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“Charm is the ability to insult people without offending them; nerdiness the reverse.”

Nassim Nicholas Taleb



Abstract

Essays in Systemic Risk and Contagion

by Riccardo Pianeti

This work contributes to the timely debate about the consequences of the material-

ization of financial instability in the global economic and financial system. The topic

of measuring and forecasting systemic risk, together with the related implications

for policy makers, is explored from different angles. First, we propose a method

to estimate forward-looking probabilities of joint default, with an application to the

recent European debt crisis. We find evidence of increasing systemic risk and danger

of default contagion from early 2007 and more significantly from late 2011 onwards.

Second, a novel modelling framework to measure systemic risk in a unified approach,

relying on an extended information basis across both financial and macroeconomic

aggregates, is proposed and tested using data from 1995 to 2011. Third, we analyse

in particular the late 2000s crisis and the European debt crisis, by means of a novel

modelling set-up to test for contagion versus excess interdependence. The empirical

application reveals that the 2007-09 financial crisis characterized as a persistent pe-

riod of financial distress, whereas the recent debt crisis has to be understood as a

short-lived phenomenon, having been prompted by volatility spillovers, which do not

display trend in the long-term. Finally, we propose an empirical study to measure

the reaction of the Monetary Authorities to systemic risk, and highlight important

differences between Central Banks’ monetary conducts during the recent period of

financial turmoil.
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Introduction

The way in which recent financial crises have evolved and spread out at a global level

has drawn the attention of academics, regulators and policy makers on methods able

to assess the systemic risk affecting the financial system.

A first strand of research defines systemic risk as the risk of financial distress within

the international banking sector, with the idea that systemic instabilities propa-

gate through the financial channel and that the soundness of the financial system

is epitomized by the financial health of big institutions. Taking this view, standard

risk management techniques are applied to measure financial instability within the

banking sector, with the scope of providing an assessment of the financial tension in

the whole system. Notable contributions along this line are: Lehar (2005), Huang

et al. (2009), Segoviano and Goodhart (2009), Acharya et al. (2010), Adrian and

Brunnermeier (2011), Brownlees and Engle (2012) and Jobst and Gray (2013)1. In

particular, Lehar (2005) focuses on both asset correlations and interlinkages within

the interbank market to analyse insolvency risk over a one-year horizon. Huang

et al. (2009) measure systemic risk by means of the Distress Insurance Premium

(DIP), defined as the premium required to cover distressed losses for a given pool

of banking institutions. Segoviano and Goodhart (2009) introduce a set of Bank-

ing Stability Measures (BSMs) based on the multivariate distribution of banking

1A different methodological approach is the one using network theory to measures the degree
of interconnectedness of the banking sector. See inter alia IMF (2009), Haldane and May (2011)
and Billio et al. (2012).
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Introduction 4

defaults, which is estimated via the Consistent Information Multivariate Density

Optimizing methodology (CIMDO) in Segoviano (2006). Acharya et al. (2010) in-

troduce the Systemic Expected Shortfall (SES) of a bank as the expected shortfall

on the bank equity value, conditioned on the materialization of a loss triggered by

a systemic event. Adrian and Brunnermeier (2011) propose the concept of Condi-

tional Value at Risk (CoVaR), defined as the financial sector’s Value at Risk (VaR)

given that an institution has incurred in a VaR loss. Brownlees and Engle (2012)

introduce the Systemic Risk Index (SRISK), determined by the expected capital

shortage a financial firm would experience in case of a systemic event, defined as a

substantial market decline over a given time horizon. Finally, the approach in Jobst

and Gray (2013) utilizes Contingent Claims Analysis (CCA) to assess credit risk

at the single financial institutions level and generate an aggregate estimate of the

joint default risk as a conditional tail expectation using multivariate Extreme Value

Theory (EVT)2.

There is a second line of research within the systemic risk literature, which em-

braces a global economic and financial perspective, inferring from both the market

dynamics and the macroeconomic context an indication of the financial instability

at the system level. Schwaab et al. (2011) adopt a dynamic state-space model to

determine forward crises indicators with underlying macro-financial and credit risk

variables. Hollo et al. (2012) introduce the Composite Indicator of Systemic Stress

(CISS) for the European financial system, providing an a-posteriori insight into the

extent to which financial stress tends to depress real economic activity. De Nicoló

and Lucchetta (2012) propose a model framework to forecast both real and financial

systemic instabilities via density forecasts for indicators of real activity and financial

soundness.

2For an analytic survey of the contributions in this line of research, see the paper by Bisias et al.
(2012).
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This work contributes to both lines of research. Within the first stream of litera-

ture, we propose a method to estimate forward-looking probabilities of joint default

applicable to multiple financial and/or sovereign entities, which is used to infer early-

warning indications of financial systemic instability. We also contribute to the latter

line of research by proposing a novel modelling framework to measure systemic risk

in a unified approach, which rely on an extended information basis across both fi-

nancial and macroeconomics aggregates. The methodology is based on the definition

of systemic risk stated in the G10 Report on Consolidation in the Financial Sector

(G10, 2001), according to which systemic risk is to be associated to a generalized loss

in economic value, going hand-in-hand with increasing uncertainty and worsening

conditions in the real side of the economy. From the standpoint of the empirical

results, we explore recent episodes of financial instability and relate them to the

stylized facts mentioned in the G10 definition. We take this analysis a step further,

with particular emphasis on the late 2000s crisis and the European debt crisis, by

proposing a modelling set-up to test for pure contagion versus excess interdepen-

dence during periods of financial distress. The dissection of the two effects has a

crucial information content as to how a crisis develops and spreads out.

The study of economic and financial turmoil episodes finds its primary goal in the

development of forecasting methodologies for systemic threats, with the ultimate

scope of guiding macroeconomic stabilization policies, along with the idea that the

identification of key underlying risk factors would pave the way to a cooperative

and more effective international response. On the latter aspect, we propose an

empirical study to measure the reaction of Central Banks to the building up of

systemic instabilities across the past two decades. Concerning with the effort of

developing methodologies able to provide early-warning signals of financial turmoil,

the proposed joint default probability estimator can be employed for an assessment

of the likelihood of the materialization of future systemic threats. This toolkit is
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applied to sovereign risk in Europe during the recent debt crisis, with the goal of

foreseeing systemic instabilities and danger of contagion.

The dissertation is divided in three chapters. In Chapter 1, we propose a method-

ology to estimate the likelihood of the default of one or more entities using current

market data. Applying a no-arbitrage argument, we derive a formula for the joint

default probability for couple of financial institutions and use it to infer information

about the joint default correlations of single entities with a representative protection

seller in the credit derivative market. The defaults of the single institutions are then

correlated through their common dependence on the protection seller, typically a

top tier investment bank, which represents the financial sector, considered in the

first line of research mentioned above, as the channel through which financial crises

chiefly propagate. We provide an empirical application on sovereign risk in the Euro

Area during the recent debt crisis. the proposed methodology is employed to dy-

namically estimate marginal, joint and conditional default probabilities within the

Euro Zone. We test the forecasting capability of the estimated default probabilities

using a benchmark stock market index, which marked the timeline of the recent

sovereign debt crisis.

In Chapter 2, we propose an indicator to measure systemic risk at a global level.

The indicator embodies both the dynamics of international financial and commodity

markets, as well as signals from the economic cycle of all the main currency blocks.

The indicator can be regarded as a mapping from the set of exogenous economic and

financial variables to a risk measure in the (0, 1) space. The calibration is carried

out exploiting the rich history of events observed over the period 1995-2011. By

introducing a filtered average systemic risk fluctuation, time-varying positive and

negative deviations from such average are considered, and monetary interventions

by the Federal Reserve (Fed), the European Central Bank (ECB) and the Bank of

England (BoE) are related to those deviations. We employ a generalization of the
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Taylor rule (Taylor, 1993), which includes a systemic risk factor alongside the canon-

ical inflation rate and output gap variables. The model is estimated in the form of a

cointegrated system. AutometricsTM is used for model selection as well as to detect

the structural breaks affecting the considered time series. We offer a comparison

between the reactions of the three Central Banks to systemic instabilities.

In Chapter 3, we propose a modelling framework to test for contagion versus excess

interdependence in the Forbes and Rigobon’s (2002) sense. A situation of contagion

characterizes as a persistent change in financial linkages between markets, whereas

a rise in correlations caused by excess volatility has only a temporary effect. Hence,

the first extent is associated to a prolonged episode of market distress altering the

functioning of the financial system. On the contrary, a situation of excess interde-

pendence is a short lasting phenomenon. Thus, being able to distinguish between

contagion and excess interdependence adds information on the features of a crisis.

For this sake, we set up a dynamic factor model in a latent factor framework, with

shocks at the global, asset class and country level. The model is specified with dy-

namic factor loadings, to accommodate time-dependent exposures of the single assets

to the different shocks. This also allows us to disentangle the different sources of

comovement between financial markets, and to analyse their dynamics during finan-

cial crisis periods. We report an empirical application using a sample period which

encompasses both the 2007-09 crisis and the current sovereign debt crisis: this is

an interesting laboratory to use the proposed framework to explore and characterize

financial market dynamics during prolonged periods of financial distress.





Chapter 1

Estimating the Probability of a

Multiple Default Using CDS and

Bond Data

1.1 Introduction

Recent years have witnessed episodes of financial turmoil, whose intensity has been

epitomized by the escalation of credit events occurred during the burst of the crisis.

In this chapter, we measure the systemic risk of a financial system by proposing a

novel method to estimate the probability of a joint default event for multiple financial

and sovereign entities. Systemic risk is thought as the risk of a multiple simultaneous

migration of large financial institutions to a situation of financial distress. This

definition is in line with the literature which looks at disequilibria within the banking

sector to infer an indication on the riskiness of the system as a whole (Lehar, 2005,

Huang et al., 2009, Segoviano and Goodhart, 2009, Acharya et al., 2010, Adrian and

Brunnermeier, 2011, Brownlees and Engle, 2012, Jobst and Gray, 2013).

9
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The proposed methodology aims at extracting joint default probabilities from bond

and CDS market prices. Both bond and credit derivative markets convey information

on the default process: the former provides an insight on the marginal default prob-

abilities, whilst the latter on the joint default probabilities. A similar approach is

followed by Giglio (2011). He extracts the joint default probabilities for the reference

entity α and the protection seller β in a CDS contract, and then proposes a linear

programming model to derive upper and lower bounds for the joint default probabil-

ity of N banks connected with a network. In this work, we provide point estimates

for the joint default probabilities by simulating a system where the single defaults

are correlated by means of a credit risk model with a factor model structure. Both

the methodologies are in line with the literature on the Credit Value Adjustment

(CVA) of derivative contracts in presence of counterparty risk1. The importance of

adjusting the value of a derivative contract to take into account the likelihood of

default of a counterparty in financial derivatives, has also been emphasized within

the new Basel III regulatory framework.

We apply the proposed toolkit to measure the sovereign debt risk in the Euro Zone.

