Bandwidth selection for local linear estimation of the
spatial trend
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Abstract. The estimation of the large-scale variability (spatial trend) of a geostatistical process can be
accomplished by using nonparametric regression. In this work, we will focus on the local linear esti-
mation of the trend function and, more specifically, on the selection of the bandwidth matrix involved.
An overview of approaches suggested for the latter aim will be outlined and additional alternatives
will be introduced, based on correcting the cross-validation selector. Numerical studies will be carried
out for comparison of the different proposals and an application to a real data set will be also included
to illustrate their behavior in practice.
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1 Introduction

In geostatistics, the assumption of stationarity greatly simplifies modeling of spatial data, thus enabling
to make inference about a target site from those data located nearby; see, for instance, Cressie [1].
However, the aforementioned condition is quite restrictive in practice, as the underlying random process
usually depart from it due to the large-scale variability. Then, estimation of the spatial trend allows the
researchers to extend the validity of those techniques, originally designed for stationary data, to a more
general setting. In particular, we will assume that the spatial process {¥ (x) : x € D C R?} can be modeled
as:
Y (x) = m(x) +€(x),

where:

e m(-) is the trend function.
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e ¢is a second-order stationary process with zero mean and covariogram C, satisfying that:
C(h) =Cov(e(x),e(x+h))

forall h € R¥.

From a nonparametric perspective, the approximation of the spatial trend can be addressed through
a kernel approach, by considering either a Nadaraya-Watson estimator or a more general approach given
by the local polynomial fitting, as described in Fan and Gijbels [4]. The second procedure provides an
estimator with a remarkable advantage, namely, the absence of boundary effects, unlike the one derived
from the Nadaraya-Watson approach. For the sake of simplicity, this work is focused on the local linear
alternative. In particular we will address the selection of the bandwidth matrix, by bearing in mind that
traditional methods do not perform well in the presence of correlated errors, as remarked in Opsomer et
al. [8]. Then, the different approaches for selection of the bandwidth matrix will be developed and put
into comparison in a numerical study covering a range of dependence situations. An application to a real
data set will be also included to illustrate the behavior in practice of the proposed bandwidths.

2 Main results

Suppose that n data Y (x;),...,Y (xX,) have been observed at the respective locations X, ..., X,. The local
linear trend estimator is given by:

. -1
Mg (x) = e} (X,WyXy)  XW,Y =5Y,

where e; = (1,0,...,0)" € R¥*!, X, is an x (d + 1) matrix whose i-th row equals (1, (x;—x)"),i=1,....,n,
W, = diag {Ku (x| —X), ..., Ku(x, —x)}, Kg(u) = [H| "' K(H '), K is a d-variate kernel density and H
is the bandwidth matrix. Asymptotic properties of these estimators are studied in Opsomer et al. [8] for
correlated bidimensional data and they are generalized in Liu [7] to the multidimensional setting.

The optimal bandwidth is taken here as the minimizer of the mean averaged squared error:
1 ; 1 ; 1 ;
MASE(H) = —E ((SY —m)' (SY —m)) = — (Sm —m)' (Sm —m) + —1r (SES’)
n n n

where m = (m(x;),...,m(x,))", X is the theoretical covariance matrix of the residuals and S is the
smoothing matrix, namely, the n x n matrix whose i-th row equals s§. (the smoother vector for x = x;),
i=1,...,n. Note that this optimal bandwidth, denoted as Hys45£, cannot be (normally) used in practice,
due to its dependence on unknown terms.

When data are uncorrelated, different criteria have been proposed for an appropriate specification of
the bandwidth from the available data. The cross validation and generalized cross validation approaches,
analyzed in Craven and Wahba [3], are among the most widely used for the latter aim, which are respec-
tively based on minimizing:

and:
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where 7i_;(X;) is the trend estimate obtained without considering Y (x;).

Under dependence, the selectors designed for independent data tend to provide wrong choices of
the bandwidth, as remarked in Opsomer et al. [8]. To solve the aforementioned problem, different
approaches can be applied, which may be obtained by adapting the cross-validation criteria, proposed in
Chu and Marron [2] for the unidimensional case, to the spatial setting. Thus, for instance, a bandwidth
could be taken to minimize:

MCV(H

i no(x)?

i=1

3\'—‘

where 7i1_y ;) (X;) denotes the trend estimate obtained when ignoring observations in a neighbourhood
N(i) around x;. An alternative is suggested in Francisco-Ferndndez and Opsomer [6], which adjusts the
generalized cross-validation criterion for the effect of spatial correlation and is based on minimizing:

2
_ Iy Xi) — i (xi)
CGCV(H n;( s ))

where 6> = C(0) is the variance (or sill).

In the current work, additional options will be derived by taking into account that:
E((Y-SY) (Y—SY)) =(Sm—m)' (Sm—m) +tr (SES') — 2tr (SX) +tr(%)

and, therefore: )
E(CV(H)) ~ MASE(H) + 6° — pUACEIDY

where S_; denotes the smoothing matrix corresponding to the estimates (/i1 (X;),...,/#_,(X,))". Then,
the selection of the bandwidth could be addressed by considering corrected versions of the cross-validation
approaches, so as to minimize:

1y )
CCV(H —tr(S_;%

= L 0x) )+ Lor(S13)
or, alternatively:

1 . 2, 2

CMCV(H) = E Z (Y(Xi) —m_N(i) (X,‘)) + ﬁ[l‘ (S_NE)
i=1

where S_y denotes the smoothing matrix corresponding to the estimates (/i_y(1)(X1), - - -, f_y(n) (X))’

The above criteria cannot be used in practice, since the theoretical covariance matrix is usually un-
known and so it must be replaced by an appropriate estimate. To deal with the latter, under non-stationary
mean, the typical procedure consists in first removing the trend and then approximating the variogram
(or the covariogram) from the resulting residuals. However, it is well known that the direct use of the
residuals leads to a bias effect in the variogram estimation (Cressie [1], section 3.4.3). Then a different
option will be explored to obtain bias-corrected nonparametric semivariogram estimates, by proceeding
through a similar approach to that described in Ferndndez-Casal and Francisco-Fernandez [5], based
on the application of the iterative algorithm implemented in the np.svariso.corr function of the R
package npsp.
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