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Abstract. We consider here the problem of detecting local clusters in spatio-temporal point patterns.
These tools are based on local second-order characteristics of spatio-temporal point processes. We
extend the notion of spatial dependence to spatio-temporal structures defining the LISTA functions
derived from second-order spatio-temporal product densities. We derive some theoretical properties,
propose unbiased edge-corrected estimators and use these new functions to analyse and detect cluster-
ing in the spatio-temporal evolution of a disease.
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1 Introduction

LISA functions are built from local second-order characteristics of spatial point processes through con-
sidering individual contributions from second-order product density functions (Cressie and Collins,
2001a,b). Rodriguez-Cortés ef al. (2012) and Mateu and Rodriguez-Cortés (2014) introduced the first
approaches for extending the concept of LISA to the spatio-temporal context. We here define a new ver-
sion of these functions based on the most recent work by Gabriel and Diggle (2009), Mgller and Gorbani
(2012), Ghorbani (2013), Gabriel (2013) and Rodriguez-Cortés et al. (2014), and present edge-corrected
estimators developing their first-order theoretical moment. An application to detect spatio-temporal clus-
ters in public health problems is also considered.

Definitions and notations used throughout this paper are introduced by Mgller and Gorbani (2012)
and Rodriguez-Cortés ef al. (2014). We consider a spatio-temporal point process with no multiple
points as a random countable subset X of R? x R, where a point (u,s) € X corresponds to an event
at u € R? occurring at time s € R. In practice, we observe n events {(u;,s;)} of X within a bounded
spatio-temporal region W x T C R? x R, with area [W| > 0, and length |T| > 0. Let Nis and Ny be
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the spaces of locally finite subsets of R? and R equipped with -algebras Afs and Afy; respectively, see
Mpgller and Waagepetersen (2004). In the sequel, N(A) denotes the number of the events of the process
falling in a bounded region A C W x T. For a given event (u,s), the events that are close to (u,s) in
both space and time, for each spatial distance r, and time lag ¢, are given by the corresponding spatio-
temporal cylindrical neighborhood of the event (u,s), which can be expressed by the cartesian product
as b((u,s),r,t) ={(v,]): lu—v| < r|s—1] <t}, with (u,s),(v,l) € R? x R, and where || - || denotes the
Euclidean distance in R? and | - | denotes the usual distance in R. Note that b((u, s),r¢) is a cylinder with
center (u,s), radius » and height 2.

Assume that p(u, s) is the spatio-temporal intensity, and p®)((u,s), (v,1)) the second-order product
density function. A process for which p(u,s) = p for all (u,s) € X is called homogeneous of first-order.
Further, if p®)((u,s),(v,1)) = p® (u—v,s — ), the process is called second-order or weak stationary
(Ghorbani, 2013). We assume that the point process X is orderly, roughly meaning that coincident points
cannot occur. We assume first- and second-order spatio-temporal separability hypothesis, i.e.,

p(u,s) =pr(u)pa(s), (u,s) €R*xR, (1)
and
P ((u,s),(v,0)) = pP (w,v)pS (5,0), (u,s),(v,0) e R?x R )

where Py, P2, pgz)’ ()éz) are non-negative functions. For more details see Mgller and Gorbani (2012) and

Rodriguez-Cortés et al. (2014). Considering the hypothesis of first-order spatio-temporal separability in
(1), we have that p(u,s) = (Pspace (W) Piime(s))/ [ p(u,s)d(u,s). For a stationary point process X, p, Pspace
and Pyime are all constant. For non-parametric estimation of Pspace, Prime and p(u,s), see Ghorbani (2013).

Throughout this paper we assume that X is second-order intensity-reweighted stationary (SOIRS),
ie. p@((u,s),(v,0)) =p@(u—v,s—1), with (u,s), (v,]) € R? x R (Baddeley et al. (2000), Gabriel and
Diggle (2009)). Further, if the process is isotropic, then p?) (u—v,s — ) = p(()z) (|[l@a—v]||,|s—1|) for some
non-negative function p(()z)(-). Just as in the spatio-temporal first-order case, considering the hypothesis
of second-order spatio-temporal separability in (2), we have that

(2) ) i
O (us) (ot = Pree@=VIPE (=) .
P ) = o (s . s) div.) @
For an unbiased estimator of (3) and its properties of the second-order spatio-temporal product density
function, see Rodriguez-Cortés ef al. (2014).