In view of the recent crisis, the matter has been addressed by the applied financial

literature with many contributions. Zhang et al. (2012) propose a model to esti-

mate the joint default of Euro Area countries. They model the difference between

perceived costs and benefits of the single countries’ default and correlate them by

means of macro-factors as well as by a risk factor common to all the countries. A

single country defaults when such difference exceeds a threshold calibrated on CDS

data. They estimate marginal, multivariate and conditional probability of default

via simulation. Radev (2012) introduces the concept of “change in the conditional

joint probability of default” for a pool of EU sovereign entities and banks, as a new

1The literature on this topic is too wide to survey here. See the seminal work of Jarrow and
Turnbull (1995) and the contribution of Hull and White (2001).
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systemic risk measure for the EU area, where the joint default probability is esti-

mated via the CIMDO approach in Segoviano (2006). Here, we measure systemic

risk as the probability of a joint default of the EU countries over a 5 years’ time

horizon. We first infer information about the joint default correlations of the single

states with a representative protection seller in the sovereign CDS market. Next,

the defaults of the states are correlated through their common dependence on the

protection seller, typically a top tier investment bank, which represents the financial

sector, considered as the channel through which crises evolve and spread out.

The main findings of the empirical application can be summarized as follows. There

is evidence of increasing systemic risk and danger of contagion within the Euro

Area from early 2007 and more significantly from late 2011 onwards. The proposed

systemic risk indicator proves to be very reactive to changes in market conditions

and the magnitude of the estimates is in line with what found by Radev (2012) and

Zhang et al. (2012). Marginal and conditional default probability estimates are also

provided. We validate the forecasting power of the proposed indicator by comparing

it with the dynamics of a benchmark stock market index, which marked the timeline

of the recent sovereign debt crisis.

The remainder of the chapter is as follows. Section 1.2 explores the relation between

the CDS-bond basis and counterparty risk. In Section 1.3 we set up a theoretical

framework to estimate the joint default probability of multiple entities. Section

1.4 proposes the empirical application referred to the Euro Zone and Section 1.5

concludes.
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1.2 The Information Content of the CDS-Bond

Basis

In this section, we analyse the relation between bond and CDS prices, providing a

survey of the literature on the topic. Furthermore, we set up the model framework

and present a methodology to infer information on the counterparty risk in a CDS

contract.

1.2.1 CDS Premia and Bond Spread

As a first approximation, CDS prices reflect the expected loss of the reference entity

given by its default probability and the recovery rate. These factors are actually

the same that influence bond spreads: theoretically bond spreads should be equal

to CDS premia for the same reference entity (see Duffie, 1999). For the sake of

illustration, consider two financial agents α and β and let:

• r(t, T ) be the risk-free rate in t for the maturity T .

• yα(t, T ) be the yield at time t on a zero-coupon bond (ZCB) issued by α with

maturity date T .

• sα(t, T ) ≡ yα(t, T )−r(t, T ) be the spread over the risk-free rate of the issuance

cost of α, prevailing in t and referred to the maturity T .

• wα,β(t, T ) be the periodic CDS premium to insure against the default of α

within the period [t, T ] with β as the protection seller.

In equilibrium, a portfolio composed by a ZCB with maturity T and a CDS on

that same bond with the same maturity, should replicate a synthetic risk-free asset.
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Hence the ZCB yield yα(t, T ) minus the CDS premium wα,β(t, T ) should be exactly

equal to the risk-free rate r(t, T ). The invoked equilibrium is ensured by the two

following arbitrage strategies2:

Strategy 1. Case wα,β(t, T ) < sα(t, T ): the arbitrage strategy in this case consists

in buying the bond, financing at the risk-free rate r(t, T ) and then buying the CDS by

paying the premium wα,β(t, T ). The portfolio return is yα(t, T )−r(t, T )−wα,β(t, T ) =

sα(t, T )− wα,β(t, T ) > 0.

Strategy 2. Case wα,β(t, T ) > sα(t, T ): the arbitrage strategy in this case con-

sists in short selling the bond, investing the proceeds at the risk-free rate of return

r(t, T ) and selling protection in the CDS market to get the premium wα,β(t, T ). The

portfolio return is wα,β(t, T ) + r(t, T )− yα(t, T ) = wα,β(t, T )− sα(t, T ) > 0.

However, there is strong empirical evidence that wα,β(t, T ) 6= sα(t, T ) (see Section

1.4). We then define as basis the difference bα,β(t, T ) ≡ wα,β(t, T )−sα(t, T ). Multiple

are the factors that give rise to a basis different from zero. O’Kane and McAdie

(2001) and De Wit (2006) identify a comprehensive list of drivers which cause the

basis to deviate from zero, and distinguish the factors which are technical in nature

from the fundamental ones. The theoretical and applied literature on the topic

insists in particular on few of them, that are:

(1) The counterparty risk which affects CDS contracts, consisting in the possibility

that the protection seller β might not respect its obligations (see inter alia Bai

and Collin-Dufresne, 2011),

2For the sake of illustration and without loss of generality, we assume a frictionless market
where one can borrow and lend at the risk free rate. We will relax this hypothesis later. We also
assume that the positions are kept until bond maturity or until the credit event occurs. Otherwise
the strategies would face a roll over risk in the financing/investing positions linked to the volatility
of r(t, T ).
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(2) Liquidity reasons that cause investors to prefer a riskless bond to a corporate

bond plus a CDS or vice versa (Trapp, 2009),

(3) Market frictions that cause the above Strategies 1 and 2 to be asymmetric,

thus undermining the role of arbitrageurs in reverting the basis towards zero

(Bai and Collin-Dufresne, 2011).

The case of the basis between sovereign CDS and the corresponding government

bonds makes no exception and the influence of counterparty risk, liquidity and fund-

ing issues on the basis has been documented inter alia by Fontana and Scheicher

(2010).

Other market imperfections might cause the basis to be positive or negative. As an

example, we can mention the different reactivity of CDS and bond markets to new

information on an issuer. A negative or positive basis can reflect a different degree

of adjustment between the two markets that arbitrage strategies correct only in the

long run. A large body of literature has shown that CDS corporate markets have a

leading position in the price discovery process i.e. the CDS prices variation anticipate

the variations in bond prices which react with a temporary lag (see Amadei et al.,

2011, and, for the case of EU sovereign risk, Palladini and Portes, 2011).

In the following, we focus on counterparty risk, which is not present in bond con-

tracts, but crucially affects CDS markets. However, CDS contracts traded in the

OTC markets are increasingly subject to collateralization agreements, which are in-

tended to mitigate counterparty risk. We take this extent into explicit consideration

by disentangling the effect of counterparty credit risk on the basis. Furthermore,

in order to take into account the impact of liquidity, instead of modelling an unob-

servable liquidity process as in Giglio (2011), we normalize the observed quotes by

means of the bid-ask spreads, which is a direct measure of the liquidity linked to
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these contracts. The impact of the cost of funding on Strategy 2 above, is also taken

into account. All these adjustments are made explicit in the following section.

1.2.2 Counterparty Risk and the Basis

In section 1.2.1, we claimed that the basis differs from zero because of a number

of different factors. The literature on the topic points in particular at counterparty

risk, liquidity and funding issues as well as market imperfections. The goal is to

disentangle the different components of the CDS-bond basis and ultimately pin down

the component that can be referred to counterparty risk. This section presents the

methodology employed for this sake.

The concept of basis is built upon the comparison of two contracts, a bond and

a CDS, which typically differ from the point of view of the liquidity. We apply

a liquidity adjustment to facilitate a direct comparison between CDS and bond

spreads.

Investors demand an additional premium for holding a bond, to compensate for the

liquidation risk (Amihud and Mendelson, 1986, Chen et al., 2007). Let α be the

issuer of a bond, with a spread on the risk free rate denoted as sα(t, T ). We denote

the liquidity premium on such bond as λα(t, T ), so that:

sα(t, T ) = s′α(t, T ) + λα(t, T ) (1.1)

where s′α(t, T ) is the liquidity-adjusted bond spread. We rewrite the above equation

as:

sα(t, T ) = s′α(t, T ) [1 + lα(t, T )] (1.2)
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where lα(t, T ) is a proportionality factor linking the bond spread with its liquidity-

adjusted counterpart. We use the bid-ask spread as a liquidity proxy, to infer infor-

mation about the liquidity components of the bond spread. lα(t, T ) is estimated as

the bid-ask spread expressed in percentage term, that is:

lα(t, T ) =
sbidα (t, T )− saskα (t, T )

sα(t, T )
(1.3)

where sbidα (t, T ) and saskα (t, T ) are the bond spread linked to the bid and the ask

quote of the bond, respectively. The proposed liquidity adjustment assumes that

the liquidity premium λα(t, T ) is proportional to the bid-ask spread. In the limit

case that the market is characterized by infinite liquidity, it is reasonable to assume

that sbidα (t, T ) = saskα (t, T ), and no adjustment is performed. As the market becomes

more and more illiquid, market participants will require to be compensated for the

liquidation risk, thus causing the bid price to deviate from the ask price.

The liquidity-adjusted bond spread becomes:

s′α(t, T ) =

(

1 +
sbidα (t, T )− saskα (t, T )

sα(t, T )

)−1

sα(t, T ) (1.4)

We apply the same concept to CDS spreads and perform the following adjustment3:

w′
α,β(t, T ) =

(

1 +
wask

α,β(t, T )− wbid
α,β(t, T )

wα,β(t, T )

)−1

wα,β(t, T ) (1.5)

The liquidity-adjusted basis is then given by:

b′α,β(t, T ) ≡ w′
α,β(t, T )− s′α(t, T ) (1.6)

3In the notation, we follow the market practice according to which, in the case of the bond, the
bid and the ask quotes are referred to the bond price so that sbidα (t, T ) ≥ saskα (t, T ), whereas in the
case of the CDS they are directly referred to the spread, so that wask

α,β (t, T ) ≥ wbid
α,β(t, T ).
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We also take explicitly into account funding issues linked to the implementation

of arbitrage Strategies 1 and 2, outlined in Section 1.2.1. We show how the basis

might be affected and propose an adjustment. We relax the hypothesis that all

the market participants can borrow and lend money at the risk free rate r(t, T ).

We more realistically assume that they borrow money at the Libor rate L(t, T )

and they can deposit money at the depo rate, denoted as d(t, T ). Let us denote

with δ(t, T ) the spread of the Libor rates over the depo rates, that is δ(t, T ) ≡

L(t, T )−d(t, T ). When a negative basis is observed, the payoff of Strategy 1 is given

by yα(t, T ) − L(t, T ) − wα,β(t, T ), which, in the case the bond spread is measured

over L(t, T ), is still equal to sα(t, T )−wα,β(t, T ). On the other hand, in the case of

a positive basis, the payoff of Strategy 2 changes to wα,β(t, T ) + d(t, T ) − yα(t, T ),

which is equal to wα,β(t, T ) − sα(t, T ) − δ(t, T ). Such a spread stems from the

asymmetry of the strategies in relation to the process of funding4. Thus, Strategy

2 will be implemented as long as bα,β(t, T ) > δ(t, T ). Hence, it might well be that

arbitrageurs can not revert a positive basis to 0 because of the presence of funding

asymmetries in the implementation of the two strategies. Therefore, we correct the

basis as:

b′′α,β(t, T ) ≡ w′
α,β(t, T )− s′α(t, T )− δ(t, T ) (1.7)

where b′′α,β(t, T ) is the basis adjusted by funding and liquidity.

