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Abstract. The behavior of generalized relative complexity measures is studied for assessment of struc-
tural dependence in a random vector. A related optimality criterion to sampling network design, which
provides a flexible extension of mutual information based methods previously introduced, is formu-
lated. Aspects related to practical implementation and conceptual issues regarding the meaning and
potential use of this new approach are discussed. Numerical examples are used for illustration.
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1 Introduction

In the last two decades, a variety of definitions of statistical complexity have been proposed in the lit-
erature (see, for example, [10]), with the aim to study structural characteristics of physical systems
described by probability distributions. In particular, so-called ‘product complexity measures’ are formu-
lated in terms of two factors providing, in a certain sense, a balanced quantification of inner information
and relative structural richness of a given model. Such measures are usually required to satisfy the prop-
erty to be zero for the two extreme cases of perfect order and maximum disorder. In this framework,
the LMC complexity measure (after López-Ruiz, Mancini and Calbet, [7]) is defined by the product of
a measure of information and a measure of disequilibrium; the exponential form, usually adopted for
continuous distributions, is written for a density f as

CLMC
f = exp(H f )×D f ,

where H f is the Shannon entropy and D f is the second-order entropic moment given by D f =
∫

f 2(x)dx,
which quantifies departure from equilibrium. Other definitions of complexity measures have been intro-
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duced considering generalizations of the Shannon entropy, such as the Rényi entropy, defined as

R(α)
f :=

1
1−α

log
(∫

f α(x)dx
)
, for 0 < α < ∞, α 6= 1,

R(1)
f := lim

α→1
R(α)

f = H f .

In particular, the second-order disequilibrium factor D f can be also expressed in terms of the Rényi

entropy as D f = exp
(
−R(2)

f

)
, and hence CLMC

f = exp
(

R(1)
f −R(2)

f

)
. Following the same scheme, for

the local comparison of two probability distributions, [9] introduced a family of generalized relative
complexity measures depending on two parameters α and β, defined by

C(α,β)
f ,g = exp

(
R(α)

f ,g−R(β)
f ,g

)
, 0 < α, β < ∞,

where R(α)
f ,g is the relative Rényi entropy of order α given by

R(α)
f ,g :=

1
α−1

log
(∫ f α(x)

gα−1(x)
dx
)
, for 0 < α < ∞, α 6= 1,

R(1)
f ,g := lim

α→1
R(α)

f ,g =
∫

f (x) log
(

f (x)
g(x)

)
dx = KL( f ,g),

with KL( f ,g) being the relative entropy or Kullback-Leibler divergence. Among other elementary prop-
erties, we note that for α < β, C(α,β)

f ,g ≤ 1, and C(α,β)
f ,g = 1/C(β,α)

f ,g .

In this work we consider this definition of generalized relative complexity (other alternatives of
interest are referred in concluding Section 3). We first study its behaviour in the case of comparison of a
multivariate distribution and the product of its marginal distributions, for dependence assessment. This
is a natural extension of the concept of mutual information in the complexity context. In Section 2, we
propose a complexity related criterion for sampling network design based on this approach.

In order to analyze the behavior of relative complexity for different structures of dependence and
selections of the parameters (α,β), we have considered the case of a bivariate random vector (X ,Y ) with
different specifications for marginal distributions and dependence. We show here results for a bivariate
Gaussian with standarized marginal distributions, taking β = 2 and β = 6 (see Figure 1). In these two
scenarios, α is increased from 0.5 to β−0.05 and the correlation between the variables is varied within
the range [−0.96,0.96]. The value of the relative complexity is equal for positive or negative correlation,
and it only depends on its magnitude. It can be observed that if α is close to β, the relative complexity
does not decrease as strongly as for more distant specifications of the parameters (α,β). For instance,
in the case (α,β) = (1.95,2) the relative complexity is close to 0.9 for high correlation, and in the case
(α,β) = (5.95,6) is over 0.98. In this last case, the complexity decreases for correlations near to zero and
then it remains almost constant. In the opposite case, when the distance between α and β is significant,
the relative complexity decreases more drastically as the correlation increases. However, it can be noted
that in the case (α,β) = (0.5,2) the relative complexity decreases with a parabola-like shape, while in
the case (α,β) = (0.5,6) it decreases with a bell-like shape.

