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Abstract. This work proposes an unsupervised classification algorithm for curves. It extends the
density based multivariate cluster approach to the functional framework. In particular, the modes
of the small-ball probability are used as starting points tobuild the clusters. A simulation study is
proposed.
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Introduction

Cluster analysis, or unsupervised classification, is a set of techniques to segment a collection of data
into subsets. When data are curves, orfunctional data(see e.g. [3] and [7] for monographs on this
topic), the classical multivariate approaches can not be directly used, due to problems related to the
dimensionality of the space to which the data belong. Hence,a variety of specific clustering methods
have been introduced in such framework: see for instance [5]and references therein for a recent survey
on this topic.

Among the multivariate clustering approaches, an important class is those of the so-called “density
oriented” methods. The main idea dates back to Hartigan (see[4]), where clusters are identified as the
connected components of the level set (at a given thresholdc) of the (multivariate) distributionf of the
data; i.e. the connected components of{ f > c}. Differently from the multivariate case, working with
functional data, a definition of the density distribution (in the classical sense) is not available. Thus, to
implement an equivalent of the Hartigan’s approach in the functional context, one can refer to surro-
gate densities, as the one defined in [2] and based on the Karhunen-Loève truncated expansion (namely,
the so-called Functional Principal Component Analysis). Following this principle, in [6] a model based
clustering approach has been introduced: in particular, assuming that the underlying distribution of the
functional principal scores is a gaussian mixture, the authors use a maximum likelihood and expectation
maximization approach to identify the distribution parameters and hence the mixture. Clearly, the distri-
butional assumption in [6] can appear restrictive: in this work we propose a “distribution free” approach,
based on the non-parametric estimation of the joint densityof a fixed number of principal component
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scores. The main idea rests in finding the local maxima of suchdensity (i.e., the modes) and in defining
each cluster as the set of observations included in the largest level set that contains only one maximum.

The paper is structured as follows. In Section 1, we introduce the theoretical framework and the clus-
tering method, while, in Section 2, the proposed method abilities are illustrated through an application
to simulated data.

1 The clustering approach

Let (Ω,F ,P) be a probability space andL2
[0,1] be the Hilbert space of square integrable real functions

on [0,1] endowed with the inner product〈g,h〉 = ∫ 1
0 g(t)h(t)dt and the induced norm‖g‖2 = 〈g,g〉.

On Ω, define theL2
[0,1] valued Random Curve (RC)X. Denote byXµ = {E [X (t)] , t ∈ [0,1]} andΣ [·] =

E [〈X−Xµ, ·〉 (X−Xµ)] its mean function and covariance operator respectively. Consider a sample of
n curvesXi, being i.i.d. as the RCX. Thus the empirical versions ofXµ andΣ are: Xn(t) = 1

n∑iXi(t),

Σ̂n[·] = 1
n∑i〈Xi −Xn, ·〉(Xi −Xn).

Suppose thatΩ is partitioned inK (unknown) groupsΩk (k= 1, . . . ,K) each one with a RC unimodal
specific distributionP(X ∈ · | Ωk). Our aim is to determine the groups and to classify each observed
Xi by means of a local version of the Hartigan’s clustering ideageneralized in the functional statistical
context. Since it is not possible to define a probability density (in the sense of the Radon-Nikodym
derivative with respect to some underlying measure) for functional data, we follow a similar thinking as
in [2], where an approximation of the small-ball probability p(x0,ε) = P(‖X−x0‖< ε) (for small values
of ε) is provided.

In this view, a crucial tool is the Karhunen-Loève expansion(see e.g. [1]): denoting by
{

λ j ,ξ j
}∞

j=1
the decreasing to zero sequence of non–negative eigenvalues and their associated orthonormal eigen-
functions of the covariance operatorΣ, the RCX may be represented by

X (t) = Xµ(t)+
∞

∑
j=1

θ jξ j (t) , 0≤ t ≤ 1, (1)

whereθ j =
〈
X−Xµ,ξ j

〉
are the so-called principal components (PCs) ofX satisfying

E [θ j ] = 0, Var(θ j) = λ j , E
[
θ jθ j ′

]
= 0, j 6= j ′.