The basis b′′α,β(t, T ) consists in the materialization of counterparty risk in the un-

derlying CDS contract, as any funding and/or liquidity effects has been accounted

for. However, as stated in the ISDA Margin Survey (ISDA, 2012), the practice of

requiring the counterparty in OTC derivatives to post a collateral against the possi-

bility of a default, has become more and more common. We adapt our formulas to

take this extent into account. Realistically, the quote of a CDS is the average of the

prices provided by different dealers. We can then imagine that a quota qc ∈ [0, 1]

4In normal market conditions δ(t, T ) can be assumed to be positive, however the proposed
adjustment does not necessarily requires this hypothesis to hold.
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of such contracts are assisted by a collateral agreements covering the entire nominal

amount5. Then, the market average quote of a CDS on α, provided by the represen-

tative dealer β, can be seen as the weighted average of a contract assisted by a total

collateralization and a contract without collateral, so that the liquidity-adjusted

CDS quote w′
α,β(t, T ) can be rewritten as:

w′
α,β(t, T ) = (1− qc)w

′′
α,β(t, T ) + qcw̃

′′
α,β(t, T ) (1.8)

where w′′
α,β(t, T ) is the quote referred to an uncollateralized CDS contract on α,

whereas w̃′′
α,β(t, T ) is the value of a CDS on α, fully assisted by collateral. In absence

of market frictions, the latter coincides with the spread on the debt of α, that is

sα(t, T ). In the case of no collateralization (qc = 0), the liquidity-adjusted CDS

spread w′
α,β(t, T ) coincides by definition with w′′

α,β(t, T ), so that no adjustment for

collateralization is needed. On the other hand, when the counterparty risk in the

CDS is fully collateralized (qc = 1), the CDS quote is perfectly in line with the

spread on the corresponding bond, leading to a basis equal to 0. This extent is in

clear contrast with what we observe in reality, as market data show in Section 1.4.

Let us exclude the possibility of full collateralization by letting 0 ≤ qc < 1.

Including the effect of liquidity and funding, we have that w̃′′
α,β(t, T ) = s′α(t, T ) +

δ(t, T ), so that from the previous equation we get:

w′′
α,β(t, T ) =

w′
α,β(t, T )− qc [s

′
α(t, T ) + δ(t, T )]

1− qc
(1.9)

Now we define b′′′α,β(t, T ) as the basis which cumulates adjustments for liquidity,

funding and partial collateralization, which is given by:

b′′′α,β(t, T ) ≡ w′′
α,β(t, T )− s′α(t, T )− δ(t, T ) (1.10)

5Alternatively, we can assume that the contracts are assisted by partial collateralization, so that
the average quota of nominal amount covered is equal to qc. From the modelling point of view, the
two cases are equivalent.
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Substituting in the definition of w′′
α,β(t, T ), we get:

b′′′α,β(t, T ) =
1

1− qc

(

w′
α,β(t, T )− s′α(t, T )− δ(t, T )

)

(1.11)

Hence b′′′α,β(t, T ) results in a multiplicative adjustment of b′′α,β(t, T ), defined in Eq.

(1.7).

Eq. (1.11) isolates the component of the basis motivated by counterparty credit risk.

We thus expect b′′′α,β(t, T ) ≤ 0. To exclude the effect of market imperfections which

might cause the basis to be positive, we define:

Bα,β(t, T ) ≡
(

b′′′α,β(t, T )
)−

(1.12)

where (·)− ≡ min(·, 0). In what follows, Bα,β(t, T ) is considered as the component

of the basis corresponding to counterparty risk.

1.3 A Formula for the Joint Probability of Default

In this section, we first present a methodology for the estimation of bivariate prob-

abilities of default (Section 1.3.1), and then extend the model to the multivariate

case (Section 1.3.2).

1.3.1 The Bivariate Case

Consider two risky financial institutions and denote them as α and β. Imagine that

at time t = 0, a portfolio is built, according to the following uniperiodal strategy:

• Buy a 1-year ZCB issued by α,
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• buy a 1-year CDS from β, the protection seller, on the reference entity α,

• finance the positions on the market with a 1-year loan.

Assume that both the ZCB and CDS contracts have $1 face value and let RRα,

RRβ be the recovery rates of α and β, respectively, so that $RRα and $RRβ are

the amounts recovered when α and β default. When we exclude market imperfec-

tions, such as liquidity and funding issues, and in the presence of non-collateralized

counterparty risk, the portfolio value at time t = 0 is given by Bα,β(0, 1) (see Eq.

1.12).

At time t = 1, a non-zero cash flow equal to (1−RRα)(1−RRβ) is generated only

when both α and β default. Thus, in an arbitrage-free world, it must hold that:

Pα,β(0, 1) =
|Bα,β(0, 1)|

(1−RRα)(1−RRβ)
er(0,1) (1.13)

where Pα,β(0, 1) is the one-year joint default probability for α and β, withBα,β(0, 1) ≤

0 by definition.

The extension of the formula in Eq. (1.13) over the generic time sequence 0 = t0 <

t1 < . . . < tM is achieved by exploiting the following recursive relation:

Pα,β(tk, tk+1) =







P̃α,β(0, t1) for k = 0

Pα,β(tk−1, tk)P̃α,β(tk, tk+1) for k = 1, . . . ,M − 1
(1.14)

in which we define:

P̃α,β(tk, tk+1) ≡
Ψ(tk, tk+1)

(1−RRα)(1−RRβ)
k = 0, . . . ,M − 1 (1.15)

where:

Ψ(tk, tk+1) ≡ |Bα,β(tk, tk+1)| e
r(tk,tk+1)(tk+1−tk) (1.16)
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Bα,β(tk, tk+1) is the basis expressed in forward terms (for further details see Appendix

on p. 35). P̃α,β(tk, tk+1) is the probability of joint default of α and β for the

period [tk, tk+1], conditional on their joint survivor till time tk. Pα,β denotes the

unconditional joint default probability and Pα,β is the joint survival probability.

All the variables entering the definition of joint default probability stated in Eq.

(1.14) are directly observable on the market, with the only exception of the recovery

rates RRα and RRβ. In order for Eq. (1.15) to assume a probability meaning, we

seek a logistic transformation L(·) of Ψ(tk, tk+1) of the type:

L

(

Ψ(tk, tk+1)
)

≡
c1

1 + exp{−Ψ(tk, tk+1)}
+ c2 (1.17)

where c1 and c2 are chosen such that:











L(0) = 0

lim
Ψ(tk,tk+1)→+∞

L

(

Ψ(tk, tk+1)
)

= (1−RRα)(1−RRβ)

leading to c1 = 2(1−RRα)(1−RRβ) and c2 = −(1−RRα)(1−RRβ). If we substitute

Ψ(tk, tk+1) with its logistic transformation in Eq. (1.15), we get:

P̃α,β(tk, tk+1) =
2

1 + exp{−Ψ(tk, tk+1)}
− 1 (1.18)

as the ultimate formula for the conditional probability of joint default for the period

[tk, tk+1]. Recalling Eq. (1.14), we can state that the logistic transformation is suf-

ficient to guarantee the consistency of the unconditional probability of joint default

Pα,β(tk, tk+1), since, by construction, 0 ≤ Pα,β(tk, tk+1) ≤ 1, ∀k = 0, . . . ,M − 1.

Furthermore, the employment of the proposed logistic transformation leads to the

dropping of the dependence of the formulae on arbitrary assumptions about the re-

covery rates, which appears to be a critical choice in other competing models (see

inter alia Schönbucher, 2001).
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The default correlation is estimated via the standard binomial correlation approach:

ρα,β(tk, tk+1) =
Pα,β(tk, tk+1)− Pα(tk, tk+1)Pβ(tk, tk+1)

√

Pα(tk, tk+1)
(

1− Pα(tk, tk+1)
)

Pβ(tk, tk+1)
(

1− Pβ(tk, tk+1)
)

(1.19)

where Pα and Pβ are the marginal probability of default for α and β, which are

extracted from bond prices.

1.3.2 The Multivariate Case

In this section, we extend the methodology above to the case of multiple entities.

The proposed multivariate generalization consists of two steps. First, the bivariate

methodology presented above is used to estimate the default correlations of the single

entities with a representative protection seller in the CDS market. Second, the single

defaults are correlated through their common dependence on the protection seller,

by means of a credit risk model with a factor model structure.

Let us consider N defaultable entities, say α1, . . . , αN . The goal is to estimate the

joint default probability of such entities. Imagine that a protection seller β sells

protection against the default of each of the N entities in the CDS market. Hence,

we can apply the bivariate methodology above to estimate the pairwise default

correlation between αi and β, for i = 1, . . . , N over the period [tk, tk+1], which we

denote as ραi,β(tk, tk+1).

In what follows, we embrace the modelling set-up of credit risk models of the fac-

tor model type, by assuming that the dependence of the single defaults is triggered

by common factors. Credit factor models offer analytical tractability while pro-

viding a realistic representation of the dependency structure of the single obligors

(Schönbucher, 2001). In a standard one-factor model, the value of the assets of the

i-th reference entity, say Vi, is driven by a common systematic component Y , and
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an idiosyncratic component, here denoted as Zi, according to the model:

Vi = %iY +
√

1− %2iZi (1.20)

where %i is a parameter correlating the single obligor i with the systematic trigger Y .

Assuming that Y, Z1, . . . , ZN are mutual independent with 0 mean and unit variance,

the linear correlation between Vi and Y coincides with %i, whereas the correlation

of reference entity i with j 6= i, is given by the product %i%j.

The systematic component Y in Eq. (1.20) is identified as being the protection seller

β. From a financial and empirical point of view, this assumption leads to a realistic

representation of the default correlation structure as long as:

1. the protection seller β is a representative institution for the considered refer-

ence entities (e.g. if the goal is to estimate the joint default probability for a

given rating class, it is desirable that β itself is a representative institution of

that rating class6) and/or

2. the protection seller β is an institution operating in a market/sector which

arguably consists of the channel through which default propagation might

occur (e.g. if the concern is the assessment of the likelihood of a joint default

event which can possibly be triggered by a worsening in the macro-financial

context, then β ought to be a representing institution operating in the financial

sector and exposed to the considered entities).

In the light of the current debt sovereign crisis, the application proposed in Section

1.4 is referred to Euro Zone sovereign risk. In the empirical exercise, β is an EU

6Assuming homogeneity between reference entities and protection sellers is something not far
from reality. Indeed, credit derivatives markets tend to be very concentrated among few players,
both in terms of sellers and reference entities. This increases the interconnectedness of the system
while posing a concrete threat for the global financial stability. The issue is well documented inter
alia by ECB (2009).
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bank exposed to the sovereign risk of the European area. The identification of the

protection seller as the triggering factor for a joint default is justified from the point

of view of both the extents listed above: β operates on the European markets and

represents the financial sector, which was widely recognized as the channel through

which the crisis evolved and spread out.

