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Abstract. In this paper, kernel-type estimators of the spatial distribution function are constructed, un-
der non-constant trend, by first approximating the distribution at the sampled sites and then obtaining
a weighted average of the resulting values. Unlike other alternatives, our proposals provide non-
decreasing functions and do not require previous estimations of the indicator variogram or the trend
function. However, appropriate bandwidths parameters are needed and selection of them in practice
will be addressed.
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1 Introduction

For construction of probability maps, the distribution function of the underlying random process
{Z(s) : s ∈ D ⊂ Rd} must be approximated, where Z(s) represents the variable of interest and D is
the observation region. We will write Fs(x) for the distribution function of Z(s) at x, namely:

Fs(x) = P (Z(s)≤ x) (1)

Some approaches for approximation of the spatial distribution function are based on estimating the
indicator variogram, through the sample one, and then deriving the required value of the distribution
function either by computing the sill or by applying the indicator kriging techniques, as described in
Journel [3] or Goovaerts [2], respectively. An alternative is introduced in García-Soidán [1], which
suggests using a kernel-type estimator in the first step, as it provides a smoother approximation of the
indicator variogram than the sample estimator. These methods allow us to obtain the probability required
in an indirect way, which is strongly dependent on the appropriate characterization of the dependence
structure of the underlying indicator process. In addition, the aforementioned techniques have been
designed for stationary data, although application of them can be extended to a more general setting,
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where a deterministic trend µ(s) = E[Z(s)] is admitted, by previously detrending the available data.
However, care must be taken when proceeding in this way, as these attempts can lead to biased results;
see Papriz [4].

In this paper, we will focus our attention on the direct approximation of the distribution function,
through kernel-type estimators. Among the main advantages of our proposals, we can highlight that
neither knowledge of the trend is required for implementation of the proposed distribution estimator,
nor a previous approximation of the dependence structure, through the indicator variogram, is necessary.
Furthermore, our kernel approaches provide valid distribution functions, which are not affected by the
order relation problem.

2 Main results

To develop our approaches, we will assume that the random process can be modeled as:

Z(s) = µ(s)+Y (s) (2)

where {Y (s) ∈R : s ∈D⊂Rd} is a zero-mean strictly stationary random process and µ(·) represents the
deterministic trend, namely, E[Z(s)] = µ(s), for all s ∈ D.

Suppose that n data, Z(s1), Z(s2), ..., Z(sn), have been collected, at the respective spatial locations
s1, s2, ..., sn. A first attempt to derive a kernel-type estimator of Fs(x) can lead us to:

F̂s,h(x) =
∑i K

( s−si
h

)
I{Z(si)≤x}

∑i K
( s−si

h

)
where K represents a d-variate kernel function, h is the bandwidth parameter and IA denotes the indicator
function of the set A.

Estimator F̂s,h(x) converges in probability to the random variable I{Z(s)≤x} rather than to the theoreti-
cal distribution Fs(x). Hence, we suggest making use of the kernel method in an alternative way, which
departs from approximating the distribution at each sampled location si by:

F̃1,si,h1(x) =
∑ j K1

(
Z(si)−Z(s j)

h1

)
I{Z(s j)≤x}

∑ j K1

(
Z(si)−Z(s j)

h1

) (3)

and then combine the resulting terms, by incorporating weights proportional to the lags between loca-
tions, to obtain:

F̂1,s,h,h1(x) =
∑i K

( s−si
h

)
F̃1,si,h1(x)

∑i K
( s−si

h

) = ∑i ∑ j

K
( s−si

h

)
K1

(
Z(si)−Z(s j)

h1

)
I{Z(s j)≤x}

∑i′ K
(

s−si′
h

)
∑ j′ K1

(
Z(si)−Z(s j′ )

h1

) (4)

where K and K1 denote a d-variate kernel and a univariate kernel functions, respectively, and the band-
width parameters are represented by h and h1. We should remark that F̂1,s,h,h1 is a non-decreasing func-
tion, as it involves indicator functions satisfying this property, and consequently it avoids the order rela-
tion problem.
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Selection of the bandwidth parameters h and h1 could be addressed by asymptotically minimizing
the corresponding mean squared error (MSE) or mean integrated squared error (MISE), although the
resulting optimal bandwidths would be dependent on unknown terms. A different alternative can be
derived from the proposal developed in Terrell and Scott [5] for density estimation, based on selecting a
balloon estimator. Proceeding in this way, we can take h as the m-th percentile of the distances ‖s− si‖,
for all i and some m ∈ (0,1). With regard to h1, a local bandwidth h1(si) could be constructed by
considering the percentile of the order m1(si) of the positive values |Z(si)−Z(s j)|, for each si and some
m1(si)∈ (0,1). On the other hand, the maximum of the selectors h1(si), derived in the manner previously
described, would provide us with a global bandwidth h1.

Since F̂1,s,h,h1 is a discrete distribution function, a continuous approach can be derived by applying
the integral of a density in (3), rather than an indicator function, and by replacing F̃1,si,h1 in (4) by the
resulting estimator. In other words, we could construct a distribution estimator at each sampled site:

F̃2,si,h1,h2(x) =
∑ j K1

(
Z(si)−Z(s j)

h1

)
K2

(
x−Z(s j)

h2

)
∑ j K1

(
Z(si)−Z(s j)

h1

) (5)

and then obtain a weighted average of the values achieved as follows:

F̂2,s,h,h1,h2(x) =
∑i K

( s−si
h

)
F̃2,si,h1,h2(x)

∑i K
( s−si

h

) =

= ∑i ∑ j

K
( s−si

h

)
K1

(
Z(si)−Z(s j)

h1

)
K2

(
x−Z(s j)

h2

)
∑i′ K

(
s−si′

h

)
∑ j′ K1

(
Z(si)−Z(s j′ )

h1

) (6)

where K2(x) =
∫ x
−∞

K2(y)dy, K2 is a univariate kernel function and h2 is a new bandwidth parameter,
which must be estimated through the local or global balloon approaches.
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