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Abstract

This Thesis analyzes the class of planning and scheduling problems generally

named Locomotive Assignment Problem (LAP) and proposes a methodological

innovation in the solution of this class of problems.

The LAP represents a class of planning and scheduling problems solved assigning

a fleet of locomotives to a network of trains optimizing one or more crucial

objectives and satisfying a rich set of constraints (first and before all others the

motive power constraints).

The first part of the Thesis presents a comprehensive survey of the optimization

models developed to solve the LAP. This survey shows that the optimization

models are gaining more and more importance in solving large size complex

planning and scheduling problems that characterize the management of freight

train transport services. This class of problems, that were historically solved by

simulation, can now be (approximately) solved using mathematical optimization

techniques. Large-scale very complex freight rail activities impose to separate

the LAP in three distinct phases (or problems): the locomotive planning, the

locomotive scheduling and the locomotive routing phases. Namely, we have

to solve the Locomotive Planning Problem (LPP), the Locomotive Scheduling

Problem (LSP), and finally the Locomotive Routing Problem (LRP) in which the

refueling of diesel locomotives has to be guaranteed.

The separation of the LAP leads to definitely suboptimal solutions. Thereby,
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there is a strong incentive to concurrently solve locomotive planning, scheduling

and routing problems. However, a structural integration of these three phases

in a model that encompasses the LPP, the LSP and the LRP is prohibitive due

to the size and complexity of real problems. The aim of the second part of this

Thesis is to introduce a methodological innovation able to (partially) integrate

the planning and the routing of consists. North American freight trains are

generally very heavy and a single locomotive is often not sufficient to pull this

kind of trains. Therefore two ore more diesel locomotives are combined to form a

consist (a group of linked locomotives) that provides the required motive power

performance. Our objective is to obtain LPP solutions that make the routing

phase easier to handle and more economical. We pursue this objective first

considering the LPP in its Consist Flow Formulation in which a set of consists

(assembled before solving the LPP) is assigned to trains, and second exploiting

information on consists range and fuel capacity exploitation not featured in the

previous studies. In the previous studies the set C of the consists types that

are initially available to solve the LPP were taken as given in terms of consists

types (usually railroad companies provide C to researchers). This study does

not take C as given and proposes an integer optimization model named consists

selection that identifies the set C of consists types (available to solve the LPP)

maximizing the consists range and the consists efficiency in the fuel tank capacity

exploitation. The last part of the Thesis describes the creation of a simulation

program able to generate realistic train schedules. The assessment of savings

offered by the adoption of the consists selection in the LPP solution procedure

relies on the realism of these train schedules.
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Introduction Part I

The strong competition among railroads and the growing role of the private sector

(specially in Europe) imply that railroads are paying more and more attention on

operating cost, punctuality and performance, which affect customers satisfaction.

The U.S. freight transportation system is one of the best example of the effects of

the competition among transportation companies. The whole system (highways,

waterways, airways and railways) offers the best service and rates in the world,

and the freight rail element of this system is critical to the competitiveness of

many industries and the economies of many states (Grenzeback et al. [2008]).

America’s freight railroads span 140,000 miles and form the most efficient and

cost-effective freight rail system in the world (Thompson [2007]). Historically, U.S.

and Canada present the set of railways companies offering the most competitive

rate in the world. Many of these companies have invested and continue to invest

in the creation of simulation tools and optimization models to support their

decision processes. One of the most important decision problems is the Locomo-

tive Assignment Problem (LAP), a class of planning and scheduling problems

that involves very expensive assets and huge numbers (large railroad companies

assign thousands of locomotives to thousands of trains daily). The LAP is solved

assigning a fleet of locomotives to a network of trains optimizing one or more

crucial objectives (costs, profit, fleet size, level of service) and satisfying a rich

set of technical and budget constraints.
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List of Tables

This first part of the thesis presents a survey on optimization models developed

to solve the LAP.

The LAP optimization models may vary depending on the scheduling problem

characteristics (application field, planning level, optimization objectives) and

may require different solution methodologies and algorithms. Not surprisingly,

many optimization models for the LAP have been developed by North American

research centers and focus on real problems faced by U.S. and Canadian compa-

nies.

In the last decades, however, an increasing interest in optimization models for this

class of planning and scheduling problems emerged among others, for instance,

European, Australian, Indian and Brazilian railroad companies.

These aspects are reviewed and are involved in the classification proposed for

the considered LAP optimization models.
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1 LAP optimization models

1.1 Tonnage-based versus schedule-based approach:

the role of the optimization models
The increased computational power allows the tractability of more complex

models and bigger instances. Consequently, the unavoidable complexity and

size of the real life problems may be captured and managed more effectively

leading to the creation of valuable decision-support tools for realistic applications.

The increasing interest in optimization models may not be completely explained

by the increasing computational power and modeling ability. In the last three

decades, passenger and freight movement over the transportation system have

increased significantly in both developed and emerging countries. The U.S. rail

freight transportation system represents a significant example: the ton-miles

of rail freight (a ton-mile represents one ton of freight carried over one mile)

moved over the national rail system have doubled since 1980, and the density

of train traffic measured in ton-miles per mile of track has tripled since 1980

(Grenzeback et al. [2008]). Despite the fact that the rail share of the total freight

transportation market is moderate (14 percent of total tons carried, 25 percent

of total ton-miles) and that the rail market share is also declining, the current
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Chapter 1. LAP optimization models

demand for rail freight transportation is pressing the capacity of the rail system

(Grenzeback et al. [2008]). Until very recently, the investment in new freight rail

capacity has not been sufficient to keep pace with the growth of the economy

and the demand for rail freight services. This partially explains the reducing

market share. However, rail market share is declining also because of structural

changes in the economy. The major buyers of freight rail service (manufacturing,

agriculture and mining) remain crucial in the U.S. economy but the economic

growth over the last decades has been fueled by the service industries that usually

ship more high-value-added, lighter and time-sensitive products by air and trucks

(Grenzeback et al. [2008]).

Still, the demand for rail freight transportation is increasing, and the request

to reduce greenhouse gas emissions (like CO2) will probably further increase

this demand because the freight rail service is very fuel-efficient and generates

less air pollution per ton-mile than trucking (Grenzeback et al. [2008]). In fact,

rail companies face a rapidly increasing demand with a slowly increasing rail

capacity since the creation of new freight rail capacity involves huge investments.

Given the demand for freight transportation, usually expressed in terms of weight

(tonnage), a railroad company establishes a policy for the routing of trains. If the

demand for freight transportation from a specific origin to a specific destination

is high enough, direct trains are used. On the other hand, if the demand does not

justify the cost of a direct train, the freight may be shipped through a sequence

of links and intermediate nodes. Alternatively, trains have to wait at the origin

node until a sufficient tonnage has been accumulated. In both cases delays are

inevitable. This policy (running trains only when they have enough freight) has

been traditionally practiced by North American railroad companies and is named

tonnage-based dispatching. In a tonnage-based approach, the company holds all

trains until they have enough tonnage. A train may be scheduled every day, but
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1.1. Tonnage-based versus schedule-based approach:
the role of the optimization models

it may be delayed or cancelled, depending on the achieved tonnage.

The idea underlying the tonnage-based approach is simple: to minimize the total

number of operating trains by maximizing the train size in order to (theoretically)

minimize the crew costs and maximize the track capacity.

However, in practice, there are some limitations and shortcomings:

(i) Operating costs may increase due to an increased idling cost and relocation

cost of equipments and crews.

(ii) Tracks used to load/unload or store railcars and locomotives (i.e. yards)

cannot optimize their operations relying on repetitive schedules and may

require more storage capacity and railcars, crew and locomotives to deal

with traffic variability.

Moreover, the tonnage-based approach implies an unreliable and poor service

for the customers that in many cases could lead to a shift in the consumer

preferences and the abandon of the rail transport in favor of alternatives like

trucks. Then, the tonnage-based approach was and remains a good strategy

for bulk goods like coal, but it has proven to be a poor strategy for most other

goods. Although the tonnage-based approach is still common in North America,

it is rarely used in the European context where freight trains typically operate

according to schedules (like passenger trains): this is the schedule-based approach.

In the schedule-based approach trains run as scheduled, even when a train has

not achieved a sufficient tonnage.

Historically, North American railways avoided the schedule-based approach,

partly because the demand level did not justify the cost of low tonnage trains,

partly because of the complexity involved in this approach (Ireland et al. [2004]).

The schedule-based strategy implies that the schedule should be adapted depend-

ing on the forecast of the traffic and requires advanced computers and operations
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Chapter 1. LAP optimization models

research tools to conduct deep analyses of different alternatives in short times.

As reported in Ireland et al. [2004], the schedule-based strategies recently have

gained favor in U.S. and Canada where several railroad companies have adopted

this more disciplined approach to obtain cost-effective and customer-effective

operating plans. The increase in customer demand for freight rail transport

and the recent availability of advanced computers and OR software push several

North American railways to change the paradigm of their operations passing to

a schedule-based strategy.

Canadian Pacific Railway (CPR), Norfolk Southern (NS) and Canadian National

(CN) have made resolute changes to shift to the schedule-based strategy. CPR

in 1997 was one of the first companies that explored the possibility of running

a scheduled railway. It was one of the first railroads to adopt a true scheduled

railroading, and the paradigm shift produced huge impacts in operations and

capital investments (Ireland et al. [2004]).

At the beginning of the century CPR obtain more than 500 million (Canadian $)

of annual operating costs savings thanks to the improvements in labor productiv-

ity, locomotive productivity, fuel consumption and railcar velocity by 40%, 35%,

17% and 41% respectively (Ireland et al. [2004]). These savings are generated

by the ability to better execute the plan through daily repetition and to better

manage crews and equipment (faster railcars, improved locomotive utilization).

In addition to cost savings, running on a schedule has allowed CPR to recapture

traffic from the trucks. The new schedule-based approach has allowed CPR to

think and act like truckers (Cambridge Systematics [2005]). In the last years all

North American Class I railroads have followed the example of CPR, NS and

CN, switching most of their services to run on a scheduled operating plan. Also

CSX Transportation and FEC have adopted the scheduled railroading philosophy

(Cambridge Systematics [2005]).
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1.1. Tonnage-based versus schedule-based approach:
the role of the optimization models

The success of the new Operations Research tools used by CPR has overturned

the old paradigm that tonnage-based plans are more efficient. Supporting the

historical role of simulation tools, optimization models are gaining more and more

importance in solving large size complex scheduling problems that characterize

the schedule-based approach in real life applications. Tables 1.1 and 1.2 show

that the number of optimization models for the LAP has significantly grown

after the year 2000.
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Chapter 1. LAP optimization models

1.2 LAP planning levels and application fields

The LAP is one of the most important classes of problems in railroad scheduling

because it involves very expensive assets and huge numbers. Every year, large

railroad companies invest billions of dollars acquiring, managing and fueling

locomotives. Every day they assign thousands of locomotives to thousands of

trains. Due to the size of real life problems, even a small percentage improve-

ment toward a better efficiency in the use of locomotives may lead to significant

economic savings.

The locomotive scheduling may be studied at three levels: strategic, tactical

and operational in accordance with the length of the planning horizon and the

temporal impact of the decisions. At the strategic level only the number of

locomotives and their type matter, the specific ID of each locomotive is not

considered and locomotives of the same type are completely equivalent. In the

strategic version of the LAP, for each train we determine the type and the number

of locomotives assigned to that train. In the strategic LAP the train schedule is

given and cannot change (delays or disruptions are not considered).

The tactical and operational LAP introduce many aspects not considered in

the strategic version. These additional aspect are crucial because we deal with

specific locomotives and not just with locomotive types. More precisely, we have

to assign locomotive ID codes (an ID is unique for each specific locomotive) to

trains. This means that we have to solve a locomotive routing problem while

honoring the constraints of the planning phase and new operational constraints

(like fueling constraints and maintenance constraints). Moreover, the train sched-

ule may be affected by delays and disruptions events.
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1.2. LAP planning levels and application fields

1.2.1 Freight and passenger railway transportation

Passenger and freight trains have different characteristics. Passenger trains

always run according to a fixed schedule while freight trains may operate without

schedules and simply depart when they have accumulated a sufficient tonnage.

Passenger trains are more time sensitive and thus have higher priority whenever

they share the same rail network with freight trains (a common occurrence in

U.S., Canada, Europe, Australia and in many developing countries). Typically,

passenger trains are lighter than freight ones since they use a small number of

cars coupled with one or two locomotives while freight trains generally contain

a large number of cars coupled with several locomotives. For passenger trains

the maximum gross weight is known in advance with a small uncertainty while

the weight of freight trains may change unexpectedly for both scheduled and not

scheduled services.

There are significant differences in complexity and modeling of the strategic

LAP in the passenger and freight frameworks. Very often a single locomotive

is sufficient to pull a passenger train (and therefore the load of the train is not

relevant). When a single locomotive is not sufficient, locomotives are combined

to form a consist (a group of linked locomotives) that provides more pulling

force (and horse power). Usually, to pull a passenger train no more than two

locomotives of the same type are needed when a single locomotive is not sufficient.

According to Noble et al. [2001], in the first case the problem is modeled assuming

several classes of locomotives but a single pulling locomotive (multi-class single-

locomotive problem), in the second case the train is pulled by a multi-locomotive

consist (multi-class multi-locomotive problem). In both cases the reduced size of

passenger trains and consists make the problem more tractable with respect to

the freight version. Thus, it is possible to assign simultaneously both locomotives

and cars to the passenger trains (Cordeau et al. [2000], Cordeau et al. [2001],
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Chapter 1. LAP optimization models

Lingaya et al. [2002]), while for freight trains these two assignments are managed

separately.

As reported in Cordeau et al. [1998], few works focusing on the management of

passenger railway locomotives may be found in the operations research literature.

Ramani [1981] focuses on the problem faced by Indian Railways, Cordeau et al.

[2000], Cordeau et al. [2001], and Lingaya et al. [2002] treat the problem of

simultaneous locomotive and car assignment at VIA Rail Canada, Illés et al. [2005]

and Illés et al. [2006] treat the locomotive assignment at Magyar Államvasutak

(MÁV, the Hungarian State Railway Company), Maróti and Kroon [2005] study

the maintenance routing of trains at NS Reizigers (the main Dutch operator

of passenger trains), Paoletti and Cappelletti [2007] present a decision support

system developed by the Models and the Decisional Systems Department of

Trenitalia (the main Italian operator of passenger trains) to aid the locomotive

fleet planning.

A large number of papers focuses on the more complex freight railway locomotive

assignment. Tables 1.3 and 1.4 report a list of the researches inspired by real

LAP applications in passenger and freight train services.

Table 1.3: Researches in passenger trains locomotive management

Authors Railway company

Ramani [1981] Indian Railways

Cordeau et al. [2000] VIA Rail Canada

Cordeau et al. [2001] VIA Rail Canada

Lingaya et al. [2002] VIA Rail Canada

Illés et al. [2005] Magyar Államvasutak

Illés et al. [2006] Magyar Államvasutak

Paoletti and Cappelletti [2007] Trenitalia

Table 1.3
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1.2. LAP planning levels and application fields

.

.

.

Table 1.4: Researches in freight trains locomotive management

Authors Railway company

Florian et al. [1976] Canadian National

Ziarati et al. [1997] Canadian National

Ziarati et al. [1999] Canadian National

Ziarati et al. [2005] Canadian National

Ireland et al. [2004] Canadian Pacific Railway

Ahuja et al. [2005a] CSX Transportation

Ahuja et al. [2005b] CSX Transportation

Ahuja et al. [2006] CSX Transportation

Vaidyanathan et al. [2008a] CSX Transportation

Vaidyanathan et al. [2008b] CSX Transportation

Powell and Bouzaiene-Ayari [2007] Norfolk Southern

Brannlund et al. [1998] Banverket Swedish National Railway

Scholz [2000] Stateiis Järiivägar Swedish State Railways

Noble et al. [2001] Public Transport Corporation

Baceler and Garcia [2006] Companhia Vale do Rio Doce

Fügenschuh et al. [2006] Deutsche Bahn AG

Fügenschuh et al. [2008] Deutsche Bahn AG

Table 1.4
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Chapter 1. LAP optimization models

The following list reports some critical aspects that imply the increased

complexity of the strategic LAP in freight trains.

a. The number of active locomotives in freight trains is often two or three times

that required in passenger trains (consist may be constituted by 4 or more

pulling locomotives).

b. The number of active and passive locomotives attached to freight trains may

be significantly higher than the number of locomotives attached to passenger

trains (to give an example, CSX permits up to 12 locomotives per train).

c. There are many different types of freight trains, belonging to (three) different

classes (intermodal, auto and merchandize), that require very different consists,

thereby it is more difficult to reduce the size of such a heterogeneous set of

consist.

d. There are more train to train connection possibilities to be considered for

freight trains, more constraints (like locomotive versus train compatibility

constraints) and complications like consist busting.

The consist busting is the operation of merging locomotives from inbound trains

and regrouping them to make new consists. The consist busting typically entails

the breaking up of an incoming consist at a station and the assignment of the

locomotives in it to more than one outgoing train.

1.2.2 Yard switching and in-plant railroad LAP
Railroad yards are a complex series of railroad tracks for storing, sorting, loading

or unloading railroad cars and locomotives and represent a crucial component of

a railroad network. They are the points of origin and destination of shipments

and freight movements. In a yard, inbound trains are disassembled, unloaded and
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1.2. LAP planning levels and application fields

inspected. After that (when needed) cars and locomotives are sent to cleaning

and maintenance facilities (shops). Finally, they are loaded and reassembled

forming new outbound trains.

As reported in Sabino et al. [2010], yard activities are an important part of

freight transportation operations since the delays associated with these activities

represent a large portion of the transit time for rail freight. Yard locomotives

are often called switch engines, they move cars and locomotives within the

railroad yard. The solution of the LAP helps to minimize the costs of the switch

operations optimizing the fleet size of the switch engines that greatly affects

these costs (see Sabino et al. [2010] for more details).

Lübbecke and Zimmermann [2003] report another particular real life application

of the LAP. Large industrial plants in the automobile, chemical, and steel industry

transport freight from production to storage or shipping terminals that are often

spread over large areas. In order to preserve a timely production process it may

be useful to have a private railroad system which manages these tasks (often a

subsidiary and a distinct legal entity). An industrial in-plant railroad has to be

managed minimizing operational costs and the assignment of locomotives has

to be solved efficiently. There are very few studies dedicated to this particular

version of the LAP. Charnes and Miller [1956] is one of the first, more recently

Lübbecke and Zimmermann [2003] presented a real application of the LAP at

Verkehrsbetriebe Peine-Salzgitter GmbH and EKO Transportgesellschaft GmbH.
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2 Problem types

The locomotive assignment problems may be classified in several ways. For

instance, problems may be classified considering the objective pursued by the

modeler. Some classical objectives are the minimization of operating costs (max-

imization of profits) or the minimization of the fleet size. Another more specific

objective may be the minimization of deadheading times. Active locomotives pull

trains but locomotives may also move in a passive way: deadheading locomotives

are attached to trains as passive rolling stock elements and are moved like wagons

in order to be repositioned, light-travelling locomotives form a group where only

the leading locomotive is active and pulls the remaining locomotives attached

as passive rolling stock elements. Another possibility is to classify problems

looking at the planning level and thus the problem may be a strategic, tactical

or operational locomotive assignment.

