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Abstract. For managing risks in climate or environmental fields, max-stable processes can be used as
models for spatial and spatio-temporal extremes. When some information on the process of interest
is available, conditional simulations provide probability distributions according to the information,
allowing us to evaluate risks more precisely. Usually the information available is given by observed
values of the process in some sites. Instead, in this work, we focus on the case that aggregated data
are given. As condition, we consider a homogeneous functional like the integral or the maximum of
the process. Due to the analytic intractability of the involved distributions, we propose a sampling
algorithm based on MCMC techniques. The procedure consists of two steps where the second step is
based on conditional sampling from a max-linear model. We illustrate the performance of the proposed
algorithms in a simulation study and in an example of a real dataset of precipitation observations with
a condition stemming from regional climate model outputs.
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1 Introduction

During the last years, max-stable processes have gained increasing attention as models for spatial and
spatio-temporal extremes (cf. [5] and [6], for example). For instance, they are useful for managing risks
in climate or environmental fields, and, thus, have frequently found application in these frameworks.

Sample-continuous max-stable processes on some compact (spatial or spatio-temporal) domain K are
fully characterized by their spectral representation ([3],[8]): Let {U; };cn be the points of a Poisson point
process on (0,0) with intensity «~2du. Independently from the Poisson point process, let W;, i € N, be
independent copies of some sample-continuous stochastic process {W (¢), 7 € K} with EW (¢) = 1 for all
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t € K. Then,
X(t):m%\?(UlW/l(t)? tek, (1
4SS

defines a max-stable process with standard Fréchet margins, i.e. P(X (1) < x) =exp(—x~!), x> 0,1 € K.

Conditional simulations yield empirical probability distributions according to a model and some
information available, usually observations in given locations. Thus, they provide useful information,
especially in terms of risk assessment for the process of interest at locations where measurements are
missing or vague. Recently, the question of conditional simulation of max-stable processes has become
a focal point of interest. An exact and computationally efficient algorithm for conditional simulation of
max-linear (i.e. spectrally discrete) models are developed by Wang and Stoev in [10]. In [1], Dombry
and Eyi-Minko provide exact formulae for the conditional distribution of general max-stable processes
in terms of its exponent measure. These formulae allow for an explicit calculation and implementation
of a sampling algorithm in case of regular models (cf. [2], for example).

All the articles mentioned above deal with the distribution of the process X conditional on its value in
some sites f1,...,%, € K. Thus, the proposed algorithms allow to investigate the probabilistic behaviour
of X on the whole domain K given measurements or forecasts at some locations or instants of time,
respectively. Here, we do not restrict ourselves to the value of the process at specific locations, but
allow for a condition given by a more general functional. More precisely, we consider a homogeneous
functional £ : C (K) — [0,00), i.e. {(af) = al(f) for all a > 0 and f € C+(K), where C.(K) denotes the
space of all non-negative and continuous functions on K. Besides point evaluation, a functional like the
integral or the maximum of the process satisfies this condition.

In the following, we aim to sample from the distribution of X | £(X) = x for some x > 0. This might
be of practical relevance in various situations, like in the case of local climate prediction according to
outputs of regional climate models, given as an aggregated value on a grid cell. Due to the computational
complexity, these models work on a coarse grid and thus provide forecasts for the average of the variable
of interest over a rather large region, i.e. the integral of the corresponding random field.

Note that, in contrast to max-linear functionals, general homogeneous functionals do not allow for
expressions in terms of the exponent measure of the underlying process. Thus, the techniques of [1]
are not applicable in this general setting. Due to this lack of analytic tractability, we will choose an
algorithmic approach for the sampling procedure based on MCMC methods. The procedure will consist
of two steps where the second step is based on conditional sampling from a max-linear model.

