A Java vs. C++ performance evaluation: a 3D
modeling benchmark

L. Gherardi D. Brugali D. Comotti

University of Bergamo, DIIMM, Italy
{luca.gherardi,brugali,daniele.comotti}@unibg.it

Abstract. Along the years robotics software and applications have been
typically implemented in compiled languages, such as C and C++, rather
than interpreted languages, like Java. This choice has been due to their
well-known faster behaviors, which meet the high performance require-
ments of robotics. Nevertheless, several projects that implement robotics
functionality in Java can be found in literature and different experiments
conduced by computer scientists have proved that the difference between
Java and C++ is not so evident.

In this paper we report our work on quantifying the difference of per-
formance between Java and C++ and we offer a set of data in order to
better understand whether the performance of Java allows to consider
it a valid alternative for robotics applications or not. We report about
the execution time of a Java implementation of an algorithm originally
written in C++ and we compare this data with the performance of the
original version. Results show that, using the appropriate optimizations,
Java is from 1.09 to 1.51 times slower than C+4 under Windows and
from 1.21 to 1.91 times under Linux.

1 Introduction

Robot software systems are concurrent, distributed, embedded, real time, and
data intensive. Computational performance is a major requirement, especially
for autonomous robots, which process large volumes of sensory information and
have to react to events occurring in the robotics operational environment.

In order to meet performance requirements, robotics algorithms have been
typically implemented in C and C++. Robotics developers in fact have always
considered C++ significantly faster than Java. Despite that, the idea of using it
in robotics is not really new: it has been followed in several projects (see section
2) and recently Willow Garage and Google have started a project for developing
a Java-based porting of ROS [4].

In this paper we report our work on the comparison of performance between
Java and C++. Our goal is to quantify this difference and to offer a set of
data in order to better understand whether the performance of Java allows to
consider it a valid alternative to C++ or not. For this purpose we implemented
in Java a well known algorithm originally written in C++ and we executed a
comparison study. The chosen algorithm is the Delaunay triangulation and its

implementation comes from the OSG library[2]. It was developed in the computer
vision field but it is typically used also in robotics for reconstructing environment
surfaces from a set of 3D points. The algorithm is well suited for the purpose of
our study because it stresses several critical points of the programming languages
performance such as: (a) the frequent access to the memory for operating on
dynamic size array (massive use of the garbage collector) and (b) the frequent
evaluation of logical conditions.

Although in the computer science domain many comparison studies has been
proposed, we considered our test interesting because we implemented and exe-
cuted the algorithm with a newer and improved version of the Java JDK. Indeed
the current Java Virtual Machine (JVM) offers a new compiler, which greatly
improves the performance of Java with respect to the older versions.

The paper is structured as follows. Section 2 reports about the Java related
projects in robotics and presents a survey on the differences of performance of
the two languages. Section 3 illustrates a performance comparison case study. We
present a Java-based implementation of a mesh generation algorithm originally
written in C++ and report several information about the execution time of both
the Java and the C++ versions. Finally section 4 draws the relevant conclusion.

2 Java for Robotics

Java is an object oriented programming language and it was intended to serve
as a new way to manage software complexity. It offers to its users a set of
software libraries and specifications, which allow the designing and the deploying
of cross-platform applications. Java is used in different application domains such
as enterprise resource planning (ERP) and web servers (e.g. JSP). It is widely
spread also on mobile phones and embedded devices. This section presents a set
of robotics project developed with Java and a survey on several performance
comparisons between Java and C++.

2.1 Robotics Java projects

During the 2011 Google I/O the researcher of Willow Garage and Google pre-
sented a new project that aims to develop a pure Java implementation of ROS
[4]. By means of this project Google and Willow Garage aim to boost the devel-
opment of advanced Android applications for robotics and easiness the access to
the cloud computing for reducing the cost of the robotics hardware.