For a SOIRS and isotropic spatio-temporal point process X, Gabriel and Diggle (2009) extended the
Ripley’s K-function to the spatio-temporal inhomogeneous K-function. For a Poisson process, K(r,1) =
2nr2t. For an unbiased estimator of the K-function, see Gabriel (2013). Both in the stationary and
isotropic case and, under SOIRS and isotropic case, the second-order spatio-temporal product density
function is proportional to the derivative of K(r,¢) with respect to r and ¢, i.e. in the planar case,

u,s)p(v,1) 0

@y Pl
P (nt) 4mr orot

K(r1).

For a stationary point process X, p(u,s) = p and p?) (r,1) = (p?/4nr)0*K (r,t) /drdt, where p?K (r,1) is
the expected number of ordered pairs of distinct points per unit volume of the observation window with
pairwise distance and time lag less than » and ¢ (Rodriguez-Cortés et al., 2014).

Joint METMAVII and GRASPA14 Workshop 2



Francisco J. Rodriguez-Cortés et al. LISTA functions

Under the stationarity case and ignoring edge-effects, a global naive non-parametric kernel estimator
for p®)(r,¢) in (3) is given by

—

p(2)£,8 7t

ZZKsSHUz u,l| —nsi— s —1), (4)

4mr |B|l 1

withr >¢€> 0,7 >0 >0and B=W x T. We assume that the kernel function k has the multiplicative form
Kes(|lwi —wj|| — 7 |si — ;] — 1) = %e (||u; —wj|| — ) ko5 (|si — 5| — ), where K¢ and x5 are respectively
kernel functions with bandwidths € and 6. Both the K-function and the product density function provide a
global measure of the covariance structure by summing over the contributions from each event observed
in the process.

2 LISTA functions

For a stationary and isotropic spatio-temporal point process X, we can define a local version of the
K-function as {pK(r,t)}' = E[N(b((u;,s;),7,1) \ {(w;,s:)})|(w;,s;) € X], with r > 0,¢ > 0, where the
expectation is conditional on observing (u;,s;) € X and calculated with respect to the reduced Palm
measure. This can be interpreted as the expected number of extra events from (u;,s;) with pairwise
distance and time lag less than r and ¢ respectively.

The local indicator of spatio-temporal association (LISTA) is a local function which considers indi-
vidual points. We denote the localised version of the second-order product density by p(®%. A kernel
estimate of p(z)i is given by

sy n—1
piy 5(rt) = W;}Kle(uui — ;| —r)xas(|si — 5] —1), S))
with r > &> 0,1 > d > 0. For fixed r and 7 it holds that

= 1

p(z)a.ﬁ(rat) =

PV, 5(r1).

-

n—1

i=1

Following Cressie and Colins (2001a,b), we have that for a homogeneous Poisson process

B [0 5(n0)] = g [(N(B) ~ )Y wes(lui—wl = rls — s —r)]

J#i
2, p rte +3
P+ 15
= i Kie(u —1)[0b(w;,u) "W|idu | 15(v—1)|0b(si,v) N T|odv,
-
r—¢ t—0
here |-|o and |- |; are the zero- and one-dimensional Hausdorff measures respectively in R and R?.

The corresponding edge-corrected second-order product density LISTA function is

> _n—1 ZKle(Hui—“jH—F)Kza(lst'—sj!—f)
Wz(lli,Uj)Wl(Si,Sj)

; (6)
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with r >¢&>0,¢t >8>0, for (u;,s;) €W x T and i = 1,...,n. Here, w?(u;,u;) is the Ripley’s isotropic
edge-correction factor, and w' (s;, s ;) is the temporal edge-correction factor. And the expected value for
a homogeneous process is

o pz_{_L r+e 48 0
5@ _ - / _ / CNdv— o2 P
E [p 875(r,t)} ye= 2nukig(u—r)du [ 2x5(v—1)dv=p°+ B
r—¢ —9
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