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Abstract. This work deals with the spatio-temporal analysis of urban air pollution dynamics from the
town of Perugia, Italy, using high-frequency and size resolved data on particular matter. Hierarchical
Bayesian models are used that allow for an autoregressive term in time. Some preliminary results
show that there is a significant spatio–temporal structure with a large first–order temporal correlation
coefficient. Future analysis will concern the use of higher–order temporal auto–correlation structures
and the introduction of the effect of some covariates.
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1 Introduction

Urban pollution has an important impact on human health and environment. Investigating the behavior
of pollutants and understanding air quality of particular geographical areas has been one of the central
issues in environmental public policy and decision making. Air pollution often shows a spatio-temporal
structure. Hierarchical Bayesian modeling provides useful tools to investigate spatial and/or temporal
patterns also in large datasets [3, 4, 5]. There exist various types of spatial data, including spatio-
temporal point referenced data [2], where observations are collected over time at several spatial loca-
tions, which vary continuously over a study area. In this paper we analyze data from the PMetro project
(http://www.pmetro.it), which studies urban pollution dynamics in the town of Perugia (Italy) since
September, 2012, using the spTimer R package [1]. Unlike classical monitoring of pollutants concen-
tration using fixed stations, fast measure of gases and size resolved particulate matter (PM) is coupled
with information on the evolution of urban microclimate and vehicular traffic fluxes. In particular, data
is collected using an instrument located on a cabin of the Minimetro, a public conveyance that moves on



Del Sarto et al. Bayesian modeling of urban air pollution dynamics

Figure 1: Schematic map of the minimetro path and of the sources of data. In the upper panel station
names and elevation (meters a.s.l.) are indicated. In the lower panel a 2D sketch of the area suggests
the main intersections with traffic roads and indicates also some points of interest (car parking, urban
park, tunnels). The metro path is shown at the bottom together with distances along the path (in meters).
Position and typology of the instruments employed in the project are also shown.

a monorail throughout the town. The paper is organized as follows. Section 2 illustrates the data ana-
lyzed in more detail and provides the structure of the spatio-temporal model employed. Then, Section 3
provides some preliminaries results obtained and directions for future work.

2 The data and the model

An OPC (Optical Particle Counter) integrated on a cabin of Minimetro is used to get a snapshot of the
urban pollution dynamics along a sector of the town at high spatial and temporal resolution. Figure 1
provides all the detail on the metro path. It is about 3 km long with seven stations: a single travel takes
about twenty minutes, so that each cabin runs along the same path about forty times a day. The path is
outdoors for the most part and passes through parks, highly-traffic roads, residential areas and two tun-
nels. The OPC takes a sample of air every 6 seconds while the cabin moves on the monorail and counts
the number of particles between 0.28 and 10 micrometers (µm, 10−6 meters) in 22 size channels. The
position and speed of the cabin is continuosly recorded by the central control software of the Minimetro
transport system and transmitted to the OPC data logger. Therefore, the sampling points are variable
along the path and depend on the speed of the cabin, which is not constant along the path or during the
day. In this paper we focus on the number concentration of fine particles, i.e. those with a diameter
between 0.28 and 1.10 µm.

We analyze data collected on January and February, 2014: due to the different operation-time of the
Minimetro on the basis of the day of the week, we cut the entire dataset to have observations from 6 am
to 7 pm and we average the concentration measure in each hour, so that we have 14 hourly observations
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per day. Furthermore, we divide the entire path of the Minimetro into n = 45 equally-spaced spatial
segments, for which we determine the coordinates in Latitude and Longitude. Finally, we have mea-
surements available for 23 days for each month, each day has 14 hourly observations, each hour has 45
observations relative to spatial segments: the final dataset is made up of 28,980 observations (46 days ×
14 hours × 45 segments). It is possible to have some missing data due to maintenance and/or malfunc-
tioning of the OPC, but we can consider missingness to be completely at random.

Let l and t denote the two units of time, where l = 1, . . . ,46 denotes the longer unit, i.e. the day, and
t = 1, . . . ,14 denotes the shorter unit, i.e. the hour. Let Zl(si, t) be the observed point referenced data and
Ol(si, t) be the true value corresponding to Zl(si, t) at space segment si, i = 1, . . . ,n = 45 at time denoted
by the two indices l and t. Then let Zlt = (Zl(s1, t), . . . ,Zl(sn, t))T and let Olt be defined similarly in
terms of Ol(si, t). For our analysis, we use the hierarchical autoregressive model proposed in [6] whose
specification is as follows:

Zlt =Olt +εlt , (1)

Olt = β0 +ρOlt−1 +ηlt , l = 1, . . . ,46 t = 1, . . . ,14, (2)

where εlt is the so called nugget effect (or the pure error term) and is assumed to be independently
normally distributed N(0,σ2

εIn), where σ2
ε is the unknown variance and In is an identity matrix of order

n; β0 is a common intercept term. Furthermore, we also assume that the spatio-temporal random effects,
ηlt , follow a normal distribution N(0,Ση) independently in time, where Ση = σ2

ηSη, with σ2
η is the site

invariant spatial variance and Sη is the spatial correlation matrix. This matrix can be determined using
the general Matérn correlation function, or more simply it can have exponential form, depending on a
parameter φ, which determines the rate of decay of the correlation as the distance between two locations
increases [2]. Finally, ρ denotes the unknown temporal correlation parameter which lies in the interval
(-1, 1).

3 Preliminary results and future developments

To estimate model (1)-(2) above, we use the R package spTimer [1] version 1.0-1 using a Gibbs sam-
pling approach, with default values for the starting values for the model parameters and for the hyper-
parameters values of the prior distributions (for more details on this see [1]). Matrix Sη is determined
using the exponential correlation function. For the spatial decay parameter φ we use a plug-in value equal
to − log(0.05)/dmax, where dmax is maximum distance between locations. Given the skew distribution of
the number of fine particles, we use a logarithmic transformation for the response variable. Furthermore,
MCMC is run for 10,000 iterations with burn-in 1,000. The traceplots for the model parameters are
reported in Figure 2 together with posterior density estimates.

The chains provide evidence of a good convergence of the model for all parameters. The poste-
rior density estimates show that all parameters are statistically significant. We can also observe a strong
spatio-temporal effect with the spatial variance σ2

η having mean 2.407, significantly higher that the nugget
effect σ2

ε (mean equal to 0.059). Finally, there is also evidence of a strong positive autoregressive term
in time, with ρ having posterior mean equal to 0.827.

These are just first results that are the basics for further analysis. First we wish to conduct a sensi-
tivity analysis to better understand the role and provide a good plug-in value for the decay parameter φ.
Then, since we have covariates, we wish to change equation (2) to

Olt = ρOlt−1 +Xltβ+ηlt , l = 1, . . . ,46 t = 1, . . . ,14,

where Xlt is a matrix with n rows and, say, p columns (the number of covariates) and β is the p-vector
of the regression coefficients. This will enable us to understand the effect of some covariates, such as
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Figure 2: MCMC traceplots and density estimates for model parameters

the temperature or the relative humidity measured with instruments placed on the Minimetro cabin, or
the altitude or the typology of the spatial segment. Moreover, these first results provide evidence of
a significant first-order temporal autocorrelation so that we would like to introduce higher order auto-
correlation terms. Once a the relatively best model has been picked, this approach allows for producing
maps of concentrations over the urban area covered by the Metro path, and also for predicting maps
for future time points. Finally, since the cabin also measures NO concentration at the same space-time
resolution, it would be of great interest, in addition, to model it jointly with the fine particle concentration
using a multivariate space-temporal model.
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