In [11] the integration of Matlab in a distributed behavioral robotics architec-
ture is presented. The architecture is completely implemented in Java and lever-
ages on the Jini platform for distributed object registration, lookup and remote
method invocation. The Matlab integration is realized by means of JMatLink and
allows the invocation of Matlab scripts and the access to the Matlab workspace
as a distributed object. The authors present as case study a multi-robot mines
detection. In [17] a team from Lund University demonstrated that it is feasible

to develop a motion control system entirely in Java. They designed an appli-
cation that takes a picture of a person and controls a pick and place robot in
order to draw on a paper the result of the shooting. The software and the motion
controller guarantee the respect of the real time constraints by means of Java
RTS. In [16] a real-time control for a remote manipulator over a local area net-
work or over internet is presented. The developers implemented both the control
system and the teleoperation of the robot in Java. In [9] an autonomous motion
planning system completely developed in Java is developed. The application al-
lows the user to set up the working environment though a graphical interface
and offers the functionalities of collision detection, obstacle avoidance, free-paths
generation and selection of the shortest path. Finally in [14] an application for
controlling robots through the World Wide Web is implemented. The software
is designed for dealing with low bandwidth and high latency and allows the
operator to control the robot from any computer connected to the web.

2.2 Java versus C++

One of the main differences between Java and C++ is that the first was born
as an interpreted language while the second as a compiled language. Compiled
languages are translated into machine code trough a compiler. This process gen-
erates a file that can be directly executed by the CPU. Interpreted languages
are compiled in a platform independent language (bytecode), which can be ex-
ecuted only by means of an interpreter (e.g. JVM). Hence, programs written
in C++ (compiled language) are platform dependent and must be compiled for
every computing platform before the first execution. Java programs instead are
translated into bytecode only once and can be used on different platforms but
have to be interpreted at every execution (the JVM is platform dependent). For
this reason interpreted languages are in general more flexible and portable than
compiled languages but at the same time slower.

In order to improve the performance, in 1998 Java 1.2 was released with a
new feature called Just-In-Time compiler (JIT)[1]. JIT is integrated into the
JVM and it is in charge of translating the Java byte code into binary code. Each
method is translated only when it is called for the first time. Thanks to this
improvement the execution time decreases and the code is again portable.

Many comparisons between C, C++ and Java were documented in literature.
From this point we call “Java” the version optimized with JIT and “interpreted
Java” the original version. In [19] the execution times of C++ and Java are
compared. The authors tested the execution of four sorting algorithms, two of
O(n?) complexity (bubble sort and insertion sort) and two of O (n-log(n))
(recursive quick sort and heap sort), on four integer data sets of different sizes.
The results demonstrated that C++ was much faster than pure interpreted Java
(from 11 to 20 times) and only from 1.45 to 2.91 times faster than Java (version
1.3). In [6] a set of polynomial multiplications was computed and executed using
the three languages. The results showed that Java completed the operations
faster than standard C (mean of 21%) but in average 2.61 times slower than
C++. In [7] the executions of the Linkpack benchmark were compared for Java

Paper Test OS Java vs. C Java vs. C++ JDK C/C++ compiler

[19] Sorting alg. W — 1.45 - 2.91 Sun 1.3 Borland v. 5.5

[6] Polynomial mult. S 0.79 2.61 Sun 1.2b5 Sun Workshop C 4.2
[7] Linkpack bench. W-S 2.25 — Sun 1.2b4 —

[18] Method call ~ W-S-L-M — 1 clock slower Please refer to the paper
[12] Int and float div. W — ~1 Sun 1.1.5 Visual C4++ 5.0

Table 1. Results summary (OS: W=Windows, L=Linux, S=Solaris, M=MacOs)

and standard C. This benchmark was introduced by Jack Dongara and measures
how fast a computer solves a dense N-by-N system of linear equations. The
results showed that for a 1000 x 1000 system Java was 2.25 times slower than
C. In [18] Ruolo evaluated the Java method call performance. Different tests
with a different numbers of parameters showed that Java was only one clock
cycle slower than C++. The same tests also highlighted that the time needed
for allocating user defined objects on the heap was roughly equivalent. However
C++ also uses the stack for allocating temporary object and in this case it
was from 10 to 12 times faster than Java, which uses only the heap. Interesting
conclusions were reported by Mangione [12]. He tested the repetitive execution
of simple operations like integers and float divisions and showed that Java was
as fast as C++. As summarized in table 1 all the papers report that, since the
introduction of the Just-In-Time compiler, Java is only 1.45-2.91 times slower
than C++ (Column OS: operating system, columns 4-5 execution time ratios).