2 Max-Linear Models

First, we consider a max-linear (i.e. spectrally discrete max-stable) model (cf. [10]):

X(t) = max aj(t)Z;, tek, )
Jj=1,...n
where Z; are independently and identically standard Fréchet distributed random variables and a; €
C+(K), j=1,...,n. Following [10], we will write X = A ® Z instead of (2), for short. Note that all
the finite-dimensional marginal distributions of a max-stable process can be approximated arbitrarily
well by such a model.
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For simplicity, we assume that £(X) > 0 a.s. Then, on each ray {z € (0,00)" : z =z}, Zp € (0,00)",
there is one unique point z satisfying /(A ®z) = x for some given value x > 0, namely z = x-zy /(A ®Ozp).
Thus, instead of simulating Z = (Zy,...,Z,)", we could equivalently sample Y = (Z,/Z,,...,Z,/Z;)
from the distribution of Y | (X) = x which, in contrast to the distribution of Z | /(X) = x, is absolutely
continuous with respect to the Lebesgue measure with density fyjg(x)=x-

To this end, we propose an algorithm of Metropolis-Hastings type (cf. [9], for example). Given
a current state y¥), we propose a new state y*, sampled from the unconditional density fy of Y. The
proposal is accepted with probability

. W) e (y")
(k) o*) — 1
v mm{ RO o) [

which can be calculated explicitly. It can be shown that the distribution of the resulting Markov chain
converges to the desired conditional distribution of Y | /(X) = x. Based on a realization y from this
distribution, a sample from the distribution of the process X conditional on ¢(X) = x is obtained by

ey Aoy )

3 General Max-Stable Processes

We now consider a general max-stable process. In view of its spectral representation (1), it has a similar
structure as a max-linear process where the Poisson points {U;};cn correspond to the Fréchet random
variables Z; and the spectral functions W; take the role of the coefficient functions a;. Thus, in the
general case, the coefficient functions are random and their number is infinite.

To cope with these problems, we use a general construction principle for Poisson point processes via
exponentially distributed random variables and rewrite (1) in the form

X (1) =4 max (£4, E)'Wi(t), teKk, 3)
€
where E;, i € N, are independent standard exponentially distributed random variables.

Further, we note that the choice of the spectral functions W is not unique. In particular, according
to Corollary 9.4.5 in [4], they can be chosen such that sup,.x W (r) < C a.s. for some C > 0. By this
observation, only a finite random number N(W, E) of functions, defined by

N(W,E) = min {N eN: (LN, E))'c< inf max (z{.;lE,-)’l Wk(t)} :

may contribute to the process X (cf. [7]). Thus, we have

-1
X(t) = kK E)) We(t), teKk,
(t) dkggl(%fw)( 1 Ei)  Wi(r)

which can be interpreted as a model of max-linear type with a random number N(W,E) of random

coefficient functions W = (Wk)kN:(VIVE).

Thus, based on our results for the max-linear case, we propose a two-step procedure:
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1. Draw a random number N and a vector w = (wy(¢))_; of spectral functions from the joint dis-
tribution of N(E,W),W | /(X) = x via a Metropolis-Hastings algorithm. Here, for an arbitrary
proposal distribution for N(E, W) and the unconditional distribution of W as proposal distribution
for the spectral functions, the corresponding acceptance probability can by calculated explicitly.

2. Simulate a vector e = (e;)Y_, from the distribution of E | N(E,W) =N, W =w, {(X) =x viaa
Metropolis-Hastings algorithm. The algorithm can be designed in a similar way as for the case of
a max-linear model.

Then, a realization of the max-stable process X | £(X) = x is given by

X(r)= max (LEie) wil), teK.

Finally, we analyze the performance of the MCMC algorithms and their convergence, both in the
max-linear and in the general max-stable setting, in a simulation study. To this end, we compare their
results with the exact conditional distribution which is known in the case of ¢ being a point evaluation
(cf. [10, 1]). Further, the performance of the algorithms is illustrated in a real dataset example: a max-
stable model is fitted to extreme precipitation in the French region of Cevennes, and simulations of the
fall pointwise maxima are performed conditionally on the outputs of a regional climate model.
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