenCo2 has three candidate plants, one located in the North, and two located in the South. Finally
we consider one existing transmission line which should be eventually upgraded in case of a load
increase. We also assume that four types of candidate lines are available, which are different by
costs and capacity. Type1 line has the least transmission capacity and is less expensive, while the
opposite holds for type4 line.

All computations have been carried out using GAMS/CPLEX 12.1.0 using four parallel threads
on a Intel Core i7 machine running at 2.67 GHz with 8 GB of RAM. Computational time is heavily
influenced by the data, ranging between little over one minute for cases where GenCos respond
to transmission investments by opening new plants to several minutes, when no GenCo finds it
profitable to open a new power plant.
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Figure 2: Investments with low load scenario, small and large load respectively

A representation of the investments made by each player in the system is shown in figures
2 and 3. These figures provide a simplified graphical description of the national power delivery
system. Here we depict each area by means of a rectangle containing information about load,
power production and locational marginal price within the area. Right below the slots for such
information there can be found a blank area containing two types of elements, namely a diamond
shape and a square which represent the candidate plant of GenCo1 and GenCo2 respectively. The
two aforementioned areas are connected by existing transmission lines, which are not represented in
the figures, while we have denoted by dotted lines four candidate transmission links with different
capacity levels. Alongside such connecting lines one can find information about the amount of
electricity transferred between the zones. One has plus sign if transmission is from North to South,
while the other way around holds when electricity is transferred from South to North. Depending
on the environmental factors such as load and technology, which represent the data for our model,
both TransCo and GenCo can decide to review and upgrade their investment decisions by opening
new transmission lines and, possibly, new power plants. Should this happen, we will represent the
opening of a new line by replacing the dotted line with a thicker continuous line. Similarly, we will
represent the opening of a new power plant by filling the related element with red color.

In the remainder of the article we study the effects of a load increase on the amount and
allocation of the investments. We are primarily interested in the behavior of the Transmission
Operator, but responses of GenCos also need to be considered as they play a relevant role in the
expansion decision process of the TransCo. For each zone, we report information on the load level,
the production level, the locational marginal prices (LMP) and possible transmission grid and power
plant expansions.

From figure 2 we can notice that a small load both in the North and in the South areas allows
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Figure 3: Investments with high load scenario, small and large load respectively

the entire demand to be covered by the GenCos offering power at the least price, which in our
case happen to be in the North. Existing transmission is enough to ensure coverage for both the
areas. Lack of congestion over the transmission lines between the two areas make the locational
marginal prices to be the same in the two areas. This is equivalent to having only one area in
our system. Figure 3 shows a different situation. Here we apply our model to a system with a
larger load level. In this case, the TransCo will prevent consumers in South area to pay too much
for buying electricity by opening a new type2 line between North and South. This increases the
potential market for GenCo1 which will respond by opening a new power plant in the North. This is
beneficial to GenCo1 since such power plant has lower marginal costs than the ones operating in the
south, which in turn will allow GenCo1 to sell a lager amount of power, by serving the South area.
Yet, GenCo1 will not manage to cover the entire demand from South area, which will therefore
be covered by plants operating in that area, which offer energy at a higher price. In the second
diagram of figure 3 we are presented with the opposite situation. Here the North buys energy from
the South. This happens since the load in the North increases to an extent that cannot be covered
any longer solely by the power plants in the very same area. As a consequence, power plant in the
South will increase the production and sell it to the consumers in the North. Locational marginal
price will be the same in both markets.

Let us extend the ongoing experiment to analyze the results of a progressive expansion of load
on the performance measures of the actors involved in the power generation and delivery. We have
taken in consideration a reference load scenario and then increased the load by the same percentage
in every year of the multiperiod model. Figure 4 shows the somewhat anticipated effect that a load
growth has on social costs, defined as the total costs community have to bear to buy electricity. As
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Figure 4: Social costs with respect of larger load levels

Figure 5: Grid Upgrading Investments and Locational Marginal Price vs load growth

the load grows, higher bids are progressively accepted by the Market Operator in order to cover
the demand, with the results that both prices and demand will rise, leading on an increase in social
costs.

Nevertheless the pattern of the Locational marginal prices can be quite interesting. As shown
in right figure 5 such price increases as the aforementioned effect of new bids being accepted, but
suddenly it starts decreasing. This happens because, as the load increases the TransCo will be
required to expand the grid, eventually obtaining a network design in which there is enough line
capacity to allow the GenCos to sell an indefinite amount of power cross areas. This has the effect
of aligning the zonal prices of the two areas creating a unique market. Still, a further increase in
load and related load will call for a different network setting which may prevent a GenCo with
lower costs, which in our example is located in the North area, placing a full bid in the South area,
as doing so would increase the zonal price in the North, leading to higher overall social costs.

The effect on GenCos on an increase in load is a steadily growing profit level as a consequence
of the combined effect of higher bids being accepted in each area and the growing amount of
power consumers. Nevertheless, equilibria outcomes obtained when lines are uncongestioned can
be misleading when considering the profits pattern as the one shown in figures 6. In fact, with no
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Figure 6: Profits of GenCo1 and GenCo2 respectively vs load growth

congestion on the lines, zonal prices will be the same in each area, and for each production allocation
between the GenCo involved the optimal social cost for the consumer will be the same. Therefore
the system profit sharing pattern among GenCos will be non influential to grid upgrade purposes.
This is the reason of the behavior of the profits in the rightmost part of each chart in figure 6. In
other words there can be several equilibria leading to the same optimal objective function for the
TransCo and different profit levels for the GenCos involved.

6 Conclusion

We have developed a model to analyze and support the decisions on transmission grid upgrades
within a market environment. In particular we have taken explicit account of possible reaction of
GenCos and Market Operator to possible grid upgrade decisions both under an operational and a
investment viewpoint. The problem has been modeled as a Mathematical Program with Equilibrium
Constraints featuring mixed integer decision variables on both upper level and lower equilibrium
problem. This mixed integer structure has been taken care by devising a dedicated algorithm which
leads to the computation of a global optimum for the TransCo while featuring a Nash Equilibrium
among the followers, i.e. GenCos and Market Operator. The model has been analyzed using a two
zones-one line case considering the possible outcomes deriving by a load increase. Results show
how the TransCo should upgrade the lines accordingly to different load levels together with some
interesting behaviour shown by zonal prices in correspondance of different levels of line congestions.
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