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Abstract. This work proposes an unsupervised classification algarifor curves. It extends the
density based multivariate cluster approach to the fumaicdramework. In particular, the modes
of the small-ball probability are used as starting pointshtaild the clusters. A simulation study is
proposed.
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I ntroduction

Cluster analysis, or unsupervised classification, is a setabniques to segment a collection of data
into subsets. When data are curves furctional data(see e.g. [3] and [7] for monographs on this

topic), the classical multivariate approaches can not bectlly used, due to problems related to the
dimensionality of the space to which the data belong. Heacariety of specific clustering methods

have been introduced in such framework: see for instancar&]references therein for a recent survey
on this topic.

Among the multivariate clustering approaches, an importkass is those of the so-called “density
oriented” methods. The main idea dates back to Hartigan[{§gewhere clusters are identified as the
connected components of the level set (at a given threshafithe (multivariate) distributiorf of the
data; i.e. the connected components{ 6f> c}. Differently from the multivariate case, working with
functional data, a definition of the density distribution {he classical sense) is not available. Thus, to
implement an equivalent of the Hartigan's approach in thectional context, one can refer to surro-
gate densities, as the one defined in [2] and based on the iKarHLoéve truncated expansion (namely,
the so-called Functional Principal Component Analysig)lldwing this principle, in [6] a model based
clustering approach has been introduced: in particulayrasg that the underlying distribution of the
functional principal scores is a gaussian mixture, the@wsthse a maximum likelihood and expectation
maximization approach to identify the distribution paraeng and hence the mixture. Clearly, the distri-
butional assumption in [6] can appear restrictive: in thiskwve propose a “distribution free” approach,
based on the non-parametric estimation of the joint demdity fixed number of principal component
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scores. The main idea rests in finding the local maxima of slecisity (i.e., the modes) and in defining
each cluster as the set of observations included in thedalgeel set that contains only one maximum.

The paper is structured as follows. In Section 1, we intredte theoretical framework and the clus-
tering method, while, in Section 2, the proposed methodtisilare illustrated through an application
to simulated data.

1 Theclustering approach

Let (Q, F,P) be a probability space anq% 1 be the Hilbert space of square integrable real functions

on [0,1] endowed with the inner produgg, h) = folg(t)h(t)dt and the induced normig||® = (g,g).
OnQ, define theL[%J] valued Random Curve (RQ). Denote byX" = {E[X(t)],t € [0,1]} andX[-] =
E[(X—XH.) (X —XHW)] its mean function and covariance operator respectivelynsider a sample of
n curvesX;, being i.i.d. as the RX. Thus the empirical versions of* andz are: X, (t) = %zixi(t),
zn[’] = %Z|<Xl —Yn">(xi —Yn)~

Suppose tha® is partitioned inK (unknown) group€x (k=1,...,K) each one with a RC unimodal
specific distributionP (X € - | Q). Our aim is to determine the groups and to classify each wéder
Xi by means of a local version of the Hartigan’s clustering igeaeralized in the functional statistical
context. Since it is not possible to define a probability dgn@n the sense of the Radon-Nikodym
derivative with respect to some underlying measure) foctional data, we follow a similar thinking as
in [2], where an approximation of the small-ball probakilt(xp, €) = P (||X — X%o|| < €) (for small values
of €) is provided.

In this view, a crucial tool is the Karhunen-Loeve expanggee e.g. [1]): denoting b{/)\j,Ej}Tzl
the decreasing to zero sequence of non—negative eigesvahgetheir associated orthonormal eigen-
functions of the covariance operafbrthe RCX may be represented by

X(t):x“(t)+§ejzj(t), 0<t<1, (1)
=1

where; = (X — X" &;) are the so-called principal components (PCsX htisfying
E[ej]zo, Var(ej):)\j, E[ejej/] =0, j#j/

Proposition 1, whose proof is based on similar argumentsairha 13.6 in [3], provides an asymptotic
representation of the small-ball probability in terms & thensity of the first PCs.

Proposition 1 Letr be a finite positive integer. Define the r-dimensionaldam vectoW = (W ..., W,)’,
with W, = (X —xo,&;)?, and assume that

(i) it has density fcontinuous and strictly positive &t = (wy,...,w;)’,

(ii) sup>1 {E W] /Aj} =M < o0, with M a positive constant.

Then there exists angrlarge enough such that for any > ro whenevere tends to zero, it holds:
p(lo, &) ~ fr (W)eTT/2/T (141/2).

Thanks to the previous result, we can define the followingipasvised classification algorithm:

1. Obtain an estimate of the covariance operator and of eigamegits;
2. Fixr, computefAr,n (an estimation of the joint distribution density), and look for its local maxima
M (k=1,...,K);

3. Finding Prototypes for eachk in {1,...,I2}, thek-th “prototypes” group is formed by thosé
whose estimated PCs belong to the largest level sﬁtnd:hat contains only the maximumy.

4. Connect the unclassifieq with the K prototypes groups by means of a k-NN.

Joint METMAVII and GRASPA 14 Workshop 2



E.G. Bongiorncet al. Clustering for functional data

Attention must be payed choosimg it should be small enough to avoid the well-known “curse ief d
mensionality” in estimatingfr but it should be large enough to guarantee a good KarhunéwelLap-
proximation. For the former task, a kernel density appraadhire a tuning procedure for the bandwidth
since the estimated number of clusters depends on the chasdwidth. Note that under the assumption
that PCs are independent, the approximatiop(a$, €) depends on the product of the marginal densities
of PCs (see e.g. [2]) and, even in this case, the bandwidticelstll needs attention.

2 A simulation example

Simulation setting - In order to generate the sample mixture process, we useticédnal basis expan-
sion:

L
K®ﬂ%:ZQﬂﬁ$®@% te[0,1,i=1,....N andk=1,...,K
1=

whereK = 3 is the number of generated groups for each of wiNck 100 curves are simulated. The
orthonormal basis function@p, (t)} play the role of eigenfunctions with the corresponding evgéues
{M},1=1,...,L. Here, we seL = 150,\| = 0.7-" and we choose the Fourier basis

[ V2sin2mmt—m), | =2m—1;
(M) _{ V2cog2rmt— 1), | = 2m.

For eactk € {1,2,3} and for a fixed € {1,...,N}, in order to have uncorrelated but dependent random
coefficients(r(k))}-zl, they are generated as a multivariate shifted t-Studemt Wdtdegrees of freedom,

i
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and identity covariance matrix.

Numerical Result - We estimate the empirical mean, the covariance operatoit@aenelements. Fig-
ure 1 shows 30 curves from the samp}¢}3% and the empirical mean curves of the three distributions
of the used mixture. Since the first two PCs explain the 93,89%e variability, we implement the
algorithm above with = 2. Figure 2 shows the contour plot &, the estimated mode®, and the “pro-
totypes regions” (dashed and bolded contour lines) agsolcia these modes. After the k-NN procedure,
we obtain three groups containing 112, 99 and 89 processpsatively, with a missclassification error
equal to 8,33%. Figure 3 depicts such obtained clustersrgésiwon the sample.

Figure 1: On the left, 30 curves from the samp)e}i?fg’. On the right, the empirical mean curves of the
three distributions of the used mixture.
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Figure 3: Computed clusters.
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