From a modeling perspective, a first important classification may be obtained

considering the maximum number of pulling locomotives a train may require. If

each train needs a single pulling locomotive then the problem is modeled by a

single locomotive model. If some trains require more than one pulling locomotive

then the problem is modeled by a multiple locomotive model.
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2.1. Single locomotive models

2.1 Single locomotive models
Ceteris paribus1, the problems in the single locomotive category are easier to

solve. It is natural to proceed further in the classification considering how many

locomotive types the model requires. According to Forbes et al. [1991], if the

problem is modeled assuming only one type of locomotive, then it becomes

similar to the single depot bus (vehicle) scheduling problem (SDVSP), while if

several locomotive types are required, then the problem is similar to the multiple

depot bus (vehicle) scheduling problem (MDVSP). The former version may be

modeled as a minimum cost flow problem whose solution is achievable for very

large scale instances as remarked in Ziarati et al. [1997]. This version may be

solved efficiently by polynomial or pseudo-polynomial algorithms, for instance

by the so called Hungarian Method as reported in Fügenschuh et al. [2006] (see

also Ahuja et al. [1993] for details about the Hungarian Method).

Booler [1980] considers a one day cyclic train schedule with possibly variable

trains departure times and proposes a model based on multi-commodity flows.

The objective is to find a minimum cost set of locomotive schedules to pull

a given set of trains. Booler proposes a heuristic method based on a linear

programming model since the direct application of methods suitable for ship

scheduling problems (embedded networks, compact inverse methods, methods

based on decomposition) leads to significant integrality gaps. Booler tests the

method on small instances (10 ÷ 50 trains) and Wright [1989] points out that

this approach does not produce good solutions for more realistic instances (100

÷ 500 trains).

Wright [1989] seems to be the first author able to find a valid solution for large-

scale instances. He considers a cyclic one day train schedule and obtains the

solution through a heuristic procedure. Three algorithms are used to solve the

1all other things being equal
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Chapter 2. Problem types

problem: the first is a deterministic algorithm that provides a feasible solution,

the second is a stochastic algorithm, and the third is a simulated annealing

algorithm. Wright tests the procedure on several instances (25 ÷ 200 trains)

and shows that the stochastic algorithm outperforms the deterministic one and

that the simulated annealing algorithm is the best of the three. The solution

procedure does not take into account the fleet size constraints. For this reason,

Wright does not recommend the use of this procedure for real life applications.

Forbes et al. [1991], inspired by the work of Wright, obtain an exact solution for

the locomotive scheduling problem. They transfer to the locomotive scheduling

problem a solution procedure they developed for the MDVSP in a previous

work. The model is based on an integer linear program equivalent to a multi-

commodity flow formulation where each commodity represents a locomotive type.

This method represents a significant improvement over the method proposed by

Wright, mainly because Forbes et al. are able to take into account the fleet size

constraints, not included in the model of Wright. Testing the procedure on the

same dataset used by Wright, Forbes et al. solve several moderately large scale

instances (25 to 200 trains) on a daily cyclic train schedule framework. Booler

[1995] proposes also a Lagrangian relaxation approach to improve the solution

method proposed in Booler [1980], but still the tests were conducted only on

small instances (14 trains, 3 locomotives types).

More recently, Fügenschuh et al. [2006] followed a path similar to the one adopted

in Forbes et al. [1991]. Starting from their experience on multi-depot multi-

vehicle-type bus scheduling problems, they extend their solution methodologies

to the locomotive scheduling problem. As done by Forbes et al., Fügenschuh et al.

point out the extra difficulties of locomotive scheduling problems due to several

new aspects taken into account: cyclic departures of trains, time windows on

starting/arrival times, transfer of wagons among trains. The model is formulated
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2.1. Single locomotive models

as a linear integer programming problem, in two different versions: with fixed

and with flexible starting/arrival times.

The fixed starting time version of the problem is called capacitated cyclic vehicle

scheduling problem (CVSP) due to the cyclic character of the locomotives sched-

ules. The flexible starting time version is called cyclic vehicle scheduling problem

with time windows (CVSPTW). The CVSPTW is further specialized in two

sub-versions. The first considers constant traveling times while in the second the

driving time depends on the total network load. This takes into account the fact

that often freight and passenger trains share the same tracks and thus at daytime

a freight transport may wait for the passenger transport, and then the average

traveling speed may be much lower than the one at nighttime. Fügenschuh

et al. consider the strategic locomotive scheduling problem for freight trains

on a one day cyclic scheduling framework. Their work aims to improve the

simulation tool used by the Deutsche Bahn AG (the largest German railway

company) supporting the strategic simulations of the future network load in

freight transport. Their model is based on a multi-commodity min-cost flow

formulation and is solved as a linear integer programming problem. In both

versions, CVSP and CVSPTW, the objective is to minimize the total cost. In the

former, the total cost is given by the active locomotive costs and the deadheading

costs (the shorter the deadheading trip the lower the cost), while in the second

also the idling costs are considered. The CVSP and the CVSPTW problems are

formulated as integer programming problems and commercial IP solvers (ILOG

CPLEX 10) are used to compute feasible/optimal solutions. The CVSP is solved

with both finite and infinite capacity, whereas the CVSPTW is solved only with

infinite capacity. Fügenschuh et al. are able to solve instances of the CVSP up

to 1537 trips and 4 locomotive classes while for the CVSPTW they consider up

to 120 trips and 4 locomotive classes and time windows length ranging from ±10
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Chapter 2. Problem types

to ±120 minutes intervals around the pre-scheduled starting time. The CVSP

is solved to optimality with computation times ranging from 1 second for the

42 trips, 3 classes case to 9537 seconds for the larger instance with 1537 trips

and 4 classes. The CVSPTW presents optimality gaps that range from 0.00%

for the 42 trips, 3 classes instance to 79.06% for the 120 trips, 4 classes instance,

with larger gaps where the trip time is network load dependent. Observing these

gaps the authors consider that a heuristic approach could be fruitful for the

CVSPTW. That heuristic approach is introduced in Fügenschuh et al. [2008]. In

this study the authors propose the same results for the CVSP and extend their

research on the CVSPTW considering some additional more complex instances

(up to 340 trips, 6 locomotive classes and ±120 minutes intervals or up to 727

trips, 6 locomotive classes and ±30 minutes intervals). More important, while in

Fügenschuh et al. [2006] the authors solve the CVSPTW using a branch-and-cut

method implemented in a general purpose solver (CPLEX), they introduce a

new heuristic solution approach to obtain better results (smaller gaps) and solve

some new bigger instances of the CVSPTW. Namely, the new solution approach

hinges on a randomized parameterized greedy (PGreedy) heuristic that acts in

two phases: in the first phase it identifies a feasible solution that synchronizes

train connections minimizing the number of missed car transfers among trains

(i.e. minimizing idling car costs), in the second one it seeks a minimum number

of locomotives and a minimum total length of all deadhead trips. Further, the

authors implement a special purpose reformulation and resolving technique (as

well as the inclusion of valid cutting planes) to improve the formulation of the

problem before applying the CPLEX general purpose branch-and-cut algorithm.

A comparison between the solutions obtained with the new heuristic solution

approach and the ones obtained with CPLEX shows the performance of the new

methodology in terms of gaps reduction and ability to solve bigger instances.
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2.1. Single locomotive models

Illés et al. [2005] and Illés et al. [2006] treat the locomotive assignment at Magyar

Államvasutak (MÁV, the Hungarian State Railway Company). They model a

problem in which a single type train is pulled by a single type engine and solve

the problem for real data. They introduce a simplified version of the problem that

does not contain the maintenance conditions and may be solved in polynomial

time through combinatorial optimization techniques.

Like Charnes and Miller [1956], Lübbecke and Zimmermann [2003] treat the

in-plant railroad locomotive scheduling and routing problem, a subject that

has not been extensively discussed in the operations research literature. They

describe the mathematical and algorithmic solutions proposed to in-plant railroad

companies as decision support tools for scheduling and routing problems. The

minimization of the total deadheading and waiting time is considered as an

example of practically relevant objective function. The problem is related to

the multiple-vehicle pickup and delivery problem, and two formulations of the

problem are considered: a mixed integer and a set partitioning programs. The

linear programming relaxation of the set partition model is solved by column

generation. Computational experiments are conducted on both artificial and real

life data obtained from three different German plants (VPS, EKO and SOL).

Sabino et al. [2010] propose an ant colony optimization algorithm to assist rail-

road yard operational planning operations. Given the information about the

railroad yard layout, the switch engines available and a detailed specification

of all pending planned switch orders, the goal is to determine a switch engine

schedule. The project is developed together with professionals from Tubaro

Railroad Terminal (the largest railroad yard in Latin America), it is focused

on the creation of an algorithm designed for real life application able to gener-

ate a solution in a predefined processing time and in accordance with railroad

yard operational policies. The proposed ant colony optimization algorithm tries
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to minimize a multi-objective function that considers both fixed and variable

transportation costs involved in moving railroad cars within the railroad yard

area. More specifically, the authors implement a CompetAnts algorithm that

significantly outperforms the traditional ant system algorithm for problems with

multi-objective function characterized by two conflicting sub goals. A railroad

yard operations simulator is developed to create artificial instances in order to

tune the parameters of the algorithm.

Ghoseiri and Ghannadpour [2010] develop a hybrid genetic algorithm to solve a

multi-depot homogeneous LAP with time windows. The problem is to assign a

set of homogeneous locomotives, initially located in a set of dispersed depots, to a

set of scheduled trains to be serviced in pre-specified time windows. The problem

is formulated as a vehicle routing problem with time windows (VRPTW): the

trains act as customers of the VRPTW that should be serviced in their time

windows. Each customer has two coordinates (origin and destination), and

the existing depots (say P depots) are considered as central zones that provide

the neighbouring zones (current customers) with locomotives. A cluster-first,

route-second approach allows the authors to treat the multi-depot LAP as a set

of single depot problems solved independently. Thereby, at first stage trains are

assigned to the existing P depots (following a priority principle) obtaining P

clusters. After that, each single depot problem (each cluster) is solved heuristi-

cally by a hybrid genetic algorithm characterized by a Push Forward Insertion

Heuristic (used to determine the initial solution) and by a neighbourhood search

and improving method. A medium sized numerical example (84 nodes and 42

trains per day in a weekly planning horizon) with four different scenarios is

presented. To test the quality of solutions of the hybrid genetic algorithm, some

small and medium-sized instances are created and solved by branch-and-bound

technique (exact solution available up to 16 nodes).
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2.2 Multiple locomotive models
The most complete version of the LAP occurs when consists (instead of single

locomotives) are linked to trains, and there is more than one locomotive type

involved. Thus a single train may be linked with several locomotives of different

types. This is the LAP with heterogeneous consists.

Florian et al. [1976] analyzed a freight train problem for the Canadian National

Railways (CN) and were among the first to deal with this version of the problem.

The problem is formulated as an integer program based on a multi-commodity

network flow formulation. The objective is to minimize the capital investment

and the maintenance costs over a long planning horizon selecting an optimal

number of (mixed) locomotive types that satisfy the motive power requirements

of each train. The motive power requirement constraints are determined accord-

ing to train weight, train length (number of cars) and geography (slope of the

traveled tracks).

They propose a solution based on a Benders decomposition method and con-

duct their computational experiments using the weekly train schedule for the

Atlantic region of the CN. Their implementation does not converge rapidly so the

problem could not be solved to optimality, and the size of the optimality gaps

was considered acceptable for medium-sized problems but not for large ones. It

should be noticed that the limited computational power at that time imposed to

run the algorithm for less than 30 iterations, different convergence result could

be probably obtained with the present computers.

Ziarati et al. [1997] extended the formulation proposed in Florian et al. [1976] to

include many of the operational constraints encountered at CN (e.g. deadheading,

scheduling of the maintenance intervals of the locomotives, noncyclic trains sched-

ules with fixed starting and ending times). Ziarati et al. propose a space-time

network approach for the operational version of the LAP with a heterogeneous
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fleet. The problem is formulated as a mixed integer linear program corresponding

to a multi-commodity network flow problem with supplementary variables and

constraints. The objective is the minimization of the total operational costs.

They consider a week as time horizon. However, in the solution of very large

instances the time horizon is divided into a set of rolling overlapping time win-

dows (two or three days each) that involve fewer trains services (500 / 1000

each). Every time slice is then optimized using a branch-and-bound procedure

in which the linear relaxations are solved with a DantzigWolfe decomposition.

The solution of the problem for a slice determines the initial conditions for the

following problem associated to the next slide. Computational experiments are

conducted on real life data (26 stations, 164 yards, 18 shops, 1988 train services,

1249 locomotives, 26 locomotive types). As in Florian et al. [1976], optimality has

not been reached, with gaps ranging from 3% to 7%. Results are very promising

using slices of three days. In this case the authors obtain a 7.53% improvement

in locomotive reduction (a 1% improvement corresponds to a $4 million annual

saving) though nearly 21 hours of CPU time were necessary.

To reduce the optimality gaps, Ziarati et al. [1999] strengthen the previous

formulation with specific cutting planes, additional cuts that are based on the

enumeration of feasible assignments of locomotive combinations to trains. They

report an average reduction of the integrality gaps of about 33% for instances

of one, two, and three days time slices. The use of these cuts jointly with the

new branching strategy (named branch-first, cut-second approach) consistently

improves the solution quality with a modest increase in computation time.

Cordeau et al. [2000] describe a decomposition method for the simultaneous

assignment of locomotives and cars in the context of passenger transportation.

Compatible equipment types (locomotive and car types) may be joined to form

a train. More precisely, a train is obtained joining some car types with just
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one locomotive type chosen among the available compatible equipment types.

The compatibility constraints are imposed defining the set of all accepted train

types (i.e. the set of all accepted collections of compatible equipment types

containing one locomotive type and some car types). The authors propose an

integer programming formulation in which each train type corresponds to a

different commodity, and the problem is modeled as a multicommodity flow on

a space-time network where nodes denote events i.e. arrivals, departures and

repositioning of a unit (arrival node and repositioning node are located within the

same station), and arcs are divided in (train) sequence arcs, repositioning arcs

and waiting arcs. The simultaneous assignment of locomotives and cars requires

a large integer programming formulation. Cordeau et al. propose an exact algo-

rithm, based on Benders decomposition approach, that exploits the separability

of the problem. The authors evaluate the performance of this solution method

performing computational experiments on a set of 9 instances obtained from VIA

Rail Canada (the most important passenger railway in Canada). The company

uses six equipment types: two types of locomotives and two types of first-class

and second-class cars, which may be combined in three different ways. The

demand for first-class cars is either 0 or 1, whereas the demand for second-class

cars lies between 2 and 8 cars (a very reduced train size with respect to freight

trains). Most trains require a single locomotive, only few require two, leading

to a multiple locomotive problem. A part of the computational experiments

focuses on the performance comparison of the proposed Benders decomposition

approach to those of three other solution methods, namely Lagrangian relaxation,

a simplex-based branch-and-bound algorithm and a DantzigWolfe decomposition

(column generation). The authors show that the method based on the Benders

decomposition approach finds optimal solutions within a short computation time

and outperforms the other considered approaches. In particular, Cordeau et al.
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[2000] argued that a straightforward implementation of DantzigWolfe decomposi-

tion was not appropriate to solve their formulation because of the large size of

the resulting master problem. Nevertheless, in Cordeau et al. [2001], the authors

propose several refinements that make the problem more tractable and show that

column generation can indeed be a very effective solution approach.

The model in Cordeau et al. [2000] is well suited for a Benders decomposition

approach. However, although it was tested on real-life data and produced optimal

solutions in reasonable computation times, the model is probably not sophisti-

cated enough to be used in practice. The model introduced in Cordeau et al.

[2001] is characterized by a broader range of refinements captured by its formu-

lation, it incorporates a much larger set of constraints and possibilities which

are required in a commercial application. A first example of these refinements

is the ability to take substitution possibilities (among car types) into account.

Other examples are the possibility of performing maintenance during the day

(and not exclusively at nighttime), the minimization of switching operations,

the possibility of choosing the combination of equipment to be used on certain

train legs in a long-term planning framework. The authors obtain a large-scale

integer programming model and propose a heuristic approach based on column

generation. Namely the model is solved by a heuristic branch-and-bound method

in which the linear relaxation lower bounds are computed by column generation.

The authors perform computational experiments on a set of 6 instances (each

one is solved in three different scenarios) concerning the trains operated by VIA

Rail in the Québec-Windsor corridor (the number of train legs in each instance

varies from 326 to 348, six types of equipment, two types of locomotives, a

complete fleet composed by more than 130 units). The algorithm has been

successfully implemented at VIA Rail, it finds good quality solutions in a few

hours of computation on a Sun Ultra 3 computer (300 MHz), a satisfactory
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performance in a long-term planning framework.

In Lingaya et al. [2002], the same research group addresses the operational

car assignment problem (OCAP), a short-term planning problem that arises at

VIA Rail Canada. The authors propose a model for supporting the operational

management of locomotive-hauled railway cars. They describe a modeling and

solution methodology for a car assignment problem that arises when individual

car routings that satisfy all operational constraints must be determined. As in

Cordeau et al. [2001], cars may be switched on or off the train at various locations

in the network, thereby locomotives and cars must be assigned simultaneously

to the scheduled trains because the minimum connection time between two

consecutive trains covered by the same locomotives depends on whether cars

need to be switched during the connection (the model assumes that for each

train a successor train has already been specified). Moreover, the switching

time (and so the connection time) depends on the position of the switched cars

within the train since switching cars located in the middle (i.e. in the body) of

the train requires more time with respect to the cars located at its end. This

represents the first approach that explicitly considers the order of the carriages

in the trains, a choice that increases the complexity of the problem but that is

necessary because of the dependence of the minimum switching times on the

positions of the switched cars. The model deals also with the effects of a varying

passenger demand and with the consequent altered timetable and rolling stock

schedules (trains may be canceled, added or simply rescheduled to account for

changes in the demand). The objective of this model is to maximize anticipated

profits i.e. anticipated revenues minus operational costs (while seat shortages and

the number of composition changes are not minimized). The solution approach is

based on a Dantzig-Wolfe reformulation solved by column generation techniques

and followed by a branch-and-bound procedure applied heuristically to obtain
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good integer solutions. The authors perform computational experiments on a set

of 140 instances obtained from a combination of 10 test instances with 7 schedul-

ing horizons and 2 scenarios. The test instances stem from a weekly schedule used

in a particular season. For this specific weekly schedule, the authors determine

locomotive and car cycles using the solution approach introduced in Cordeau

et al. [2001] for the first phase of the planning process. Then, they create a large

number of instances by randomly generating demand revisions for first-class and

second-class cars. The algorithm has been successfully implemented at VIA Rail,

it finds good quality solutions in a few minutes of computation on a Sun Ultra-10

computer (440 MHz) depending on the considered scheduling horizon (typically

less than 1 minute for 1 day scheduling and less than 15 minutes for 7 days

scheduling).

Scholz [2000] investigated a locomotive scheduling problem for the Swedish rail-

way system. The problem involves a set of trips that have to be covered by

locomotives, and the objective was to run the same set of trips with as few

locomotives as possible. Every trip is characterized by a start location, an end

location and a total travel time required. Interestingly, there are no specific

departure times associated with the trips but each trip has a departure time

window, and the trips have to depart during that time window. Trip schedules

are represented in a Gantt chart format, and the problem becomes similar to

a bin packing problem with additional constraints. Each logical locomotive is

displayed in the Gantt chart vertical axis against time on the horizontal axis,

each trip forms a rectangle in the Gantt chart, the length of each rectangle

expresses how long the trip is. Thereby, to efficiently use locomotives to run the

trips, one must rearrange the rectangles of the Gantt chart so that as little space

as possible is taken along the vertical axis i.e. a bin packing problem. Scholz’s

solver also had to choose the route that a locomotive could take to get from a
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trip start location to its end location taking into account the time needed for a

possible passive transfer and avoiding collisions in single-laned tracks.