Since these studies demonstrated how the execution of simple operations in
Java is more or less as fast as in C++, one factor that could influence the total
execution time of a Java program is the Garbage Collector (GC). However [10]
showed that Java GC is as fast as a malloc/free operation in C++. In fact when
a program executes a malloc operation, the allocator looks for an empty slot of
the right size and returns a pointer to a random place in the memory. In Java
instead the allocator use the bits of memory adjacent to the last bit it used.
Hence it doesn’t need to spend time looking for memory. So the amount of time
used for the garbage collector is comparable to the amount of time that the
allocator uses in C++ for finding free memory slots.

Finally other interesting results are documented in [15]. The same program
was implemented by 40 different programmers in different languages (24 in Java,
11 in C++ and 5 in C). The experiment compared not only the performance of
the languages but also the differences between the implementations in the same
language (interpersonal differences). The results demonstrated that Java was 2
times slower than C++ and that the interpersonal differences were much larger
than the average difference between Java and C++. That means a well written
Java program could be as efficient as an average C++ program.

3 A performance comparison case Study: the Delaunay
Triangulation

Visual sensors such as laser scanners acquire information on the environment
geometry in form of a point cloud: a set of vertices in a 3D coordinate system.

Each one of these vertices corresponds to a point on the surface of one of the
objects present in the environment. In order to reconstruct the surface of these
objects the vertices have to be connected. This problem is called mesh generation
and one of the possible solutions consists of the Delaunay triangulation [8].

Delaunay’s algorithm connects the set of points in such a way to build a
series of triangles which respect the following property: for all the set of points
there is no point which lies inside the circumcircle of any triangle. The trian-
gulation result is unique except if more than three vertices stand on the same
circumference. In this case more than one solution exist.

In this section a comparison between a C++ and a Java version of the Delau-
nay triangulation will be reported. We refactored in Java a C++ implementation
coming from the OSG libraries[2]. The implementation of this triangulation al-
gorithm is based on the Bowyer-Watson method, which works in the plane space.
It iterates all the points of the cloud and for each one executes two main steps:
identifying the triangles whose circumcircle contain the current analyzed point
and then building a new set of triangles, which respect the Delaunay condition.
This algorithm allows to process point clouds in 3D space but realizes only a
triangulation in the plain space therefore the Z coordinate is ignored. It should
be noted that the implemented algorithm does not provide a constrained Delau-
nay triangulation. For this reason, during the timing and the comparison of the
computation time, we have excluded the constraints also in the OSG version.

Both the OSG and our implementations receive as input the point cloud in
form of a collection of vertices. The OSG implementation defines a custom class,
Vec8Array, which is a specialization of the class MizinVector (MixinVector al-
lows inheritance to be used in order to easily emulate derivation from std::vector
but without introducing undefined behaviour through violation of virtual de-
structor rules [3]). Hence, Vec3Array defines a vector of Vec3 instances, which
are triplets of float data types. Our implementation instead uses the Java Ar-
rayList. We chose this collection because it is the fastest of all the collections
provided by the Java framework for what regards the operations of inserting,
iterating and sorting [20], and because its performance are comparable with the
one of Java Vector. On the other side ArrayList, like C++ std::vector, is not
as well efficient when it has to perform the operation of removing elements in
random position. In order to better understand how much the overhead between
Java and C++ is due to these data structures, we compared the performance
of the Vec8Array and ArrayList collections. We executed a set of tests on the
most used operations during the triangulation algorithm:

— Insertion. We executed 10000 and 100000 insertions of objects (instances of
class that represent the 3D points) at the end of the 2 collections. We chose
the values of 10000 and 100000 because they are the maximum orders of
magnitude of the collection sizes used in the tests of the Delaunay algorithm.

— Removal. We executed the complete clearing of collections of 10000 and
100000 objects. We removed one element at time. In order to evaluate the
performance in the worst case, the object at the head of the collection was
chosen to be deleted during each iteration.

— Sorting. We invoked the sorting function on collections of 100 and 1000 points
generated randomly. We chose these size values, which are lower with respect
to the tests of the other operations, because in the Delaunay algorithm the
sorting is always executed on little collections (see more details below).

Each test was executed 50 times and then the mean time was computed. We
executed them on a 3.2 GHz Intel Pentium 4 processor with 1GB of RAM under
Ubuntu 10.4 (OpenJDK Runtime Environment v. 1.6.0-20 and GCC v. 4.3.3).
Results are reported in table 2 where times are expressed in milliseconds and
regard the execution of all the n operations. ArrayList is faster than Vec3Array
during the insert and the remove operations, whereas it takes much time to com-
pute the sorting because of the used algorithm. Indeed the method for sorting
Java collections uses a modified merge-sort algorithm [5], which offers guaran-
teed O (n-log (n)) performance. The sorting algorithm provided by the C+-+
STL library instead uses the introsort algorithm whose worst case complexity is

O (n-log (n)).

