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Abstract. Electroencephalography (EEG) is an important tool in neuroscience used to study the electrical
brain responses following traumatic brain injuries (TBI), with the goal of clinical diagnosis and assessment. It
is widely recognized that EEG produces inherently spatio-temporal data; however, the use of analytical methods
that explicitly account for auto-correlation in both space and time have been limited. The lack of appropriate
statistical methods, coupled with increased prevalence of TBI in both athletic and military settings, necessitates
the development of sophisticated techniques for analysis of EEG data. We propose a novel method of EEG
classification based on the spatio-temporal variogram. Using data from subjects with and without a history
of TBI symptoms, we first computed spatio-temporal variograms for each EEG assessment. Second, we pro-
duced group-median variograms for both the healthy and the TBI groups. Third, we developed a two-parameter
measure of dissimilarity between variogram surfaces and applied this measure to subject-specific and group-
median variograms. Results indicate that our proposed measure out-performs several established measures of
dissimilarity for the classification of EEG assessments.
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1 Introduction

1.1 Motivation
Electroencephalography (EEG) is a neuroscience imaging tool that has become widely used for evaluation
of pervasive impairments following a traumatic brain injury (TBI) with the potential for clinical identifi-
cation of sustained injury (e.g. [4];[5]). In addition to its diagnostic utility, EEG has gained popularity
due in part to being non-invasive and cost effective compared to other common brain imaging methods,
e.g. Magnetic Resonance Imaging (MRI). Even though EEG data have been recognized as inherently
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spatio-temporal in nature (e.g. [1];[10]), appropriate statistical methods to model such data have yet to be
established. Attempts to classify EEG data have relied primarily on variance-covariance decomposition
through the use of techniques such as Principle Component Analysis (PCA) and Independent Component
Analysis (ICA), among others (e.g. [8];[9];[3];[6]). Neither of these methods account for auto-correlation
in space and time simultaneously and thus may misrepresent the underlying spatio-temporal process.

In this paper, we propose a novel method of EEG classification based on the spatio-temporal var-
iogram. Using the variogram (instead of ICA or PCA) preserves the nature of spatio-temporal auto-
correlation in data, while reducing its dimension. Our research objectives are as follows: (1) develop
a two-parameter measure of dissimilarity for two variogram surfaces and suggest a method of finding
parameter estimates; (2) classify EEG assessments of healthy subjects and subjects with TBI symptoms
using only their spatio-temporal variogram surfaces; and (3) compare performance of the proposed mea-
sure to established methods of dissimilarity.

1.2 Spatio-temporal Variogram
Spatio-temporal variograms have long been used to describe the structure of spatio-temporal correlation
in point-referenced data (e.g. [2]). Let Yi j(s, t) be the EEG response vector in millivolts of the ith subject
belonging to the jth group, collected at location s and at time t. Formally, we define Y (s, t) as a Gaussian,
isotropic, second-order stationary spatio-temporal process on R3×R, such that s∈R3 and t ∈R. Subject-
specific spatio-temporal variogram surfaces were computed as:

2γ̂i j(h,u) =
1

|N(h,u)| ∑
(sk,sl ,t,t ′)∈N(h,u)

(
Yi j(sk, t)−Yi j(sl , t ′)

)2

where h= ||sk−sl || and u= |t−t ′|. Group-median variogram surfaces represent median variogram values
for the jth group (e.g. group of subjects with TBI symptoms). Group-median variogram surfaces γ̃ j(h,u)
were computed as: γ̃ j(h,u) = medi

{
γ̂i j(h,u)

}
for all h and u. The group-median variograms represent

"typical" variogram values for the two groups across spatial and temporal distances.
In the case where there are two groups, and thus two group-median variogram surfaces γ̃1(h,u) and

γ̃2(h,u), our proposed classification method works as follows. First, we determine the dissimilarity be-
tween subject-specific variogram γ̂i j(h,u) and each of group-median variograms γ̃1(h,u) and γ̃2(h,u). If
γ̂i j(h,u) is more similar to γ̃1(h,u) than to γ̃2(h,u), we assign subject i to Group 1. If γ̂i j(h,u) is more
similar to γ̃2(h,u) than to γ̃1(h,u), we assign subject i to Group 2. The dissimilarity between variogram
surfaces is computed according to the proposed measure described in Section 2.