Noble et al. [2001] study a locomotive scheduling problem faced by the Australian

State of Victoria’s Public Transport Corporation (PTC). PCT has to decide

which locomotives to allocate to a set of long-trip train services so that the

total power allocated results greater than the load to be pulled, and the overall

cost is minimized. The authors consider 26 outward and return journeys and

6 types of locomotives. The problem is simplified by the fact that, since trips

are long and repetitive, once a locomotives is assigned to a service it remains

with that service. Noble et al. initially proposed a straightforward pure integer

program formulation of the problem. As optimality was impossible to achieve,

the authors change the model reformulating the constraints and replacing every

integer variable with a linear sum of a special ordered minimal covering set

of binary variables. Adopting this new formulation it was possible to achieve

optimality in negligible computation time.

Ziarati et al. [2005] propose a multi-commodity flow formulation for a cyclic het-

erogeneous locomotive scheduling problem. The main objective of this problem

is to assign a sufficient number of locomotives to pull all the trains using the

minimum number of available locomotives over a time horizon of one week. The

problem requires a cyclic solution that may be used every week. The problem is

solved by a heuristic genetic algorithm (no information on dual bounds is pro-

vided). The data instance is from Canadian National North America Company

and consists of up to 1629 train services, 93 stations, 1182 available locomotives

divided in 7 types. This algorithm is able to cover all 1629 trains with only 738

locomotives providing a solution after 20 hours of computation time on a 1GHz

Pentium-III platform.

Baceler and Garcia [2006] study a locomotive scheduling problem faced by the
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Vitoria-Minas Railroad (EFVM), owned by Companhia Vale do Rio Doce. The

authors used real EFVM data based on a schedule of train trips in a two days

period and worked with 138 locomotives (divided in five types) and 390 trains

passing by 35 stations. The research developed successfully a mathematical

model that represents a real-life problem of Brazilian Railways. The authors

showed that the locomotive scheduling determined by the use of operational re-

search in the EFVM Railroad is better than the locomotive assignment currently

conducted by EFVM employees without specialized tools. Using a two days

period, it was possible to save almost 19% of the entire locomotive fleet used in

this period, which means a saving of 20.65% of the HP available. In terms of

money, this part of the fleet represents nearly 63 million of 2010 US dollars in

investments.

Paoletti and Cappelletti [2007] present a decision support system developed

by the Models and the Decisional Systems Department of Trenitalia (the main

Italian operator of passenger trains) to aid the locomotive fleet planning. The

planning and the sizing of all the rolling stock types that are used to cover all

the rosters (i.e. the service sequences to be executed) has been realized through

the development of a Fleet Rostering model that builds the daily rosters for each

locomotive (for a day that statistically represents the observed timetable). The

locomotive rostering model takes into account the timetable planned services

and assigns to each train the necessary traction group. This model has to build

the employment roster for each used locomotive. The rosters are cyclic, and

the locomotive, at the end of the roster, has to go back to the station of roster

origin. A further element of complexity is represented by the great size of the

problem: more than 4000 locomotives divided in 50 types, the possible traction

groups (single or composed) are more than 200, the timetable presents 9000 daily

services and there are 109 maintenance plants. The authors develop a minimum
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cost multicommodity flow model. The specific heuristic algorithm, developed to

search the minimum cost paths tree, reaches acceptable quality solutions in an

acceptable time for the company.

An alternative approach to solve complex combinatorial problems has been

proposed in Powell et al. [2001], and is based on the approximate dynamic

programming (ADP) framework.

The idea proposed by Powell et al. is to formulate the original problem as a

dynamic programming problem and solve, through ADP, a sequence of small

sub-problems that can be managed optimally using commercial solvers (like

CPLEX). This approach permits to deal with uncertainty in a general way

allowing the modeling of a wide class of uncertainties even in complex real life

combinatorial problems. The ADP framework has been extensively described in

many papers (Marar et al. [2006], Marar and Powell [2009], Powell [2003], Powell

and Topaloglu [2003], Powell et al. [2001, 2002, 2007]), technical reports (Powell

and Bouzaiene-Ayari [2006]), conference proceedings (Powell and Bouzaiene-Ayari

[2007]) and in a book (Powell [2007]). The LAP is often formulated as a Mixed

Integer Programming (MIP) problem, a class of problems which is treated for

instance in Powell et al. [2002], Powell and Topaloglu [2005], Topaloglu and

Powell [2006]. Powell et al. apply the ADP framework to several real life railways

problems including the LAP. Namely the LAP has been covered, with different

degrees of detail, in several documents (papers, conference proceedings and

technical reports) such as Henderson et al. [2007], Marar et al. [2006], Marar and

Powell [2009], Powell [2003], Powell and Bouzaiene-Ayari [2006, 2007], Powell and

Topaloglu [2003, 2005], Powell et al. [2001, 2007]. Moreover, Powell et al. apply

their approach to the solution of a real life LAP. Focusing on a recent project, in

2006 they develop an application, sponsored by the Norfolk Southern Railroad
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and Burlington Northern Sante Fe Railroad. This application was claimed to

solve the problem of assigning locomotives to trains over a planning horizon (a

week for a real-time planning, a month for a strategic planning) capturing a high

level of detail (about locomotives and trains) as well as a variety of complex

business rules. Notably, the application simultaneously handled the problem of

routing locomotives to shops (maintenance centers). In 2007 this application was

still in development in collaboration with Norfolk Southern Railroad. Finally,

in 2009 the work of Powell et al. produced an application named Princeton

locomotive and shop management system (PLASMA) which completed the user

acceptance test at Norfolk Southern as a strategic planning system. PLASMA

has been used to assist the (strategic) decision making in the 2009 locomotive

road fleet requirement.

An important improvement in the realism of the LAP models has been

provided in Ahuja et al. [2005b]. Ahuja et al. study a real life locomotive

scheduling faced by CSX Transportation Inc., a Class I U.S. railroad company.

Following the requests of the managers of CSX, who sponsored the research,

Ahuja et al. focus on a weekly schedule and on the strategic version of the

corresponding locomotive assignment problem. Ahuja et al. [2005b] propose

a MIP formulation in which each locomotive type corresponds to a different

commodity, and the problem is modeled as a multicommodity flow with side

constraints (the number of locomotives of each type is limited) on a space-

time network where arcs denote trains and nodes denote events i.e. arrivals and

departures of trains and locomotives (for a review of the network models and

their application in locomotive and train scheduling see for instance Ahuja et al.

[2005a]).

The total cost is defined as the sum of ownership, active, deadheading, light-

34



2.2. Multiple locomotive models

traveling and consist busting costs plus the penalty for the use of single-locomotive

consists. The objective is to minimize the total costs while finding:

(i) the active locomotives and deadheaded locomotives for each train;

(ii) the light-traveling locomotives;

(iii) the train-to-train connections.

Starting from the data provided by CSX, Ahuja et al. consider an instance of the

LAP with 538 trains (running with different weekly frequencies), 119 stations

and 5 types of locomotives. In a week, the total number of trains which differ at

least for the running day is 3324 and the resulting weekly space-time network

consists of 8798 nodes (events) and 30134 arcs (train trips).

The proposed formulation does not consider some real life constraints like the

weekly consistency constraint (i.e. the same train running on different days

should have the same locomotive assignment) and the train to train connection

consistency (i.e. the same train to train connection should be adopted for each

pair of connected trains). Even without these constraints (which would increase

dramatically the problem size), the MIP formulation consisted of 197424 variables

and 67414 constraints and could not be solved to optimality or near-optimality

using a commercial software like CPLEX, even considering the linear programming

relaxation of the problem. In order to deal with this large size instance, Ahuja

et al. propose a decomposition-based heuristic approach that allows (using

CPLEX) near-optimal solutions for real life instances in moderate computation

times and implicitly accounts for the consistency constraints. The first step of this

heuristic approach transforms the weekly scheduling problem in a daily scheduling

one. This is done passing from the actual set of weekly frequencies to the following

binary set: cancel trains running less than 5 days a week (weekly frequency equal

to zero) and set to 7 the frequency of the remaining trains. This simplification

35



Chapter 2. Problem types

works because in the specific dataset provided by CSX the 94% of trains run at

least 5 days a week. Even if the daily space-time network is significantly smaller,

it contains 1323 nodes and 30034 arcs and finding an integer optimal solution

is still very problematic. Ahuja et al. identify in the fixed-charge variables

(cost of consist busting and light-travelling) the principal obstacle that prevents

the optimal (or near-optimal) solution of the daily problem. Consequently, the

following three-step heuristic approach is implemented to eliminate fixed-charge

variables:

(i) Select among the admissible train to train connections the ones with the

lower impact on the cost function; the impact is assessed solving the linear

programming relaxation of each problem obtained fixing the connections

one by one.

(ii) Identify a small but potentially useful set of light-travel arcs and, as for

train to train connections, fix the light-travel arcs one by one and select

them relying on the impacts on the cost functions.

(iii) Once the fixed-charge variables are eliminated through the two previous

steps, solve the integer program for the daily locomotive assignment without

the fixed-charge variables obtaining a high-quality solution (in short time).

Ahuja et al. obtain an integer high quality solution for the daily scheduling

problem in 15 minutes with CPLEX 7.0. The procedure is completed using

this solution as the starting point for a very large-scale neighbourhood (VLSN)

search algorithm. This algorithm stars from this initial feasible solution and

repeatedly replaces it by an improved neighbour until a local optimal solution

is obtained. The solution of the daily problem is then heuristically adapted

displacing locomotive from the fictitious trains to the actual trains respectively
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inserted and cancelled in the daily schedule by the frequency quantization.

Thereby a modified MIP flow formulation of the weekly problem is obtained

from the solution of the daily problem resorting the original weekly frequency

distribution. Anyway this modified weekly problem still requires excessive

computation time. Then the corresponding multicommodity flow problem is

heuristically converted into a sequence of single commodity flow problems with

side constraints, one for each locomotive type. Finally, a VLSN search algorithm

is applied to improve the feasible integer solution of the weekly locomotive

scheduling problem obtained in the previous step. Computational tests were

conducted on a real life scenario: 3324 trains originating from and terminating

at 119 stations and 3316 locomotives belonging to five locomotive types. The

algorithms made extensive use of CPLEX 7.0. and were tested on a Pentium

III 750 MHz. The solution obtained in Ahuja et al. [2005b] is substantially

superior to the one provided by the software developed at CSX: the total cost is

substantially reduced, and the number of locomotives used dramatically decreases

(by 350 ÷ 400 units, depending on the scenario).

A technical document (Ahuja et al. [2006]) was prepared to introduce some

possible extensions of the model, e.g. CAB signal requirements, optimal routing

of locomotive to fueling stations and shops to satisfy fueling and maintenance

constraints. The same research group prepared a more detailed presentation of

these and other extensions (Vaidyanathan et al. [2008a]) considering a generalized

version of the LAP. Vaidyanathan et al. [2008a] extended the previous planning

LAP model in several ways by incorporating in the strategic problem all the

real-world constraints needed to generate a fully implementable solution and

by developing additional formulations necessary to the transition of the LAP

solutions to the real life practice.

Vaidyanathan et al. propose two alternative formulations for the generalized
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planning LAP: the consist flow formulation and the hybrid flow formulation. The

consist flow formulation (CFF) is an extension of the locomotive flow formulation

(LFF) described in Ahuja et al. [2005b]. In the CFF locomotive types are replaced

by the consist types, and each consist type is defined to be a single commodity

routed on the train network. In the LFF, single locomotives are assigned to

trains and consists are the result of this assignment. In the CFF the solution is

obtained starting from a set of consists already assembled. The optimal set of

assembled consists is determined heuristically. The hybrid formulation allows

the assignment of both assembled consist and single locomotives. Focusing on

the CFF, Vaidyanathan et al. point out that performance critically depends

on the number and types of consists. As expected, the greater the number of

consists with different horsepower and tonnages, the better the quality of the

solution. Vaidyanathan et al. proposes essentially the same multi-step solution

approach adopted in Ahuja et al. [2005b]. The use of assembled consist restricts

the solution space and may lead to a loss in optimality. Nevertheless, several

computational tests performed by Vaidyanathan et al. show that the optimal

objective function value in the CFF may be just 5% higher than the one obtained

in the LFF. The correct identification of the set of assembled consists is crucial

to reduce as much as possible the optimality gap. This (small) optimality gap is

highly compensated by many benefits:

a. The LFF could not converge to a feasible solution in more than 10 hours,

while the CFF optimally solves the same instances within a few minutes.

b. The CFF allows the model to implicitly handle many constraints that were

explicitly used in the LFF, offering shorter computation and rapid convergence.

c. Complex rules on the allowed consist classes (locomotive types combinations),

impossible or hard to impose in the LFF, are easy to enforce in the CFF.
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d. Consist busting (and its corresponding cost) is reduced to a large extent.

In fact, great improvement in solution speed and robustness, significant consist

busting reduction and easy implementation of complex constraints, make the

consist flow formulation superior.

Some important real life constraints cannot be inserted in the planning phase and

the models proposed in Ahuja et al. [2005b] and Vaidyanathan et al. [2008a] did

not account for the fueling and servicing feasibility of individual locomotive units.

The fueling and servicing constraints have to be imposed to specific locomotive

units, not to locomotive types. This may be done in the locomotive routing

phase, that follows the planning and the scheduling phases. Vaidyanathan et al.

[2008b] developed methods that allow the routing of locomotive units on fueling

and servicing friendly routes while honoring the constraints seen in the planning

phase. Tables 2.1 and 2.2 present the classification of the optimization models

reviewed.
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Conclusions Part I

This survey presented a review of the recent optimization models proposed to

solve the Locomotive Assignment Problem (LAP). The application of optimiza-

tion models in the LAP solution received an increased attention in the last years

that is attested by the growing number of research contributions in this field.

The increasing interest in optimization models may be explained to some extent

by the choice of the principal North American railways to change the paradigm

of their operations passing to a schedule-based strategy that requires advanced

Operations Research software. These railways companies follow the path delin-

eated by the Canadian Pacific Railway (CPR) that implemented with success

the schedule-based strategy at the end of the past century. CPR overturned the

old paradigm that tonnage-based plans are more efficient and recaptured traffic

from the trucks thinking and acting like truckers.

Recent LAP optimization models are developed to capture and manage more ef-

fectively the unavoidable complexity and size of the real life locomotive scheduling

problems. These models represent a significant improvement in terms of realism

over older models that were often built on basic approximations of real systems.

These improvements are made possible by the increased modeling ability and by

the constant growth in computational power that makes sophisticated models

and bigger instances tractable. Simulation techniques remain a very useful tool

to support decision making. Nevertheless, problems that were only solvable by
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2.2. Multiple locomotive models

simulation can now be (approximately) solved using mathematical optimization.

Supporting the historical role of simulation tools, optimization models are gaining

more and more importance in solving large size complex scheduling problems

that characterize the schedule-based approach in real life applications.

Although the improved realism of recent optimization models allows the tractabil-

ity of realistic freight rail transport instances, we still observe a separation of the

locomotive scheduling and routing problems. Large-scale very complex freight

rail activities impose the separation of the locomotive planning, scheduling and

routing phases and cause the adoption of definitely suboptimal solutions. Thereby,

there is a strong incentive to concurrently solve locomotive planning, scheduling

and routing problems due to the crucial links between these decision phases.

Future research should concentrate on the integration of the (so far) distinct

models of the locomotive planning, scheduling and routing problems.
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Introduction Part II

The LAP is solved assigning a fleet of locomotives to a network of trains usually

minimizing the total operational cost and satisfying a rich set of constraints.

Large-scale very complex freight rail activities impose to separate the LAP in

three distinct problems:

1. Locomotive Planning Problem (LPP).

2. Locomotive Scheduling Problem (LSP).

3. Locomotive Routing Problem (LRP).

The LPP, the LSP and the LRP are solved sequentially. At the beginning of

the solution sequence we consider the available locomotive types (in the LPP)

while at the end (in the LRP) we route specific locomotive units to fueling

and maintenance stations imposing the required fueling and maintenance stops

(i.e. honoring the fueling and maintenance constraints).

The separation of the LAP leads to definitely suboptimal solutions. To achieve

optimality a model should encompass LPP, LSP and LRP. Such a structural

integration is not practicable due to the size and complexity of real problems.

This second part of the thesis focuses on the planning versions of the LAP i.e. the

LPP. In the LPP for each train we determine the type of consist (a combination of

locomotive types) assigned to that train. The set C of the consist types that are

initially available to solve the LPP is generally taken as given in terms of consist
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2.2. Multiple locomotive models

types (railroad companies provide C to researchers). Given C, the LPP solution

determines the number of consist units used for each consist type. This research

does not take C as given, we introduce an integer optimization model (called

consist types selection or shortly consists selection) to identify the consist types

included in C. The consists selection precedes the LPP solution and determines

the consist types that form C and are available to solve the LPP. We select the

consist types minimizing the active and ownership costs but also the number

of fueling events and the inefficiencies in the consist fuel capacity exploitation.

This selection leads to LPP solutions that produce savings in terms of overall

fueling cost and are easier to handle in the routing phase. The consists selection

is a methodological innovation able to partially integrate planning and routing

phases accounting (indirectly) for the fueling constraints in the LPP. Solving

several realistic instances we show that we may obtain yearly savings up to US$

110000 (210 fueling events, 985 servicing hours) for a set of 229 trains.
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3 The Locomotive Planning Problem

The Locomotive Assignment Problem may be studied at three levels: planning

(or strategic), tactical and operational, in accordance with the length of the

respective planning horizon and the temporal impact of the decisions. The three

notions identify the planning activities in the long, medium and short term,

respectively. At the planning level only the number of locomotives and their

type matter, the specific tail number of each locomotive is not considered and

locomotives of the same type are completely equivalent. The solution of the LPP

determines, for each train, the type and the number of locomotives assigned to

that train. Usually, in the LPP the train schedule is given and cannot change

(delays and disruptions are excluded). On the contrary, the tactical and the

operational LAP introduce many aspects not considered in the planning version.

This is necessary because we deal with specific locomotives and not just with

locomotive types. More precisely, we have to assign locomotive tail numbers

(unique for each specific locomotive) to trains and solve a locomotive routing

problem while honoring the constraints of the previous planning phase and new

operational constraints (like fueling constraints and maintenance constraints).

North American freight trains are generally very heavy and a single locomotive is

often not sufficient to satisfy the required motive power performance. Therefore
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3.1. Definitions

a suitable consist (two or more linked locomotives) has to be chosen from a set of

locomotives with different characteristics to provide the requested motive power

performance.

3.1 Definitions
Before continuing, we provide a more precise characterization of locomotives and

trains and we introduce some useful definitions.

A locomotive may be characterized by its:

1. Maximum Horse Power (HP).

2. Maximum pulling force or Tractive Effort (TE).

3. Range (i.e. fuel tank capacity and fuel consumption rate).

The term train indicates a train service characterized by:

1. 〈departure time, departure station〉 and 〈arrival time, arrival station〉.

2. TE requirement (depends on train weight and track geometry).

3. HP requirement (imposed by train speed).

Active locomotives pull trains but locomotives may also move in a passive way:

1. Deadheading locomotives are attached to trains as passive rolling stock

elements and are moved like wagons in order to be repositioned.

2. Light-travelling locomotives form a group where only the leading locomotive

is active and pulls the remaining locomotives attached as passive rolling

stock elements.
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Chapter 3. The Locomotive Planning Problem

Freight trains may be classified in fast and slow trains. According to AREMA

[2003], HP and TE are related via the maximum speed achievable by a train,

namely speed ∝ HP
TE

. Consequently, high HP consists are suitable for fast freight

trains (intermodal and auto trains) while low HP consists are suitable for slow

freight trains (merchandise and bulk trains).

