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Abstract. This paper pretends to give new tools for dynamic spatial sampling designs to find the
optimal estimation and the optimal spatial prediction, based on the variation of spatial dependence
structure in both cases, discrete and continuous time. In order to model the time series of the spatial
covariance parameters, the measurement error and the bias caused by the estimation are included in
the formulation of state space models. A discussion of useful properties and techniques to estimation
and forecasts in several scenarios is presented. The methodology is applied to a network of quality air
in the Bogotá city.
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1 Introduction

A spatio-temporal process is a stochastic process {Z(s, t) : (s, t) ∈ Ds ×Dt}, where Ds ×Dt is the
spatio-temporal index set. We note that Ds×Dt ⊆ Rd ×R with Rd for the spatial bit and R for the
temporal one. When Ds is continuous, the process is called a geostatistical process. Let Z(sitk

, tk) be the
process at location si at time tk, with tk ∈ Dt , k = 1, ...,T , k ∈ N, sitk

∈ Ds and

ZStk
= (Z(s1tk

, tk),Z(s2tk
, tk), ...,Z(sntk

, tk))′, Sk ⊂ Rd (1)

the random vector at ntk spatial locations Stk = {s1tk
, ...,sntk

} at each time point tk. Our approach fits
models in continuous space and time, based on the observations of (1) which we denote as

zStk
= (z(s1tk

, tk), ...,z(sntk
, tk))′ (2)

ntk is allowed to change at each tk according to any statistical quality criteria or some technical
or economical constraint. We assume that while spatial configuration does not change the series are
measured at the same point times and therefore, they have the same length, even though it is not a
requirement. Our goals are, on the one hand, to determine the set of spatial locations, that ensures the
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optimal spatial mean estimation µtT+1 at the future time tT+1, and on the other hand to determine the set
StT+1 of spatial locations to optimal spatial prediction of the random vector ZS0

tT+1
at some set S0

tT+1
of

interest places.

An optimal sampling design is the one that finds the best combination predictor-design or
estimator-design, according to the optimization of a criterion previously established [4]. We have T
spatial vectors zSt1

, ...,zStT
observed at each set of spatial locations Stk = {s1tk

, ...,sntk
}, k = 1, ...,T . Now

we have to find the set of locations StT+1 = {s1T+1 , ...,sntT+1
} that optimizes the corresponding unbiased mean

estimator µ̂StT+1
for the spatial process at time point tT+1. Once we have µ̂StT+1

, the next step is to add this

new measure to the series to build the vector
(

µ̂St1
, ...µ̂StT

, µ̂StT+1

)
and so on. In this way, we can use updated

information for the next design. We are not optimizing temporal points as we are assuming that temporal instants
over which the process is observed, have been previously determined, although not necessarily regularly spaced. In
addition, we assume that the sampling locations can be changed at the future time tT+1. A similar procedure used
for the optimal estimation of the mean of the process, can be used to optimize the prediction of the random vector
ZS0

tT+1
at the future time tT+1 in a set of interest sites. The updated prediction at each place s0

itT+1
, i = 1, ...,n0

tT+1

is obtained by applying ordinary kriging at time point tT+1. Now, we detail the proposal for the optimal mean
estimation.

2 Methodology

2.1 Optimal Spatial Sampling for the Mean Estimation at the future time T +1.

To consider the spatial covariance structure and take advantage of the fact that the most common case is to have
a large number T of temporal observations in a few locations, we use the time series of the variance of the
Generalized Least Squares (GLS) estimator for the spatial mean and find the set of spatial locations that minimizes
its forecast at time T +1. The GLS estimator µ̂Stk

, for the mean of the spatial process based on the observed vector
at time point tk at the set of locations Stk = {s1tk

