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Abstract.
Global mean surface air temperature is the most used measure of the climate system. Nowadays,
due to the climate change problem, the interest of predicting climatic values in areas without stations
has increased a lot and has been developed new interpolation methods. If we associate temperature
stations with their spatial coordinates, along with other variables, it is possible to identify them by
means of a spatio-temporal stochastic process. Two are the objectives in this work. Firstly, to predict
the mean temperature throughout Catalonia taking into account the total number of stations (180).
Secondly, to analyse the goodness of prediction reducing the number of stations gradually. At first, we
consider less randomly chosen stations (160,100,80) and then we select stations, which are in clusters.
We specified spatial log-Gaussian process models. Models are estimated using Bayesian inference
for Gaussian Markov Random Field (GMRF) through the Integrated Nested Laplace Approximation
(INLA) algorithm. The results allow us to quantify the minimum number of stations which are needed
to do the best prediction of the mean temperature in Catalonia as well as to know the best distribution
of these stations. We believe the methods shown in this study may contribute to improve prediction
studies and to reduce computational cost of these predictions.
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1 Introduction

Temperature is one of the most important atmospheric variables which directly impact physical and
biological processes. Climate is only one of the many physical variables which impact life on Earth.
However, one of the major concerns with a potential change in climate is that an increase in extreme
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events will occur. For this reason, interpolation methods of climatic data have been widely studied.
Specifically, in recent years, due to the growing interest that IPCC reports and the Kyoto Protocol have
caused new methodologies have been developing. The spatial availability of climate data can be a prob-
lem because, although the information is recorded, weather station network is often sparse. In this way,
different interpolation methods have been developed to predict climatic values in areas without stations.
If we associate temperature stations with their spatial coordinates, along with other variables, it is pos-
sible to identify them by means of a spatio stochastic process. In fact, what is usually of interest is to
assess their dependence on covariates. In order to optimize the number of stations used to get the best
prediction of the mean temperature it is necessary to distinguish between two sources of extra variabil-
ity; the largest source usually named ’spatial dependence’ or clustering and the one called uncorrelated
or non-spatial heterogeneity, which is due to unobserved non-spatial variables that could influence the
dependent variable (Lawson et al, 2003; Barceló et al, 2009). To take into account the spatio variabil-
ity, we introduce some structure into the model. In particular, we follow the recent work of Lindgren
(Lindgren et al. 2011), and specify a Matérn structure (Simpson et al. 2011). In short, we use a represen-
tation of the Gaussian Markov Random Field (GMRF) explicitly constructed through stochastic partial
differential equations (SPDE) which has as a solution a Gaussian Field (GF) with a Matérn covariance
function. To sum up, instead of using the Matérn in a regular lattice, which is the usual practice and
would imply an estimation with a high computational cost as well as one that would be weak in terms of
efficiency (Lindgren et al. 2011), we specify the structure of the spatial Matérn covariance in a triangu-
lation (Delaunay triangulation) of the studied area with a low computational cost and, more importantly
in our context, much greater efficiency. Therefore, in this work we apply a computationally efficient
approach based on the stochastic partial differential equation (SPDE) models and we use SPDE to trans-
form the initial Gaussian Field (GF) to a Gaussian Markov Random Random Field (GMRF). GMRFs are
defined by sparse matrices that allow for computationally effective numerically methods. Furthermore
using Bayesian inference for GMRFs, it is possible to adopt the INLA algorithm that gives significant
computational advantages.

2 Method

2.1 Data setting

In this study we consider 180 stations homogeneously distributed throughout the territory. In addition to
the locations of the stations centroids, measured in Cartesian coordinates (Mercator transversal projec-
tions, UTM, Datum ETRS89, zone 31-N), some spatial covariates are considered. In particular, we use
the relative humidity and elevation.

2.2 Statistical models

In statistical analysis, to estimate a general model is useful to model the mean for the i-th unit by means
of an additive linear predictor, defined on a suitable scale

ηi = α+
M

∑
m=1

βmzmi +
L

∑
l=1

fl(νli) (1)
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In our case, assuming that the subscript i denotes the mean temperature in a particular geographical
area, we specify the log-intensity of the Poisson processes by a linear predictor (Illian et al., 2012) of the
form

ηi(s j) = β0 +β1X j +β2Z j +S j (2)

where S j is the spatial dependence. Given the specification in (2), the vector of parameters is represented
by θ j = {β0,S} where we can consider Xi = (S) as the i-th realization of the latent GF X(s) with the
Matérn spatial covariance function. We can assume a GMRF prior on θ , with mean 0 and a precision
matrix Q. In addition, because of the conditional independence relationship implied by the GMRF, the
vector of the hyper-parameters ψ = (ψs) will typically have a dimension of order much smaller than θ.
Models are estimated using Bayesian inference for Gaussian Markov Random Field (GMRF) through the
Integrated Nested Laplace Approximation (INLA). The use of INLA and the SPDE algorithms produce
massive savings in computational times and allow the user to work with relatively complex models in
an efficient way. Once the model is estimated, we predict the mean temperature considering different
number of stations and then we use stations spatial distributed according different criteria. Prediction’s
results are tested analysing the minimum Deviance Information Criterion (DIC) and the lowest mean
error. A prediction map is created with the best results. All analyses are carried out using the R freeware
statistical package (version 2.14.1) (R-Development Core Team, 2011) and the R-INLA package (R-
INLA, 2012).

3 Results

Here we represent how stations are distributed through the studied area.

Figure 1: From left to right: all the stations; half of the stations and the cluster effect.

Considering all the stations we construct prediction maps of the mean temperature such as the fol-
lowing:
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Figure 2: Predicton map of mean temperature.
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