Since the reduction in operations costs is primarily pursued by minimizing the

number of used locomotives, it is important to promote train to train connec-

tions : when a train service ends at its arrival station (say station S) its consist
is assigned to a compatible outbound train (whose departure station is S) in

its entirety. The reassignment of a consist in its entirety would avoid consist

busting operations. The consist busting is the operation of merging locomotives

from inbound trains and regrouping them to make new consists to be assigned

to outbound trains. The consist busting typically entails the breaking up of

an incoming consist at a station and the assignment of the locomotives in it to

more than one outgoing train. According to Vaidyanathan et al. [2008a], consist

busting are characterized by labor, cost and time intensive activities (each consist

busting requires between two to six additional hours per locomotive within the

station).

The ownership and the active utilization of a consist have costs that are specific

for each consist types. Hereinafter we shortly indicate the sum of Active and

Ownership costs for a given consist type as ActOwn.

A primary part of the information sources exploited in this research reports

several locomotive and train costs in terms of US$ in 2008 (2008US$ ). For this

reason we have expressed all the monetary values in terms of 2008US$ throughout

all the current study.
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3.2. The state of the art in the LPP solution

3.2 The state of the art in the LPP solution
The most complex version of the LAP is solved when trains are pulled by consists

obtained joining several locomotives of different types.

Ahuja et al. [2005b] significantly improve the realism of the LPP models studying

a weekly locomotive scheduling problem faced by CSX Transportation Inc. (a

Class I railroad). Ahuja et al. [2005b] propose a MIP formulation and model the

problem as a multicommodity flow (each locomotive type correspond to a different

commodity) with side constraints (the number of locomotives of each type is

limited) on a space-time network where arcs denote trains, and nodes denote

events i.e. arrivals and departures of trains and locomotives. Having defined

the total cost as the sum of ownership, active, deadheading, light-traveling and

consist busting costs plus the penalty for the use of single-locomotive consists,

the objective is to minimize the overall costs identifying active, deadheading,

light-traveling locomotives and train-to-train connections. Vaidyanathan et al.

[2008a] propose the Consist Flow Formulation for the LPP. The LPP may be

solved starting from a set of locomotive types not already assembled in consists

or may be solved starting from a set C of consist types fixed ex-ante. The

Locomotive Flow Formulation (LFF) described in Ahuja et al. [2005b] defines

each locomotive type as a commodity while the Consist Flow Formulation (CFF)

replaces locomotive types with consist types and each consist type is defined to

be a single commodity. In the LFF, single locomotives are assigned to trains,

and the consists are the result of these assignments while in the CFF the solution

is obtained starting from a set of consists already assembled. As expected, the

solution quality critically depends on the number and types of consists: a greater

number of consists types leads to a higher solution quality. The use of assembled

consist restricts the solution space leading to a loss in optimality. Nevertheless,

computational tests performed by Vaidyanathan et al. [2008a] show that the
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optimal objective function value in the CFF may be just 5% higher than the one

obtained in the LFF. The correct identification of the set of assembled consist is

crucial to reduce as much as possible the optimality gap. This small optimality

gap is highly compensated by improvements in solution speed, significant consist

busting reduction, implementability of complex constraints that make the CFF

superior. Some important real-life constraints cannot be inserted in the LPP, so

the models proposed in Ahuja et al. [2005b] and Vaidyanathan et al. [2008a] did

not account for the fueling and maintenance constraints that are honored in the

locomotive routing phase (Vaidyanathan et al. [2008b] developed methods that

allow to route locomotive units on fueling and maintenance friendly routes while

honoring the constraints seen in the planning phase).
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4 The current study

The literature survey shows the lack of studies focused on the integration of

planning, scheduling and routing phases, which could be an extremely complex

task. The three phases are solved sequentially: the solution of the LPP is the

starting point for the subsequent scheduling and routing problems. Important

constraints (like fueling and maintenance constraints) are relegated in the routing

phase because they rely on locomotive tail numbers that are not considered in

the LPP.

This study proposes a methodological innovation able to partially integrate

planning and routing phases accounting (indirectly) for the fueling constraints in

the CFF LPP.

In the previous studies, the set C of available consist types were assumed as

given in terms of its qualitative composition. This means that the consist types

that are available for the LPP optimization are determined by the expertise of

locomotive managers. Subsequently, the LPP solution determines the number of

consist units needed for each consist type in C.

Our objective is to define a preliminary optimization program (called consist

types selection or shortly consists selection) that determines the qualitative

composition of the set C identifying the consist types initially available for the
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solution of the LPP. The consists selection indirectly accounts for the fueling

constraints minimizing the number of fueling events. This phase could identify

consist types that are not captured by a purely cost-oriented consists selection

but that may be useful in the routing phase, where a reduced number of fueling

events could simplify fueling routing and produce savings that could not be

achieved using (apparently) more economical consist types.

Finally, we exploit in the consists selection the concept of consist fueling homo-

geneity that allows the identification of consist types that exploit efficiently their

fuel capacity and reduce the fueling costs.

4.1 Consists Selection: concepts and methodology
The locomotive fueling and maintenance constraints are not considered in the

LPP model and are relegated in the routing problem because they rely on

specific locomotive tail numbers. Inspired by the CFF of the LPP proposed in

Vaidyanathan et al. [2008a], we introduce an optimization program that precedes

the LPP optimization and selects the initially available consist types among all

the possible consist types. We call this preliminary optimization program as

consists selection.

The aim of the consists selection is to identify the composition of the consist

types set C i.e. to define the consist types initially available for the solution of

the LPP. The actual number of units for each consist type (i.e. the weights of

the consist types inside C) will be precisely determined after solving the LPP.

Our objective is to identify a set C that gives LPP solutions easier to handle

when fueling constraints are satisfied. Implementing the consists selection and

solving the LPP, we may find solutions that are not necessarily optimal for the

LPP alone. However, these solutions reduce the number of fueling stops in the
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4.1. Consists Selection: concepts and methodology

routing phase and may result more economical when we consider the planning

and the routing phases altogether.

The set C obtained from the consists selection depends on the set of trains and

on the set of available locomotive types. Given a set of trains and a fleet of

locomotives, we determine the consist types that generate a fleet of consist units

able to minimize the overall cost while servicing all the trains. In this study we

consider 229 trains of three speed classes and 7 locomotive types that generate

288 consist types from which we extract the set C.

4.1.1 The actual number of fueling stops

To reduce the total fueling cost we could diminish the fueling stops cost (fsc)

reducing the total number of fueling events. Given a locomotive type, the actual

number of fueling stops is greater than the one calculated relying on the range

of that locomotive type because railroads have to prevent out of fuel events.

According to Ahuja et al. [2006] railroads have been found to have several of

these out of fuel events in a day. Out of fuel events have severe costs, US$

8000 each in 2000 according to GE Harris Energy Systems [2000] (equivalent to

2008US$ 9995). These cost could be avoided measuring electronically the fuel

level. However, according to Lindsey [2007], in 2008 nearly the 90 percent of the

locomotives were still without electronic fuel measurement.

Lindsey [2007] reports that railroads adopt very conservative practices to avoid

out of fuel events, information confirmed also by GE Harris Energy Systems

[2000] (locomotives are refueled when their fuel tanks are still 60% full) and by

Ahuja et al. [2006] (the average fuel dispensed per event is only one third to half

the locomotive tank capacity). The range of each locomotive type depends on its

consumption rate and on its actually exploitable fuel tank capacity. These very

conservative policies reduce the actually exploited fuel tank capacity increasing
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the number of fueling events (and the overall fueling cost). According to GE

Harris Energy Systems [2000], for each locomotive type this study assumed the

actually exploitable fuel tank capacity equal to the 40% of the nominal tank

capacity. Hereinafter, for each locomotive type, the term tank capacity refers to

the actually exploitable fuel tank capacity of that locomotive type (while the

term nominal tank capacity refers to the nominal volume of the tank).

4.1.2 The fueling stop cost
According to Unkle and Roddy [2004], a locomotive may be serviced in (at least)

three different types of sites:

1. Run-through tracks, where simple processes may be executed.

2. Service tracks, where locomotives are isolated from the main line, and more

complex and lengthy processes (like repairs) may be undertaken.

3. Main shops where locomotives may be even disassembled.

The train delay due to the time spent refueling strongly depends on the site on

which the fueling stop occurs. Fast refueling events (including on-road refueling

operations performed by fueling trucks) are typically associated to run-through

tracks while refueling events on service tracks and main shops require more time.

Raviv and Kaspi [2012] assume that the train delay cost caused by refueling

operations is equal to 2010US$ 250 (2008US$ 246.75) for each fueling event. This

assumption is the same adopted in the problem solving competition ”Locating

Locomotive Refueling Stations” organized in 2010 by Railway Applications

Section of INFORMS, and won by Raviv and Kaspi. The assumption is reasonable

under the framework adopted in the competition:

1. The only source of fueling are the fueling trucks.
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2. All the trains are pulled exactly by one locomotive.

3. Assume instantaneous refueling time.

4. A train incurs a fixed cost if it is refueled.

The fueling stop cost is determined by various characteristics of the train being

delayed and of the yard. According to Schafer and Barkan [2008] the industry

expert opinion is that the cost of delay for a single train is in the range of 2006US$

200 to 2006US$ 300 per hour (2008US$ 213.4 to 2008US$ 320.12 per hour). The

cost of 2008US$ 246.75 assumed in Raviv and Kaspi [2012] seems plausible

for on-road refueling events performed by fuel trucks. The characteristics of

the train and the time spent refueling (and waiting to be refueled) determine

the fueling stop cost. BNSF Railway Twin Cities division [2006] reports that

refueling can take up to 10 hours in some congested rail yards (like the ones in

Pasco-Washington, Seattle or Vancouver). For this reason BNSF (a U.S. Class

I railway company) has invested and continue to invest in new fueling facility

that are able to refuel a train in less than one hour (the station in Minot should

be able to refuel a train in about 45 minutes). Souten et al. [2008] indicate an

average refueling time of 1.5 hours for the BNSF yard located in San Bernardino.

According to Gannett-Fleming [2008], estimates provided by Norfolk Southern

(another U.S. Class I railway company) indicated that the fueling operation

typically takes 3 hours at the Dillerville Yard (Lancaster County, Pennsylvania).

The uncertainty about the fueling stop cost is further increased by the different

characteristics of trains, in particular by their priority. Given the same refueling

time, high priority trains (being associated to a higher value of time) have a

higher fueling stop cost with respect to low priority trains.

This study assumes that all the trains have the same priority and that the fueling

stop cost is uniquely determined by the the amount of time spent refueling (and
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waiting to be refueled). We also assume for the fueling events a hourly cost

equal to the one adopted for the idling events that is 2008US$ 111.51 according

to Wilbur Smith Associates [2010]. According to GE Harris Energy Systems

[2000], the 80% of the locomotive fleet units are refueled on service tracks where

each stop takes on average 6 hours, while the remaining 20% are refueled on

run-through tracks, where each stop takes on average 30 minutes. Equivalently,

we may assume that each fueling event takes on average 4.9 hours and has a

fueling stop cost of 2008US$ 546.4. Figure 4.1 reports the number of fueling

stops (left y axis) and the corresponding costs (right y axis) of 288 consist types

(the numbers in the x axis) working 52 weeks, 50 hours per week.
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Figure 4.1: Yearly fueling events and costs for a single consist

4.1.3 The fueling homogeneity
Each consist type may present a certain grade of homogeneity according to

one or more parameters used to characterize the locomotive types joined inside
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4.2. The heterogeneity fueling cost

that consist type. Given the operative conditions, each locomotive type is

characterized by its range or equivalently by the number of fueling stops required

over a fixed time horizon (frequency of the fueling events). The frequency of

the fueling events for a consist type is determined by the locomotive type with

the shortest range (locomotives cannot run out of fuel). The locomotive types

that form a consist type could have similar or dissimilar ranges. In a fueling

heterogeneous consist, i.e. built using locomotives with dissimilar ranges, the

locomotives with the longer ranges exploit their fuel capacity inefficiently. In

a fueling heterogeneous consist a portion of the fuel remains unused in the

locomotives tanks. Thus, the money value of the fuel is not productively invested

causing an opportunity cost that we denote as heterogeneity fueling cost (hfc).

On the contrary, a group of locomotives types characterized by similar ranges has

a low hfc and exploits the fuel tank capacity more efficiently. We may shortly

define perfectly homogeneous a consist type characterized by an hfc = 0. The

hfc of a consist is closer to zero the more homogeneous it is.

4.2 The heterogeneity fueling cost
Consider a locomotive type X (long range), joined with a locomotive type Y

(short range) in a XY consist type. Since Y cannot run out of fuel, a portion of

the fuel stored in the tank of X will be not exploited generating a heterogeneity

fueling cost (hfc).

The hfc introduced in this study concurs in the consists selection process though

active and ownership costs are dominant. Referring to 2008US$ we have:

1. The highest consist hfc is US$ 0.89 per day.

2. The lowest consist ownership cost is US$ 31.28 per hour.

3. The lowest consist active cost cost is US$ 80 per hour.
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The hfc may become relevant when we compare consist types with almost

equivalent ActOwn cost (active + ownership cost).

4.2.1 Neglecting locomotive passive movements
The consist type has a crucial role during the active part of a consist unit service

while it is not relevant during passive movements (deadheading and lightraveling).

The objective function of the LPP accounts for unused locomotives (savings) and

costs due to (Ahuja et al. [2005b], Vaidyanathan et al. [2008a]):

1. Active locomotives.

2. Ownership.

3. Deadheading and Light-travelling locomotives (passive movements).

The objective function of the consists selection should consider only fueling

costs, active and ownership costs since the choice of the consist types is done

looking at the motive performances requested during active movements (TE and

HP constraints). Moreover, according to Ahuja et al. [2002] the time spent by

locomotives in deadheading and ligh travelling movements represents a small

portion of the locomotive service time. Given a real-life weekly LPP proposed

by CSX (3324 trains, 119 stations, 3316 locomotives, 5 locomotive types), Ahuja

et al. [2002] solve the weekly LPP developing a software called Advanced Locomo-

tive Scheduling (ALS). The solution provided by the ALS shows its superiority

over the one obtained by the CSX software called LSM (Locomotive Scheduling

Model). Table 4.1 shows the breakdown of the locomotive service time according

to the ALS and LSM solutions. Table 4.2 (taken from John and Ahuja [2008])

confirms that for each locomotive type the active cost is significantly greater

than the deadheading cost that, as expected, is the same for all the locomotive

types (i.e. locomotive type is irrelevant during passive movements).
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4.2. The heterogeneity fueling cost

.

Table 4.1

Table 4.1: Deadheading and light traveling in percentage terms
..... over the total locomotive service time

Service Time ALS solution LSM solution

Idling time 46.70% 49.10%

Active time 44.40% 31.30%

Deadheading time 8.10% 19.60%

Light traveling time 0.8% 0%

Table 4.2

Table 4.2: Active and deadheading costs comparison

Locomotive class Active cost per hour Deadheading cost per hour
(2008US$) (2008US$)

AC4400CW 155 9

C40-8/C40-8W 125 9

SD40/SD40-2/SD40-3 105 9

ES44DC 125 9

GP40/GP40-2 80 9

For all these reasons, the active and the ownership costs represent the domi-

nant parts of the overall cost, and passive movement costs are considered not

relevant in the consists selection.

4.2.2 Neglecting train to train connections
The train to train connections hold a crucial role in the LPP optimization but

they are neglected in the consists selection. In a train to train connection, we
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Figure 4.2: Structure of the space-time network

in the LPP (Ahuja et al. [2005b])

Figure 4.3: Structure of the space-time network

adopted in the consists selection

Chapter 4. The current study

use the same consist to serve several trains. In a sequence of trains, the train

with the highest HP/Tonnage requirements determines the minimal performance

of the shared consist. The performance of the chosen consist is suited for some

trains of the sequence and excessive for others. In this study, we identify for

each train the best suited consist type respecting the fleet size constraints and

neglecting the train to train connections.

Figure 4.2 (taken from Ahuja et al. [2005b]) shows the space-time network

structure including ground nodes, ground arcs and connection arcs that are

essential to model deadheading, ligh-traveling and train to train connection in

the LPP, while Figure 4.3 shows the space-time network structure adopted in

the consists selection model.
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5 Models and Data

The consists selection model solves the weekly assignment of consists by ne-

glecting passive movements (deadheading and light traveling) and train to train

connections. To estimate the potential savings made by the adoption of the con-

sists selection, we create realistic locomotives specification, trains specifications

and schedules datasets. We apply the preliminary consists selection to some

realistic scenarios and instances obtained from these datasets.

5.1 Selection phase mathematical modeling
We model the weekly consists selection as an integer multicommodity flow

problem with side constraints on a spacetime network. Each consist type defines

a commodity in this network.

Neglecting locomotive passive movements and train to train connections we have

a space-time network G = (N,A) in which arcs denote trains and nodes denote

events (departures and arrivals of trains).

The set of arcs A coincides with the set of train arcs TrArcs.

.

.
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.

The set of nodes N is formed by the two subsets:

1. Arrival nodes (ArrNodes).

2. Departure nodes (DepNodes).

.

Each train l is characterized by the following attributes:

1. dep-time(l), the departure time of a train l;

2. arr-time(l), the arrival time of a train l;

3. dep-station(l), the departure station of a train l;

4. arr-station(l), the arrival station of a train l;

5. Tl, the tonnage requirement for a train l;

6. HPl, the HP per tonnage requirement for a train l.

.

Three different sets of locomotives may be associated to each train l:

1. MostPreferred[l], the preferred locomotive types.

2. LessPreferred[l], the accepted (paying a penalty) locomotive types.

3. Prohibited[l], the locomotive types not permitted.

Given the set of all locomotive types K, k denotes a particular locomotive type

belonging to K.
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Every locomotive type k ∈ K is characterized by the following attributes:

1. hk, the horsepower (HP) of a locomotive of type k;

2. bk, the number of axles on a locomotive of type k;

3. Gk, the ownership cost of a locomotive of type k;

4. Bk, the fleet-size of a locomotive of type k;

5. ckl , the cost of assigning an active locomotive of type k to a train l.

The model relies on the following definitions:

1. αck, the number of locomotives of type k ∈ K in a consist c ∈ C;

2. I[i], the set of arcs entering in the node i;

3. O[i], the set of arcs leaving the node i;

4. C, the set of consist types available for assignments;

5. c ∈ C denotes a specific consist type;

6. ccl , the cost of assigning an active consist of type c ∈ C to a train arc l;

7. ecl is the heterogeneity fueling cost of a consist c that pulls the train l for

its entire travel time;

8. f c
l is the fueling stops cost of a consist c that pulls the train l for its entire

travel time.
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The decision variables are the following:

1. zc, a binary variable which takes value 1 if a consist type c ∈ C is used;

2. xcl , a binary variable which takes value 1 if a consist type c ∈ C flows on

arc l ∈ TrArcs.

The model is inspired by the model adopted in Vaidyanathan et al. [2008a]

(the LPP model in its CFF). We solve a weekly consist assignment with a fixed

number p of maximum available consist types. The value of p should be low to

have LPP solutions manageable and useful in real-life applications.

min : w =
∑

l∈TrArcs

∑
c∈C

cclx
c
l +

∑
l∈TrArcs

∑
c∈C

∑
k∈K

αckxclG
k +

∑
l∈TrArcs

∑
c∈C

[eclx
c
l + f c

l x
c
l ]

(5.1a)

subject to∑
c∈C

∑
k∈K

αcktkl x
c
l ≥ Tl, ∀ l ∈ TrArcs (5.1b)

∑
c∈C

∑
k∈K

αckhkxcl ≥ HPl, ∀ l ∈ TrArcs (5.1c)

∑
c∈C

xcl = 1 (5.1d)

zc ≥ xcl , ∀ l ∈ TrArcs, c ∈ C (5.1e)∑
c∈C

xcl b
c ≤ 24, ∀ l ∈ TrArcs (5.1f)

∑
l∈S

∑
c∈C

αckxcl ≤ Bk, ∀ k ∈ K (5.1g)

∑
c∈C

zc ≤ p, p = 3, 5, 7, . . . , 17 (5.1h)

xcl ∈ 0, 1, ∀ l ∈ TrArcs, c ∈ C (5.1i)

zc ∈ 0, 1, ∀ c ∈ C (5.1j)
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5.2 Assessment of savings achievable introducing

the consists selection

In the previous studies the LPP optimization was performed taking the set

C of available consist types as given. Our objective is to asses the savings

achievable introducing the consists selection before the LPP optimization. Given

a train network and a consist fleet, the consist assignment provided by the

consists selection generally differs from the one provided by the LPP since in

the consists selection we neglect train to train connections. Neglecting train

to train connections we cannot serve two or more train with the same consist,

thereby in the consists selection problem each consist will serve a unique train.