Insert Remove Sort
N. of elements 10000 100000 10000 100000 100 1000

Java, 1.30 6.33 46.67 5168.21 0.13 0.42
C++ 1.51 11.27 275.82 27799 0.02 0.40
Java vs C+4+ 0.86 0.56 0.17 0.19 6.5 1.05

Table 2. Times report - Collection comparison

We have also analyzed time required for the evaluation of logical conditions.
Four tests were executed, taking into account the following logical conditions:

— Simple logical proposition (var==true)

Disequation (a < b). (Most evaluated condition in the case study, see eq. 1)
Logical disjunction of two disequations ((a < b)||(a > ¢))

— Logical conjunction of two disequations ((a > b)&&(a < ¢))

Each evaluation was executed 10000 times and each test was repeated 50 times.
Table 3 reports average times of the tests in milliseconds. We used a boolean
variable (initialized false and its value was changed each execution (var = fvar))
in the first test and float variables (initialized with a constant values) in the
others. As can be seen, Java is always faster than C++, except for what regards
the evaluation of simple logical proposition.

3.1 The implementation details

The two implementations compute the triangulation according to the same steps,
which are described in the following list.

1. Initialization. The Initialization step consists of the setting up and the sort-
ing of the input point cloud according to their coordinates. Then four new

Prop. Diseq. Disj. Conj.
N. of elements 10000 10000 10000 10000

Java 0.187 0.084 0.103 0.093
C++ 0.039 0.262 0.452 0.290
Java vs C++ 4.79 0.32 0.23 0.32

Table 3. Times report - Logical conditions evaluation comparison

points are inserted in order to surround the plain point cloud. These four
points are used to build two main triangles (super-triangles), such that the
plain point cloud lies inside their area. These triangles are stored in a collec-
tion, that we’ll call trianglesList. The collection data structure was chosen
accordingly to the operations that occur more often, indeed the trianglesList
is subject to several iterations, insertions and removal. As shown in [20], Ar-
rayList is the list of all the available lists in the Java framework that perform
insertion, iteration and random access in the fastest way. Although removing
objects from ArrayList requires a long time, insertions and iterations occur
more often than remove operations; hence we decided to use ArrayList for
implementing the trianglesList.

. Iteration. During the iteration, each point is considered and is compared to
the triangles contained in the trianglesList. First the condition 1 is checked
(“point” stays for the current point and “tri.circ for the circumcircle of the
current triangle).

point. X — tri.circ.X > tri.circ.radius (1)

— If it is true, the current triangle is removed from the triangleList and will
not be more considered because the current point and also the following
ones surely don’t lie in the circumcircle of the current triangle (i.e. the
triangle respects the Delaunay condition for all the points and it is part
of the final mesh). This is guaranteed by the initial ordering of the points.

— Otherwise, we must further investigate if the current point effectively
lies in the circumcircle of the current triangle. In case it is true the
Delaunay condition is not respected. Therefore the edges of the triangle
are added to a specific ArrayList (called edgeSet) and the current triangle
is deleted. Whereas, if the Delaunay condition is respected, the next
triangle is considered. It has to be noted that the edgeSet collection
has been implemented as an ArrayList because it is sorted many times
during the triangulation algorithm. Hence, the usage of Collections.sort
method and ArrayList is the Java solution that allows us to save time
and increase performance in the best way. In our tests the maximum size
of the edgeSet collection was never greater than 100.

When the whole trianglesList has been scanned, new triangles are con-
structed from the edgeSet collection and added to the triangleList (in our
tests the maximum order of magnitude of this collection size is 10000). Note
that if an edge is shared between two triangles that contain a point, then

the edge is not considered. The iteration proceeds until all points have been
analyzed, except for the four points created during the initialization .

3. Completion. The four points introduced during the initialization step and tri-
angles having vertices in common with these four points are deleted. If there
are degenerate triangles (circumcircle radius equals to 0) they are eliminated
too. Finally a return result is built in form of a Mesh.