, ...,sntk
}, see (2) is given by, µ̂Stk

= 1′Σ−1
Stk
zStk

/1′Σ−1
Stk

1, ; tk ∈ Dt

and its variance VarStk
(µ̂Stk

) takes the form

VarStk
(µ̂Stk

) =
(
1′Σ−1

Stk
1
)−1

=

 ntk

∑
i=1tk

ntk

∑
j=1tk

Ctk

(
sitk

,s jtk
|Θtk

)−1

(3)

ΣStk
is the covariance matrix of the spatial process at time tk at the set of locations Stk , i.e. ΣStk

=(
Cov(Z(sitk

, tk),Z(s jtk
, tk))

)
, i, j = 1tk , ...,ntk , and Cov(Z(sitk

, tk),Z(s jtk
, tk)) is given by a known valid spatial

covariance model Ctk with parameter vector Θtk , and we have the following possibilities: (a.) C
(
sitk

,s jtk
|Θ
)

: C

and Θ are the same for all tk and (b.) C
(
sitk

,s jtk
|Θtk

)
: C is constant but the parameter Θ depends on each tk, Θtk .

The case Ctk

(
sitk

,s jtk
|Θtk

)
when both the model for C and the parameter vector Θ vary with each tk, corresponds

to a very unstable process. A more realistic assumption is that the spatial covariance structure changes but after
longer intervals of time. Under spatial second-order stationarity, we have C(sitk

−s jtk
|Θ), C(sitk

−s jtk
|Θtk) and

Ctk(sitk
−s jtk

|Θtk) respectively.

A natural design at time tT+1 goes through the minimization of argminStT+1⊂D′s VarStT+1
(µ̂StT+1

). This
procedure assures that µ̂StT+1

has minimum variance. Due to the continuity of Ds, it is not possible to evaluate
the criterion in all its subsets and besides, it does not make sense to take sites extremely close. So, the criterion
only is evaluated in a finite number of available sets in D′s ⊂ Ds. D′s must be built according to some knowledge
of region conditions, possibility to access and maybe economical criteria. In other case, the best option is the
evaluation of the criterion on a fine regular grid. If the pair (Ctk , Θtk ) does not change for any tk, there is a unique
design of size ntk for all tk ∈Dt . This methodology can also be used when it is not necessary or possible to move all
sampling locations but only a few. For example, suppose there is a daily mobile station, and that this station is at
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location s1tT
at time tT . The variance of the mean estimation with a new location s1tT+1

but keeping s2tT
, ...,sntT

,
is given by

VarStT+1
(µ̂StT+1

) :=

 ntT

∑
itT , jtT =2tT

CtT+1

(
sitT ,s jtT |ΘtT+1

)
+

ntT

∑
jtT =2tT

CtT+1

(
s1tT+1

,s jtT |ΘtT+1

)−1

:=

cte+
ntT

∑
jtT =2tT

CtT+1

(
s1tT+1

,s jtT |ΘtT+1

)−1 (4)

where StT+1 = {s1tT+1
,s2tT

, ...,sntT
} and s1tT+1

∈ Ds1T+1
⊂ Ds with Ds1T+1

the set that contains the N possible
locations for s1tT+1

. Consequently, the design criterion is simplified to select the spatial location s1T+1 which
minimizes (4), that is, argmins1T+1∈Ds1T+1

VarStT+1
(µ̂StT+1

). Our proposal considers the general case where
Ctk depends on tk and there is the option to move locations at each of the future time points. But, if locations
will not be moved until the point time tT+m+1, and in the current locations the measures are going to be
taken at times tT+1, ..., tT+m, the criterion can be modified to a global measure such as the total variance
Tr
(
(Var(µtT+1), ...,Var(µtT+m+1))

)
. Note that even if the process is in continuous time, only has sense to include

in the optimization the point times with measures. A known time series model or a function, θt = f (t) allows to
carry out forecasts m− step ahead of future value ΘT+1, ...,ΘT+m+1 and compute any of the criteria considered
before.