Consequently, the total number of consist units required in the solution of the

consists selection will be higher with respect to the one required in the LPP.

Given an instance of the LPP, the exact valuation of the achievable savings

(provided by the consist selection) may be obtained after solving the LPP (and

determining the train to train connections) and finally updating the LPP solution

to honor the fueling constraints in the routing phase. Moreover, according to

Nahapetyan et al. [2007], the train to train connections obtained from the LPP

solution are often not respected. Trains are often delayed and sometimes are

canceled altogether. As a result, terminals might not have enough locomotives

to depart outbound trains. There are usually unanticipated, unscheduled trains

that require locomotives not listed in the LPP solution. Nahapetyan et al. [2007]

valuate some important measures of the overall performance of the locomotive

assignment procedure at CSX. To obtain this valuation Nahapetyan et al. use the

Locomotive Simulator/Optimizer (LSO) a decision support system (developed

by Innovative Scheduling Inc.) that simulates the movement of locomotives

across a railroad network. Simulations rely on historical train data to model
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train delays, historical locomotive data to model locomotive breakdowns and

historical data of maintenance centers (shops) to model repair and maintenance

of locomotives at CSX. The simulations reported in Nahapetyan et al. [2007]

show that the percentage of trains that does not depart with a set of locomotives

specified in the LPP solution oscillates between about 30% and about 40% (and

the percentage of trains that arrive ontime is around 50%). Thus, train to train

connection may be higly modified or canceled, it is then quite difficult to valuate

the actual savings achievable introducing the consists selection even after having

solved the LPP.

In fact, the actual savings achievable introducing the consists selection may

be valued only after having solved the LPP and the LRP (in which fueling

constraints are honored). We do not solve the LPP and LRP (also because of

the lack of essential information about the fueling stations network). This study

introduces a methodological innovation in the LPP solution procedure and limits

the analysis to the consists selection in which train to train connections are not

considered. It is worth nothing that, given a set of trains, to identify the fleet

of the best suited consists (i.e. the composition of the ideal fleet of consists) we

may serve the trains assuming an unlimited availability of consist units for each

consist type (i.e. we neglect the fleet size constraints). Neglecting the fleet size

constraints we may divide the train set in two groups:

1. Trains that may concur in a train to train connection sharing the same

consist.

2. Trains that cannot concur in a train to train connection.

If the fleet size constraints are neglected, the assignment of consist types to trains

may be conducted for the entire set of trains in one step or may be equivalently

obtained in two steps assigning independently the consist types to the two groups
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because the assignment of the first group of trains do not impact the second

group (thanks to the unlimited consist availability). The consists selection alone

may provide a reliable valuation of the achievable savings for a train schedule

that does not allow us to exploit train to train connections. This valuation may

also be considered an approximation of the actual savings since usually train

to train connections involve only a part of the scheduled trains (the lower the

number of train to train connections the better the estimate of actual savings).

To summarize, our objective is to asses the potential savings achievable adopting

a consist types set C obtained accounting for the ActOwn, the hfc and the

fsc with respect to a consist types set C obtained selecting the consist types

considering only the active and ownership costs (ActOwn). To achieve this

objective we solve a reference model in which the consists selection is performed

considering only the ActOwn. The reference model is named model M1 and the

consists selection model is named model M2.

In the reference model (model M1) the objective function accounts only for the

ActOwn (i.e.
∑

l∈TrArcs

∑
c∈C

cclx
c
l +

∑
l∈TrArcs

∑
c∈C

∑
k∈K

αckxclG
k).

.

In the consists selection model (model M2) the objective function accounts also

for the hfc and fsc terms (i.e.
∑
l

∑
c

[eclx
c
l + f c

l x
c
l ]).

Objective function for the model M1:

min : w =
∑

l∈TrArcs

∑
c∈C

cclx
c
l +

∑
l∈TrArcs

∑
c∈C

∑
k∈K

αckxclG
k (5.2a)

Objective function for the model M2:

min : w =
∑

l∈TrArcs

∑
c∈C

cclx
c
l +

∑
l∈TrArcs

∑
c∈C

∑
k∈K

αckxclG
k +

∑
l∈TrArcs

∑
c∈C

[eclx
c
l + f c

l x
c
l ]

(5.2b)

The constraints are the same for the two models.
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The assessment of savings is completed solving these two models and comparing

the two respective overall cost (ActOwn+ hfc+ fsc).

The objective value of M2 represents an overall cost (since the hfc and the

fsc are present in the objective function). To obtain the overall cost of M1 we

add the objective value of M1 (i.e. the ActOwn) with the hfc and the fsc that

correspond to the M1 solution.

The difference between this M1 overall cost and the objective value of M2 pro-

vides the weekly savings obtained accounting for the hfc and the fsc in the

optimization program.

The model M2 may have several optimal equivalent solutions, all characterized

by the same overall cost (that coincides with the M2 objective value). On the

contrary, M1 may have several optimal solutions that are all equivalent in terms

of optimal M1 objective value but may present different [hfc+ fsc] values (and

so different overall costs) since the hfc and the fsc are not accounted in M1

optimization (they are calculated ex-post once we know the M1 solution).

The solution of the consists selection is obtained through a three step procedure.

In the first step we solve the models M1 and M2: the optimal M2 solutions are

characterized by the minimum achievable overall cost (ActOwn + afc + fsc)

while, for each instance, solving the model M1 we do not identify an unique

M1 overall cost. For each instance, in general the optimal M1 solution is not

unique and we found a set of optimal equivalent solutions characterized by the

same ActOwn cost (same optimal objective value) but different hfc and fsc

(not considered in the model M1).

In the second step, for each instance, we identify the optimal M1 solutions

characterized by the highest [hfc+ fsc]. Then, for each instance, we calculate

the overall cost as the sum of the optimal M1 objective value ActOwn and the

highest value of [hfc+ fsc] (we refer to this sum as the M1 overall cost).
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In the third step, for each instance, we calculate the difference between the M1

overall cost (previously calculate in step 2) and the M2 overall cost obtaining

the maximum weekly savings achievable adopting homogeneous (fueling) consists.

5.3 The dataset
Vaidyanathan et al. [2008a] solve the LPP implementing the consist flow formu-

lation in two different scenarios (with similar size) provided by CSX:

〈388 trains, 6 locomotive types〉 and 〈382 trains, 6 locomotive types〉

For each scenario the LAP is solved finding the total number of locomotives used

in 8 sub-scenarios identified by 8 different consist types sets C (their size varies

from 3 to 17 consist types).

Railway companies do not provide such kind of detailed data without a part-

nership. Nevertheless, a deep search on scientific publications, economic and

technical reports, manuals and other freely available sources, give us the realistic

data needed for our analysis. The information retrieved may be grouped in four

categories:

1. Locomotives and rolling stock data (train cars data).

2. Train data.

3. Consist data.

4. Tracks data.

To obtain a realistic set of consist types C, the proportion of train types in the

set of train services matter more than the number of train services: a set of

1000 grain trains (a flat, dull train services set) would produce an unrealistic
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composition of C. Thereby, we create a set of 229 train services characterized by

a realistic proportion of the following 3 different train classes:

1. Auto trains (10 trains).

2. Intermodal trains (65 trains).

3. Merchandize and Bulk trains (154 trains).

The 229 train services are created to represent a realistic set of train for a

typical East-coast railway company (it may be CSX for instance). On average,

a West-coast company would have longer routed distances, higher travel times,

higher weights of the trains and a different distribution of trains among the three

classes Auto, Intermodal and Merchandize.

Table 5.1 lists the information sources exploited. Figures 5.1, 5.2 and 5.3 report

the histograms for the travel time, the routed distance and the gross weight

respectively, for the 154 Merchandize (and Bulk) trains, the 65 Intermodal trains

and the 10 Auto trains.
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Table 5.1: Data sources

Locomotives and train cars data Train data Consist data Tracks data

GE Harris Energy Systems [2000] Tolliver and Bitzan [2002] Liu [2003] Unkle and Roddy [2004]

Bitzan et al. [2002] Liu [2003] Ahuja et al. [2005b] Ammah-Tago [2006]

Tolliver and Bitzan [2002] Holowaty et al. [2004] John and Ahuja [2008] Cramer [2007]

Liu [2003] Dirnberger [2006] Vaidyanathan et al. [2008a] ICF International [2009]

Ahuja et al. [2005b] BNSF Railway Twin Cities division [2006] Innovative Scheduling [2009]

CSX Corporation [2005] Cambridge Systematics [2007]

Parajuli [2005] Lai et al. [2008]

Schonfeld [2005] Gannett-Fleming [2008]

Ammah-Tago [2006] Schafer and Barkan [2008]

CSX Corporation [2006] Souten et al. [2008]

Hawthorne et al. [2006] Brosseau and Ede [2009]

Cambridge Systematics [2007] CSX Corporation [2009]

Cramer [2007] ICF International [2009]

Ireson [2007] Innovative Scheduling [2009]

Lindsey [2007] Roucolle and Elliott [2010]

Sylte [2007] Nourbakhsh and Ouyang [2012]

John and Ahuja [2008] Raviv and Kaspi [2012]

Vaidyanathan et al. [2008a]

Brosseau and Ede [2009]

CSX Corporation [2009]

ICF International [2009]

Innovative Scheduling [2009]

Metrolinx [2010]

Wilbur Smith Associates [2010]

Table 5.1

.
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5.3. The dataset

Our instances are generated considering two set of locomotive types, the first

one is the same adopted by Vaidyanathan et al. [2008a] and includes 6 locomotive

types (AC4400CW, AC6000CW, C40-8, GP40-2, SD40-2, SD60I), the second

one is obtained adding the locomotive type ES44DC to the previous group of 6

locomotive types.

Each locomotive type may be a preferred, accepted or prohibited choice for

the 3 different train classes and Innovative Scheduling [2009] offers a realistic

reference on this subject. Knowing the preferred, accepted and prohibited

〈train class, locomotive type〉 connections, we may build the set of allowed consist

types for each train speed class. Combining up to 7 locomotive types, we obtain

288 valid consist types and the corresponding prohibited connections:

1. 36 consist types are prohibited for Merchandise and Bulk trains;

2. 218 consist types are prohibited for Auto trains;

3. 249 consist types are prohibited for Intermodal trains.

The data extracted from the selected information sources have been integrated

in a simulation program used to generate our instances. Table 5.2 reports some

relevant CSX locomotive data.
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Table 5.2

Table 5.2: Locomotive types characteristic data

Locomotive Locomotive type HP Active costa Lease costa Ownership costb Itermodal Auto Merchandize,

type alpha code (US $ per hour) (US $ per hour) (US $ per hour) trainsc trainsc Bulk trainsc

AC4400CW A 4400 155 28 43.792 1 1.2 Prohibited

AC6000CW B 6000 155 28 43.792 1 1.2 Prohibited

C40-8 C 4000 125 26 40.664 1.2 1.2 1.2

ES44DC D 4400 125 29 45.356 1.2 1.2 1.2

GP40-2 E 3000 80 20 31.28 Prohibited Prohibited 1

SD40-2 F 3000 105 20 31.28 Prohibited Prohibited 1

SD60I G 3800 117 24 37.536 Prohibited 1.2 1.2

a 2008US$, John and Ahuja [2008], figures for AC6000CW and SD60I are a guesswork
b estimated values, derived from the lease cost according to Wilbur Smith Associates [2010]
c the additional 20% of penalty cost is applied if an accepted connection is used instead of a preferred one, Liu [2003]

.

The Table 5.3 reports (in the last three columns) the active costs multiplication

factors of the preferred and accepted connections between locomotive types and

train speed classes. The basic active costs (reported in the fourth column) multi-

plied by these coefficients provides the actual active cost per hour (in 2008US$).

To facilitate the description of the consist types we adopt an alphabetic code for

each locomotive type (as reported in the second column).

From the dataset that is used to generate the train schedules, we extract

32 different instances. These instances are grouped in four different scenarios

(we have 8 instances in each scenario), each scenario is characterized by three
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5.3. The dataset

different parameters:

1. Number of available locomotive types (6 or 7).

2. Single locomotive consists (allowed or prohibited).

3. Size of the locomotives fleet (actual fleet size or reduced fleet size).

The actual locomotive fleet size is the one of the 2011 CSX locomotive fleet

(Table 5.3) while the reduced fleet size is obtained considering the 25% of the

actual size (for each one of the 7 locomotive type groups the reduced sizes are

rounded suitably). .

Table 5.3

Table 5.3: The 7 locomotive types in the 2005, 2006 and 2011 CSX fleets

Locomotive class Units 2005a Units 2006b Units 2011c

AC4400CW 593 593 621

C40-8/C40-8W 532 532 529

SD40/SD40-2/SD40-3 404 402 529

AC6000CW 116 117 117

ES44DC 0 100 302

SD60I/SD60/SD60M 90 90 94

GP40/GP40-2 0 0 416

a CSX Corporation [2005]
b CSX Corporation [2006]
c 2011 data source: www.thedieselshop.us/CSX.HTML (accessed April 2011)

Due to the risk of track block, CSX strongly discourage the assignment of consists

composed by only one locomotive (single locomotive consist), and a penalty for

this kind of assignment is adopted in Ahuja et al. [2005b]. In the solution obtained
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Chapter 5. Models and Data

by Vaidyanathan et al. [2008a] the single locomotive consists are not adopted. In

this study we consider two dichotomous alternatives: single locomotive consists

are allowed without any penalty or are not allowed at all.

The four scenarios considered in this study are the following:

1. 6 locomotive types; single locomotive consists prohibited; actual fleet size;

2. 6 locomotive types; single locomotive consists prohibited; reduced fleet size;

3. 7 locomotive types; single locomotive consists allowed; actual fleet size;

4. 7 locomotive types; single locomotive consists allowed; reduced fleet size.
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6 Numerical results and Discussion

This section shows the potential savings achievable by implementing the pre-

liminary consists selection (we report the savings in terms of money, number of

fueling stops and servicing hours saved).

A primary part of our information sources describes the locomotive fueling and

management costs in terms of US$ in 2008 (2008US$). Thus, in accordance with

these information sources we have always expressed the monetary values in terms

of 2008US$ throughout all the current research.

6.1 Results
The results obtained by us rely on some simplifying assumptions. The locomotive

types ranges are calculated relying on the locomotive utilization profile (the

breakdown of locomotives activity within a 24-hour period). More precisely, we

rely on the partition of the engine operative service time, i.e. the percentage of

time that the diesel engine is turned on and consumes fuel, within a representative

(based on yearly averages) 24-hour period.

We focus on the locomotive duty cycle i.e. the profile of the different locomotive

power settings (Idle, Notch levels 1 through 8) as percentages of the engine

81



Chapter 6. Numerical results and Discussion

operating time. To figure out the fsc, we assume that each locomotive type

has the same duty cycle of a representative Class I mainline freight locomotive

reported in Railway Association of Canada [2008]. This representative duty

cycle is determined by evaluating the time spent at each power notch level for a

statistically significant sample of locomotives. In other words, we assume that all

the locomotive types spend their operative service time at each engine power level

(notch level) in the same manner of the representative Class I mainline freight

locomotive. Moreover, for each locomotive type, we associate each notch level

with the corresponding fuel consumption rate that is specific for each locomotive

type (Seedah and Harrison [2010], ENVIRON International Corporation [2007]).

The yearly opportunity cost due to the unexploited fuel is calculated as the

yearly total return that a railways company would obtain investing the value of

the fuel (immobilized in the tanks of the consists) at the beginning of the year.

Namely, we assume an annual real total return equal to 6.5%, this value is in line

with the average of the Barclays Capital U.S. Aggregate Bond Index in the period

1982-2008 (9.45% according to Barclays Capital [2011]) discounted by an average

inflation of about 3% (see for instance http://www.multpl.com/inflation/table).

Figure 6.1 shows that the oil price and consequently the diesel fuel price

were exceptionally high in 2008. To avoid opportunity cost overvaluation,

we adopt the average price of diesel fuel in the period January 2008—Au-

gust 2012 (2008US$ 2.68 according to CSX Corporation [2011a], CSX Cor-

poration [2011b], CSX Corporation [2011c], CSX Corporation [2011d] and

http://www.eia.gov/petroleum/gasdiesel/).
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Chapter 6. Numerical results and Discussion

Having calculated the fsc and the hfc for each consist type, we implement

the consists selection solving the two models M1 and M2 in the four scenarios

with 8 instances for each scenario (associated with the 8 values of p ≤ 3, 5, . . . , 17

in the constraint 8.1h). To identify the 64 possible solutions (32 for each model

M1 and M2) we adopt a compact notation, for instance M1No_25%-03 means:

consists selection solution obtained applying the model 1 (M1) to the scenario

with 6 locomotive types and single locomotive consist prohibited (No to the

ES44DC type and No single locomotive consist), with the reduced fleet size (25%

of the actual fleet) and with p ≤ 3. Analogously M2Yes_100%-17 means model 2

(M2), 7 locomotives types (type ES44DC permitted) and Yes to single locomotive

consist, actual fleet size available (100% of the fleet) and p ≤ 17.

The models have been solved with CPLEX 12.2 on a Core 2 Quad Q9550 2.83

Ghz and 4 Gb RAM. Figures 6.2 and 6.4 report the maximum achievable yearly

savings (in US2008$) while Figures 6.3 and 6.5 show the number of locomotives

and consists required in the Yes and No scenarios respectively. In Figures 6.3

and 6.5, the left y axis refers to the number of used consist types, while the right

one refers to the number of used locomotive units (that form the consist units).
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Figure 6.2: Yearly savings M1 VS M2, Yes single locomotives & Yes ES44DC
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Figure 6.4: Yearly savings M1 VS M2, No single locomotives & No ES44DC type
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6.1. Results

Considering the 100% of the actual fleet size, for the instances characterized

by 7 locomotive types and single locomotive consists allowed (M1Yes, M2Yes)

we may observe the following:

1. M1 and M2 produce essentially the same requirement in terms of fleet size;

the only difference is between M1Yes17-100% and M2Yes17-100% (382 and

381 locomotives respectively).

2. All the considered instances have a feasible solution.

3. The number of used locomotives remains stable ranging from 380 for p ≤ 17

to 389 for p ≤ 3.

4. The number of used consist types coincides with its maximum permitted

value for both M1 and M2 except for M1 when p ≤ 17, in this case it is

equal to 15.

5. The maximum achieved yearly savings is approximately 2008US$ 110000.

In the same scenario (M1Yes, M2Yes), if we consider the 25% of the actual fleet

size we observe the following:

1. M1 and M2 produce the same requirement in terms of fleet size.

2. The instances with p ≤ 3 is infeasible.

3. The number of used locomotive varies ranging from 388 for p ≤ 17 to 475

for p ≤ 5.

4. The number of used consist types coincide with its maximum permitted

value p and is the same for M1 and M2.