Since the order of magnitude of the size of the list on which we perform more
insertion is 10000 whereas the one of the collection on which we perform the
sorting is 100 the time gained in Java for populating the first collection is lost
for sorting the second one (see table 2). This suggests that the time spent for
managing collections will be more or less the same for both the Java and C++
implementations. The evaluation of logical conditions instead seems to be not
important from a performance point of view. In fact the time spent for evaluating
conditions on 10000 iterations is much lower than the time spent for populating
collections in more or less 100 iterations.

3.2 The Java HotSpot compilers

The current JVM offer a technology called HotSpot Compiler [13], which works
better and faster than the pure JIT compiler. Rather than compiling each
method at the first execution, the HotSpot runs the program using an inter-
preter for a while. During this time, in order to detect the most used and critical
methods, the execution is analyzed. The collected information is then used to
perform more intelligent optimizations and only the critical methods are actu-
ally compiled. This technique is called “Adaptive Optimization”. It doesn’t only
produce better performance but it also reduces the overall compilation time.
The adaptive optimization is continuously performed so that it adapts the per-
formance to the users’ needs.

The Java Platform Standard Edition offers a JVM that comes with two
compilers: the Client and the Server versions'. The Client compiler is the default
one and it has been specially tuned to reduce the start-up time. It is designed
for client environment, in particular for applications where there is not the need
of continuous computation, for example a GUIL. The Server compiler instead is
designed for long-running server applications, where the operating speed is more
important than the start-up time. This compiler offers an advanced adaptive
optimizer and supports many of the optimizations offered by the C++ compilers.

Subsections 3.3 and 3.4 report the tests executed using the client compiler
whereas the server compiler is used in the experiments of subsection 3.5.

3.3 Performance analysis

We executed the algorithm on five point clouds of different sizes: a semi-sphere,
a floor, the Oxford Bunny and 2 terrains. Each point cloud was processed 50

! Users can specify the compiler by means of the options “client” and “server”. The

tests on the collections and logical conditions were executed with the client compiler

times and the execution time was measured; then the average, the standard
deviation and the confidence intervals (1 —a = 0.95) were computed. In the first
experiment each triangulation corresponds to a single program invocation, so we
executed the program 50 times per point cloud.

Table 4 reports the results of our test on the same PC presented before
running Windows XP (Sun Java 6 v. 1.6.0.23 and C++ programs compiled
with MinGw v. 3.82 and GCC v. 4.5.0). Mean time, standard deviation and
confidence intervals (¢; and c3) are expressed in milliseconds. Java vs. C++ is
the ratio between the average execution time.

Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Mean 70.62 1458.8 3102.2 20344 132926
Std Dev. 7.89 12,90 52.96 403.44 986.18

Java c1 68.38 1455.1 3087.1 20229 132646
c2 72.86 1462.5 3117.3 20459 133206

Mean 7.50 298.13 886.25 3305.9 22908
Std Dev 7.89 25.61 63.77 144.83 227.06

ot c1 5.26 290.85 868.13 3264.8 22844
ca 9.74 305.40 904.37 3347.1 22973

Java vs. C++ 9.42 4.89 3.50 6.15 5.80

Table 4. Times report - Multiple invocation - Windows - Java Client

Referring to the table 4, the triangulation execution time obtained with the
first point cloud (sphere) is not very truthful. Indeed Java version is 9.42 times
slower than C++ and this value doesn’t fit the ratios obtained with the other
point clouds. In this case the execution time is very small and so the time
required for compiling the code greatly influences the result. Note that the costs
required by the compiler have a fixed part, which is the same for each point
clouds. Hence the smaller is the point cloud, the greater is the influence of the
compilation overhead on the execution time.

3.4 Single program invocation

In order to avoid the compilation overhead we decided to change our measuring
strategy. We set up a second experiment, where 51 triangulations were measured
in a single program invocation. This kind of experiment corresponds to a long
run execution, where only the first invocation of the algorithm pays the compiler
costs. We discarded the execution time of the first invocation and computed
our statistics on the other 50 samples. Table 5 reports the results obtained
under Windows and Ubuntu Lucid (both with the same Java and C++ versions
presented before). As expected, the average execution times decrease for Java
and remain more or less the same for C++-.

