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Abstract. It is often of interest to predict spatially correlated discrete data, such as counts arising
from disease incidence or mortality rates, or indicator variables arising from population thresholds or
measuring presence or absence of a given phenomenon. A generalized linear mixed models (GLMM)
approach to prediction using Poisson and Bernoulli response variables conditional on the spatial lo-
cation is simulated using G-side models. We simulated data from a Poisson and Bernoulli distribution
with spherical correlation structure, and separately simulated covariates correlated with the origi-
nal variable from Gaussian, Binomial, and Beta distributions. This was accomplished using NORTA
(Normal to Anything) after simulating a spatial Gaussian structure. We then compared prediction of
unobserved spatial locations under various conditions: with the entire response variable (Poisson or
Bernoulli) available or various fractions of it missing, and with the entire covariate variable (Gaus-
sian, Binomial, Beta) or some of it missing. We also fit a multivariate GLMM with both the response
variable and the covariate as outcome variables to compare its prediction with the other scenarios
as described. We found, as expected, the addition of a covariate improved prediction in the GLMM
models. However, the comparison of interest is looking at the effect of the various covariate distribu-
tions. Moreover, spatial modeling of non-normal data with GLMM presents some unique challenges,
and should not be pursued without prior understanding.
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1 Introduction

In medical science and epidemiology, disease mapping is an important part of identifying trends, de-
termining causes of disease and predicting where new case will occur. Often the number of cases at
several locations, or the presence or absence of cases, are determined and presented for analysis to make
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predictions or determine geographical correlations with risk factors in the environment.

Gotway and Wolfinger discuss several methods of spatial prediction for disease counts and rates.
They compare kriging, the traditional method of prediction in spatial analysis, to a generalized linear
mixed model (GLMM) analysis method using the SAS macro GLIMMIX fitting both conditional and
marginal models (Gotway, 2003). Gotway and Wolfinger simulated count data using a Gaussian ran-
dom field, which is not ideal for discrete data, whether recorded in counts (Poisson) or as indicators
(Bernoulli).

Yahav and Shmueli describe a method of generating multivariate Poisson data called NORTA (Nor-
mal To Anything) based on simulating data from a multivariate Normal distribution and converting it to
a continuous distribution using the inverse cumulative distribution function (Yahav and Shmueli, 2012).
Prates further applied this method of simulation with a spatial correlation structure in a Bayesian context
(Prates, 2012).

Oliver describes a method of co-simulating spatial random fields that allows for different auto-
covariance models for the two fields. In this way one can simulate an outcome variable with a particular
spatial structure (such as a spherical auto-covariance) along with a covariate for the outcome variable
with a completely different spatial structure (such as an exponential auto-covariance) and yet maintain a
correlation between the two spatial random fields.

In this paper we examine the predictive ability of GLMM (generalized linear mixed models) for
unobserved spatial locations under various conditions: with the entire response variable (Poisson or
Bernoulli) available or various fractions of it missing and with the entire covariate variable (Gaussian,

Binomial or Beta) or some of it missing. We also fit a multivariate GLMM with both the response variable
and the covariate as outcome variables to compare its prediction with the other scenarios as described.

2 Simulation Methods and Results

To model the Poisson spatial data, we chose a conditional framework for the GLMM, or the G-side
model.

Let Y(s1),Y(s2),...,Y(s,) be data that we have observed at spatial locations si,s2,...,5,. Then
Y |u ~ Poisson(\), where u is the random spatial effect. We know

E(Y|u) =7

Var(Y|u) =\

The traditional link function of count data is the /og link, N = g(u|u) = log()).

We can model the Bernoulli spatial data in a similar framework. For observed spatial data Y (sy),Y (s2),...,Y (s4),
Y |u ~ Bernoulli(nt). Then
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EY|u)=n

Var(Y |u) = n(1 —m)
T
For Bernoulli data, the traditional link function is the logit, N = g(u|u) = logit(n) = log(ﬁ).

Gotway and Wolfinger simulated count data using a Gaussian random field; however this is not ideal
for the simulation of discrete data. Yahav and Shmueli describe a method of generating multivariate
Poisson data that can arise from a spatial correlation structure (Yahav and Shmueli, 2012). Normal
to Anything (NORTA) is an approach to generate data from a multivariate distribution with a given
univariate marginal and pre-specified covariance structure.

2.1 Generating Poisson Data

A p-vector can be generated from a multivariate normal distribution with covariance structure Ry and
then transformed to a Poisson distribution using the inverse cumulative distribution function. The algo-
rithm is as follows.

1. Generate a p-dimensional Normal vector Yy with mean vector u = 0 and variance vector ¢ = 1,
and covariance matrix Ry.

2. For each value Yy,,i € 1,2,...,p, calculate the Normal CDF.

3. For each ®(Yy,), calculate the Poisson inverse CDF (quantile) with mean A;.

YPois,- = E_l (¢(YN1))

where

e M\
i!

(x]

M=Y
i=0

Ypois;is a p-dimensional Poisson vector with covariance matrix Rp,;; and mean vector A. If the el-
ements of A are sufficiently large, the poisson distribution is known to be asymptotically Normal and
Rpois = Ry. If one of more of the means A are small, then Rp,;; # Ry. However, a formula to adjust the
covariance matrix is provided in Yahav and Shmueli (Yahav and Shmueli, 2012).
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2.2 Generating Bernoulli Data

A similar algorithm was developed to generate Bernoulli data from a multivariate normal distribution
with covaiance structure Ry. However an additional step is necessary to get the parameter .

1. Generate a p-dimensional Normal vector Yy with mean vector u = 0 and variance vector ¢ = 1,
and covariance matrix Ry.

2. For each value Yy, i € 1,2,...,p, calculate the Normal CDFE.
3. For each ®(Yy,), calculate the inverse CDF of a Beta(a., B) distribution, Ygeq,.

4. Let each Yp.q, = T;, and randomly draw a Bernoulli(Ype,; = T;) observation, Yge,,,.

Then Ypy,, is a p-dimensional Bernoulli vector with covariance matrix Rp,.,, and mean vector II.

2.3 Preliminary Results

We tested the NORTA method by simulating a Gaussian random field on a 30 x 30 grid with a spherical
covariance structure. The ranges simulated were 2.5, 5, and 15, assuming a sill of 1 and a nugget
effect of 0. After simulating the three Gaussian random fields, the distribution was transformed to four
Poisson cases and six Beta cases, while preserving the spherical covariance structure. After performing
the NORTA transformation, the range, sill, and nugget, as well as the ratio of the sill to the nugget were
estimated for each using ArcGIS. Maps of the data were also created for visual comparison.

Results presented will include estimated model parameters for Poisson and Bernoulli data using
both ArcGIS and GLMMs implemented using PROC GLIMMIX (SAS 9.3). Results also will include
addition of covariates into the model following the method outline by Oliver (2003), and a comparison
of unobserved spatial locations under a variety of conditions: with the entire response variable available
or fractions of it missing and with the entire covariate variable (Gaussian, Binomial, or Beta) or some of
it missing.
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