5. The maximum achieved yearly savings is approximately 2008US$ 92000.
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Chapter 6. Numerical results and Discussion

We do not observe any effect of the consists selection on the fleet size in the

25% scenario and very small effect in the 100% scenario (a small difference

between M1Yes17-100% and M2Yes17-100% i.e. 382 and 381 used locomotives

respectively). Thus, as expected, the consideration of the fueling cost terms fsc

and hfc in the LPP optimization essentially does not impact the number of used

locomotives.

In the 25% scenario, for both models M1 and M2, the number of used consist

types coincides with the maximum permitted value also when p ≤ 17: the

reduced availability of the best choices imposes the utilization of second choices

(exploiting all the 17 available consist types).

In the same way, we resume the results for the instances characterized by 6

locomotive types and single locomotive consists prohibited (M1No, M2No). If

we consider the 100% of the actual fleet size we observe the following:

1. M1 and M2 produce the same results in terms of fleet size.

2. The number of used locomotives decrease passing from 568 to 499 when p

increases.

3. The number of used consist types does not coincide with its maximum

permitted value when p ≤ 11, 13, 15, 17 being equal to 10 an 11 for M1 and

M2 respectively.

4. The maximum achieved yearly savings is approximately 2008US$ 108000.

If we consider the 25% of the actual fleet size we observe that:

1. M1 and M2 produce the same results in terms of fleet size.

2. The instances with p ≤ 3, 5 are infeasible.
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6.1. Results

3. The number of used locomotives remains almost constant passing from 509

to 507 when p increases.

4. The number of used consist types coincides with its maximum permitted

value for both M1 and M2 except when p ≤ 15, 17; when p ≤ 15 it is equal

to 15 for M1 and 14 for M2, when p ≤ 17 it is equal to 16 for M1 and 14

for M2.

5. The maximum achieved yearly savings is approximately 2008US$ 9529.

Again, we do not observe effects of the consists selection on the fleet size. This is

exactly what we expect because the ActOwn (that depends on the number of

used locomotive units) dominates fsc and hfc.

Comparing the Yes and the No scenarios, we observe that in the No in-

stances the absence of single locomotive consists reduces the LAP optimization

possibilities and the solution flexibility leading to:

1. An increased average consist size ⇒ increased number of used locomotives.

2. An increased consist size constraints tightness ⇒ more infeasible solutions.

3. A reduced consist types availability⇒ reduced number of (useful and) used

consist types.

4. Smaller savings when fleet size constraints are tight (25% scenario).

5. Consistently bigger savings when fleet size constraints are loose (100%

scenario).

The differences are even greater comparing the 100% and the 25% scenarios, we

observe that in the 25% instances the strongly reduced availability of locomotives

reduces the optimization possibilities:

89



Chapter 6. Numerical results and Discussion

1. The best consist types are used up rapidly ⇒ utilization of second choices

that increases the number of used consist types.

2. Utilization of second choices (costly consist types) ⇒ higher average size

of consists i.e.more used locomotives.

3. Significantly smaller savings.

Figures 6.6, 6.7, 6.8, and 6.9 report the distribution of savings among the three

different train classes (auto, intermodal, merchandize) in the four scenarios

Yes100%, Yes25%, No100%, and No25%.

Comparing the yearly savings distribution that characterize the Yes and No

instances we observe several similarities between the Yes100% and No100% his-

tograms while these similarities disappear in the Yes25% and N0%25 histograms.

The differences in the yearly savings distributions are even more evident among

the 100% and 25% instances. This fact evidences that the tight size constraints

impact the solution (and the savings opportunities) more than the unavailability

of the sigle locomotive consists and of the consist type ES44DC.

.
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6.1. Results

Observing the consist type changes that characterize the passage from the

M1 to the M2 solutions, we may divide the consist type changes in two groups:

1. Consist type changes that save money.

2. Consist type changes that lose money.

Table 6.1 reports the consist type changes evidencing the two groups.
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Table 6.1: Consist type changes associated with savings and losses (savings < 0)

Savings > 0 All All 100% 100% 25% 25% Yes Yes No No

Changes Count Percent. Count Percent. Count Percent. Count Percent. Count Percent.

BC→AC 165 42.42% 163 65.46% 2 1.43% 70 30.70% 95 59.01%

BCC→ACC 84 21.59% 84 33.73% 0 0.00% 28 12.28% 56 34.78%

EFF→EEF 47 12.08% 0 0.00% 47 33.57% 47 20.61% 0 0.00%

D→C 8 2.06% 0 0.00% 8 5.71% 8 3.51% 0 0.00%

CF→FF 3 0.77% 0 0.00% 3 2.14% 0 0.00% 3 1.86%

D→F 2 0.51% 0 0.00% 2 1.43% 2 0.88% 0 0.00%

AC→CC 1 0.26% 0 0.00% 1 0.71% 1 0.44% 0 0.00%

AA→AC 1 0.26% 0 0.00% 1 0.71% 1 0.44% 0 0.00%

C→G 1 0.26% 0 0.00% 1 0.71% 1 0.44% 0 0.00%

CC→GG 1 0.26% 0 0.00% 1 0.71% 0 0.00% 1 0.62%

EF→EE 1 0.26% 0 0.00% 1 0.71% 0 0.00% 1 0.62%

Count 314 247 67 158 156

Savings < 0 All All 100% 100% 25% 25% Yes Yes No No

Changes Count Percent. Count Percent. Count Percent. Count Percent. Count Percent.

E→F 57 14.65% 0 0.00% 57 40.71% 57 25.00% 0 0.00%

CE→DE 8 2.06% 0 0.00% 8 5.71% 8 3.51% 0 0.00%

CF→CC 3 0.77% 0 0.00% 3 2.14% 0 0.00% 3 1.86%

AC→AA 2 0.51% 0 0.00% 2 1.43% 2 0.88% 0 0.00%

EEE→CD 1 0.26% 1 0.40% 0 0.00% 1 0.44% 0 0.00%

CG→CC 1 0.26% 1 0.40% 0 0.00% 1 0.44% 0 0.00%

EF→FF 1 0.26% 0 0.00% 1 0.71% 0 0.00% 1 0.62%

G→C 1 0.26% 0 0.00% 1 0.71% 1 0.44% 0 0.00%

GG→CC 1 0.26% 0 0.00% 1 0.71% 0 0.00% 1 0.62%

Count 75 2 73 70 5

Total 389 249 140 228 161

Table 6.1
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6.1. Results

The presence of consist type changes that produce losses is justified by the

scarcity of specific consist types: without fleet size constraints, i.e.unlimited

locomotive availability, the optimization program would not consider this dis-

advantageous changes. In fact, these changes are exploited to free up some

specific locomotive types to be used in the creation of profitable consist changes

(otherwise impossible) that off set the losses of the disadvantageous changes and

produce savings.

We note that on a total number of 389 consist changes we have only one occur-

rence of a consist change that involves consists with a different size (EEE→CD),

this fact confirms what we expect: the consists selection optimization program

does not consider consists with equivalent performances but different sizes as

substitutes due to the relevant active and ownership costs for each single locomo-

tive.

As before, the differences among the scenarios are particularly marked between

the 100% and the 25% specially for the distribution of consist changes with

savings < 0. For instance, on a total of 75 consist changes that cause a monetary

loss, 73 of these changes are distributed among the instances of the 25% scenario.

Figure 6.10 shows an example of savings and losses of the two groups of consist

changes along with the travel time (to enhance the readability of the chart we

have excluded the four less numerous consist changes in each group).

We conclude the results section with the Table 6.2 that reports the savings

in terms of number of fueling stops and servicing hours.
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Figure 6.10: An example of savings and losses achievable with different consist

changes in different travel times
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Table 6.2: M1 vs M2 yearly savings in 2008US$, fueling hours and fuel stops

M1 vs M2 Instances Yearly savings (2008US$) Yearly savings (2008US$) Yearly hours saved Yearly Fuel stops saved

No_25%-03le infeasible infeasible infeasible infeasible

No_25%-05le infeasible infeasible infeasible infeasible

No_25%-07le 0 0 0 0

No_25%-09le 0 0 0 0

No_25%-11le 0 0 0 0

No_25%-13le 4.89 254.26 2.28 0.47

No_25%-15le 119.05 6190.61 55.52 11.33

No_25%-17le 183.24 9528.62 85.45 17.44

No_100%-03le 0 0 0 0

No_100%-05le 1728.65 89889.71 806.11 164.51

No_100%-07le 1093.84 56879.93 510.09 104.1

No_100%-09le 1093.84 56879.93 510.09 104.1

No_100%-11le 2068.51 107562.58 964.6 196.86

No_100%-13le 2068.51 107562.58 964.6 196.86

No_100%-15le 2068.51 107562.58 964.6 196.86

No_100%-17le 2068.51 107562.58 964.6 196.86

Yes_25%-03le infeasible infeasible infeasible infeasible

Yes_25%-05le 1765.43 91802.3 823.27 168.01

Yes_25%-07le 0 0 0 0

Yes_25%-09le 0 0 0 0

Yes_25%-11le 0 0 0 0

Yes_25%-13le 283.87 14761.4 134.55 27.46

Yes_25%-15le 0 0 0 0

Yes_25%-17le 29.61 1539.75 14.03 2.86

Yes_100%-03le 0 0 0 0

Yes_100%-05le 0 0 0 0

Yes_100%-07le 0 0 0 0

Yes_100%-09le 1728.17 89864.63 805.89 164.47

Yes_100%-11le 1093.84 56879.93 510.09 104.1

Yes_100%-13le 1093.84 56879.93 510.09 104.1

Yes_100%-15le 1370.31 71255.98 639.01 130.41

Yes_100%-17le 2113.04 109877.93 985.36 201.09

Table 6.2
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Chapter 6. Numerical results and Discussion

6.2 Discussion
Figure 6.10 confirms the conjecture: the longer the travel, the higher the number

of fueling events, the higher the achievable savings. Another aspect emerges

analyzing the results: working with a suitable consists fleet (100% scenario),

the savings concentrate on a small number of consist changes (BC→AC and

BCC→ACC, the ActOwn costs of A and B are equal while the [hfc+ fsc] of A

is lower) and on a specific train service class (intermodal trains). The changes

BC→AC and BCC→ACC are the most present because these consist types

are higly interchangeable. Their ActOwn costs are equal and the perfomance

differences between the locomotives AC4400CW and AC6000CW (A and B

respectively) are small enought to keep satisfied (for a large part of the train set)

the train service requirements. It is less evident why these savings concentrate

on intermodal trains.

Each consist type has different ownership and active hourly costs. Considering

the preferred consist type for each train type (preferred connection) we may

identify the minimum possible active cost that characterize each consist type.

Summing this active cost with the ownership cost we obtain the minimum active

and ownership cost per hour (ActOwn minimum cost per hour). Figure 6.11

shows how the performance of a consist in terms of TE and HP vary along with

the ActOwn minimum cost.

The TE diminishes slowly and remains quite stable while the HP diminishes

more rapidly when the ActOwn minimum cost decreases. Thus, if a wide range of

HP performance is acceptable (as for slow trains), we could reduce the ActOwn

cost preserving very similar performance in terms on TE. In this case several

consist types with different ActOwn costs may be considered perfect substitutes,

and the differences in terms of ActOwn cost may be very high and dominate the

(much smaller) savings achieved by a long range homogeneous consists fleet.
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Figure 6.11: TE and HP versus (Actual + Ownership) hourly cost

However, if the HP performance is critical (as for fast trains, like intermodal

that are the faster ones) we expect that only consist with similar HP (and so

similar ActOwn cost) are perfectly interchangeable. Thereby, differences between

interchangeable consist in terms of ActOwn are small, and savings offered by

long range homogeneous consists become significant.

A fleet of consist may offer significant savings just replacing the locomotive type

B with the A (whenever possible). Furthermore since savings concentrate on

(long travel) intermodal trains these changes are even more easy to implement

because they involve only a portion of the consist fleet (the part that serves these

specific trains) reducing the cost of the fleet renovation.
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7 Conclusions and future work

In this study we propose a methodological innovation that is able to partially

integrate LAP planning and routing phases. Our objective is to obtain LPP

solutions that make the routing phase easier to handle and more economical.

We pursue this objective considering the LPP in its consist flow formulation

and accounting for information about consist characteristics, such as ranges and

efficiency in the exploitation of fuel capacity, not featured in the previous studies.

We focus on the identification of the set of initially available consist types to

be used in the LAP optimization. This set were typically assumed as settled

in terms of consist types (that is its qualitative composition) by the expertise

of locomotive managers and the LPP were solved to identify the quantitative

composition of the set. In this study, we propose an optimization program

(consists selection) to identify the qualitative composition of the set of consist

types to be used in the LPP optimization. We introduce the concept of consist

fueling homogeneity, and we implement the preliminary consists selection that

precedes the LPP optimization. This phase could identify consist types that are

not captured by a purely cost-oriented consists selection but that may reduce

the opportunity costs linked with the unexploited portion of the fuel stocks

and simplify the fueling routing reducing the number of fueling stops (and the
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corresponding costs).

We consider several realistic instances, and we obtain yearly savings up to

2008US$ 110000 (210 fueling events, 985 servicing hours). We found that

when a suitable consist fleet size is available, savings strongly concentrate on

(long travel) intermodal trains and that to obtain significant savings only a

small number of consist types changes are sufficient. The future studies should

include other homogeneity parameters in the implementation of the consists

selection. Along with the fueling homogeneity we suggest to build consists

considering the maintenance homogeneity too. According to the U.S. Federal

Railroad Administration requirements, each locomotive must undergo preemptive

maintenance at some designated shop on (or before) 92 days have elapsed since its

last maintenance. Thereby, locomotives are sent to maintenance centers (shops)

every 92 days (Nahapetyan et al. [2007], Illés et al. [2006]), and a locomotive

becomes critical when its maintenance is scheduled within 7 days. In general,

the residual time to the next maintenance event (hereinafter rtm) is different for

each locomotive inside each consist, thereby consist are in general heterogeneous

with respect to the rtm parameter. This fact has two important consequences in

the routing phase:

1. Heterogeneous consists are busted to maintain critical locomotives.

2. Critical locomotives are highly dispersed over many different stations.

The rtm heterogeneity may cause many consist bustings (needed to send critical

locomotives to the shops) and the dispersion of critical locomotives, and may

increase:

1. The number of travels toward the shops ⇒ high travel costs.

2. The organizational/logistic complexity.
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Chapter 7. Conclusions and future work

3. The operational risks for crews and equipment.

Building consists considering the rtm parameter permits to obtain homogeneous

consist with the following positive impacts in the routing phase:

1. Critical locomotives are grouped in critical consists, minimizing the number

of stations where critical locomotives are located (low dispersion).

2. A critical consist may be sent to the shop in its entirety, thereby avoiding

a busting operation.

The trivial example depicted in Figure 7.1 exemplifies the reduction of both

travels toward shops and consist busting.

rtm  Heterogeneity

4 Bustings

4 Travels

rtm  Homogeneity

0 Bustings

2 Travels

 Station without shop

 Station with shop  Critical Locomotive

 Locomotive

Figure 7.1: rtm heterogeneity versus rtm homogeneity example

Working with locomotives grouped in rtm homogeneous consists could require

an increased locomotive fleet size to guarantee the turnover and preserve the

feasibility of the weekly plan. Contrary to the fueling homogeneity, the main-

tenance homogeneity policy affects the consist fleet size and consequently the

LPP solution. For this reason, to obtain an evaluation of the cost-benefit ratio

of the maintenance homogeneity policy future studies should solve the consists

selection jointly with the LPP optimization.
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Introduction Part III

The assessment of savings offered by the introduction of the consists selection in

the LPP solution procedure relies on the realism of LPP scenarios and instances.

This study attains the realism of scenarios and instances retrieving reliable

locomotives specifications, consists specifications, train and tracks data and a set

of realistic train schedules from scientific publications, economic and technical

reports, manuals and other freely available sources. All these data are aggregated

and exploited in a simulation program that generates the instances used to assess

the savings offered by the adoption of the consists selection.

107



8 Datasets and data aggregation

Railway companies do not provide detailed information needed to solve the

consists selection (and the LPP) without a partnership. Therefore, this study

required a deep search on scientific publications, economic and technical reports,

manuals and other freely available sources, to obtain the necessary reliable data.

8.1 Data classification
The information retrieved may be grouped in the following five categories:

a. Train data.

b. Rolling stock data (train cars data).

c. Tracks data.

d. Locomotives data.

e. Consists data.

Train schedules provide the information that defines the train services character-

istics:
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8.1. Data classification

- Transported freight type (commodity category).

- Train weekly frequency.

- Departure and Arrival times.

- Departure and Arrival stations.

- Travel characteristics (overall idling time, train speed).

- Train load status (empty or loaded).

- Train tonnage.

The freight type strongly affects all other information, for instance a train service

focusing on fresh food moved in refrigerated box cars has very different weekly

frequency, idling time, speed and weight with respect to a train service focusing

on coal transportation. According to Ammah-Tago [2006, Figure 2], the aver-

age length of the haul depends on the commodity/freight type. Even tracks

characteristics could change along with freight type: coal trains could use low

speed tracks, whereas highly valuable freight should travel on high speed corridors.

This study considers the following train cars information to describe each

train car model:

- Freight train cars type.

- Tare weight.

- Maximum payload.

- Mean gross weight.

- Car empty return ratio.
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Chapter 8. Datasets and data aggregation

To describe the path associated with a couple 〈departure station, arrival station〉
we need information about intermediate segments that compose the path (length

of each segment, specific slope of each segment, maximum train speed allowed

on each segment). In this study we use only aggregated information about the

tracks associated with the schedule. Thereby we consider only the following

information about tracks:

- Average track grade (slope of the track).

- Average track length.

This study retrieves the following information about locomotives:

- Locomotives types considered (locomotives classes).

- CSX locomotives fleet composition.

- Locomotives nominal and effective HP.

- Locomotives nominal and effective TE.

- Locomotives types vs trains types preferred/accepted/prohibited connections.

- Penalty for accepted locomotives types vs trains types connections.

- Locomotive hourly active cost.

- Locomotive hourly ownership cost.

Finally, the information about consists used in this study is the following:

- Valid consists types.

- Maximum number of active axles in a consist.
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8.2. Freight train schedules and timetables

8.2 Freight train schedules and timetables
To build a realistic space-time network, actual updated train service sched-

ules are crucial. It is hard to obtain updated train schedules since they are

not publicly available (due to security reasons). Nevertheless, some (outdated)

CSX train schedules and timetables were available on Internet at the begin-

ning of this research. These schedules and timetables were not available any-

more at the end of the research period; some sites removed the data (like in

the case of the site http://www.trainweb.org/csxtimetables/) other sites (like

http://www.georgiarailfan.net/csxtrains/freights.html) were not accessible any-

more. The retrieved schedules, although unofficial and not updated, provide a

useful framework and reference being a plausible proxy of the (old) CSX schedules.

To be more precise, the retrieved schedules contain a list of 1150 train designation

codes (CSX train codes are composed by a letter followed by a three figures

number) along with the corresponding weekly frequency, departure and arrival

stations, departure and arrival times (it is named List A).

We exclude train designation codes associated with:

- turns job;

- reroute (detours) and service commitment trains;

- incomplete information;

- yard switchers;

- helpers, pushers, road shifters;

- foreign road trains;

The remaining valid codes amount to 755.

Some data about CSX trains are still available and offer useful information about
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Chapter 8. Datasets and data aggregation

train frequency, departure and arrival stations, commodity carried.

These data are reported in a second different list (named List B) of 859 train des-

ignation codes (http://railroadfan.com/wiki/index.php/CSX_Train_Symbols)

along with the corresponding freight type (commodity carried). Again, only

the appropriate designation codes are selected and the valid designation codes

amount to 691. Crossing the two list and considering common elements, we

obtain a set of complete train schedules and from that set we extract 229 train

services that represent quite well the several types of possible train services.