Under Windows, without the compiler overhead, Java performance are always
better than the results reported in table 4, but remain worse than the results

Windows Linux
Sphere Floor Bunny Terr. 1 Terr. 2 Sphere Floor Bunny Terr. 1 Terr. 2

Num. of vertices 642 10000 35947 66049 263169 642 10000 35947 66049 263169

Mean 15.58 1157.2 2487.2 18108 115977 6.66 869.20 2111.3 13478 92301
Std Dev. 0.50 18.82 20.57 80.53 399.65 1.48 40.83 80.94 106.06 383.57

Java

c1 15.44 1151.9 2481.3 18085 115863 6.24 857.60 2088.3 13448 92191

[15.72 1162.6 2493.0 18130 116091 7.08 880.80 2134.3 13508 92410

Mean 6.56 288.75 914.06 3226 23168 3.23 224.01 750.09 3333.4 24277

Std Dev 7.79 7.89 11.92 110.36 605.89 0.84 2.35 7.41 62.90 437.73

Ot c1 4.35 286.51 910.68 3195 22996 2.99 223.35 747.99 3315.5 24152
[8.78 290.99 917.45 3257 23340 3.47 224.68 752.20 3351.2 24401

Java vs. C++ 2.37 4.01 272 5.61 5.01 2.06 3.88 2.81 4.04 3.80

Table 5. Times report - Single invocation - Java Client

discussed in section 2. Indeed in our tests the execution time ratio between Java
and C++ goes from 2.37 to 5.61 against the range 1.45-2.91 reported in table 1.
One possible reason is that the triangulation process requires an intensive use
of the memory and probably the C++ version leverages the possibility of store
temporary objects on the stacks, which is much faster [18].

The table shows that under Ubuntu Java is more efficient than under Win-
dows. Indeed the ratio range goes from 2.06 to 4.04. It should be noted that we
executed the tests with both the OpenJDK and the Sun JDK. However in the
paper we consider only the first one because the results are almost the same.

Another consideration can be done on the relation between the point clouds
sizes and the execution time ratios. The value of the performance ratio doesn’t
show a linear trending, hence we can assert that for this algorithm there is no
correlation between the performance ratio and the input size.

3.5 JVM Server option

Table 6 report the results obtained using the Server compiler. We executed the
tests on the same machine used previously with the same configurations. Of
course, only the Java version was tested and the C++ rows report the results
of the previous experiments. Despite we are aware of the existence of the opti-
mizations provided by GCC, we didn’t work on them. Indeed the default release
configuration of the OSG libraries is tuned in order to offer the best performance.

The results shows that under Windows the server compiler considerably re-
duces the average execution time of complex operations. In particular the ex-
ecution times decrease 3-4 times with respect to the client compiler. The first
cloud represents the unique exception. Indeed, in that case the execution is too
short and so most of the iterations are executed without optimization. This is
the typical case in which the larger start-up time required by the server compiler
is not compensated. Regarding the other point clouds, the ratio range goes from
1.09 to 1.51 and so Java is nearly equivalent to C++-.

The results demonstrates that also under Ubuntu the server compiler signifi-
cantly improves the performance. The same considerations reported above could

Windows Linux
Sphere Floor Bunny Terr. 1 Terr. 2 Sphere Floor Bunny Terr. 1 Terr. 2

Number of vertices 642 10000 35947 66049 263169 642 10000 35947 66049 263169

Mean 24.96 356.26 999.02 4873.1 30320 20.40 428.5 1253.1 4778.9 29368

Std Dev. 15.45 20.16 20.40 42.80 230.28 19.58 20.66 56.64 172.29 250.81

Java c1 20.57 350.53 993.22 4861.0 30255 14.84 422.63 1237.0 4729.9 29297
[29.35 361.99 1004.8 4885.3 30385 25.96 434.37 1269.2 4827.8 29440

C++ Mean 6.56 288.75 914.06 3225.9 23168 3.23 224.01 750.09 3333.4 24277
Java vs. C++ 3.80 1.23 1.09 1.51 1.31 6.32 1.91 1.67 1.43 1.21

Table 6. Times report - Single invocation - Java Server

be applied to the results obtained with the first cloud. Referring to the other
clouds the ratio range goes from 1.21 to 1.91 and the average execution times
are from 2 to 3 times better than the results obtained with the client compiler.

4 Conclusions and future works

In this paper we have described our work on the evaluation of the performance
of Java with respect to C++ in robotics applications. The results obtained with
the Client compiler, which works better for short-running applications, have
shown that Java is from 2.72 to 5.61 times slower than C++. Using the Server
compiler, which is best tuned for long-running applications, have instead demon-
strated that Java is from 1.09 to 1.91 times slower. These results show that the
performance of Java are now better with respect to the tests previously docu-
mented in literature and demonstrate that the use of the Server compiler for
long run application greatly reduces the execution time.