2 Application to sampling network design

In previous papers the authors have proposed optimality entropy-based criteria for designing sampling
networks based on maximizing the Shannon mutual information in different contexts (e.g. [1], [2], [3],
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Figure 1: Generalized relative complexity values for β = 2 (left) and β = 6 (right), varying α and ρ.

[5]). Here, we extend this approach by formulating an optimality criterion based on the generalized rela-
tive complexity. For given values of α and β, with α < β, the relative complexity of the joint distribution
of the variables involved in the sampling design problem, i.e. the variables of interest and the observable
variables, and the product of the marginal distributions corresponding to the case of independence be-
tween the two types of variables, is evaluated. Denote by X the unobservable spatial process of interest
in the set Λ, related to the spatial process Y potentially observable on the set Π. The criterion consists
of selecting a configuration S ⊆ Π to observe the process Y for estimating X in Λ, that minimizes the
relative complexity of the joint distribution of XΛ and YS and the product of the corresponding marginal
distributions:

S∗ = arg min
S∈C (Π)

C(α,β)
f ,g ,

where f is the joint density function of XΛ and YS, g is the product of the corresponding marginal den-
sity functions, and C (Π) is the class of admissible candidate configurations considered in the specific
case. For illustration, we assume that X is defined on the domain D = [0,1]2 ⊂ R2 and is related
to Y by the observation equation Y (s) = X(s) + ε(s),s ∈ D, where ε is a spatial white noise process
with variance σ2

ε , independent of X . We also assume a joint Gaussian distribution for all the vari-
ables involved and that X has zero mean and an exponential covariance model with range a. All the
parameters are assumed to be known and a sequential inclusion of the sites is performed. Specifi-
cally, we set a = 5 and σ2

ε = 0.1 and, for simplicity in the computation, Λ = {(0.5,0.5)} and Π =
{(0.6883,0.3614),(0.6987,0.8740),(0.4771,0.6699),(0.2457,0.1345),(0.6587,0.4670)}. Table 1 dis-
plays the results from the two first sampling design steps by considering the relative complexity criterion
for the cases (α,β) = (1,2) and (3,4). For comparison, we also include the selected sites by using the
Shannon mutual information criterion. We can observe that the selected sites for the values (α,β)= (1,2)
coincide with those selected by the Shannon-based criterion, while the ordering changes for the values
(α,β) = (3,4), which shows that the combined specification of the values of the deformation parameters
α and β is significant for the selection of the optimal configuration for a given model.

3 Conclusion

The behavior of Rényi-divergence-based generalized relative complexity is studied in the case of com-
parison of a multivariate distribution and the product of its marginal distributions, for dependence assess-
ment. A related criterion for sampling network design is formulated. Numerical examples are given for
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s Shannon’s information s C(1,2)
f ,g s C(3,4)

f ,g
(0.6883,0.3614) 0.5803 (0.6883,0.3614) 0.5744 (0.6883,0.3614) 0.07699
(0.6987,0.8740) 0.3958 (0.6987,0.8740) 0.6767 (0.6987,0.8740) 0.07640
(0.4771,0.6699) 0.6736 (0.4771,0.6699) 0.5337 (0.4771,0.6699) 0.07801
(0.2457,0.1345) 0.3805 (0.2457,0.1345) 0.6865 (0.2457,0.1345) 0.07661
(0.6587,0.4670) 0.6899 (0.6587,0.4670) 0.5273 (0.6587,0.4670) 0.07819
(0.6883,0.3614) 0.7555 (0.6883,0.3614) 0.5045 (0.6883,0.3614) 0.06535
(0.6987,0.8740) 0.7562 (0.6987,0.8740) 0.5029 (0.4771,0.6699) 0.07286
(0.4771,0.6699) 0.9163 (0.4771,0.6699) 0.4565 (0.2457,0.1345) 0.05859
(0.2457,0.1345) 0.7867 (0.2457,0.1345) 0.4922 (0.6587,0.4670) 0.06996

Table 1: Sequentially selected sites (marked in boldface) at the first two sampling design steps using the
Shannon mutual information, and C(1,2)

f ,g and C(3,4)
f ,g relative complexities.

illustration under different scenarios. Further extensions are under consideration in this context, in terms
of other generalized relative complexity measures, such as the Rényi-based two-folded relative complex-
ity version introduced in [4], as well as complexity measures derived from alternative formulations of
Rényi and Tsallis mutual information (see, for example, [6], [8] ).
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