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Abstract. Composite likelihood methods have become popular in spatial statistics. This is mainly
due to the fact that large matrices need to be inverted in full maximum likelihood and this becomes
computationally expensive when you have a large number of regions under consideration. We intro-
duce restricted pairwise composite likelihood (RECL) methods for estimation of mean and covariance
parameters in a Gaussian random field, without resorting back to the full likelihood. A simulation
study is carried out to investigate how this method works in settings of increasing domain as well as
in-fill asymptotics, whilst varying the strength of correlation. Preliminary results showed that pairwise
composite likelihoods tend to underestimate the variance parameters, especially when there is high
correlation, while RECL corrects for the underestimation. Therefore, RECL is recommended if interest
is in both the mean and the variance parameters.
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1 Introduction

Statistical problems that arise from the collection of spatial point-referenced data are complicated as
a result of the spatial autocorrelation. If ignored, the data analysis can lead to erroneous conclusions.
Weighted least squares (WLS) has been used to estimate variograms and semivariograms in spatial data.
No distributional assumptions are made concerning the spatial process defined. However, this method
relies on choices made for lag distances between points, as well as the lag tolerances [3]. The methods
of maximum likelihood (ML) or restricted maximum likelihood (REML) theoretically yield an optimal
estimator but require a full specification of the probabilistic model. This involves inversion of matrices
for each likelihood function calculated, which quickly increases the computational effort as the number
of observations increases, even for simple likelihoods. To reduce this burden, composite likelihood (CL)
methods have been considered. A recent review of CL methods is given by [7]. The idea of CL is to
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replace the likelihood by a simpler function, constructed from summing over the contributions of the
likelihoods on subsets of the data, as such leading to a simpler function to be evaluated, but at the cost of
efficiency loss. This idea was proposed by [1] in the context of spatial data, and called pseudo-likelihood.
Later, it was called composite likelihood by [6]. We will focus on the specification of the CL for spatial
geostatistical data based on pairwise differences, as done by [3], and on pairwise likelihood contributions
as defined in [7]. When variance parameters are of interest, for example interest in the variogram, ML
estimation is known to be biased as a result of the loss in degrees of freedom. This bias can be reduced
substantially by using REML. The same applies for the composite likelihood estimation of the covariance
parameters. In this paper, it will be investigated how the composite likelihood method can be penalised
in a similar way as in REML, in order to reduce bias in the variance parameter. The proposed method
will be called the restricted composite likelihood method (RECL).

2 Methods

Let Z be a random variable from a Gaussian random field with observations {Zi; i = 1, ...,n} recorded
at sites si such that Z ∼ N(µ,C(σ2,ρ)). The mean µ =Xβ is a function of the covariates X and
associated regression coefficients β. The spatial dependence in the data is captured by the variance-
covariance matrix C(σ2,ρ), where σ2 is the variance of the spatial process and ρ is a measure of the
correlation between any two sites determined by the distance between them. This second-order sta-
tionary process has semi-variogram γ(si,s j) =

1
2 var(Z(si)− Z(s j)). The most popular semivariogram

is the Matérn class, which has the special case of the exponential semivariogram, parametrized as
γ(si,s j;φ) = c0 +σ2(1−ρ|si−s j|) where φ= (c0,σ

2,ρ). The parameters c0 and σ2 are called the nugget
and the sill, respectively, and c0 +σ2 represents the process variance, ρ is the spatial dependence. Two
types of composite likelihood methods are considered: (1) pairwise differences (CL1), (2) marginal pair-
wise method (CL2). The CL1 method treats the mean µ as a nuisance parameter and does not estimate
it. When µ needs to be estimated, the latter approach will result in biased estimates for the covariance
function. In the likelihood framework one often uses REML estimation for the variance parameters,
which are no longer biased downwards [5]. Similar as with REML, a penalisation is added to the (log)
composite likelihood function to formulate the RECL as

RECL =
n−1

∑
i=1

n

∑
j>i

(w ln f (Z(si),Z(s j);µi j,Ci j))−
1
2

ln

∣∣∣∣∣ n

∑
i=1

n

∑
j>i
X ′i jC

−1
i j Xi j

∣∣∣∣∣
whereXi j is the covariate matrix for the pair (i, j) (and is a column of 1’s if a constant mean is assumed),
Ci j is the variance-covariance matrix between pair (i, j), with weights w = n′

n(n−1) , n the number of

locations and n′ denoting the effective sample size (ESS) given by n′ = n2

∑
n
i=1 ∑

n
j=1 ρ

|si−s j |
[4]. The weights w

are (1) set equal to 1 (RECL1), or estimated by setting ρ equal to (2) known ρ (RECL2), (3) ρ̂ from CL1
(RECL3) and (4) ρ̂ from CL2 (RECL4).

