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Abstract. Multivariate analysis of extreme values has an increasing range of applications in risk
analysis, especially in the fields of environmental sciences. For example, it would be of interest for
hydrologists to extract relevant information hidden in complex spatial-temporal rainfall datasets. The
aim of this work is to analyse the dependence structures of weekly maxima of hourly rainfall in France
recorded from 1993 to 2011. Some weather stations, initially organised in clusters, are analysed in
order to summarise the dependence within all groups of seven stations. However, beyond the bivariate
case, the analysis of the dependence structures for moderately high dimensional problems is still chal-
lenging. Estimation methods for assessing the extremal dependence must satisfy appropriate assump-
tions for guaranteeing valid results. The approach used here focuses on the nonparametric estimation
of the Pickands dependence function through a specific type of Bernstein polynomial representation
which ensures that all required constraints are verified.

Keywords. Extreme values; Rainfall maxima; Pickands dependence function; Nonparametric estima-
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1 Introduction

To study the stochastic behaviour of extreme precipitation is crucial for engineering design and the action
planning for protecting societies against such events. Extreme rainfall can produce heavy floods causing
several damages to population centers and potential loss of lives. Multivariate extreme value statistics
describes the behaviour of two or more variables at extreme levels. In this context, the multivariate vector
under study is the 49-dimensional vector of weekly maxima of hourly rainfall recorded at French weather
stations in the Fall season in the period 1993− 2011. Thus, for each station, n = 228 values have been
collected. Data are grouped in clusters as suggested by [1], where in each of the seven groups, seven
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weather stations are considered. Our aim is to analyse the dependence structures within climatologically
homogeneous areas defined by such clusters.

Formally, a multivariate extreme value distribution is the joint limiting distribution of component-
wise maxima of identically distributed random variables. This work aims to apply a nonparametric
approach for estimating the dependence function, assuming knowledge of the marginal distributions, in
the multivariate framework. Let Xi = (Xi,1, . . . ,Xi,d), i = 1, . . . ,n , be a d-dimensional random variable,
with continuous marginal distribution functions F1, . . . ,Fd . Assume it follows a multivariate max-stable
distribution [8] and that the margins are unit Fréchet, that is P(X j ≤ x) = e−1/x j , x j > 0. Then, the joint
distribution of X can be written as

G(x) = exp{−V (x)}, V (x) =
(

1
x1

+ . . .+
1
xd

)
A(w), (1)

where w j =
x j
r and r = x1 + . . .+ xd . The exponent measure function V (x) is an homogeneous function

of order −1 which describes the dependence among data, see [2]. Such function can be quite difficult to
estimate, especially in a multivariate context. However, the same dependence structure can be detected
by taking into account the Pickands dependence function A(w) which is the restriction of V (x) in the
unit simplex of dimension d−1,

Sd−1 :=

{
(w1, . . . ,wd−1) ∈ [0,1]d−1 :

d−1

∑
j=1

w j ≤ 1

}
, (2)

In order for A(w) to be a valid Pickands function it must satisfy [3]:

1. continuity and convexity.

2. A(w) has boundary codomain. It has lower limit at max
(
w1, . . . ,wd−1,1−∑ j≤d−1 w j

)
≥ 1/d

which corresponds to the case of complete dependence; it has upper limit equal to one, for any
w = (w1, . . . ,wd−1) ∈ Sd−1 which implies that each component of X is independent of all the
others.

3. A(e j)=A(0
¯
)= 1 for the extremal points of the simplex, e j =(0, . . . ,0,1,0, . . . ,0) for 1 ≤ j ≤ d − 1.

Many nonparametric estimators of A have been proposed in the literature, however, most of them provide
estimates which do not satisfy the properties 1− 3 above when dimension is high. The consequence is
that the resulting estimate of V (x) in (1) does not define a proper distribution G(x).

2 Nonparametric estimation

The estimation procedure is divided into two parts, as proposed in [6]. A preliminary estimate Â of
A is initially obtained through the multivariate madogram. Such estimator does not necessarily satisfy
the required properties. Therefore, a regularised estimator Ã is constructed as the solution of a con-
strained optimization problem via a Bernstein polynomial representation. The multivariate madogram
has the advantage of being interpretable as an L1-distance between the component-wise maximum and
the component-wise mean of the rescaled cumulative distribution functions. It describes how far X is
from the complete dependence case. The regularization procedure is based on the projection of the pilot
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estimate Â onto the set of functions A which satisfy properties 1−3. The representation of the Pickands
dependence function is given through the Bernstein polynomial,

BA(w;k) = ∑
`∈Lk

β`b`(w;k) (3)

where k ∈ N determines the order of the polynomial and the vector of coefficients β defines the shape
of the representation, with β` ∈ [0,1]. The polynomial basis b`(w;k), with w ∈ Sd−1, is a multivariate
extension of the binomial probability function with parameters ( j;k,w), as in [4] and [7]. An advantage
of using this approach is that Bernstein polynomials can uniformly approximate any functions [5] and
since A(w) is continuous on Sd−1, it follows that the sequence of Bernstein polynomials (3) converges
uniformly to A on Sd−1 as k goes to infinity. Thus, the functional representation BA(w;k) provides
an approximation of A, for any given k which becomes more accurate as k grows. The main gain of
this procedure is that it regularises the estimate Â by its projection Ã which satisfies all constraints.
Additionally, the necessary conditions are expressed as a linear constraint on the vector of the coefficients
β in (3). Thus, the estimation method appears to be computationally feasible also in high dimensions.

A graphical representation of the improvement from the madogram to its regularised version is pro-
vided in Figure 1. The plots show the theoretical (solid line) and estimated (dashed line) Pickands
functions corresponding to the trivariate symmetric logistic model with strong dependence (α = 0.3) and
sample size n = 20. First plot corresponds to Â and second plot to Ã with an order of the polynomial
k = 14. Notice that Â is not convex and therefore is not a proper Pickands function, whereas Ã satisfies
all the required constraints at each point of the domain.
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Figure 1: Theoretical (solid line) and estimated (dashed line) Pickands dependence function of the trivari-
ate symmetric logistic model obtained by Â (a) and Ã (b).

3 Application: Weekly rainfall maxima

The above methodology is applied to the weakly maxima rainfall described in section 1. The Bernstein
projection estimator, based on the madogram, is computed for each cluster. For seven-dimensional anal-
ysis, a graphical representation is not available. To summarise results, we consider the relation among the
extremal coefficient and the Pickands function, defined by θ̃ = d Ã(1/d, . . . ,1/d). In this case d = 7, thus
1 ≤ θ̃ ≤ 7 where the lower and upper bounds represent the case of complete dependence and indepen-
dence among the extremes, respectively. Extremal coefficients θ̃ are displayed in Figure 2. A stronger
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dependence is present in the northern regions than in the south. Extreme precipitation in the south is
more likely driven by localised convective storms with weak spatial dependence structures, whereas
heavy rainfall is often produced by mid-latitude perturbations in Brittany or in the north of France and
Paris. This confirms what would be expected from a purely climatological perspective.
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Figure 2: Map of clusters of weather stations and respective estimated extremal coefficients with d = 7.
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