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Abstract. Environmental monitoring networks are providing large amounts of spatio-temporal data.
Air pollution data, as other environmental data, exhibit a spatial and a temporal correlated nature.
To improve the accuracy of predictions at unmonitored locations, there is a growing need for models
capturing those spatio-temporal correlations.
With this work, we propose a spatio-temporal model for gaussian data collected in a few number of
surveys. We assume the spatial correlation structure to be the same in all surveys. Moreover, as a
consequence of the reduced number of time observations, the temporal correlations are modeled as
fixed effects. A simulation study, aiming to validate the model, is conducted. The proposed model is
applied to heavy metal concentration data, collected using moss biomonitors in Portugal, from three
surveys which occurred between 1992 and 2002. Prediction maps of the observed variable for the
most recent survey, together with the corresponding prediction variance as an uncertainty measure,
are presented.
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1 Introduction

The Portuguese participation in the international mapping project Atmospheric Heavy Metal Deposition
in Europe yielded concentration values of several heavy metals in biomonitoring moss samples. In the lit-
erature, one may found several spatio-temporal models applied to monitoring data. Cocchi et al. (2007),
under the Bayesian framework, use data from 11 spatial locations collected over 1096 days. Bruno et al.
(2003) use a data set consisting of daily ozone measurements made at 32 monitoring locations, for the
period 1998-2002, enabling the identification of the temporal variability which, when removed, leaves
separable space and time correlation components. Mitchell et al. (2005), aiming to study the effect of
high levels of CO2 on rice using data from 13 spatial locations and 112 time points, test the separability
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of the proposed spatio-temporal model by rearranging the data as in the context of multivariate repeated
measures. These examples, opposite to the one here proposed, share one common feature: the number
of time observations is (much) larger than the number of spatial locations.
There are examples, however, where data are collected over a large number of spatial locations but only
few times, disabling the use of time series techniques. Margalho et al. (2014) proposed an extension of
an existing spatio-temporal model, using the previously mentioned portuguese biomonitoring data.

2 The model

We propose a spatio-temporal model for Gaussian data, collected at location s and time t,

Y (s, t) = µ(s, t)+Z(s, t)+ ε(s, t) (1)

The mean component µ(s, t), depending on possibly observed covariates fi(s, t), will be considered as

µ(s, t) =
p

∑
i=1

βi fi(s, t) (2)

where E[Y (s, t)] = µ(s, t). The non-observed spatio-temporal process Z(s, t) is such that

Z(s, t)∼ MV N (0,Σ) (3)

and ε(s, t) represents gaussian space-time measurements errors,

ε(s, t)∼ N(0,τ2) (4)

In the space-time process (3), considering N locations observed at T surveys, Σ is represented by a T ×T
symmetric matrix whose elements Σtk,tl are N ×N matrices, where the element on line i and column j is

Σtk,tl
i j = Cov [Z(si, tk),Z(s j, tl)] , k, l = 1, · · · ,T ; i, j = 1, · · · ,N (5)

The proposed model assumes an isotropic and separable covariance structure, so we define purely spatial
and purely temporal covariance functions, CovS and CovT , resulting in

Cov [Z(si, tk),Z(s j, tl)] = CovS (∥si − s j∥)×CovT (|tk − tl|)

= CovS (hS)×CovT (hT )
(6)

Under the assumption of second order stationarity, we propose two different interpretations for the co-
variance function. Denoting by σ2

S the spatial variance and by σ2
T the temporal variance,

Σ(hS,hT ) = σ2
SRS(hS)◦σ2

T RT (hT ) (7)

As an alternative, and denoting by σ2
total the overall variance,

Σ(hS,hT ) = σ2
total RS(hS)◦RT (hT ) (8)

(◦ represents elementwise product of matrices).
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3 Simulation study

For a model validation purpose, a simulation study was conducted. A set of 50 randomly chosen space
locations was considered in the square [0,1]2. In order to have a region with more intensified sampling
density, mimicking the behavior of the real data set used in the application, 15 of those locations belong
to the square [0.45,0.55]2. Observations are assumed to be collected at 3 different moments, according
to an AR(2) model. The mean component (2) includes the covariates intensity of the sampling design,
int(s), and the specific contribution of a given survey, vi(t), resulting in

µ(s, t) = β0 +β1int(s)+β2v2(t)+β3v3(t)

where

vi(t) =


1 if t = i

i = 2,3
0 otherwise

Using the absolute value of the coefficient of variation as an accuracy measure, simulations with Σ(hS,hT )
given by (7) provided better results than when using (8).

4 Application

The model described in (1) assumes that the hidden process Z(s, t) and the measurement error ε(s, t) are
Gaussian ((3) and (4)). It is well known (e.g. Cressie and Wikle (2011)), that for a non-observed location
s0 and a time t0, the joint distribution of Y (s0, t0) and Y (s, t) is[

Y (s0, t0)
Y(s, t)

]
∼ MVN

([
µ(s0, t0)
µ(s, t)

]
,

[
C0,0 cT

0
c0 CY

])
(9)

where µ(s0, t0)= β̂0+β̂1int(s0)+ β̂3 and µ(s, t) are defined by (2), C0,0 =Var(Y (s0, t0)), c0 =Cov(Y (s0, t0),Y (s, t)),
and CY = Σ+ τ2I with Σ as in (5).
Under the assumption (9), the predicted value at an unsampled location Y ∗(s0, t0) is given (Cressie and
Wikle (2011)) by

Y ∗(s0, t0) = E [Y (s0, t0)|Y] = µ(s0, t0)+ cT
0 C−1

Y (Y(s, t)−µ(s, t)) (10)

and the variance of the prediction is

σ2(s0, t0) = E [Y (s0, t0)−Y ∗(s0, t0)]
2 =C0,0 − cT

0 C−1
Y c0 (11)

The estimates of the model parameters are in Table 1. The computation of the standard errors was made
via Monte-Carlo simulation.

Param. β0 β1 β2 β3 ρ12 ρ13 ρ23 σ2
S σ2

T τ2 ϕ
Estim. 7.449 0.007 0.152 -0.241 0.973 0.909 0.965 0.979 1.483 1.023 58624.08
St. Error 0.042 0.003 0.014 0.019 0.008 0.009 0.009 0.011 0.018 0.013 1470.20

Table 1: Model parameter estimates with standard errors, for Scenario 1

Figure 1 shows the (Box-Cox transformed) predicted concentration map for the most recent survey
and the corresponding interpolation error map, over mainland Portugal.
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Figure 1: Mn prediction map (left) and interpolation error map (right).
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