In addition to the fact that now the performance are not so different with
respect to C++, we also have to consider that Java offers a set of interesting
features. Portability: Java is designed to be platform independent and so Java
software is very portable. The low level data types such as integer and float are
fully defined in Java specification and aren’t platform dependent. Reusability:
Java comes by default with a lot of common libraries for several purposes. It is
also easy to deploy and reuse the developed libraries without sharing source or
header files or requiring a specific compiler. Maintainability: Java is designed to
forbid common bugs such dangling pointers, casting errors, out-of-bounds array,
stack overflows, segmentation faults and uninitialized variables.

In conclusion, the results obtained with the server compiler and these impor-
tant features suggest that Java can be considered a valid alternative to C++.
We plan to executes new experiments in order to further confirm this thesis. The
tests will regards the communication with external devices (USB, RS-232, ...)
and the execution of multi-thread programs.

5 ACKNOWLEDGMENTS

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agree-

ment no. FP7-ICT-231940-BRICS (Best Practice in Robotics). The authors
would like to thank all the partners of the project for their valuable comments.

References

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Just in time compiler. http://en.wikipedia.org/wiki/JIT_compiler.

Open Scene Graph. http://www.openscenegraph.org.

Open Scene Graph API reference. http://www.openscenegraph.org/
documentation/OpenSceneGraphReferenceDocs.

Rosjava - An implementation of ROS in pure Java with Android support. http:
//code.google.com/p/rosjava/.

Specifications of java.util.collections. http://docs.oracle.com/javase/6/docs/
api/java/util/Collections.html.

L. Bernardin, B. Char, and E. Kaltofen. Symbolic computation in Java: an ap-
praisement. In Proceedings of the 1999 Int. symposium on Symbolic and algebraic
computation, pages 237-244. ACM, 1999.

J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A methodology for bench-
marking Java Grande applications. In Proceedings of the ACM 1999 conference on
Java Grande, pages 81-88. ACM, 1999.

B. Delaunay. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk, 7:793-800, 1934.

A. Elnagar and L. Lulu. A global path planning Java-based system for autonomous
mobile robots. Science of Computer Programming, 53(1):107-122, 2004.

J. Lewis and U. Neumann. Performance of Java versus C++. Computer Graphics
and Immersive Technology Lab, University of Southern California, Jan, 2003.

M. Long, A. Gage, R. Murphy, and K. Valavanis. Application of the distributed
field robot architecture to a simulated demining task. In Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE Int. Conference on. IEEE, 2005.
C. Mangione. Performance tests show java as fast as c++. JavaWorld, 1998.

S. Meloan. The Java HotSpot (tm) Perfomance Engine: An In-Depth Look. Article
on Suns Java Developer Connection site, 1999.

F. Monteiro, P. Rocha, P. Menezes, A. Silva, and J. Dias. Teleoperating a mo-
bile robot. A solution based on JAVA language. In Industrial Electronics, 1997.
ISIE’97., Proceedings of the IEEE Int. Symposium on, volume 1. IEEE, 2002.

L. Prechelt et al. Comparing Java vs. C/C++ efficiency differences to interpersonal
differences. Communications of the ACM, 42(10):109-112, 1999.

F. Raimondi, L. Ciancimino, and M. Melluso. Real-time remote control of a robot
manipulator using java and client-server architecture. In Proceedings of the 7th
Int. Conference on Automatic Control, Modeling and Simulation, 2005.

S. Robertz, R. Henriksson, K. Nilsson, A. Blomdell, and I. Tarasov. Using real-
time Java for industrial robot control. In Proceedings of the 5th Int. workshop on
Java technologies for real-time and embedded systems, pages 104-110. ACM, 2007.
M. Roulo. Accelerate your Java apps. Java World, 1998.

S. Spw, S. Wentworth, and D. Langan. Performance evaluation: Java vs c++. In
39th Annual ACM Southeast Regional Conference. Citeseer, March 16-17 2001.

S. Wilson and J. Kesselman. JavaTM Platform Performance - Chapter 8.
Sun Microsystems, 2001. http://java.sun.com/docs/books/performance/1st_
edition/html/JPAlgorithms.fm.html.