Proposition 1, whose proof is based on similar arguments of Lemma 13.6 in [3], provides an asymptotic
representation of the small-ball probability in terms of the density of the firstr PCs.

Proposition 1 Let r be a finite positive integer. Define the r-dimensional random vectorW=(W1 . . . ,Wr)
′,

with Wj =
〈
X−x0,ξ j

〉2
, and assume that

(i) it has density fr continuous and strictly positive atw = (w1, . . . ,wr)
′,

(ii) supj≥1

{
E [Wj ]/λ j

}
= M < ∞, with M a positive constant.

Then there exists an r0 large enough such that for any r> r0 wheneverε tends to zero, it holds:
p(l0,ε)∼ fr (w)εrπr/2/Γ(1+ r/2).

Thanks to the previous result, we can define the following unsupervised classification algorithm:

1. Obtain an estimate of the covariance operator and of eigenelements;
2. Fix r, computef̂r,n (an estimation of the joint distribution densityfr ), and look for its local maxima
m̂k (k= 1, . . . , K̂);
3. Finding Prototypes: for eachk in {1, . . . , K̂}, thek-th “prototypes” group is formed by thoseXi

whose estimated PCs belong to the largest level set off̂r,n that contains only the maximummk.
4. Connect the unclassifiedXi with theK̂ prototypes groups by means of a k-NN.
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Attention must be payed choosingr: it should be small enough to avoid the well-known “curse of di-
mensionality” in estimatinĝfr but it should be large enough to guarantee a good Karhunen-Loève ap-
proximation. For the former task, a kernel density approachrequire a tuning procedure for the bandwidth
since the estimated number of clusters depends on the chosenbandwidth. Note that under the assumption
that PCs are independent, the approximation ofp(x0,ε) depends on the product of the marginal densities
of PCs (see e.g. [2]) and, even in this case, the bandwidth choice still needs attention.

2 A simulation example

Simulation setting - In order to generate the sample mixture process, we use the functional basis expan-
sion:

X(k)
i (t) =

L

∑
l=0

√
λl τ

(k)
i,l ϕl(t), t ∈ [0,1], i = 1, . . . ,N and k= 1, . . . ,K,

whereK = 3 is the number of generated groups for each of whichN = 100 curves are simulated. The
orthonormal basis functions{ϕl (t)} play the role of eigenfunctions with the corresponding eigenvalues
{λl}, l = 1, . . . ,L. Here, we setL = 150,λl = 0.7−l and we choose the Fourier basis

ϕl(t) =

{ √
2sin(2πmt−π), l = 2m−1;√
2cos(2πmt−π), l = 2m.

For eachk∈ {1,2,3} and for a fixedi ∈ {1, . . . ,N}, in order to have uncorrelated but dependent random

coefficients(τ(k)i,l )
L
l=1, they are generated as a multivariate shifted t-Student with 10 degrees of freedom,

with location parameters

µ(k) =





(5
2,−5

2, . . . ,
5
2,−5

2) k= 1,
−µ(1) k= 2,
µ(1)+µ(2) k= 3,

and identity covariance matrix.

Numerical Result - We estimate the empirical mean, the covariance operator andits eigenelements. Fig-
ure 1 shows 30 curves from the sample{Xi}300

i=1 and the empirical mean curves of the three distributions
of the used mixture. Since the first two PCs explain the 93,39%of the variability, we implement the
algorithm above withr = 2. Figure 2 shows the contour plot off̂2, the estimated modeŝmk and the “pro-
totypes regions” (dashed and bolded contour lines) associated to these modes. After the k-NN procedure,
we obtain three groups containing 112, 99 and 89 processes respectively, with a missclassification error
equal to 8,33%. Figure 3 depicts such obtained clusters of curves on the sample.
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Figure 1: On the left, 30 curves from the sample{Xi}300
i=1. On the right, the empirical mean curves of the

three distributions of the used mixture.

Joint METMAVII and GRASPA14 Workshop 3



E.G. Bongiornoet al. Clustering for functional data

−3 −2 −1 0 1 2 3

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Figure 2: Contour lines of̂f2, modes and level sets characterizing the prototypes.
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Figure 3: Computed clusters.
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