8.3 Freight types and train types
Realistic TE requirements are crucial to avoid dull scenarios and obtain useful

indications from the selection phase. To obtain a variegated realistic set of TE

requirements, we start specifying for each train service the type of freight carried.

Freight type is our starting point since several important information about

trains and train cars rely on the type of freight carried by train cars. Since these

information are taken from several different sources, the list of freight types is

obtained merging the different commodity types lists such that, the resulting list

resumes and encompasses all the relevant commodity categories. The information

merged are the following:

a. Commodity types found in the List B.

b. Commodity macro categories described in Hidayat [2005].

c. Standard Classification of Transported Goods (SCTG) list.

The commodity level of detail is the 2-digit SCTG, the one used in the Freight

Analysis Framework (FAF) (the commodity flow database developed by the Fed-

eral Highway Administration in cooperation with the Bureau of Transportation
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8.3. Freight types and train types

Statistics). The SCTG list is described with different levels of aggregation in ICF

International [2009], Cambridge Systematics [2007], Ammah-Tago [2006] and

AAR Policy & Economics Department [2008]. The final result of our synthesis

links the train types reported in the List B with the freight macro categories

proposed in CSX Corporation [2009] and with an aggregated version of the SCTG

commodities groups. This aggregation procedure permits to exploit several infor-

mation sources about trains and train cars (that refer to the SCTG commodity

classification) in the characterization of CSX trains (that are associated with

the freight macro categories proposed in CSX Corporation [2009]). Table 8.1

resumes the commodity class aggregation procedure. .
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Table 8.1: Freight Types

Sources

List B CSX Corporation [2009] Aggregated SCTGa

Auto Automotive Automobiles, Motor vehicles parts and equipment

Coal, Mine Coal Coal

Coke Coke and Iron Ore Coke

Dirt, Mud, Scrap, Trash Emerging markets Dirt (mud), Iron scrap, Trash, Waste

Divisional local freights Mixed freight Mixed freight

Ethanol Agricultural Products Ethanol

Grain Agricultural Products Corn, Farm Products, Grain, Wheat

Iron (scrap) Emerging markets Dirt (Mud), Iron scrap, Trash, Waste

Juice (Tropicana) Food and consumer Food, Juice, Kindred products, Refrigerated boxes

Mixed freight Mixed freight Mixed freight

Motorized vehicles Automotive Automobiles, Motor vehicles parts and equipment

Ore Coke and Iron Ore Metallic ores

Phospate Phosphates and Fertilizers Phospate

Pipe Metals Metal products, Pipes

Refrigerated boxes Food and consumer Food, Juice, Kindred products, Refrigerated boxes

Rock Emerging markets Cement, Clay, Non-metallic ores, Rock, Sand, Stone

Salt Food and consumer Salt

Stone Emerging markets Cement, Clay, Non-metallic ores, Rock, Sand, Stone

Wheat Agricultural Products Corn, Farm products, Grain, Wheat

aThe aggregation of the SCTG stems from the analysis of the following sources:

ICF International [2009], Cambridge Systematics [2007], Ammah-Tago [2006], AAR Policy &

Economics Department [2008]

Table 8.1

Chapter 8. Datasets and data aggregation

.
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8.4. Freight types and train cars types

8.4 Freight types and train cars types
The link among List B train types, CSX freight macro categories and aggregated

SCTG permits to associate the freight types (List B) with the appropriate car

types through the aggregated SCTG commodity groups. Table 8.2 resumes the

car types aggregation procedure. The adopted car types are identified crossing

the information retrieved from [ICF International, 2009, Exhibit J-1] (reported

in column C1 in Table 8.2), Cambridge Systematics [2007, Table A.1] (column

C2 in Table 8.2) that reports the car types considered in the URCS, U.S. Army

Corps of Engineers - Engineering and Construction Division [2000, Table 2-2]

(column C3) and finally from CSX Corporation [2009, p. 20] (column C4). Once

again, the list of train car types adopted in this study is obtained aggregating and

adapting these data. The elements in gray represent information not available

(n.a.) or repeated information inserted to take into account the different sizes of

lists in columns C1, C2, C3 and C4. .
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Table 8.2: Aggregated train cars types

C1 C2 C3 C4 Aggregated
train car types

Boxcar Box 40foot Box 40T Box car Box cars

Boxcar Box equipped Box 50T Box car Box cars
refrigerated

Boxcar for Box 50foot Box 70T Box car Box cars
packaged items

Bulkhead Flat other Flat 40T Flat car Flat cars
flat cars (plates)

Flat Car Flat general Flat 50 Flat car Flat cars

Flatbed Flat other Flat 80T Flat car Flat cars

Flatbed with sides Flat other Flat 100T Flat car Flat cars
with sides

Coil car Flat other Flat 140T Gondola Flat cars
(coiled sheets) coil/sheet steel

Container / Van Flat other COFC 70T Flat car Flat cars

Double-stack car Flat multilevel COFC Multi-level flat car Multi-level flat cars
DoubleStack

TOFC Flat TOFC 70T Flat car Flat cars
(trailer on flat car) intermodal intermodal

TOFC Reefer TOFC 70T Flat car Flat cars
refrigerated (Refrig. car)

Low side gondola Gondola plain Gondola 40T Gondola Gondolas

Low side gondola Gondola equipped Gondola 50T Gondola Gondolas
coil/sheet steel

Tanker truck Tank <22000gall Tank 7500gall n.a. Tanks < 22K

Tank car Tank <22000gall Tank 10000gall n.a. Tanks < 22K

Tank car Tank <22000gall Tank 20000gall n.a. Tanks < 22K

Tank car Tank >=22000gall n.a. n.a. Tanks > 22K

Covered hopper Hopper covered Hopper 50T Covered hopper Small
covered hoppers

Covered hopper Hopper covered Hopper 70T Covered hopper Small cov. hoppers

Covered Hopper covered Hopper 100T Jumbo Jumbo
hopper large covered hopper covered hoppers

Covered hop. large Hopper covered Hopper 120T Jumbo cov. hop. Jumbo cov. hoppers

Covered hop. large Hopper covered Hopper 125T Jumbo cov. hop. Jumbo cov. hopppers

Open top hopper Hopper open top n.a. Open-top hopper Open top hoppers

Open top hopper Hopper o. t. special n.a. Open-top hopper Open top hoppers

Bi-level rack Other Cars n.a. Bi-level rack Autoracks
(vans, trucks) (pickup, truck)

Tri-level Other Cars n.a. Tri-level rack Autoracks
rack (cars) (sedan, auto)

Table 8.2
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8.5. Train cars weight

8.5 Train cars weight
In the next step the tare weight, the mean achieved payload, the mean gross

weight and the car empty return ratio are identified for each train car type

adopted in this study. The AAR Manual of Standards and Recommended Prac-

tices provides weights, dimensional limits and other design constraints for cars

that may be freely interchanged among North American railroads (Hawthorne

et al. [2006]). According to Bitzan et al. [2002], the industry standard of 263000

pounds cars is being replaced with an industry standard of 286000 pounds cars

but many short-line railroads cannot handle these larger cars. Most of the US

rail traffic travels on high-density mainline tracks, however a large portion of this

traffic originates on light-density branch-lines (often operated by short-line rail-

roads). The American Short Line and Regional Railroad Association (ASLRRA)

is an active trade association and lobbying group separated from the AAR and

represents over 400 of the smaller US firms. In 2005, only an estimated 43% of

short line and regional railroad tracks were capable of handling 286000 pounds

cars (Cramer [2007]). From U.S. Army Corps of Engineers - Engineering and

Construction Division [2000, Table 2-2] and ICF International [2009, Exhibit

A-1] we obtain information about car tare weight, car maximum wheel load (i.e.

maximum gross weight, once we know the number of car axles) and average

payload. Namely, we use the data retrieved from U.S. Army Corps of Engineers

- Engineering and Construction Division [2000, Table 2-2] to estimate the tare

weight and the maximum gross weight of a fully loaded train car for each train

car type used in this study (see the column ”Aggregated train car types” of Table

8.2). The maximum payload for these train cars types is obtained subtracting

the tare weight from the maximum gross weight. In the light of the uncertainty

about the maximum car weight allowed on the tracks, some values obtained

in this manner appear quite high. Moreover, it seems unrealistic that, in a
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Table 8.3: Train cars tare, mean actual payload and mean gross weights (in short tons)

CSX car types Car type ID Tare Mean payload Mean gross weight

Auto rack Au 50 20 70

Box Bo 46 60 106

Flat Fl 49 88 137

Jumbo covered hopper Ju 43 115 158

Gondola Go 27 45 72

Multi-level flat car Mu 56 120 176

Open top hopper Op 23 120 143

Small covered hopper Sm 30 60 90

Tank < 22000 gall T1 35 48 83

Tank > 22000 gall T2 60 120 180

Table 8.3

Chapter 8. Datasets and data aggregation

schedule-based approach, all the cars are fully loaded. As pointed out in Tolliver

and Bitzan [2002], fully loaded cars could be usual for long unit trains (like coal

or grain trains) while are in general less frequent for other kind of trains.

For all these reasons, instead of the maximum gross weight, an average car gross

weight should be used to compute a realistic train TE requirement. ICF Interna-

tional [2009, Exhibit A-1] provides reliable average values of the actual achieved

payload associated with the different car types and so we use these values as a

reference. Considering the 75% of the maximum gross weight (estimated from

U.S. Army Corps of Engineers - Engineering and Construction Division [2000,

Table 2-2]), the obtained cars gross weights are very similar to the average values

found in ICF International [2009, Exhibit A-1]. Table 8.3 resumes these findings.

.
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8.5. Train cars weight

To estimate the weight of a train and calculate the corresponding TE require-

ment, it is important to define the composition of the train in terms of cars.

Some types of cars are used exclusively for a very specific freight (for instance

auto racks), other types are very flexible and are used to move several types of

freight. Given the freight transported by a train, it is essential to define which

type of cars are adopted by that train and how many cars compose the train.

The overall weight of a train depends on the gross weight of its train cars (and

on the weight of the consist that pulls the train). Thereby, the weight of a train

depends on its exact composition in terms of train car types (overall tare weight)

and on the freight carried by cars (overall actual payload). It is possible to

retrieve the associations between trains and freight macro categories from the

List B. To make an example, a train may transport commodities like cement, clay,

non-metallic ores, sand, rock, dirt (mud), iron scrap and trash. CSX inserts all

these commodities in the freight macro-class named Emerging Markets. This kind

of commodities may be transported using Sm covered hoppers, Op open hoppers

or Go gondolas. For instance, a train transporting cement and stones may use

Sm covered hoppers for cement (to protect it from adverse weather conditions)

and Op open hoppers for stones. Nevertheless, the exact composition of trains

in terms of train cars types is not available. In the previous example the only

information available is that the train transports Emerging Market commodities,

the number of Sm, Op and Go cars, and the exact freight and payload carried by

train cars are unknown. This lack of information represents a problem that may

compromise the realism of the motive power constrains associated with trains.

The next chapter is focused on the solution of this problem. Table 8.4 is inspired

by ICF International [2009, Exhibit A-1] and CSX Corporation [2009, p. 20] and

describes which cars types are allowed for each aggregated SCTG freight type. .
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Table 8.4: Train cars types and freight types

CSX freight types Aggregated SCTG CSX cars types

Agricultural Products Corn, Farm Products, Grain,

Wheat

Ju

Agricultural Products Ethanol T1, T2

Automotive Automobiles, Motor vehicles

parts and equipment

Au, Bo, Mu

Coal Coal Op

Coke and Iron Ore Coke Op

Coke and Iron Ore Metallic ores Op

Emerging markets Cement, Clay, Non-metallic

ores, Rock, Sand, Stone

Go, Op, Sm

Emerging markets Dirt (Mud), Iron scrap, Trash,

Waste

Go, Op, Sm

Food and consumer Food, Juice, Kindred products,

Refrigerated boxes

Bo

Food and consumer Salt Ju

Forest Products Paper Bo

Forest Products Wood Fl

Metals Metal products, Pipes Fl, Go

Phosphates and Fertilizers Phospate Ju

Table 8.4

Chapter 8. Datasets and data aggregation

.
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9 TE and HP requirements

Each train imposes specific motive power constraints that depends on its TE

and HP requirements which in turn depend on the train weight and speed. This

chapter focuses on the identification of realistic TE and HP requirements for the

set of trains adopted in this study.

9.1 Train types and train cars types
Freight trains do not always travel with train cars fully loaded. Typically, the

train cars are unloaded at some intermediate stops or at the end of the trip (final

arrival station), thereby they may spend part of their travel time moving void

train cars. Some freight trains start from the departure station fully loaded,

afterward they discharge all the train cars at the arrival station (end of the first

trip) and make an empty return trip (second trip) to reach again the initial

departure station in order to load the train cars and repeat the train service. A

typical example is represented by coal trains that load all the cars at a mine

(initial departure station), void all the cars at one or more plants (end of the first

trip) and make an empty return trip (second trip) to reach again the mine and

repeat the service. Clearly, the motive power constraints for loaded trains and

void trains are very different (because of the difference in their weights). The
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Chapter 9. TE and HP requirements

fully loaded train that makes the first trip and the void train that makes the

second trip are identified by two different designation codes because they are

two different trains. Thereby, it is important to define the load status (loaded or

empty) for each one of the 229 trains in order to obtain realistic motive power

constraints (it is very unrealistic to consider all the trains as fully loaded). This

kind of information is not available in List A and List B, however Cambridge

Systematics [2007, Table A.1] provides an average empty return ratio (defined as

total traveled miles divided by loaded miles) for the different train cars types.

To exploit this information, it is necessary to assume that each train is com-

posed by train cars of the same type. This assumption is an approximation for

trains like intermodal trains but is a realistic description of several freight trains

like Auto trains, Grain trains, Ethanol trains, Chemicals trains and several others.

9.2 Mixed freigh trains
In the retrieved train schedules (lists A and B), some trains have a clear description

of the commodity class transported while other ones are described as mixed freight

trains (or equivalently merchandise trains). In the set of 229 train services, 138

train services are marked as mixed freight trains. To deal with these undefined

mixed freight trains we decide to assign to that trains a specific commodity

class type following a suitable proportion among the possible commodity classes.

The used proportions stem from CSX Corporation [2009, p. 38] that report the

volume of unit loads (in thousands of cars) broken up by commodity classes. To

be more precise, we adopt these proportions for 120 out of 138 mixed freight

trains while we associate the remaining 18 trains to ethanol transport (9 on T1

cars and 9 on T2 cars). Given the specific commodity classes for the 229 trains

it is possible to associate one or more train cars types to each train.
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9.2. Mixed freigh trains

Let M and W be two set of trains associated with two different freight macro-

classes and let m be the number of trains in M . This study assumes that:

a. each train ` is associated with one (and only one) CSX freight macro-class

=⇒ M ∩W = ∅ ∀M,W ;

b. a set M contains all the train cars types needed to carry the commodities

that belong to the freight macro-class associated with M (see the first and

the third columns in table 8.4).

Another assumption concerns the distribution of train cars units (that compose

the trains that belong to M) among the different train cars types included in M ;

this distribution is essential to determine the motive power requirements for a

train `. For each train ` belonging to M , the number m is used to determine the

distribution of cars units among the different cars types. To make an example,

let m be equal to 23 and let M be the set of trains associated with the Emerging

Markets freight macro-class (i.e. associated with all the commodities included

in the Emerging Markets macro-class). Given 23 Emerging Markets freight

trains and assuming that each Emerging Markets freight train is composed by 86

cars, the total number of train cars units is 1978. The 1978 train cars may be

distributed among Op, Sm and Go cars in the following manner:

- 602 Op cars

- 688 Sm cars

- 688 Go cars

This distribution may be obtained dividing the set M in three subsets of trains

MOp,MSm,MGo that include trains composed by train cars of the same type.

Namely, MOp contains 7 trains composed by 86 Op cars, MSm contains 8 trains
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composed by 86 Sm cars and MGo contains 8 trains composed by 86 Go cars.

The number of trains in each subset MOp,MSm,MGo is determined dividing the

number of trains m by the number of cars types (and rounding suitably). This

study associates to each train set M (i.e. to each freight macro-class) an average

(integer) number of train cars units uM per train. It is then assumed that each

train ` ∈M has a number of train cars units equal to uM . It is also assumed that

each train ` ∈M is composed by train cars of the same type such that the set M

may be divided in homogeneous subsets Ms1,Ms2, . . . ,Msn where s1, s2, . . . , sn

are the n different cars types needed to carry the commodities associated with

M . Finally, it is assumed that the distribution of train cars units among the

n cars types, is the one that leads to subsets Ms1,Ms2, . . . ,Msn with almost

the same number of elements. In other terms, if m
n
is an integer number, the

subsetsMs1,Ms2, . . . ,Msn contains exactly the same number of trains equal to m
n
,

otherwise the number m
n
is rounded suitably such that |#Msi−#Msj| ≤ 1, ∀i, j

where #M is the cardinality of the set M . In the previous example m
n
= 23

3

thereby the cardinalities ofMOp,MSm,MGo are 7, 8, 8 (clearly this is an arbitrary

choice, they may be 8, 7, 8 or 8, 8, 7). All these assumptions are introduced to

overcome a lack of information that may invalidate the realism of motive power

constraints (as said it is not realistic to consider all the trains as fully loaded).

High capacity tank cars (T2) are used only for agricultural products (ethanol),

T1 cars are used for ethanol and chemical products. Ethanol trains composed by

T1 or by T2 cars represent the same type of train (same commodity), thereby

the 36 trains associated with the freight macro-class Agricultural Products are

equally divided in a group of 18 grain trains composed by Ju cars and 18 ethanol

trains composed by tank cars (9 T1 and 9 T2). Table 9.1 resumes the train set

composition (Coal, Coke and Iron Ore trains are excluded from our analysis since

they are not scheduled and run only with a sufficient tonnage).
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Table 9.1: Train types, mixed freight trains and freight types

CSX freight macro-class Commodity class Car # trains % total % mixed

Mixed freight trains

Food & Consumer Food, Juice, Kindred products, Refrigerated boxes Bo 3 1.31% 2.50%

Forest Products Paper Bo 8 3.49% 6.67%

Metals Metal products, Pipes Fl 8 3.49% 6.67%

Forest Products Wood Fl 9 3.93% 7.50%

Emerging Markets Cement, Clay, Non-metallic ores, Sand, Rock,

Dirt (Mud), Iron scrap, Trash Go 8 3.49% 6.67%

Metals Metal products, Pipes Go 9 3.93% 7.50%

Food & Consumer Salt Ju 3 1.31% 2.50%

Agricultural Products Grain Ju 18 7.86% 15.00%

Phosphates & Fertilizers Phospate Ju 14 6.11% 11.67%

Emerging Markets Cement, Clay, Non-metallic ores, Sand, Rock,

Dirt (Mud), Iron scrap, Trash Op 7 3.06% 5.83%

Emerging Markets Cement, Clay, Non-metallic ores, Sand, Rock,

Dirt (Mud), Iron scrap, Trash Sm 8 3.49% 6.67%

Chemicals Chemicals T1 25 10.92% 20.83%

Total mixed freight trains 120 100%

Bulk / Unit trains

Agricultural Products Ethanol T1 9 3.93%

Agricultural Products Ethanol T2 9 3.93%

Automotive Automobiles, Vehicles parts/equipment Au 10 4.37%

Divisional / local trains Go 16 6.99%

Intermodal trains

Intermodal Bo 32 13.97%

Intermodal Fl 33 14.41%

Total freight trains 229 100%

Table 9.1

.