Therefore, the default correlation between αi and αj, with i = 1, . . . , N , j = 1, . . . , N

and i 6= j, is given by:

ραi,αj
(tk, tk+1) = ραi,β(tk, tk+1)ραj ,β(tk, tk+1) (1.21)

Using Eq. (1.21), we can recover the full default correlation matrix for (α1, . . . , αN ),

which we denote as R(tk, tk+1), where:

Ri,j(tk, tk+1) ≡







ραi,β(tk, tk+1)ραj ,β(tk, tk+1) if i 6= j

1 otherwise
(1.22)

Joint default probabilities are estimated via simulation. We set up the simulation

design as follows. Let 1i(tk, tk+1) be a random variable taking the value 1 if αi

defaults in the time period [tk, tk+1] and 0 otherwise. We assume that the sys-

tem
(

11(tk, tk+1), . . . ,1N(tk, tk+1)
)

follows a multivariate binomial distribution (see

Davis and Lo, 2001, Cousin et al., 2012) with correlation equal to R(tk, tk+1):

1i(tk, tk+1) ∼ B
(

Pαi
(tk, tk+1)

)

(1.23)

corr
(

11(tk, tk+1), . . . ,1N(tk, tk+1)
)

= R(tk, tk+1) (1.24)

We simulate the system
(

11(tk, tk+1), . . . ,1N(tk, tk+1)
)

by means of dynamic copula

functions. We adopt as a baseline a standard Gaussian copula approach and we

contrast it with a Gumbel Archimedean copula, which is the only copula function
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allowing for positive tail dependence with the advantage of parameter parsimony

(Cherubini et al., 2011). The generator function of the Gumbel copula is given by:

φ(u) = [− ln(u)]θ (1.25)

where θ ∈ [1,+∞) is the dependence parameter. The Gumbel N -dimensional copula

is then given by:

C(u1, . . . , uN) = exp







−

[

N
∑

i=1

(− ln(ui))
θ

]

1
θ







(1.26)

We denote the dependence parameter referred to the period [tk, tk+1] as θ(tk, tk+1)

and estimate it as:

θ(tk, tk+1) =
1

1− R̄(tk, tk+1)
(1.27)

where R̄ is the average default correlation across the N countries:

R̄(tk, tk+1) =
2

N(N − 1)

N
∑

i=1

N
∑

j>i

Ri,j(tk, tk+1) (1.28)

The next section presents an application of this methodology to the sovereign risk

in the Euro Area.

1.4 Empirical Application

The on-going EU sovereign debt crisis is causing great concern about the sustain-

ability of national debt issued by the member states. This empirical application is

devoted to the estimation of the likelihood of the default of one or more countries

in the Euro Zone.
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1.4.1 The Data

We consider bond and CDS data for the following countries: Austria, Belgium,

Finland, Germany, France, Italy, Netherlands, Portugal, Slovakia, Slovenia and

Spain7. This country selection is dictated by data availability. The data provider

is BloombergTM . The sample consists of daily observations form 01-Jan-2004 to

11-Oct-2012 (2291 observations). We choose 5 and 10 years as reference maturities

and derive the 5- and 10-year equivalent of the annual market quotes. The goal is

to estimate risk-neutral joint default probabilities for the periods [0, 5] and [5, 10].

We then fix t0 = 0, t1 = 5, t2 = 10. In Tab. 1.1 we report descriptive statistics for

the variables employed in the estimation. Data series are plotted in Figs. 1.1-1.2.

[Tab. 1.1 and Figs. 1.1-1.2 about here.]

Sovereign bond spreads are estimated as the difference between the national bond

yields and the German bond yields. Risk-free rates are the EU swap rates. We use

1, 5 and 10 year EU swap data series and we do interpolation for the intermediate

maturities, when needed. In order to take into account the impact of funding issues

on the basis, we consider the spread between the 6 month EU depo rates and the

Euribor over the same maturity. We apply a Hodrick-Prescott filter to the rate

series, in order to rule out excess volatility and get a trend measure of the funding

asymmetry. We specify the Hodrick-Prescott smoothing parameter according to the

rule proposed in Ravn and Uhlig (2002) applied at the daily frequency. We employ

the same filtering procedure to the bid-ask quotes of bonds and CDS, in order to

estimate a trend measure of the liquidity adjustment. We compute the basis and

adjust it for liquidity and funding effects. The adjusted and the unadjusted bases

are displayed in Figs. 1.3-1.4.

7The methodology requires an estimate of the probability of default of the protection seller β.
For this sake, we consider CDS data for BNP Paribas, Deutsche Bank and Société Générale, which
can be thought as the representative EU dealers for the over-the-counter CDS market (see ECB,
2009).
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[Figs. 1.3-1.4 about here.]

The time series for the unadjusted bases fluctuate around the frictionless value of 0.

For some of the countries analysed, the divergence from 0 is systematic, with Por-

tugal, Slovenia and Slovakia showing a persistent negative basis, whereas a positive

basis is typically observed for Austria and France in particular. This evidence is in

accordance with the applied literature on the topic (see inter alia Fontana and Sche-

icher, 2010). After adjusting for the liquidity and the cost of funding asymmetries,

most of the observations have a negative sign, which we attribute to the presence of

counterparty risk, whereas the positive observations are considered as manifestation

of market imperfections and then, they are averaged out.

The considered CDS quotes can be regarded as an average price for a CDS written

by a top tier investment bank, which typically operates worldwide. From these

quotes, we want to infer the fair price of a CDS offered by an EU bank exposed

to the EU sovereign risk. The analytical derivation follows closely what has been

done in Section 1.2.2 for partial collateralization. Let us define qEU ∈ (0, 1] as

the relative importance within the investment banking sector of the EU investment

banks. The market average quote of a CDS on αi can be seen as the weighted

average of a contract issued by an EU investment bank and a contract written by

a non-EU institution. This leads to a multiplicative adjustment of the basis which

is analogous to the one applied in the passage from Eq. (1.10) to Eq. (1.11). The

resulting basis is denoted as BEU
αi,β

, and is given by:

BEU
αi,β

(tk, tk+1) =
1

qEU

Bαi,β(tk, tk+1) (1.29)

with k = 1, . . . ,M and i = 1, . . . , N .
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1.4.2 The Simulation and Systemic Risk Measurement

We use Eq. (1.19) to estimate the pairwise default correlations between each of the

countries in the sample and a representative EU investment bank, which we have

denoted as β. The defaults are then correlated via the common dependence of the

single states to the European financial sector, represented by β. We then estimate

via simulation the joint probability of defaults of the considered EU countries.

The simulation engine requires the specifications of two parameters: the quota of

collateralized trades on the OTC credit derivate market qc and the relative size of

the EU investment bank sector.

Regarding the specification of the first parameter, the ISDA Margin Survey (ISDA,

2012) states that 93% of the OTC transactions that took place in 2012 in the credit

derivative markets have been assisted by collateralization. We fix qc to the following

set of values: 0.8, 0.9, 0.95. The consideration of values of qc below the ISDA

estimates are motivated as follows. A smaller value of qc leads to a smaller estimate

of the collateralization-adjusted basis (see Eq. 1.11) and thus to a more conservative

estimate of the probability of default. Furthermore, collateralization is a practice

become widespread only after the credit crunch crisis of late 2007, and thus we might

consider the ISDA estimate for 2012 to be bigger than the estimate to be referred

to the entire sample.

We provide an estimate of the parameter qEU as follows. We assume that the global

equity markets convey information on the exposures to local risk factors of a repre-

sentative investment bank operating worldwide. In this perspective, qEU represents

the relative importance of the EU market within the global financial markets. Thus,

for the sake of estimating qEU , we consider MSCI data for benchmark stock indices

for US, Europe, UK, Japan and Emerging markets, offering a wide coverage of the
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international stock markets. Using standard principal component analysis, we ex-

tract the first component of the weekly equity returns of the benchmark indices

listed above, in order to estimate the global equity factor, common to the set of the

considered financial markets. The estimate of qEU is given by the contribution of the

European index in the estimated global factor. The application of this procedure

to weekly data from 2001 to 2012, leads to the extraction of a principal component

accounting for more than 75% of the total variance and a point estimate for qEU of

0.25. Along with this estimate, we consider the alternative values of 0.15 and 0.35

for robustness check.

The results of the simulation are reported in Figs. 1.5-1.6. We observe the 5-year

and the 5-to-10-year probability having quite a similar dynamic evolution. In partic-

ular, they are negligible up to 2006. This situation is indicative of a well-functioning

economic and financial system, with no tangible threat of sovereign risk. Afterwards,

the estimated probabilities feature remarkable peaks in correspondence of some no-

table facts of the recent financial history. In particular, we observe a surge during

the harshest period of the 2008-09 economic and financial crisis. Later, other peaks

are recorded in conjunction with the first EU intervention for the Greece bailout in

May-2010 and since mid-2011 onwards, to mark the spreading of the sovereign crisis

throughout and outside Europe, a process which we are still witnessing. As expected

the highest figures are recorded for the least conservative case qc = 0.95, qEU = 0.15.

For the 5-year case, the figures referred to the recent crisis exceeds the figure referred

to the late 2000s crisis in 5 cases out of 9. On the contrary, for the case of the forward

estimates in Fig. 1.6, much higher probabilities were recorded during 2008, as to

anticipate the worsening of the crisis in Europe. The breakdown of the Euro caused

by a joint default of the member states in the next 5 years is estimated to happen

with a probability between 0.01% and 0.14%, a remote event, but with catastrophic
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impact. The magnitude of the estimates is in line with other applied contributions

on the topic, such as Radev (2012) and Zhang et al. (2012).

[Figs. 1.5-1.6 about here.]

We adopt the 5-year joint default probability as our measure of systemic risk for the

Euro Area. Our methodology is based on the hypothesis of absence of arbitrage,

hence the estimates are produced under the risk-neutral probability measure. In the

proposed set-up, risk-neutral probabilities offer a conservative indication on real-

world probabilities and as such, can be used to identify periods of systemic risk and

contagion.

In Fig. 1.7 and 1.8, we report the estimated probabilities of at least 1, 2, . . . , N

defaults to happen, contrasting the performance of the Gumbel copula with the

Gaussian copula. The estimates of the probability of observing at least 1, 2, 3 and 4

default(s) for the 5-year case are plotted in the top panel of Fig. 1.7. The dynamics

of these probabilities provides evidence of an increasing risk of default from early

2010 onwards, with the current estimate of observing at least another default after

Greece in the next 5 years of the order of 35%, down from a peak recorded at the end

of 2011 of about 60%. In this case, the estimation with the Gumbel copula and the

Gaussian copula are quite similar. On the contrary, in the middle panel and, even

more evidently, in the bottom panel, we document the inaccuracy of the Gaussian

copula to capture the extreme event of a default of more than 7 countries. In this

respect, similar conclusions can be drawn from the forward probabilities in Fig. 1.8,

which however show a more marked trending behaviour than the 5-year estimate for

the case of the default of a small number of countries (top panel).

[Figs. 1.7-1.8 about here.]
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The simulated realizations of the multivariate default process
{

1i(tk, tk+1)
}

i=1,...,N

defined in Section 1.3.2, offer an insight into conditional default probabilities, too. In

particular, we look at the probability that at least one country defaults given that

one default has been observed within a group of selected countries. We compute

joint default probabilities conditional on the default of Italy, Portugal and Spain

respectively for the period 2007-2012. Results are reported in Fig. 1.9. Overall,

the conditional probability estimates for the period 2007-2009 exceed the 2011-2012

figures. This corresponds to the idea that the market impact of a default of any of

the named countries would have been bigger during the late 2000s crisis than in the

current sovereign crisis. A Spanish default in 2007 would have led to at least another

default with a likelihood almost double than in the case of Italy and Portugal, whose

default in more recent times would have had a smaller effect than a default of the

other two (see top panel left of Fig. 1.9). In a similar way, Radev (2012) shows that

the contribution of the default of Greece to systemic risk is limited, when compared

to the impact of a German default.

[Fig. 1.9 about here.]

In Fig. 1.10, we compare the estimate of the 5-year joint default probability in the

case qc = 0.9, qEU = 0.25 with the EuroStoxx50, which we consider to be a good

indicator for the timing of the EU sovereign crisis. It is clearly specular behaviour of

the joint default probability with respect to the dynamic of the stock index. In early

2007, the joint default probability started reacting, anticipating the subsequent fall

in the stock index, and more remarkably, in mid-2011 the estimate surges sharply

well before the index plummets amid concerns on the spreading of the crisis.

