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Abstract. Abstract potential theory and Dirichlet’s priciple constitute the basic elements of the well-
known classical theory of Markov processes and Dirichlet forms. In the spatial Gaussian framework,
the duality condition allows the derivation of differential models whose solution is a Markov spa-
tial process of finite-order. Gaussian fractional-order pseudodifferential models have been obtained by
means of the duality condition in the papers by Ruiz-Medina, Angulo and Anh (2003) and Ruiz-Medina,
Anh and Angulo (2004). The present paper extends these results in the spatiotemporal context using
the theory of non-local Dirichlet forms, arising in the framework of symmetric Markov processes of
pure jump type, allowing a spatiotemporal formulation of the duality condition. This condition leads,
in particular, to the derivation in an abstract setting of a fractional-order pseudodifferential repre-
sentation in space and time for Gaussian random fields, whose continuous spatiotemporal covariance
kernel could be non-differentiable in the strong-sense. That is, new classes of spatiotemporal Gaus-
sian processes can be introduced in this framework, including several classes of fractal spatiotemporal
processes, as well as the class of spatiotemporal random fields, S/TRF-ν/µ, introduced in Christakos
(1991), in connection with Stochastic Partial Differential Equations (SPDE).

Keywords. Distribution theory; Duality condition; Non-local Dirichlet forms; Tempered distributions;
Weak-sense fractional-order differentiation.
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1 Introduction

Increased attention has been paid in recent years to the functional modeling of spatiotemporal data,
including the statistics literature, and the general scientific literature with applications in, e.g., envi-
ronmental, ecological and health sciences. SPDE offers a suitable mathematical-probabilistic context
to incorporate sample information from spatiotemporal referenced data (see Christakos, 2000). In this
framework, the physical laws representing future changes that are currently unobservable are involved
in the derivation of the spatiotemporal random field model, providing the ability to forecast new states
arising in the evolution of the phenomena under study. In particular, the prediction and extrapolation
problems are addressed in an accurate and flexible way, even in the presence of spatial heterogeneities
and, in general, of non-stationary or non-linear behavior in space and/or time (see, for example, Ruiz-
Medina and Angulo, 2007; Ruiz-Medina and Fernández-Pascual, 2010).

The spatiotemporal dependence structure is often interpreted as the temporal evolution of a spatial
process described in the form of a dynamic model in discrete time (considered, for example, in the
functional linear context by Gelfand, Banerjee and Gamerman, 2005; and in the autoregressive Hilbertian
time series context by Bosq, 2000; Bosq and Blanke, 2007, and by Ruiz-Medina and Salmerón, 2010,
among others). When continuous time is considered in the description of the temporal evolution of the
spatial process of interest, SPDE and, in general, stochastic pseudodifferential evolution equations are
considered (see Angulo et al., 2005; Christakos, 1992; Christakos and Raghu, 1996; Kelbert et al., 2005;
Leonenko and Ruiz-Medina, 2006, among others). In the statistics literature, spatiotemporal covariance
modeling in continuous time and space also constitutes an active area of research in the last few decades,
since the work of Mardia and Goodall (1993) on separable space-time covariance functions to the more
recent works on nonseparable space-time covariance modeling by Gneiting (2002); Gneiting, Kleiber
and Schlather (2010); Porcu, Gregori and Mateu (2006); Porcu and Zastavnyi (2011); Stein (2005) and
references therein.

The outline of the paper is as follows. The spatiotemporal duality condition is formulated for a
given Reproducing Kernel Hilbert Space (RKHS) generated by a spatiotemporal covariance model. The
covariance operator of the dual random field can be factorized in terms of a non-local symmetric Dirich-
let form. The L2 semigroup associated with this closed form defines the fundamental solution of the
fractional-order pseudodifferential equation satisfied by the spatiotemporal zero-mean Gaussian random
field, univocally determined by its RKHS (see, for example, Da Prato and Zabczyk, 2002). Finally, the
asymptotic distributional properties of the introduced class of spatiotemporal Gaussian random fields are
derived. Specifically, its asymptotic, in time, infinite-dimensional distribution admits a representation in
terms of an infinite product of time-dependent Gaussian measures. For numerical illustration purposes
certain simulation examples with mean quadratic local variation properties are studied.