2.2 Estimation and forecasting of V̂ ar(µ̂T+1)

In practical cases, the covariance model is unknown and it has to be estimated from the data. In this case the
designs are only suboptimal. We propose, first to model the parameters of dependence structure at each time
point observed and then model the time series of these parameter estimators, in order to find the forecasts to
compute the variance the future time, so we are able to find the optimal spatial configuration that optimize µ̂tT+1 .
We suppose the same covariance model for k = 1, ...,T,T + 1 time points, except for the parameter vector Θtk ,
C(sit1

−s jt1
|Θt1), ...,C(sitT −s jtT |ΘtT ). The methods for estimation of C(.) are the same for any of the goals,

estimation or prediction. Several options have been proposed such as maximum likelihood, least squares and
composite likelihood. In addition, the dependence of the parameter vector of spatial covariance model on t can
be in either two ways: stochastic or deterministic. The forecasting method depends if the process is in discrete or
continuous time, and the use of Box-Jenkins ARIMA models or state space models. The analysis of time series
observed at irregular points can be handled very efficiently with continuous time models. As these time series are
built with estimations of covariance parameters, we must consider that data contains measurements errors and bias,
although we expect that the noise-to-signal ratio be small. In order to involve the measurement error in parameter
estimation of the time-series models, we use the approach given by [3], that details the estimation procedure and
the required constraints to ensure identifiability. In this paper, we assume that measurement error is an additive
white noise process, so, the identifiability is ensured. Nevertheless, in presence of additive white noise, the forecast
obtained with stationary and invertible ARMA models are strongly affected only when the parameters are near to
the unit circle, in other case the influence of measurement error on forecast is very small. So, in the cases where
measurement error affects notoriously the forecast, the best approach is modelling through the state space models
to extract the signal to generate forecasts.

2.3 Real Data Analysis

We analyze network data for air quality in Bogotá city. The data correspond to consecutive hours from May 13,
2013 at 1:00 a.m. to May 13, 2014 at 12:00 a.m. There are 10 stations that monitor hourly particulate matter up
to 10 micrometers in size (PM10), stations 1:10 and one of them is a mobile air quality monitor, station 3Mb, see
figure 1a. There are considerable differences between the sectors of the city, due to traffic and industries. There
is evidence of non-constant variance, so we apply to the observations the Box-Cox transformation with λ =−0.1
and we use median polish to model the trend. We fit a generalized Cauchy covariance, that is a very flexible model
and is given by

C(si−s j) = σ
2
(

1+
(
|si−s j|

b

)γ)ν

b > 0, 0 < γ≤ 2, ν > 0 (5)
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where b is a scale parameter, γ is a shape parameter and ν parameterizes the long-memory dependence. From the
empirical variograms in the figure 1b., we consider that there is no reason to suppose discontinuity at the origin,
since there is no jump in |sitk

−s jtk
| = 0. So, we keep the nugget parameter fixed and equal to zero. Regarding

the selection of the covariance model, at first, we choose the parameter model γ = 2 because of the shape of the
short-lag terms of empirical variograms, then this parameter is held fixed and we run several maximizations on a
grid of ν values, and the estimation is restricted to the parameters σ2 and b at each time point. The reason for this
procedure is that the estimation of γ and ν, at least here, cause some numerical instability. So, the fitted model for
spatial covariance at each time tk, k = 1, ...,73 is the particular case of (5),

C(sitk
−s jtk

) = σ
2
t

1+

(
‖sitk
−s jtk

‖
bt

)2
−3/2

(6)

The model used for time series σ2
t is a continuous autoregressive process, CAR(1). As the process is sampled at

equally spaced intervals of length one hour and in presence of measurement error, the state space model, turns in
to an ARMA(1,1) model with parameter estimated Θ̂ = (0.8940,0.4562). The time series of bt has constant mean
and there is no significative autocorrelation, so the forecasting for tT+1 is the mean 7.012243. The red points in the
map, figure 1a. are the optimal spatial locations for the next 7 days of the mobile station.
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Figure 1: a. Air quality, Bogota, 2013–2014. b. Some semivariograms obtained on May 13, 2014
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