[Fig. 1.10 about here.]

To corroborate these claims with empirical evidence, the next section proposes a

forecasting exercise.
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1.4.3 The Forecast

The forecasting exercise is designed as follows. We consider the weekly returns of

the EuroStoxx50, denoted with yt, and the weekly changes in the 5-year estimate of

the joint default probability, say ∆JDPt, over the period 2007-2012, where most of

the variability of ∆JDPt is observed. We set up a simple regression model, which

we use to forecast yt by means of lagged values of ∆JDPt. The model is as follows:

yt = ω +
L
∑

l=1

ψl∆JDPt−l + εt (1.30)

where ω is the constant term, ψl is the coefficient referred to ∆JDPt−l, L is the

number of lags and εt is assumed to be a white noise normally distributed error

term. In the application we consider different forecasting time horizons, setting

L = 1, 4, 12, 26, 52, which corresponds to the case in which the forecasting power of

the default probability is evaluated with a lag of one week, one month, one quarter,

one semester and one year, respectively. The simple model in Eq. (1.30) cannot

forecast equity markets: this small exercise is intended to show the capability of

the default probability estimates to anticipate the most relevant episodes of stress

during the EU sovereign crisis epitomized by extreme price movements in the stock

markets.

Pre-2011 data are considered as in-sample. We perform an out-of-sample forecasting

exercise over the period 2011-2012, which roughly corresponds to 30% of the period

2007-2012. We estimate Model (1.30) for every out-of-sample data point, following a

standard walk-forward optimization procedure and perform a one step ahead forecast

analysis. At every step, we compute P(yt+1 < 0), the probability of a negative equity

return for the week ahead. The results are reported in Tab. 1.2.

[Tab. 1.2 about here.]
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We focus on the biggest stock market drawdowns in the period 2011-2012, by re-

porting the results referred to the first decile of the out-of-sample equity return

distribution. These observations span the second semester of 2011, when the EU

sovereign debt crisis spread from the peripheral countries in Europe to the rest of

the continent and ultimately affected the US, too. The biggest slump in the EU

stock market was recorded in the last week of July 2011, with a weekly negative

return of 13%. For this data point, on the basis of our simple regression model,

we forecast a fall in the equity market, with a probability of 60 to 90%, when the

forecasting time horizon is at least one-quarter long. Similar figures are recorded for

the other observations in August-2011. Negative stock return probabilities above

50% are in general observed earlier in the same year (first two rows in Tab. 1.2),

whereas more contrasted evidence emerges from the last three rows. The average

drawdown probability across all the cases reported in Tab. 1.2 equates to more than

55%, providing evidence, albeit not strong, for the ability of the estimated default

probabilities to forecast the materialization of a tail event on the equity market.

1.5 Final Remarks

In this chapter, we proposed a multivariate methodology for the estimation of the

joint default probability of several entities. CDS and bond market data are used to

assess the dependence of a defaultable entity’s economic soundness on the financial

cycle, considered as the trigger for default propagation. The application to the EU

sovereign risk provided evidence of increasing systemic risk and danger of contagion

from early 2007 and more significantly from late 2011 onwards. The estimates show

to be very reactive to changes in market conditions and their magnitude is coherent

with what found by Radev (2012) and Zhang et al. (2012). We documented the total

inaccuracy of the Gaussian copula in capturing the extreme event of a joint default.
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Marginal and conditional default probability estimates were also provided. We his-

torically validated the forecasting capability of the proposed estimates through a

comparison with the dynamics of a benchmark stock market index, which marked

the timeline of the recent sovereign debt crisis. This forecasting power crucially de-

pends on the fact that the estimation relies entirely on the information impounded

in current market prices, which are observable at the daily frequency. This, however,

comes with the disadvantage that the estimates can not embed any insight at the

pure macroeconomic level, which is in fact considered only a-posteriori. In the fol-

lowing chapter, we develop a comprehensive indicator which blends the information

coming from markets’ dynamics with the current outlook on the real side of the

economy.
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Appendix - Derivation of Forward Spreads

The definition provided in Eqs. (1.15)-(1.16) requires the specification of sα(tk, tk+1)

and wα,β(tk, tk+1). The former is given by the standard relation:

sα(tk, tk+1) =
tk+1

tk+1 − tk
sα(0, tk+1)−

tk
tk+1 − tk

sα(0, tk) (1.31)

For the latter, consider that in an arbitrage-free world, the following relation can be

stated:

wα,β(0, tM)

(

1 +
M−1
∑

k=1

Pα,β(tk−1, tk)e
−r(0,tk)tk

)

=
M
∑

k=1

wα,β(tk−1, tk)e
−r(0,tk−1)tk−1

(1.32)

that is, the expected actual value of the payments in a contract with maturity tM

must equate the actual value of M forward CDS contracts referred to the time

periods [tk−1, tk] with k = 1, . . . ,M . We use Eq. (1.32) to bootstrap the forward

CDS quote as follows:

wα,β(tk, tk+1) = wα,β(0, tk+1)e
r(0,tk)tk +

k
∑

κ=1

[

wα,β(0, tk+1)Pα,β(tκ−1, tκ)e
−r(tκ−1,tκ)(tκ−tκ−1) +

− wα,β(tκ−1, tκ)e
−r(0,tκ−1)tκ−1

]

(1.33)

with k = 0, . . . ,M − 1.
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Table 1.1: Descriptive statistics for CDS spreads and bond yields. We
report summary statistics for the data used in the application. Data are referred to
Austria, Belgium, Finland, France, Italy, Netherlands, Portugal, Slovakia, Slove-
nia and Spain. The four panels respectively refer to 5-year CDS, 10-year CDS,
5-year bond yields and 10-year bond yields. The sample spans from 01-Jan-2004
to 11-Oct-2012 and consists of daily observations, leading to 2291 data points.

CDS - 5 years

Country Mean Standard deviation Min Max

Austria 0.517% 0.616% 0.010% 2.690%
Belgium 0.689% 0.896% 0.021% 4.061%
Finland 0.228% 0.248% 0.030% 0.908%
France 0.461% 0.615% 0.015% 2.496%
Italy 1.157% 1.509% 0.056% 5.915%

Netherlands 0.634% 0.321% 0.105% 1.398%
Portugal 2.287% 3.624% 0.040% 15.269%
Slovakia 0.706% 0.786% 0.053% 3.282%
Slovenia 0.932% 1.278% 0.043% 5.111%

Spain 1.221% 1.585% 0.026% 6.410%

CDS - 10 years

Country Mean Standard deviation Min Max

Austria 0.591% 0.683% 0.018% 2.611%
Belgium 0.733% 0.912% 0.024% 3.975%
Finland 0.278% 0.293% 0.027% 1.103%
France 0.522% 0.680% 0.029% 2.581%
Italy 1.194% 1.435% 0.093% 5.696%

Netherlands 0.631% 0.405% 0.075% 1.574%
Portugal 2.089% 3.034% 0.061% 10.694%
Slovakia 0.814% 0.838% 0.071% 3.403%
Slovenia 1.242% 1.420% 0.073% 5.414%

Spain 1.181% 1.490% 0.031% 5.754%

BOND - 5 years

Country Mean Standard deviation Min Max

Austria 3.035% 0.873% 0.615% 4.897%
Belgium 3.280% 0.723% 1.065% 5.404%
Finland 2.442% 1.063% 0.526% 4.930%
France 2.960% 0.889% 0.734% 4.929%
Italy 3.745% 0.832% 2.562% 7.703%

Netherlands 2.869% 0.982% 0.558% 4.883%
Portugal 5.281% 3.609% 2.517% 21.748%
Slovakia 3.403% 0.734% 1.675% 4.973%
Slovenia 3.968% 1.051% 2.080% 5.671%

Spain 3.713% 0.790% 2.435% 7.498%

BOND - 10 years

Country Mean Standard deviation Min Max

Austria 3.676% 0.623% 1.850% 4.921%
Belgium 3.895% 0.496% 2.394% 5.814%
Finland 3.283% 0.833% 1.322% 4.870%
France 3.637% 0.572% 2.046% 4.844%
Italy 4.453% 0.693% 3.217% 7.244%

Netherlands 3.542% 0.724% 1.521% 4.856%
Portugal 5.516% 2.686% 3.160% 16.605%
Slovakia 3.991% 0.464% 2.573% 5.062%
Slovenia 4.993% 0.975% 3.492% 6.123%

Spain 4.363% 0.790% 3.005% 7.566%
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Table 1.2: Results of the forecasting analysis. In the first two columns, we report the observations in the first
decile of the out-of-sample return distribution for the EuroStoxx50. The out-of-sample period spans from 01-Jan-2011
to 11-Oct-2012. For each of the reported observations, we present the probability of a negative return as forecast by the

regression model in Eq. (1.30) when different number of lags L are considered.

Probability of a drawdown

Date Observed stock return L = 1 L = 4 L = 12 L = 26 L = 52

04-Jul-2011 -5.029% 63.853% 57.623% 48.183% 59.151% 63.953%
25-Jul-2011 -5.526% 55.498% 51.980% 51.562% 57.924% 63.279%
01-Aug-2011 -12.967% 47.306% 42.771% 62.227% 81.906% 88.602%
15-Aug-2011 -6.596% 53.102% 59.478% 72.009% 79.830% 78.393%
29-Aug-2011 -4.980% 52.405% 39.249% 76.220% 80.351% 74.457%
05-Sep-2011 -4.209% 51.121% 49.762% 60.718% 70.487% 78.801%
14-Nov-2011 -6.270% 52.859% 52.443% 50.076% 27.601% 50.673%
05-Dec-2011 -4.385% 53.170% 51.698% 44.528% 24.973% 48.615%
02-Apr-2012 -4.163% 50.887% 48.717% 48.615% 23.189% 15.696%
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Figure 1.1: Data plot: CDS spreads. We plot the CDS spread data used in the application. The left panel shows
the 5-year CDS quotes, whereas the right panel shows the 10-year CDS quotes. Data are referred to Austria, Belgium,
Finland, France, Italy, Netherlands, Portugal, Slovakia, Slovenia and Spain. The sample consists of daily observations

from 01-Jan-2004 to 11-Oct-2012.
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Figure 1.2: Data plot: Bond yields. We plot the bond yield data used in the application. Panel (A) shows the
5-year bond yield data, whereas Panel (B) shows the 10-year bond yield data. Data are referred to Austria, Belgium,
Finland, France, Italy, Netherlands, Portugal, Slovakia, Slovenia and Spain. The sample consists of daily observations

from 01-Jan-2004 to 11-Oct-2012.
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Figure 1.3: The unadjusted bases. We plot the unadjusted CDS-bond basis for Austria, Belgium, Finland, France,
Italy, Netherlands, Portugal, Slovakia, Slovenia and Spain, from 01-Jan-2004 to 11-Oct-2012. The basis is computed as
the difference between the CDS spread and the bond spread. Panel (A) shows the 5-year basis, whereas Panel (B) shows

the 10-year basis.
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Figure 1.4: The liquidity- and funding-adjusted bases. We plot the liquidity- and funding-adjusted CDS-bond
basis for Austria, Belgium, Finland, France, Italy, Netherlands, Portugal, Slovakia, Slovenia and Spain, from 01-Jan-2004
to 11-Oct-2012. The liquidity- and funding-adjusted basis is computed according to Eq. (1.7). Panel (A) shows the

5-year basis, whereas Panel (B) shows the 10-year basis.
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Figure 1.5: Joint default probabilities (Gumbel copula) - 5 years. We plot the estimates of the 5-year joint
default probability for the considered EU countries. The probabilities are estimated via simulating the system presented
in Eqs. (1.23)-(1.24) by means of the Gumbel copula in Eq. (1.26). Results are presented for different values of the
parameters qc and qEU , which respectively are the quota of collateralized trades on the OTC credit derivate market, and

the relative size of the EU investment bank sector.
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Figure 1.6: Joint default probabilities (Gumbel copula) - 5 to 10 years. We plot the estimates of the 5-to-10-
year joint default probability for the considered EU countries. The probabilities are estimated via simulating the system
presented in Eqs. (1.23)-(1.24) by means of the Gumbel copula in Eq. (1.26). Results are presented for different values of
the parameters qc and qEU , which respectively are the quota of collateralized trades on the OTC credit derivate market,

and the relative size of the EU investment bank sector.