2 Spatiotemporal duality condition

Let us consider the non-local symmetric Dirichlet form (E ,G) given by

E( f , f ) =
∫

Rd

∫

Rd
( f (x)− f (y))2J(x,y)dxdy, ∀ f ∈ L2(Rd), (1)

where G denotes the closure with respect to E1 = E +‖ · ‖2
L2(Rd), with E1( f , f ) = E( f , f )+‖ f‖2

L2(Rd),

for all f ∈ L2(Rd), of the set of continuous functions onRd with compact support, and J denotes a kernel
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such that two positive constants K1 and K2 exist satisfying the condition

K1‖x−y‖−d−α ≤ J(x,y)≤ K2‖x−y‖−d−β,

for 0 < α < β < 2, and ‖x−y‖< 1.

Let {X(t,z), t ∈ R+, z ∈ D⊂ Rd} be a spatiotemporal zero-mean Gaussian Random Field (RF) on
a Dirichlet regular compact domain D. Assume that the spatiotemporal convariance kernel rX(t,s,z,y)
= E[X(t,z)X(s,y)], defining the integral covariance operator RX of X satisfies rX(t,s,u,v) = 0, for all
u,v ∈ ∂D, with ∂D denoting the boundary of D with null Legesgue measure. For simplicity in what
follows we also assume that D is a convex regular domain.

Definition 1 Let
{∫

D X̃(t,y)ϕ(t,y)dtdy, ϕ(t, ·) ∈ Hγ(D), t ∈ R+

}
be a zero-mean Gaussian General-

ized Random Field (GRF). Here, Hγ(D) denotes the fractional Sobolev space of order γ ≥ max{α,β}
constituted of functions ψ with compact support contained in D such that

∫
D

∣∣(−∆)γ/2(ψ)(z)
∣∣2

dz < ∞,

where (−∆)γ/2 denotes the inverse of the Riesz potential of order γ (Triebel, 1978). The GRF X̃ defines
the dual RF of X iff satisfies the following conditions:

(i) E
[∫
R+×D X̃(t,y)ϕ(t,y)dtdy

]
= 0, for all ϕ(t, ·) ∈ Hγ(D), and for each t ∈ R+.

(ii)
∫
R+×R+

∫
D×D E

[
X̃(t,y)X(s,z)

]
ϕ(t,y)φ(s,z)dtdsdydz =

∫
R+×D ϕ(t,y)φ(t,y)dtdy,

for all ϕ(t, ·),φ(t, ·) ∈ Hγ(D), and for each t ∈ R+.

3 Fractional-order pseudodifferential representation

Let X be a spatiotemporal zero-mean Gaussian RF satisfying conditions (i)-(ii) in Definition 1. Then, X
satisfies, in the weak-sense, the following fractional-order pseudodifferential evolution equation:

∫

D
ψ(x)

∂
∂t

X(t,x)dx = E(X(t, ·),ψ)+
∫

D
ψ(x)ε(t,x)dx, (2)

for all ψ ∈ Hγ(D), where ε denotes spatiotemporal Gaussian white noise. Equation (2) holds in the
strong-sense, i.e., pointwise, for γ > d/2. The proof of the weak-sense identity (2) follows from Def-
inition 1, in particular, from condition (ii), the covariance kernel of X̃ defines a non-local symmetric
Dirichlet form as in (1), and, for all ϕ ∈ RX(L2(R+×Hγ(D)),

R−1
X (ϕ)(ϕ) = E

[∫

R+×R+

∫

D×D
X̃(t,x)X̃(s,y)ϕ(t,x)ϕ(s,y)dtdsdxdy

]

=
∫

R+×R+

〈
F (ϕ(t, ·)−ϕ(s, ·))∗F (ϕ(t, ·)−ϕ(s, ·)) ,H (F (J), t,s)

〉
L2 dtds,

H (F (J), t,s) =
[

exp(−(t− s)F (J))− exp(−(t + s)F (J))
F (J)

]−1

, ∀t,s ∈ R+, (3)

where 〈·, ·〉L2 represents the inner product in L2, with F (J) denoting the Fourier transform of J in equa-
tion (1), and F (ϕ(t, ·)−ϕ(s, ·))∗F (ϕ(t, ·)−ϕ(s, ·)) being the convolution in the spatial domain.
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