Chapter 9. TE and HP requirements

9.3 Freight trains weight

9.3.1 Train class and the number of train cars
The number of cars that compose a train varies along with the train type.

Intermodal trains are composed by a large number of cars (often more than

100) while other trains like auto trains have a smaller number of cars. To define

the length of trains, the different train types are grouped in four different train

classes:

1. Auto trains

2. Divisional / Local trains

3. Merchandise and bulk trains

4. Intermodal trains

All the mixed freight trains and the ethanol train are grouped under the Mer-

chandise and bulk trains class. ICF International [2009, Exhibit A-1] provides a

reference for the average length (in number of cars) of several train classes. It is

assumed that the length of trains is fixed inside each train class. The following

list resumes the number of cars for each train class.

1. Auto trains, 57 train cars

2. Divisional / Local trains, 82 train cars

3. Merchandise and bulk trains, 86 train cars

4. Intermodal trains, 110 train cars
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9.3. Freight trains weight

9.3.2 Loaded trains and empty return ratios
An important parameter that varies along with the car type is the empty return

ratio (defined as total miles divided by loaded miles). Cambridge Systematics

[2007, Table A.1] reports the empty return ratio for the cars types considered

in the Uniform Railroad Costing System (URCS). It provides the empty return

ratios (valid in 2005) for several railroad companies including CSX. To calculate

the motive power constraints it is essential to assign to each train the label

”empty” or the label ”loaded”. This objective may be achieved exploiting the

information available about the train cars empty return ratios. Since each train

is composed by train cars of the same type, it is possible to:

1. group trains looking at the car types obtaining 9 groups of trains (Au, Bo, Fl,

Ju, Go, Op, Sm, T1 and T2 trains);

2. calculate the total miles traveled by trains in each one of these 9 groups.

Since the number of traveled miles is known for each train, it is possible to divide

each one of these 9 groups in the two subsets ”empty trains” and ”loaded trains”

counting the loaded miles and calculating the corresponding actual empty return

ratios = Total miles
Loaded miles . The division proposed in this study obtains actual empty

return ratios that are very close to the ones reported in Cambridge Systematics

[2007] and preserve the realism of the empty and loaded trains groups (both

groups contains trains associated with long and short trips).

Table 9.2 resumes the empty return ratios reported in Cambridge Systematics

[2007] and the actual empty return ratios obtained from the division in empty

and loaded trains of the previously described 9 groups of trains.

.
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Table 9.2: Train cars expected and actual empty return ratios

CSX car type Car type ID Expected empty return ratio Actual empty return ratio

Auto rack Au 1.94 1.950

Box Bo 1.68 1.682

Flat Fl 1.15 1.148

Jumbo covered hopper Ju 1.94 1.935

Gondola Go 1.89 1.892

Open top hopper Op 1.95 1.897

Small covered hopper Sm 1.94 1.964

Tank < 22000 gall T1 1.97 1.961

Tank > 22000 gall T2 2.01 2.011

Chapter 9. TE and HP requirements
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9.3.3 Weights distributions in the train classes

Given a train class (Auto, Local, Merchandise, Intermodal), the number and the

type of train cars that compose a train are identified (as described) inside each

class. Using the average mean gross weight reported in Table 8.3, it is possible to

calculate the average gross weight for a train inside each class. In this case, each

train class may be perfectly represented by a single train since all the trains have

the same number of cars which in turn have all the same weight (the average

mean gross weight). In fact, the distribution of weights in each train class would

be an (unrealistic) uniform distribution. To add more realism to the train set

(keeping fixed the number of train cars inside each class) it is possible to consider

the variability that characterize the train cars gross weights. Starting from the

average mean gross weight reported in Table 8.3, it is possible to generate a

distribution of train cars weights accounting for the variability of train cars load.

According to Brosseau and Ede [2009], the train cars gross weight data may

128



Table 9.3

.
Table 9.3: Train cars gross weights Normal distributions

Train class Car type ID Mean of the Normal Standard deviation of the Normal W−w
w

Auto trains Au 70 ton 0.81533 ton (1.165% of the mean) 7.1%

Intermodal trains Bo 106 ton 1.23464 ton (1.165% of the mean) 5%

Intermodal trains Fl 137 ton 1.59572 ton (1.165% of the mean) 8.8%

Divisional / Local trains Go 72 ton 2.45213 ton (3.405732% of the mean) 7.4%

Merchandise and bulk trains Bo 106 ton 3.61008 ton (3.405732% of the mean) 21.95%

Merchandise and bulk trains Fl 137 ton 4.66585 ton (3.405732% of the mean) 24.78%

Merchandise and bulk trains Go 72 ton 2.45213 ton (3.405732% of the mean) 25.3%

Merchandise and bulk trains Ju 158 ton 5.38106 ton (3.405732% of the mean) 24.18%

Merchandise and bulk trains Op 143 ton 4.87020 ton (3.405732% of the mean) 14.65%

Merchandise and bulk trains Sm 90 ton 3.06516 ton (3.405732% of the mean) 16.98%

Merchandise and bulk trains T1 83 ton 2.82676 ton (3.405732% of the mean) 20.11

Merchandise and bulk trains T2 180 ton 6.13032 ton (3.405732% of the mean) 17.86%

9.3. Freight trains weight

be fitted very well by a normal distribution. The data is obtained from the

observation of 221311 train cars belonging to three US Class I Railroads, two

West-Coast (BNSF Railway and Union Pacific Railroad) and one East-Coast

(Norfolk Southern Railway) companies. Brosseau and Ede [2009] reports two

train cars gross weights distributions, the first is for a general freight car while

the second relies on a subset of 12791 bulk train cars. The general freight car

gross weight distribution is a normal distribution with a standard deviation equal

to 10% of the central value (the average train cars gross weight) and refers to

a set of cars that includes the empty cars. In the present work the standard

deviation refers only to loaded cars (empty cars have a fixed weight, the tare in

Table 8.3) and it is expected to be lower than 10%. Let W and w be the weights

of the heaviest and the lightest trains of the same type in the same train class,

then W−w
w

identifies the maximum gross weight percentage variation in that class

of trains. Lower standard deviations are sufficient to have substantial W−w
w

(see

Table 9.3)..
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9.3.4 Slope of the track an grade resistance
The previous sections describe the procedures and the assumptions adopted to

obtain realistic train weights and consequently realistic motive power requirements

(TE and HP requirements). The TE needed to pull a train (along with the stress

on couplers) increases rapidly with the track slope (grade). According to Cramer

[2007] and to U.S. Army Corps of Engineers - Engineering and Construction

Division [2000], an additional pulling force of 20 lbs is needed for each ton of

train and percent of grade. Grades from 0.0 to 0.4% are considered light, from

0.4% to 1.0% moderate, from 1.0% to 2.0% steep, from 2.0% to 3.0% very steep

(to be avoided). A detailed description of the tracks geographic characteristics

and train dynamics is out of scope. It is then assumed an average grade equal to

0.5% for the entire track network.

9.3.5 Tracks lengths and trains speeds
Since we do not have detailed data on railroad tracks, the average track length

is a very useful reference in order to avoid unrealistic associations between the

couple of times 〈departure time, arrival time〉 and the train speed allowed on

the associated path 〈departure station, arrival station〉. ICF International [2009,

Exhibit A-1] provides this reference through a set of railroad route distances

for the East region (CSX, NS and CN railroads). By taking the rail distances

between stations pairs, and dividing it by the travel time, one can approximate

the average train speed. This study assumes three train speed classes (similar

speed values are reported in Roucolle and Elliott [2010] and Dirnberger [2006]):

a. 32 mph for all the Intermodal trains

b. 22 mph for all the Auto trains

c. 17 mph for all the Merchandise and Local trains
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Rd = κ · (1.3 + 29

ω
+ b · ν + ζ · A · ν2

ω · n
) (9.1a)

where

Rd = unit (
lb

ton
) resistance acting on a moving vehicle

κ = coefficient that adapts the formula to better represent the modern equipment

ω =
W

n
= load per axle (in tons)

b = coefficient that defines the speed-dependent resistance

ν = vehicle speed in mph

ζ = streamlining coefficient that defines the resistance that varies with ν2

A = frontal cross-sectional area of the vehicle

9.4. Freight trains tonnage

9.4 Freight trains tonnage
The weight of a train calculated in the previous sections is needed to identify

the pulling force required to move the train. However the train weight does

not embody all the factors that generate the total train resistance. The total

resistance of a railway vehicle Rtot is the sum of two components:

1. Grade resistance Rg (due to the slope of the track).

2. Dynamic resistance Rd (the resistance acting on a moving vehicle).

The grade resistance (in lb) of a vehicle is given by Rg = W · grade · 20 lb
ton

where

W is the weight of the vehicle (in tons) and the grade is a value related to the

slope of the track, this study assumes a positive grade = 0.005 (0.5%). Note

that grade forces may resist or assist train movements depending on whether the

slope of the track is positive or negative.

The dynamic resistance of a vehicle with n axles and a weight W (in tons) may

be calculated using the Davis formula (Tolliver and Bitzan [2002], Gould and

Niemeier [2009], Davis [1926]).
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The values for A, b, and ζ reported in Tolliver and Bitzan [2002] for locomo-

tives and cars are the following.

Locomotives:

1. A = 120;

2. b = 0.03;

3. ζ = 0.0017.

Train Cars:

a. A = 125;

b. b = 0.045;

c. ζ = 0.0005.

The locomotives that compose the consist need to provide enough power to

overcome the resistance of the railway cars and the locomotives themselves.

Given a train, the procedure adopted to calculate the train TE requirement is

the following:

1. Identify the grade of the track.

2. Identify the train speed.

3. Identify the consist weight Wc.

4. Identify the total weight of cars Ws.

5. Calculate the consist grade resistance Rcg = Wc · grade · 20 lb
ton

.

6. Calculate the cars grade resistance Rsg = Ws · grade · lb
ton

.
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7. Calculate the consist dynamic resistance Rcd through the Davis formula.

8. Calculate the cars dynamic resistance Rsd through the Davis formula.

9. Calculate the train total resistance RT = Rcg +Rcd +Rsg +Rsd.

9.5 Train TE and HP requirements and Consists

performance

A locomotive is propelled by its driving wheels (or drivers) i.e. the wheels driven

by the pistons to propel the locomotive. The adhesion is the amount of force

required to slide the wheels of a locomotive, and it expresses the ability of the steel

wheels of a locomotive to have grip on the steel rails and to prevent the spinning

or sliding of the wheels. The adhesion factor µ is the ratio of the adhesion to the

weight of a locomotive. The maximum tractive force (Tractive Effort, TE) that

can be developed by a locomotive depends on the weight on drivers multiplied

by the adhesion factor. According to AREMA [2003], this study assumes an

adhesion factor equal to 0.25, thereby given a consist characterized by a weight

Wc, the consist maximum available TE is calculated as TE = Wc · 0.25. This is
a conservative valuation for some modern locomotive models characterized by

µ ≥ 0.25.

A consist may pull a train if the consist available TE is sufficient to satisfy the

train TE requirement. The consist available TE is inversely proportional to

the train speed. When the train speed increases, the TE provided by a consist

decreases. According to AREMA [2003], the consist TE and HP performance,
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and the train speed are related as follow:

TE =
HP · 550 · η
speed · 1.47

(9.2a)

where

TE is expressed in lb

HP is expressed in horse power (1 hp = 550
ft lb

sec
)

speed is expressed in mph (1 mph = 1.47
ft

sec
)

η is the locomotive efficiency

Given the grade and the weight of a train it is possible to:

(i) identify the train grade resistance Rg;

(ii) exclude the consists types that do not provide a TE sufficient to move the

train when is standing.

The train HP requirement is the second information needed to identify the consist

types suitable for the considered train. In other terms, given the grade, the train

weight and the travel speed requested by the train service it is possible to exclude

the consists that do not provide sufficient TE and that do not have a sufficient

HP. The speed at which the consist TE equals the train total resistance RT is

called balanced speed. The balanced speed is the maximum possible speed for a

train given a specific set of conditions.
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9.5. Train TE and HP requirements and Consists performance

speedmax =
HP · 374.15 · η

RT

(9.3a)

where

TE is expressed in lb

HP is expressed in horse power (374.15 =
550

1.47
)

speedmax is expressed in mph

η is the locomotive efficiency

According to Parajuli [2005] and AREMA [1983] for diesel-electric locomotives

the efficiency η is in the range of 0.80 to 0.85 and varies with the track speed

of the locomotive. Other authors (like Schonfeld [2005]) suggest a value of 0.83

while Metrolinx [2010] reports η in the range of 0.87 to 0.90. This study assumes

η = 0.85 (a conservative value for modern AC locomotives). Therefore the actual

HP of a consist is obtained multiplying the nominal consist HP by 0.85.

Knowing weight and speed of trains it is possible to select the suitable consist

types looking at the actual consist TE and HP.

9.5.1 Valid consist types
A final consideration on consist types is that CSX imposes a maximum number

of 24 active axles (48 driving wheels) per consist (constraint 5.1f, page 66).

Since the number of axles per locomotive may be 4, 6 or 9, the maximum

number of locomotive per consist is 6. Another aspect that reduces the set of

accepted locomotive combinations (consist types) is represented by the prohib-

ited 〈train class, locomotive type〉 connections. The three train speed classes

Intermodal trains, Auto trains, and Mercandise trains, determine the prohibited
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Chapter 9. TE and HP requirements

〈train class, locomotive type〉 connections that reduce the number of valid con-

sist types. For instance, the locomotive type F is prohibited for Intermodal and

Auto trains and is allowed for Merchandise trains while the locomotive type A is

allowed for Intermodal and Auto trains and is prohibited for Merchandise trains.

Consequently, each consist type that contains both the locomotive types A and

F, cannot be assigned to trains and is useless. Considering all these restrictions,

it is possible to obtain a set of 288 valid consist types to be analyzed in the

consists selection phase.
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A Locomotive Planning Problem

optimization model

The model proposed by Vaidyanathan et al. [2008a] may be considered the state

of the art in the LPP optimization and represents a reference for our own study.

It relies on a space-time network G = (N,A) with nodes N and arcs A divided

in different groups. The nodes N are grouped in:

a. Arrival nodes (ArrNodes), they model the train arrival events.

b. Departure nodes (DepNodes), they model the departure events.

c. Ground nodes (GrNodes), they allow the flow of consist from inbound trains

to outgoing trains.

The (GrNodes) allow to model easily train to train connection, light-travel and

idling of consist in stations.

Arcs A belong to four different sets:

a. Train arcs TrArcs, they connect (DepNodes) and (ArrNodes).

b. Ground arcs GrArcs, they connect (GrNodes) to (GrNodes) (train is idling

in a station).

c. Light-traveling arcs LiArcs, they connect (GrNodes) to (GrNodes) (train is

light-traveling).
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Appendix A. Locomotive Planning Problem optimization model

d. Connection arcs CoArcs, they represent the train to train connections.

The model assumes that the light-travel possibilities are given.

Each arrival node ∈ ArrNodes has a corresponding arrival ground node ∈
GrNodes, the same holds for departure nodes, connection arcs CoArcs connect

arrival nodes ∈ ArrNodes to the corresponding arrival ground nodes ∈ GrNodes
and the same holds for departure nodes. For each station the last ground node

of the week is connected to the first ground node of the week of that station,

through a ground arc such that the ending inventory of locomotives becomes the

starting inventory in the next time period. This permits to count the locomotives

used during the week, evaluating the flow of locomotives on arcs that cross the

time line at midnight on Sunday (Sunday midnight is the check time, at this

time there are no arrival or departure).

Three different sets of locomotives are associated to each train l:

- MostPreferred[l], the preferred locomotive types.

- LessPreferred[l], the accepted (paying a penalty) locomotive types.

- Prohibited[l], the locomotive types not allowed.

Each train l is characterized by the following attributes:

- dep-time(l), the departure time of a train l;

- arr-time(l), the arrival time of a train l;

- dep-station(l), the departure station of a train l;

- arr-station(l), the arrival station of a train l;

- Tl, the tonnage requirement for a train l;
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- HPl, the HP per tonnage requirement for a train l;

- El, the penalty for using a single locomotive consist on a train l.

Given the set of all locomotive types K, k denotes a particular locomotive type

belonging to K. Every k ∈ K is characterized by the following attributes:

- hk, the horsepower (HP) of a locomotive of type k;

- bk, the number of axles on a locomotive of type k;

- Gk, the ownership cost of a locomotive of type k;

- Bk, the fleet-size of a locomotive of type k;

- ckl , the cost of assigning an active locomotive of type k to a train l;

- dkl , the cost of deadheading a locomotive of type k on a train l;

- tkl , the tonnage provided by a locomotive of type k to a train l.

The model relies on the following definitions:

- C, the set of consist types available for assignments;

- c ∈ C denotes a specific consist type;

- Fl, the fixed cost for using a light arc l;

- ccl , the cost of assigning an active consist of type c ∈ C to a train arc l;

- αck, the number of locomotives of type k ∈ K in a consist c ∈ C;

- I[i], the set of arcs entering in the node i;

- O[i], the set of arcs leaving the node i;
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Appendix A. Locomotive Planning Problem optimization model

- S, the set of overnight arc crossing the Sunday midnight timeline.

Given a consist of type c ∈ C, the parameter dcl defines:

a. The cost of assigning a deadheading consist if the train arc l ∈ TrArcs.

b. The cost of assigning a light-traveling consist if the train arc l ∈ LiArcs.

c. The idling cost if the train arc l ∈ CoArcs
⋃
GrArcs.

The decision variables are the following:

a. sk, an integer variable indicating the unused locomotives of type k ∈ K;

b. zc, a binary variable which takes value 1 if a consist type c ∈ C is used;

c. zl, a binary variable which takes value 1 if at least one consist flows on arc

l ∈ LiArcs;

d. xcl , a binary variable which takes value 1 if a consist type c ∈ C flows on arc

l ∈ TrArcs;

e. ycl , an integer variable indicating the number of non-active consists (deadhead-

ing, ligh-traveling or idling) of type c ∈ C flowing on arc l ∈ AllArcs,
where AllArcs = TrArcs

⋃
GrArcs

⋃
LiArcs

⋃
CoArcs.
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The weekly CFF LAP with a fixed number p of available consist types is:

min : w =
∑

l∈TrArcs

∑
c∈C

cclx
c
l +

∑
l∈AllArcs

∑
c∈C

dcly
c
l +

∑
l∈LiArcs

Flzl −
∑
k∈K

Gksk (A.1a)

subject to∑
c∈C

∑
k∈K

αcktkl x
c
l ≥ Tl, ∀ l ∈ TrArcs (A.1b)

∑
c∈C

∑
k∈K

αckhkxcl ≥ HPl, ∀ l ∈ TrArcs (A.1c)

∑
c∈C

xcl = 1 (A.1d)

∑
c∈C

∑
k∈K

αck(xcl + ycl ) ≤ 12, ∀ l ∈ TrArcs (A.1e)

∑
l∈I[i]

(xcl + ycl ) =
∑
l∈O[i]

(xcl + ycl ), ∀ i ∈ AllNodes, c ∈ C (A.1f)

∑
c∈C

∑
k∈K

αck(ycl ) ≤ 12zl, ∀ l ∈ LiArcs (A.1g)

∑
l∈S

∑
c∈C

αck(xcl + ycl ) + sk = Bk, ∀ k ∈ K (A.1h)

∑
l∈S

(xcl + ycl ) ≤Mzc, ∀ c ∈ C, M is a sufficiently large number (A.1i)

∑
c∈C

zc = p (A.1j)

xcl ∈ 0, 1, ∀ l ∈ TrArcs, c ∈ C (A.1k)

ycl ≥ 0, and integer, ∀ l ∈ LiArcs, c ∈ C (A.1l)

zl ∈ 0, 1, ∀ l ∈ LiArcs (A.1m)

zc ∈ 0, 1, ∀ c ∈ C (A.1n)

sk ≥ 0, and integer, ∀ k ∈ K (A.1o)
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