C
h
ap

te
r
1.

E
st
im

at
in
g
th
e
P
ro
ba
bi
li
ty

of
a
M
u
lt
ip
le

D
ef
au

lt
U
si
n
g
C
D
S
an

d
B
on

d
D
at
a

44

2004 2006 2008 2010 2012
 0%

10%
20%
30%
40%
50%
60%
70%

Jo
in

t d
ef

au
lt 

pr
ob

ab
ili

ty
 o

f
at

 le
as

t 1
, 2

, 3
 a

nd
 4

 c
ou

nt
rie

s. Gumbel copula

2004 2006 2008 2010 2012
  0%

0.5%

  1%

1.5%

  2%

2.5%

  3%

Jo
in

t d
ef

au
lt 

pr
ob

ab
ili

ty
 o

f
at

 le
as

t 5
, 6

 a
nd

 7
 c

ou
nt

rie
s.

2004 2006 2008 2010 2012
  0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%

Jo
in

t d
ef

au
lt 

pr
ob

ab
ili

ty
 o

f
at

 le
as

t 8
, 9

 a
nd

 1
0 

co
un

tr
ie

s.

2004 2006 2008 2010 2012
 0%

10%
20%
30%
40%
50%
60%
70%

Gaussian copula

2004 2006 2008 2010 2012
  0%

0.5%

  1%

1.5%

  2%

2.5%

  3%

2004 2006 2008 2010 2012
  0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%

Figure 1.7: Joint default probabilities for at least 1, 2, . . . , N countries (Gumbel versus Gaussian copula)
- 5 years. We show a comparison between the Gumbel copula (left panel) and the Gaussian copula (right panel) at
estimating the 5-year probability of default of at least 1 to 4 countries (top panel), 5 to 7 countries (middle panel) and 8

to 10 countries (bottom panel).
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Figure 1.8: Joint default probabilities for at least 1, 2, . . . , N countries (Gumbel versus Gaussian copula) -
5 to 10 years. We show a comparison between the Gumbel copula (left panel) and the Gaussian copula (right panel) at
estimating the 5-to-10-year probability of default of at least 1 to 4 countries (top panel), 5 to 7 countries (middle panel)

and 8 to 10 countries (bottom panel).
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Figure 1.9: Joint default probabilities conditional on the default of Italy, Portugal and Spain. We plot
default probabilities conditional on the default of Italy, Portugal and Spain. In the top panel we report the conditional
probabilities of one or more additional default(s), whereas in the bottom panel we report the conditional joint probability

of default. 5-year estimates are in the left panel, 5-to-10-year estimates are in the right panel.
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Figure 1.10: Joint default probability and the EuroStoxx50 Index. We compare the joint default probability
estimates with the EuroStoxx50 Index. We report a plot of the daily time series of the index (dotted line, right axis),
together with the estimate of the 5-year joint default probability for the EU countries, with qc = 0.9 and qEU = 0.25

(solid line, left axis).
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List of Symbols

α reference entity in the CDS contract

β protection seller in the CDS contract

t time index referred to the date of evaluation

T time index referred to the maturity of the contracts

r risk-free rate

yα yield on a ZCB issued by α

sα spread between the issuance cost of α and the risk-free rate

wα,β quote of a CDS on α issued by β

bα,β CDS-bond basis for α defined as the difference between wα,β and

sα

λα liquidity premium on a bond issued by α

s′α liquidity-adjusted counterpart of the bond spread sα

lα proportionality factor linking the bond spread sα with its liquidity-

adjusted counterpart s′α

sbidα bond spread for the bid quote of a bond issued by α

saskα bond spread for the ask quote of a bond issued by α

wbid
α,β bid quote of a CDS on α issued by β

wask
α,β ask quote of a CDS on α issued by β

b′α,β liquidity-adjusted counterpart of bα,β

L Libor rate

d depo rate

δ spread between the Libor and the depo rate

b′′α,β funding-adjusted counterpart of b′α,β

qc average quota of collateralized nominal amount on CDS in the OTC

market

w′′
α,β quote of an uncollateralized CDS on α issued by β
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w̃′′
α,β quote of a fully collateralized CDS on α issued by β

b′′′α,β collateralization-adjusted counterpart of b′′α,β

Bα,β component of b′′′α,β corresponding to counterparty risk

RRα recovery rate of α

RRβ recovery rate of β

tk index referred to time period k + 1 with k = 0, . . . ,M − 1

Pα,β joint default probability for α and β

P̃α,β(t, T ) joint default probability for α and β over the period [t, T ] condi-

tional on their joint survivor till time t

Pα,β joint survival probability for α and β

Ψ numerator on the right-hand side of Eq. (1.15)

L(·) logistic transformation

c1 scale parameter in the logistic transformation L(·)

c2 location parameter in the logistic transformation L(·)

ρα,β default correlation between α and β

Pα marginal probability of default for α

Pβ marginal probability of default for β

N number of defaultable entities

i index referred to the i-th defaultable entity with i = 1, . . . , N

αi i-th defaultable entity

Vi value of the assets of the i-th defaultable entity

Y common systematic component in the credit risk factor model

Zi i-th idiosyncratic component in the credit risk factor model

%i parameter linking the i-th defaultable entity with the systematic

component Y

R default correlation matrix for the defaultable entities α1, . . . , αN

1i random variable for the default process of the i-th defaultable entity

φ(·) generator function for the Gumbel copula
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θ dependence parameter in the Gumbel copula

C(·, . . . , ·) Gumbel copula function

R̄ average default correlation

qEU relative importance of the EU investment banks within the global

investment bank sector

BEU
αi,β

EU counterpart of Bα,β for the case in which the protection seller

is an EU investment bank

yt weekly returns of the EuroStoxx50

JPDt weekly time series for the estimated 5-year joint default probability

with qc = 0.9 and qEU = 0.25

ω constant term in the forecasting model

ψl coefficient referred to ∆JDPt−l in the forecasting model

L number of lags in the forecasting model

εt error term in the forecasting model



Chapter 2

A Systemic Risk Indicator and

Monetary Policy

2.1 Introduction

The chapter has two main objectives. First, we propose a comprehensive indicator

to measure systemic risk at a global level. Second, we focus on the interaction of the

indicator with policy decisions employed by the Federal Reserve (Fed), the European

Central Bank (ECB) and the Bank of England (BoE) during the past two decades.

The 2007-2009 crisis originated in the market of mortgage-backed-securities and

spread rapidly across the credit market and then to the overall capital market with

a severe impact on the solidity of the international banking system. The effects of

the crisis on the real economy are still to be fully understood. The current European

sovereign debt crisis is just the last of a series of systemic events whose market depth

and persistence have questioned the much celebrated markets’ self-regulatory power

as well as the overall ability of policy makers and regulators to adopt stability mea-

sures and stimulate economic growth. Just as in 2007-09, the current financial crisis

51
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demonstrates that systemic risk spreads globally across markets and institutions.

Funding difficulties in one market/country can spill over to other markets/countries

via internationally active institutions, and the tail risk in financial markets can be

transmitted across the world.

As discussed in the Introduction, there are several methodological approaches to

measure systemic risk at the global level. This chapter represents a novel contri-

bution to the stream of literature on systemic risk which focuses on global (rather

than limited to the financial sector) market dynamics as primary source of financial

instability.

The joint treatment of financial markets’ and economic cycle’s information to assess

systemic risk appears a requirement for policy makers and global institutions: the

2007-2009 crisis, just as more recent events, shows the limits of risk models for the

financial crisis neglecting the economic cycle. Indeed the pro-cyclicality of interna-

tional capital standards has been called upon (Allen and Saunders, 2002) to explain

the crisis’ depth. The link with the real economy is of paramount importance to as-

sess systemic risk, and thus, here we propose a systemic risk indicator which includes

macroeconomic variables so that the overall impact of systemic risk is captured at

both the financial and economic level.

Notable contributions along the same line of research are the papers by Schwaab

et al. (2011), De Nicoló and Lucchetta (2012) and Hollo et al. (2012).

Hollo et al. (2012) focus on the local European financial system to propose the Com-

posite Indicator of Systemic Stress (CISS). The index is constructed by aggregating

the information coming from market-specific subindices, referred to the sector of

bank and non-bank financial intermediaries as well as to security (equity and bond)

markets and foreign exchange markets. The aggregation is done in a dynamic cor-

relation framework, so that the resulting indicator highlights the periods in which

market stress prevails at the same time on all the subindices. The application to the
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Euro Area shows the capability of the indicator of picking up the instability periods

in the recent financial history. The CISS however fails to incorporate the relevant

information stemming from the economic sector, as the extent to which financial

stress tends to depress real economic activity is analysed only a-posteriori.

The paper by De Nicoló and Lucchetta (2012) proposes a modelling framework

leading to distinct forecasts for a financial and a real systemic indicator. Starting

from the G10 systemic risk definition, the authors propose a real measure of systemic

risk such as the GDP-at-risk defined as “the worst predicted realization of quarterly

growth in real GDP at 5% probability”, while a financial risk measure is proposed

through the financial system-at-risk (FSaR), defined as “the 5% worst predicted

realization of market-adjusted returns for a large portfolio”. Though inspired by the

same systemic risk definition, rather than proposing two separate indicators, in this

chapter, we propose a global measure of systemic risk.

Schwaab et al. (2011) adopt a dynamic state-space model which takes macro-financial

and credit risk variables as an input to determine forward crises indicators. Macroe-

conomic variables are introduced to explain the time dynamics of expected default

frequencies in US and Europe. The information structure is very rich and the au-

thors propose a financial distress indicator based on early-warning signals, thus also

partially forward-looking. More importantly, the authors focus on joint global eco-

nomic and financial movements to qualify their systemic assessment and translate

such information into a risk indicator defined in the [0, 1] set, thus interpretable

as a probability measure. Similarly, in this work, an extended information basis is

maintained, capturing systemic events at an international level and a risk indicator

with similar statistical properties is derived. The definition of systemic risk adopted

by Schwaab et al. (2011) is based on a simultaneous failure of a large number of

financial intermediaries, and the estimation procedure identifies multiple systemic

risk indicators, directly referred to the financial sector only. On the contrary, the
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indicator we propose is more comprehensive as it can be considered a global financial

and economic risk factor. It is constructed by mapping an extended set of market

risk premia, estimated ex-post on a quarterly basis and the current economic cycle

into a normalized 0-1 measure.

The other main aim that inspired our work in proposing a global risk indicator is

the possibility to evaluate the reactions of monetary policy makers during crises.