2 Dissimilarity Measure
The proposed measure of dissimilarity between subject-specific variogram surface γ̂i j(h,u) and group-
median variogram surface γ̃ j(h,u) is computed as:

di j(h,u|θ, p) = ln
[∣∣∣∣12

(
γ̂i j(h,u)+θ

γ̃ j(h,u)+θ
+

γ̃ j(h,u)+θ

γ̂i j(h,u)+θ

)∣∣∣∣]p

di j(h,u|θ, p) is defined for all spatial lags h and all temporal lags u and thus represents a dissimilarity sur-
face in itself. The proposed measure is valid as it is non-negative, symmetric, and reflexive. The measure
depends on θ and p, which serve as a vertical tuning parameter and a penalty parameter, respectively.
Both parameters accentuate differences between γ̂i j(h,u) and γ̃ j(h,u) when differences are present. The
parameters allow the proposed measure to be adapted to the scale of each dataset, as well as the shape of
variograms that each dataset produces. Optimal values of θ and p were found using a grid search with
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leave-one-out Cross Validation. The set of values over which grid search was performed was [−2,0.5]
for θ, and [0.25,4] for p with a resolution of 0.25 for both parameters. Final parameter estimates were
selected in order to maximize the sensitivity and accuracy of the left-out subjects’ classification. These
estimates represent median parameter values found using the leave-one-out Cross Validation procedure.

Total dissimilarity score for the entire dissimilarity surface of subject i vs. group median j is
computed as ∑h,u di j(h,u|θ̂,p̂). With two group medians, we define the threshold ratio R for subject i as:

Ri =
∑h,u di1(h,u|θ̂,p̂)
∑h,u di2(h,u|θ̂,p̂)

. If Ri < 1, then the subject-specific variogram is more similar to group median 1,

and vice-versa. Thus, if Ri < 1 we assign subject i to Group 1, and if Ri > 1 we assign subject i to
Group 2. Note that the magnitude of Ri is easily interpretable in a clinical setting: confidence of correct
classification increases as Ri→ 0 or Ri→ ∞.

3 Classification Results

3.1 EEG Data
The proposed method of EEG classification was applied to a dataset containing trial-averaged assess-
ments of 34 college-aged athletes. EEG data were collected during a memory task aimed at detecting
cognitive impairmets associated with TBI. Following [7], we used a self-report of persistent headaches as
an indicator of TBI symptoms. Of the 34 athletes, 18 reported suffering persistent headaches. The main
goal of classification was to correctly classify athletes as either having TBI symptoms, or not having TBI
symptoms based on the variograms of their EEG assessments.

3.2 Results
Table 1 shows classification results for our proposed measure compared to several established measures
of dissimilarity. All classification was performed using leave-one-out Cross Validation according to the
procedure described in Section 2. The definition of the established measures was as follows: (1) Gaussian

kernel di j(h,u) = exp
[
− (γ̂i j(h,u)−γ̃ j(h,u))

2

2σ2
j

]
; (2) L1 Norm: di j(h,u) =

∣∣̂γi j(h,u)− γ̃ j(h,u)
∣∣; and (3) L2

2

Norm: di j(h,u) = (̂γi j(h,u)− γ̃ j(h,u))
2.

Dissimilarity Measure Prediction Headaches No Headaches Performance
Gaussian kernel Headaches 12 9 Sensitivity: 0.67

No Headaches 6 7 Accuracy: 0.56
L1norm Headaches 8 8 Sensitivity: 0.44

No Headaches 10 8 Accuracy: 0.47
L2

2 norm Headaches 8 7 Sensitivity: 0.44
No Headaches 10 9 Accuracy: 0.50

Proposed measure Headaches 16 8 Sensitivity: 0.89
θ̂ =−1.50; p̂ = 4.00 No Headaches 2 8 Accuracy: 0.75

Table 1: EEG data classification results
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4 Conclusion
Here we proposed a novel method of classifying subjects with TBI symptoms using the spatio-temporal
variogram computed from their EEG. To aid in classification, we introduced a measure of dissimilar-
ity between two variogram surfaces that depends on two parameters: a vertical tuning parameter and a
penalty parameter. Estimates of the two parameters were computed using grid search with leave-one-out
Cross Validation. Using median values of parameters obtained through the leave-one-out Cross Valida-
tion procedure, the performance of our proposed measure was compared to three established measures of
dissimilarity. As shown in Table 1, our proposed measure has a sensitivity of 89% and an overall accuracy
of 75%, which out-performs all three established methods of dissimilarity. The superior performance of
our measure, in conjunction with a viable clinical interpretation of threshold value Ri, should improve the
identification of sustained cognitive impairments following a TBI.
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