Regression on compositional covariates: assessing
substrate suitability for vegetation
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Abstract. Investigating the relationship between vegetation cover and substrate typologies is important
in habitat conservation and management. We focus on a modern ecological survey, where information
regarding vegetation cover are derived from digital ground photos taken at different times. The aim is
to estimate the effect of different substrate typologies on vegetation cover (substrate suitability). As it
is often the case in ground cover imaging, information on substrate typologies are available as compo-
sitional data, e.g., the area proportion occupied by a certain substrate. We develop a novel procedure
for managing compositional covariates within a Bayesian hierarchical framework and illustrate it with
data from a gypsum outcrop located in the Emilia Romagna region, Italy.
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1 Introduction

Modern ecological surveys are increasingly based on high-resolution spatially referenced data, collected
by digital ground photos taken several times during sampling campaigns and fieldworks. Typically,
the objective of these studies is to understand the complex relationships between ecological outcomes
(e.g. species richness, abundance, vegetation cover) and the characteristics of an habitat (e.g. substrate
typologies). In the present work, the focus is on modelling vegetation cover as a function of substrate
typologies which is crucial to evaluate substrate suitability, i.e., substrates’ natural ability to support veg-
etation. Knowledge on substrate suitability is strategic in predicting future developments and reactions
to possible environmental changes.
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1.1 Data

A sampling campaign was performed on a gypsum outcrop within the Site of Community Importance
IT4050001 Gessi Bolognesi e Calanchi dell’Abbadessa, located in the Emilia Romagna Region, Italy.
The study area is a 1.5 m? regular grid, consisting of S = 900 grid cells indexed by s = 1,...,900. Data
were collected from April 2012 to late March 2013, but sampling campaigns were adjourned during the
dryness period of August and September, when low vegetation cover is expected, and on January because
of snow cover. Overall, data were measured at 7 = 9 unequally spaced times, indexed by t = 1,...,9. At
time #, a ground photo was taken and then processed to produce data on vegetation and substrate ground
cover. At grid cell s and time ¢, information collected over n = 100 sub-pixels are available; response data
(yst) consist in the number of sub-pixels covered by a plant; covariate data (zy = {2y 4}, d =1,...,D)
consist in the number of sub-pixels covered by each one of D = 4 substrate typologies: moss, litter, soil
and bare rock. Within each grid cell, substrate counts sum to » giving information about the composition
of the cell in terms of substrates.

1.2 Compositional covariates

The compositional nature of substrate information implies several challenges for statistical modelling.
First, if substrate compositional parts z are used as covariates in a simple linear regression model, then
the design matrix would be singular due to the sum-to-n constraint. A recent proposal [3] to address this
problem is to use transformations that allow the D parts to be expressed in a real unconstrained space
RP~! rather than in the simplex SP. Though this approach allows model identifiability, determining the
effect associated to increasing each compositional part is generally a non trivial issue. Compositional
covariates are expressed in terms of coordinates with respect to a given orthonormal basis. Such a
representation, introduced by [2], is called isometric logratio transformation (ilr):
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In what follows we propose a Bayesian hierarchical modelling framework for estimating composi-
tional covariate effects in a spatio-temporal framework.

2 A modelling proposal for estimating substrate suitability

The relationship between substrate typology and vegetation cover is modelled by a hierarchical Bayesian
model where we assume a binomial likelihood and a probit link for the vegetation occupancy probability
TCSI7

yst|ty ~ Bin(mg,n) s=1,...,8;, t=1,...,T 2)
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where &y = ilr(zy) is a vector of ilr coordinates of length D — 1 expressing substrate compositional
information, and B; = {PB;1,....P:p—1} are the associated effects which are assumed as time-varying.
Parameters o, 6, and d,; are vectors of temporal, spatial and spatio-temporal structured random effects,
respectively, which are modelled using Intrinsic Gaussian Markov Random Fields IGMRF; [4]). An
IGMREF prior is also assumed for modelling (3;, as our assumption, to be verified, is that substrate suit-
ability changes smoothly over time.

One disadvantage of model (3) is that only the first regression coefficients of vector 3;, i.e. B 1, can
be interpreted as the effect of substrate 1 on the vegetation occupancy probability; this is because the first
ilr coordinate zy 1 properly summarizes the comparison between part 1 and all the others; note that all
the parts, except for part 1, are included in the denominator of (1) when i = 1. In contrast, coefficients
{B,g, .., Br.p—1} do not express the effect of the other parts in an analogous manner, as the associated ilr
coordinates for i = 2,...,D — 1 do not summarize comparisons of one single part with respect to all the
others.

In order to obtain meaningful regression coefficients, we propose to exploit a remarkable feature of
the ilr transformation: permutation of the parts in the simplex corresponds to a permutation of the compo-

(d)

nents of the orthogonal basis. Given the vector of permuted parts zy, * = {Zy 4, Zst 15 s Zst.d— 15 Zst.d+15 -1 Zst.D }»

we note that azﬁf) = ilr(zs(,d )) = MDg,, where M@ is a symmetric and orthogonal matrix that allows

a change of coordinates from ilr(zy) to ilr(zs(,d)). Matrix M@ is given by BB@T, where B is the or-
thonormal basis associated to coordinates ilr(z,) and B is obtained by switching columns 1 and d of
B. Therefore, the suitability of a generic substrate d, evaluated at any time ¢, is calculated as the first
elements of vector M) 3,.

3 Results

The approach described above has a crucial advantage: the contribution of a given compositional part
with respect to all others can be properly identified and straightforwardly estimated via Monte Carlo
Markov Chain (MCMC). Model fitting was performed via Gibbs sampling using the augmented approach
proposed in [1]. In each panel of Figure 1, posterior means for suitability of each substrate are displayed
at all observed times (filled circles) and prediction times (black solid line), together with credible bands
(grey shadowed areas). It can be shown that substrate suitability estimates sum to 0 by construction:
therefore they can be interpreted as relative suitability measures, indicating how much a substrate is
more (> 0) or less (< 0) suitable than average (= 0). Except from litter, which shows constant average
suitability, all other substrate suitabilities changes over time. In particular, moss shows positive relative
suitability for vegetation all along the study period. Bare rock is less suitable than average and shows a
decreasing pattern over time. The relative suitability of soil is approximately zero at the beginning and
increases over time reaching positive suitability in winter.

4 Discussion

A novel approach for estimating the effect of the single part of a compositional covariate on a response
variable is developed within a Bayesian framework, through a procedure based on appropriate transfor-
mations of the regression coefficients associated to ilr transformed covariates. One interesting ecological
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Figure 1: Substrate relative suitability over time

finding of our work is that substrate relative suitability varies over time. A future line of research will
focus on extending the proposed model to allow for smooth, rather than simply linear, effects of compo-
sitional covariates on ecological responses. Non-linear effects of the proportion of ground covered by a
substrate may often be observed on certain ecological responses, such as a biodiversity index, or species
richness.
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