The definition of a global risk indicator allows us to test, through an extension of

the Taylor rule (Taylor, 1993), the relationship between systemic risk and mone-

tary interventions by the Federal Reserve, the Bank of England and the European

Central Bank since 1995, 1997 and 1999, respectively. Notwithstanding the gen-

eral dependence of monetary policy interventions on market and economic forward

signals, we are interested in investigating to what extent systemic risk might have in-

duced a departure of policy interventions from classical anti-inflationary and output

stabilization measures.

We follow up from an early work by Hayford and Malliaris (2005), who, by means of

an extension of the Taylor rule to include a measure of overvaluation of the American

stock market, found evidence of a significant reaction of the Fed to the late 1990s

stock market bubble. In the same spirit is the paper by Gnan and Cuaresma (2008),

which provides an estimate for the 4 major Central Banks (the ECB, the Fed, the

BoE and the Bank of Japan) of the Taylor rule augmented by a financial instability

variable, namely the equity return volatility for each of the considered areas. The

empirical estimates allow authors to conclude for the presence of relevant differences

in the elasticity of interest rates to financial instability. In this chapter, we aim

to understand how Central Bankers react to a shift in the riskiness of the system

and, to this purpose, we extend the relation proposed in Gnan and Cuaresma (2008)

by including the proposed systemic risk indicator as well as by considering in the

sample the period of the recent financial crisis. Thus, the application developed in
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this study adds to previous works the analysis of monetary responses to a common

systemic risk threat, during a prolonged period of financial stress.

The main findings of the chapter can be summarized as follows. Based upon the

1995-2011 crisis events, we validate the capability of the indicator of signalling the

relevant episodes of financial tension in the recent history. Further, the empirical

investigation on the interaction of the indicator with monetary policy clarifies under

which stressed economic and financial conditions and to which extent expansionary

decisions adopted by the Fed and the BoE in recent years were also led by riskiness

of the system. On the contrary, there is evidence that ECB showed some reluctance

to give up its role in maintaining price stability, except during the recent period of

economic and financial instability. Finally, we compare the proposed indicator with

alternative coincident measures of systemic risk and show its ability in capturing

the materialization of systemic risk instabilities which triggered the reaction of the

Fed, the ECB and the BoE.

The remainder of the chapter is organized as follows. In Section 2.2, we describe

the methodology behind the construction of the systemic risk indicator, and we

report an empirical application to show the capability of the proposed indicator to

capture the crisis events over the period 1995-2011. Section 2.3 reports an empirical

investigation on the interaction of the indicator with monetary policy decisions at the

Fed, the ECB and the BoE. Section 2.4 draws the main conclusions of the chapter.

2.2 A Systemic Risk Indicator

In this section, we introduce a risk indicator, which provides a quarterly measure

of the global riskiness in the economic and financial system. The indicator can be

regarded as a mapping from a set of exogenous economic and financial variables to

a risk measure in the (0, 1) space, with 0 indicating absence of systemic risk and 1
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maximum systemic risk. The indicator is calibrated over the period 1995-2011 thus

exploiting the rich history of events thereby observed. By introducing a filtered av-

erage systemic risk fluctuation, time-varying positive and negative deviations from

such average are considered and monetary interventions are related to those devia-

tions.

The proposed indicator is based on a wide data coverage, in respect of the different

asset classes and geographical areas considered (for details see Section 2.2.3). A lo-

gistic model is adopted to link the indicator to a set of explanatory variables selected

on the basis of the definition of systemic risk provided by the official documentation

of the G10 Report on Consolidation in the Financial Sector (G10, 2001, p.126):

Definition 2.1. (Systemic Financial Risk). Systemic financial risk is the risk

that an event will trigger a loss of economic value or confidence in, and attendant

increases in uncertainly about, a substantial portion of the financial system that is

serious enough to quite probably have significant adverse effects on the real economy.

To measure the “loss of economic value” that might materialize in the financial

system, a risk appetite index is constructed following the methodology used by Credit

Suisse First Boston (CSFB), as described in Wilmot et al. (2004). There is a stream

of the literature that shows that risk appetite measures have a very high ability in

explaining financial market movements, including systemic instabilities (Kumar and

Persaud, 2002, Bandopadhyaya and Jones, 2006). Financial turmoil is related to

a homogeneous fall of market risk premia, going hand-in-hand with a substantial

outflow of financial resources from the markets. On the contrary, low systemic risk

is characterized by the presence of positive risk premia and diversification among

markets, with inflows and outflows from a market to another.

As for the measure of uncertainty in financial markets, the average discrepancy of

the volatilities from their long-term value is considered, so that positive and negative
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deviations from long-term benchmarks are taken into account. The risk indicator

is an increasing function of positive deviations from the market-specific long-term

volatility. Finally, in order to keep track of the real side of the economy, we consider

the output gap of a set of countries, covering a wide geographic area.

From a methodological viewpoint, the introduction of several time-varying macro-

financial gap measures for capital market dynamics and the economic cycle inform

a systemic risk indicator with cyclical features. Such property allows an endogenous

and normalized characterization of systemic risk relevant for economic agents and

policy makers alike. As a robustness check of our conclusions on the relationship

between monetary policy and systemic risk, several alternative models are tested,

taking into account the presence of structural breaks (Doornik, 2009, Castle et al.,

2011).

Let ξ ∈ (0, 1) denote the systemic risk indicator, where ξ → 0+ indicates vanishing

systemic risk, while ξ → 1− corresponds to systemic risk approaching its maximum.

The indicator is defined as a logistic transform:

ξ ≡

[

1 + exp

(

−β0 − β1

K
∑

k=1

γkX̃·,k

)]−1

(2.1)

where X̃ ∈ R
T×K is the normalized version of the matrix X ∈ R

T×K of explanatory

variables, such that:

X̃ ≡

{

X̃t,k

∣

∣

∣
E

(

X̃t,k

)

= 0,E
(

X̃t,k

)2

= 1, ∀k

}

(2.2)

with t = 1, ..., T and k = 1, ..., K, where T is the sample size and K is the number

of the explanatory variables. The coefficient vectors β ≡ [β0 β1]
′ and γ ≡ [γ1 . . . γK ]

′

are unknown and have to be estimated.
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There are two main issues to cover: the choice of the variables in X and the estima-

tion procedure to get estimates of β and γ.

2.2.1 The Choice of the Relevant Variables

In this section, we provide a description of the variables in X as defined in Eq. (2.2).

The presentation develops as if the data set used is at the quarterly frequency.

Let us first focus on the risk appetite index. Consider n = 1, ..., N markets for

quarters t = 1, . . . , T and a benchmark index for each of them. Let µn,t and σn,t be

the average and the standard deviation of the returns for index n during quarter t,

respectively. Then, for each quarter, the following regression is estimated:

µn,t = αtσn,t + εn,t (2.3)

The slope αt and the determination coefficient R2
t of the regression above are inputs

to the systemic risk index.

According to Eq. (2.3), increasing systemic risk over time is captured by a decreasing

and negative estimate for αt, corresponding to negative risk premia and an outflow

of financial resources from the markets at time t. The higher R2
t , the stronger the

markets’ investments outflow. On the other hand, a situation of low systemic risk

is characterized by the presence of positive risk premia and diversification among

markets, with inflows and outflows. This situation is likely to correspond to a

positive estimate of αt and a very low R2
t . Hence, the systemic risk indicator is a

decreasing function of αt and an increasing function of R2
t .
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To measure “the uncertainty in the financial system”, we define the average per-

centage deviation of the volatilities from their long-term value σLT
n :

st ≡
1

N

N
∑

n=1

σn,t − σLT
n

σLT
n

(2.4)

where σLT
n with n = 1, . . . , N are the full-sample standard deviations of the returns

on the n-th index. The systemic risk indicator is an increasing function of st,

as increasing volatilities over their long-term values are directly associated with

financial instability.

In order to monitor conditions on the real side of the economy, the time series of the

output gap for several countries are considered, so that a wide geographic coverage

is provided. The output gap y·,j for country j with j = 1, . . . , J is estimated as the

percentage logarithmic deviation of the actual GDP from the potential GDP:

yt,j ≡ 100(gt,j − g∗t,j) (2.5)

where gt,j is the logarithm of the actual GDP for the j-th country, while g∗t,j is

the logarithm of the potential GDP. The potential GDP is computed applying a

univariate Hodrick and Prescott (1997, HP henceforth) filter to the logarithm of the

original series of the GDP with smoothing parameter λHP set to 1600, consistently

with both the rule proposed in Ravn and Uhlig (2002) and the relevant literature

on the topic. This method is less accurate than the production function approach

(Arnold, 2004), but it is less costly from a computational point of view and it is still

reliable for our purposes. The systemic risk indicator is expected to be a decreasing

function of y·,j with j = 1, . . . , J .
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To summarize, the relevant variables in the matrix X and the expected sign of the

relation between each of them and ξ are:

X ≡

[

α
(−)

R2

(+)
s
(+)

y·,1
(−)

. . . y·,J
(−)

]

(2.6)

2.2.2 Parameters Estimation

Once that the variables of interest are identified, the systemic risk indicator defined

in Eq. (2.1) can be obtained by estimating the vector parameters β and γ. In Eq.

(2.1), we first get γ, estimated via discriminant analysis, then β is derived.

We discriminate between high and low systemic risk regimes within the sample, by

identifying explanatory variables’ extreme observations and then splitting them into

two subsets, one for high systemic risk conditions and the other for low risk. Let

v ∈ R
K be a threshold vector defined by:

v ≡
[

0 R̄2 s̄ 0 . . . 0
]′

(2.7)

where R̄2 and s̄ are the 50-th constant percentiles of R2
t and st respectively. A natural

choice of the threshold for αt and yt,j is 0, having these variables an immediate

financial and economic interpretation. Now, let τ+ and τ− identify the extreme high

and low systemic risk observation sets, defined as:

τ+ ≡ {t|Xt,k > vk, ∀k} (2.8)

τ− ≡ {t|Xt,k < vk, ∀k} (2.9)

leading to the subsets of normalized explanatory variables:

X̃+ ≡
{

X̃t,·|t ∈ τ+
}

(2.10)
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X̃− ≡
{

X̃t,·|t ∈ τ−
}

(2.11)

In a multidimensional space, intra-group distances are measured with respect to the

centroids of the sets X̃+ and X̃−:

cX̃
+
k ≡

1

|τ+|

∑

t∈τ+

X̃t,k (2.12)

cX̃
−
k ≡

1

|τ−|

∑

t∈τ
−

X̃t,k (2.13)

with cX̃
+′

and cX̃
−′

being column vectors, elements of RK . γ ∈ R
K is estimated by

solving the following optimization problem:

min
γ∈RK

[

∑

t∈τ+

∣

∣

∣cX̃
+γ − X̃t,·γ

∣

∣

∣
+
∑

t∈τ−

∣

∣

∣cX̃
−γ − X̃t,·γ

∣

∣

∣

]

s.t. 1′γ = 1

γk ≥ γ̄k ∀k = 1, . . . , K

(2.14)

where γ̄k is a lower bound on γk and 1 is a unit K-dimensional column vector.