3 Simulation study

A simulation study is carried out to explore the properties of our estimators in a similar fashion to
[3]. Data are simulated on an 8x8 regular grid with unit interval spacing, and on two 15x15 grids
obtained by halving the grid spacings (infill asymptotics) and doubling the grid spacing (increasing
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domain asymptotics). ρ was varied to represent relatively weak, moderate, and strong levels of spatial
dependence by setting the distance at which values become approximately uncorrelated to be 0.2, 0.5,
and 0.8 times the maximum distance over the domain S. The variance parameter σ2 was set at 1, the
mean µ was set at 3, and it is assumed that c0 = 0. The simulation is repeated 500 times.The results for
moderate dependence are summarised in Figure 1 which shows box plots of the σ2, ρ and µ parameters
for eight estimation methods. The horizontal line corresponds with the true underlying value. The
ML and REML estimates that use the full likelihood have better estimates than all other methods, but
have the drawback that it is computationally intensive. CL1 also works very good, but treats the mean
parameters as nuisance, while they could be of interest in practice. CL2 and RECL1 perform similar
to each other, with bias in mainly the parameter ρ. Inclusion of weights greatly improved the point
estimates. Weighting using the correlation estimate from the differences method is recommended in
practice, since true correlations are never known. Note that all models perform relatively well when the
correlation is weak. However, larger differences are observed as the correlation gets stronger, especially
for the ρ parameter, with the proposed method providing a good correction with the least bias compared
to the other composite likelihood methods.
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Figure 1: Box plots of σ2, ρ and µ parameters for moderate dependence settings. Estimation methods: 1:
ML; 2: REML; 3: CL1; 4:CL2; 5: RECL1; 6: RECL2; 7: RECL3; and 8: RECL4.

4 Conclusions

In conclusion, penalization seems important also in composite likelihood methods, and the choice of
weights is key in obtaining good results. Weighting with estimated effective sample size shows better
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σ2 ρ µ
Variance Bias MSE Variance Bias MSE Variance Bias MSE

ML 0.0828 -0.0929 0.0914 0.0200 -0.0652 0.0243 0.1234 -0.0170 0.1237
REML 0.2882 0.1066 0.2995 0.0344 -0.0047 0.0344 0.1273 -0.0132 0.1275

8x8 CL1 0.1960 0.1339 0.2139 0.0424 -0.0284 0.0432
CL2 0.0545 -0.1455 0.0756 0.0117 -0.1956 0.0499 0.1408 -0.0324 0.1419
RECL1 0.0545 -0.1452 0.0756 0.0117 -0.1953 0.0498 0.1408 -0.0324 0.1419
RECL2 0.0814 0.0322 0.0825 0.0051 -0.0034 0.0051 0.1401 -0.0321 0.1411
RECL3 0.2417 0.1877 0.2769 0.0502 -0.0260 0.0509 0.1419 -0.0354 0.1432
RECL4 0.0789 -0.0600 0.0825 0.0180 -0.1157 0.0314 0.1405 -0.0322 0.1415
ML 0.0807 -0.0947 0.0897 0.0147 -0.0564 0.0178 0.1162 -0.0035 0.1162
REML 0.2025 0.0613 0.2063 0.0231 -0.0121 0.0232 0.1202 -0.0054 0.1202

15x15 infill CL1 0.1904 0.1199 0.2048 0.0353 -0.0328 0.0364
CL2 0.0503 -0.1597 0.0758 0.0091 -0.1957 0.0473 0.1470 0.0023 0.1470
RECL1 0.0503 -0.1597 0.0758 0.0091 -0.1956 0.0473 0.1470 0.0023 0.1470
RECL2 0.0787 0.0350 0.0799 0.0042 0.0009 0.0042 0.1460 0.0023 0.1460
RECL3 0.2394 0.1812 0.2722 0.0462 -0.0251 0.0469 0.1418 0.0080 0.1419
RECL4 0.0757 -0.0712 0.0808 0.0151 -0.1171 0.0289 0.1465 0.0023 0.1465
ML 0.0801 -0.1063 0.0914 0.0071 -0.0521 0.0098 0.1269 0.0165 0.1272
REML 0.2769 0.0452 0.2790 0.0135 -0.0225 0.0140 0.1305 0.0177 0.1308

15x15 increasing CL1 0.1294 0.0384 0.1309 0.0148 -0.0457 0.0169
domain CL2 0.0428 -0.1758 0.0737 0.0063 -0.1641 0.0332 0.1633 0.0144 0.1635

RECL1 0.0428 -0.1758 0.0737 0.0063 -0.1641 0.0332 0.1633 0.0144 0.1635
RECL2 0.0679 0.0225 0.0684 0.0017 -0.0042 0.0017 0.1621 0.0145 0.1623
RECL3 0.1909 0.1192 0.2051 0.0209 -0.0396 0.0224 0.1636 0.0130 0.1638
RECL4 0.0626 -0.0951 0.0716 0.0085 -0.1029 0.0190 0.1628 0.0145 0.1630

Table 1: Variance, Bias and MSE estimates for moderate dependence setting.

improvement from marginal pairwise models. The computation time is also greatly reduced when using
neighbouring pairs instead of all pairs, which is desirable when sample sizes are large and full likelihood
methods fail or take too much time. This is synonymous with weighting schemes used by, for example,
[2], and the results obtained are very similar as to when all pairs are used. Preliminary analyses have
been attempted including covariates in the estimation. The results suggest that the mean parameters are
still estimated very well but more research is being done to understand how this affects the variance
parameters. There is also continuing work to explore variance estimation for the proposed methods.
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