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Abstract. Spatial inference is usually carried out by means of model-based techniques, which estimate
the underlying superpopulation model generating the data. However, at present, design-based methods
for inference on spatial data are being rediscovered, even if the related techniques are mostly used for
estimating synthetic population values, i.e. means and totals. The aim of this work is to develop a
class of design-based individual spatial predictors able to exploit the spatial information available
before sampling. Such predictors are able to replicate the observed values when the spatial location
is sampled and otherwise predict unobserved values through weighted sums as is usual in spatial
interpolation. The weights are constructed in order to assign higher influence to the observations
close to the location to predict and fade away as the spatial lag increases. Moreover, as is customary,
they are built in order to sum to one in the sample, needing a standardization that induces ratios of
random variables. Therefore, their statistical properties can be assessed only in approximate way.
Then, among all possible, an individual design-based predictor is compared with the kriging predictor
through a Monte Carlo simulation showing that, especially at small sampling dimensions, its properties
are quite similar to the kriging’s.
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1 Introduction

Spatial individual prediction is usually carried out under the model-based framework. Under this ap-
proach, the kriging is widely used due to its well known properties and is, therefore, considered as the
benchmark. However, it is known that the kriging offers poor performances if the sample dimension is
small; indeed, the estimates of the semivariogram model parameters may not be efficient when just few
couples of locations are available at each lag for estimation. This may lead to the well known model
misspecification problem. In contrast, one may want to adopt deterministic techniques; these prevent
from the model misspecification problem, but they have not any uncertainty measure attached.
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We aim at building a family of design-based individual predictors for spatial data. The starting point
is to use a deterministic interpolator able to exploit the spatial relationship by means of functions of
the Euclidean distances. Moreover, the known locations are seen as the realization of a probabilistic
sampling design. In this work we propose a more generel version than the one presented by [1], being, at
the same time, simpler in its formulation. The new theoretical framework allows to encompass different
functions of the Euclidean distances between sites in the domain as well as any without replacement
probabilistic sampling design.

2 Spatial interpolation in the design-based framework

A deterministic spatial interpolator assigns the observed values to the known locations belonging to the
set L, while for the other sites in the domain computes a weighted sum of observed values, where the
weights depend on some function of the Euclidean distances between locations

D wiz(w), ifuglL
Z(u) =< L
z(u), otherwise.

The class of interpolator we chose are a generalization of the one proposed by [4], where the weights are
a standardized decreasing function of the Euclidean distances.

In order to fully contextualize this class of deterministic spatial interpolators in the framework of
the design-based inference, we need to make some assumptions on the population. First, the population
dimension needs to be considered as finite and let us indicate it with N. Second, the observed values
are the outcome of a fixed, yet unknown function z(-) of the spatial coordinates u = (u,u,). We can
now consider the set L as the realization of a probabilistic sampling design, and we will indicate it with
s as customary in the literature of finite populations. Then, the Bernoulli random variables Q; = (;cs)
uniquely manage inclusion in the sample, and their complements to 1 manage exclusion from the sample
since the they are mutually exclusive events. The N Bernoulli random variables Q; can be collected in
the N-dimensional vector Q, whose realization q has n unit values in correspondence of the sampled
locations and null values elsewhere. Furthermore, let us define the N x N symmetric matrix ® having
the decreasing function of the Euclidean distances in the off-diagonal elements and null diagonal (if we
choose the inverse squared distance we obtain the interpolator proposed by [4]).

The individual design-based spatial predictor we propose is defined as
2(w) = (h/ 15)"'h/ z. (1)
where the weighting vector h; is defined as
h; = Q;e; + (1 - 0;)Qo ¢y,

where ¢; is the ith column of matrix ®. The resulting predictor is able to replicate the observed value at
the sampled locations, whereas compute a weighted sum for the unsampled ones. The resulting spatial
individual design-based predictor is a ratio of random quantities.
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3 Statistical properties

Given that predictor (1) is a ratio of random quantities, its statistical properties can be obtained only in
approximate form.

The first-order Taylor expansion approximated expectation of predictor (1) is

i€ 77—7’\1;5 o] iTZ _
E[z(uz)] = (7(3;?[_:_(5‘_ — %i))o (Zf)zrlN + OP(n 1)7

where we define vector ™ = (71,...,7Ty) " collecting the first-order inclusion probabilities and vector
i = (T -5 T 1) Ty (i1 )i - - - ,Tyi) | involving first- and second-order inclusion probabilities in the
sample.

The first-order Taylor expansion approximated variance of predictor (1) is
V[2(w)] = K E[hh/ Jk; + 0, (n )
where we define vector

(Ttiei + (71' —7~Tl') 0] d),’)TlNZ— (’J'Ciei + (71' — ’?rl) @) (f)i)TZ ]-N

ki = (miei + (w — 1) o i) T Ly )?

and the expectation of quantity h,-hJT
E[hh/] = mere] + (T1—TT) o digp;

that involves matrix II collecting column vectors 7r; and matrix f[i = E[Q;QQ] involving inclusion
probabilities up to the third-order.

The IDW individual predictor is finite population consistent [3]

nh_r)r]lvz(u,-) = z(w;).

4 Assessment of predictor performances

In order to evaluate the performances of the IDW individual predictor, a Monte Carlo experiment has
been performed. We generate different spatial populations over a square domain with a superimposed
regular grid of dimension 40 x 40 point units. These populations are the realizations of a Gaussian
random field with expectation u = 2 and exponential semivariogram model with sill 6> = 4, nugget
72 = 0 and different range parameters ¢ = 6, 15,45, respectively. Population A and C represents two
extreme situations: the former present a very small range parameter and is very similar to a white noise
spatial setting, whereas the latter assumes a very large range parameter leading to a spatial influence along
the entire domain. In between, we generate Population B. For each dataset the Monte Carlo experiment
consists in drawing 1000 samples using SRSWoR at four different sampling fractions (f = 0.0125, 0.025,
0.05 and 0.10) and computing predictor (1), the kriging predictor and the SRWoR estimator in predictive
form [2].
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Figure 1: Boxplots of the ratio of the RMSE of the IDW predictor with SRSWoR estimator in predictive
form(left-hand panels) and kriging (on the right hand panels).

Figure 1 summarizes the comparisons as ratios between the RMSE obtained via Monte Carlo ex-
periment: for all panels the reference value is one, when the ratio is higher than one, predictor (1)
outperforms the competitor. Starting from left-hand, as the spatial lag of the correlation increases, the
performances of the IDW predictor increase highlighting the importance of using spatial information for
estimation regardless of the sample dimension. As expected the IDW predictor’s performances improve
for increasing sample sizes. For Population A, the SRSWoR estimator in predictive form shows slightly
better performances. The right-hand panels of Figure 1 show that the IDW and kriging predictors are
almost equivalent in terms of RMSE. Indeed for almost all panels and all sample sizes these ratios are
very close to 1; however, presenting many outliers at higher sampling fractions highlighting that in these
cases the IDW performs slightly better than kriging.
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