Problem (2.14) can be rewritten as a linear programming problem by introducing a

set of auxiliary variables, one for each observation in the sets τ+ and τ−:

min
γ∈RK

[

∑

t∈τ+
z+t +

∑

t∈τ−
z−t

]

s.t. 1′γ = 1

−z+t < cX̃
+γ − X̃t,·γ < z+t ∀t ∈ τ+

−z−t < cX̃
−γ − X̃t,·γ < z−t ∀t ∈ τ−

γk ≥ γ̄k ∀k = 1, . . . , K

z+t ≥ 0 ∀t ∈ τ+

z−t ≥ 0 ∀t ∈ τ−

(2.15)

The implementation of this procedure provides us with γ̂, an estimate of γ.
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The estimates of β0 and β1 are derived as follows. Let X̃−
γ̂ and X̃+

γ̂ be two represen-

tative percentiles of the linear combination X̃γ̂, say the 100p+-th and the 100p−-th

percentiles. A natural choice for p+ and p− is:

p− ≡
|τ−|/T

2
(2.16)

p+ ≡ 1−
|τ+|/T

2
(2.17)

Then the estimates of β0 and β1 are obtained by solving the following system of

equations:






ξ
(

β|X̃−
γ̂

)

= p−

ξ
(

β|X̃+
γ̂

)

= p+
(2.18)

which can be linearized as:







β0 + β1X̃
−
γ̂ = − ln

[

(p−)
−1 − 1

]

β0 + β1X̃
+
γ̂ = − ln

[

(p+)
−1 − 1

] (2.19)

Since X̃−
γ̂ 6= X̃+

γ̂ by construction, the system has always a unique solution β̂.

We have now X̃, γ̂ and β̂, and thus the in-sample time series for ξ can be constructed

according to Eq. (2.1).

The procedure has several interesting features. Firstly, it is based on the probability

space partition of the historical distribution of the explanatory variables. As such,

the assessment accuracy of the systemic risk indicator increases with time. Secondly,

a high systemic risk measure can only be achieved if financial markets are jointly

falling, the average historic volatility is high and the economic cycle of the major

world economic areas is negative. Any deviation from the worst case percentiles of

either underlying variables decreases the value of the risk indicator. Thirdly, finan-

cial instability phenomena originating within the financial sector and thus resulting
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into heavy market losses of financial securities impacts the overall systemic risk as-

sessment only if they determine broader market turmoil and an economic downturn.

Fourthly, high and low systemic risk conditions are discriminated with respect to

endogenous time-varying average values which lead to a mean-reverting behaviour of

the relevant explanatory variables and the risk indicator. Finally, no causality effect

is considered a-priori from financial markets into the real economy, nor vice-versa.

2.2.3 Evaluating the Capability of the Indicator to Capture

the Crisis Events over 1995-2011

In this section, we describe the procedure to estimate the indicator proposed above

relying on 17 years of data spanning from 1995:1 to 2011:4 (T = 68). The sys-

temic risk indicator is estimated using daily quotes of 21 benchmark indices for the

following asset classes: equity, bond (government, corporate and money market in-

struments) and commodity, covering the following geographical areas: United States,

Euro Area, United Kingdom, Japan, Emerging Market Countries. Furthermore, the

GDP of these geographical areas is considered. Details about these two data-sets

are reported in Tabs. 2.1 and 2.2.

[Tabs. 2.1-2.2 about here.]

The estimates for α, R2 and s are plotted in Fig. 2.1, while the normalized output

gap indices are reported in Fig. 2.2.

[Figs. 2.1-2.2 about here.]

In Fig. 2.1, one can see α (top panel of the figure) falls during instability periods of

the recent financial history, such as the Asian Crisis, the period around September
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2001 and the 2007-2009 economic and financial crisis. It is worth noticing that for

the last two cases a peaking R2 can be also observed, witnessing a homogeneous

outflow from financial markets. s has a remarkable peak between the end of 2008

and the beginning of 2009, revealing that in that period, in a context of high degree

of uncertainty, the volatilities in financial markets were on average 50% higher than

the historical ones.

Fig. 2.2 shows the high correlation between the economic cycles especially during

2008. One can clearly notice the jump of the Japanese economy just before the

Asian Crisis and the expansionary trace followed by the United States in the late

’90s.

In order to estimate the parameters according to the methodology in Section 2.2.2,

the set τ+ and τ− have to be populated. Not surprisingly the observations in τ+

are 2008:4, 2009:1 and 2009:2, while those in τ− are 2006:3, 2006:4 and 2007:4.

The period between 2008 and 2009 can be thought as the most relevant in terms of

systemic risk out of the previous 15 years.

The second half of 2006 has been detected as a period of very low systemic risk:

that period was characterized by a positive macroeconomic status as well as by the

presence of a positive risk premium in the markets. In the last quarter of 2007,

the first effects of the subprime crisis hit the North American market inducing, still

in a positive macroeconomic context, an outflow towards fixed income securities.

The subprime crisis was at the time a US phenomenon, not yet affecting the overall

system and the systemic risk indicator.

The derivation of the systemic risk indicator requires as inputs the estimated β

and γ coefficients. Problem (2.15) is first solved, setting the lower bounds for the
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parameters as follows:

γ̄ ≡
1

2

[

1

6

1

6

1

6

1

6

1

6

1

18

1

18

1

18

]′

(2.20)

This choice corresponds to the case of one half of an equal weighting of the variables,

in which the lower bounds on the coefficients referred to the UK, Japan and Emerging

Market cyclical indicators are constrained to be one third of the Euro Area and US

coefficients.

By solving Problem (2.15) and the linear system in Eq. (2.19), we get the estimates:

γ̂ = [.478 .083 .189 .083 .083 .028 .028 .028]′ (2.21)

β̂ = [−1.415 2.637]′ (2.22)

The solution of the optimization problem to estimate γ assigns a higher weight to

the financial explanatory variables, and in particular to α and s. Fig. 2.3 reports

the in-sample estimation of the systemic risk indicator.

[Fig. 2.3 about here.]

Alternative specifications of the bounds γ̄ are also considered for robustness check.

In particular, we also re-estimate the model by specifying either γ̄ = 0 or, without

imposing any bounds, γ̄k = −∞, ∀k. For both cases, the predominance of the

financial variables, especially of α and s, is preserved; however, the estimates of

the parameters for the cyclical indicators show some degree of variability mainly

due to the high collinearity of the cyclical indicators, as can be seen in Fig. 2.2.

The robustness check showed that the systemic risk indicator is not affected by the

alternative bounds adopted, just as unaffected are the dates corresponding to τ+

and τ−.
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We provide a measure of uncertainty related to parameters via bootstrap. The

parameters associated to α and s are statistically significant at the usual 1% signifi-

cance level; the same applies to the parameters associated to R2 and y·,j (j = 1, .., 5)

though they appear more sensitive to the bounds.

2.2.4 A Dynamic Equilibrium Value and the Recent Finan-

cial History

Given the estimated systemic risk indicator ξt, we want to determine a smooth and

time-varying fundamental equilibrium value for it. This allows us to discriminate

between positive and negative deviations of the time-t estimate ξt from its long-term

trend, which will be denoted as ξ∗t . Such deviations will be used as an input to the

empirical analysis of the monetary response to systemic risk in Section 2.3.

Consider the following exponential weighted moving average with decay factor λ:

ξ∗t ≡ ξ̈∗t + λT−t+1(ξ̄∗ − ξ̈∗t ) (2.23)

where ξ̈∗t is the trend component of the systemic risk indicator time series, detected

using the HP filter (with smoothing parameter set equal to 1600), while ξ̄∗ is defined

as the value of ξt conditional on Xt,· = ṽ, the normalized threshold vector v. λ is

chosen in the interval [0, 1] so that λT = ζ, with ζ small positive value, set here

equal to 10−6. According to Eq. (2.23), ξ∗t can be thought as an application of the

HP filter to the indicator original series, with an end-of-sample-problem correction

given by the term (ξ̄∗ − ξ̈∗t ), that receives an increasing weight as the end of the

sample is approached. For more details on this aspect, see Arnold (2004).
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In Fig. 2.3, we plot the systemic risk indicator and its equilibrium value ξ∗, shad-

owing the periods in which the indicator lies above its equilibrium value and high-

lighting the relevant facts in the recent financial history.

The indicator peaks during the financial-economic instability periods of the last 17

years. Neglecting the first part of the sample, corresponding to a recovery period for

which a historically moderate level for the indicator is observed, there are 3 periods

in which ξ is over its equilibrium value, which are: 1998:2 - 1999:2, 2001:1 - 2003:2

and 2008:3 - 2009:3. In this respect, the indicator proposed in this chapter may be

interpreted as a coincident index of systemic stress, as it captures the materialization

of systemic tensions.

The identification of each period listed above has an immediate economic interpre-

tation. The first is associated to the panic that spreads out immediately after the

default on the Russian debt in August 1998; the second corresponds to the eco-

nomic and financial slowdown of the early 2000, further deteriorated by the events

of 9/11. The third identified period corresponds to the recent economic and financial

downturn1. The indicator crosses from below ξ∗t during the third quarter of 2008

(corresponding to the default of Lehman Brothers in September 2008) and stayed

over it till 2009:3, being the end of 2008 characterized by high market volatility and

the begin of 2009 by a fragile macroeconomic context and uncertainty about the

recovery. By the end of 2009, the indicator falls below its equilibrium value as a

consequence of the temporary recovery of the financial markets and the improvement

of macroeconomic fundamentals, especially in the US. However, in the first semester

of 2010 and more markedly towards the end of 2011, the indicator shows a tendency

to approach again its equilibrium value: this corresponds to when difficulties on the

sovereign debt crisis experienced by peripheral European countries become appar-

ent, spreading throughout the Euro Area and ultimately affecting the whole system.

1The dynamics of the indicator described so far follows closely the dynamics of the 1-year VaR
of the distribution of the defaults for the overall economy, as proposed by IMF (2009).
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Chapter 3 proposes a thorough dissection and comparison of the detected periods

of financial turmoil.

2.3 Monetary Policy and Systemic Risk

In this section, we report an empirical analysis on the interactions between systemic

events and monetary policy decisions by the Fed, the ECB and the Bank of England.

We expand the Taylor rule to assess the sensitivity of the target interest rate to a

systemic factor to be added to the canonical inflation rate and output gap variables.

In principle, under severe systemic instability, an easing of monetary policy is ex-

pected, coherently with the mission statements of the named Institutions. Indeed,

the Fed mission (Fed, 1917) points out, among its macro-areas of intervention, the

aim of “maintaining the stability of the financial system and containing systemic

risk that may arise in financial markets”. On the other hand, the main objective

of the ECB is to maintain price stability and, “acting also as a leading financial

authority, [it] aims to safeguard financial stability and promote European financial

integration” (ECB, 2011). Similarly to the mandate of the Fed and the ECB, the

Bank of England Act (BoE, 2009) states, alongside the standard goals of price sta-

bility and output stabilization, the statutory objective of “protecting and enhancing

the stability of the financial systems of the United Kingdom”.

In this chapter, we evaluate the impact of systemic risk as an exogenous risk factor

to both Fed, the ECB and the Bank of England. It is widely recognized that the

2007-2009 crisis originated in the US and affected the Euro Area at a later stage,

primarily through the financial system. The current sovereign debt crisis, albeit

localized, also highlights the need of cooperative monetary effort to ensure global

stability. Relying on the filtered systemic risk behaviour displayed in Fig. 2.3,
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periods of high and low systemic risk are defined and monetary interventions under

the two regimes are tested.

2.3.1 Model Formulation

To empirically test the previous arguments, let us consider the model:

i = f(π, y, ξ) (2.24)

where i is the target interest rate, π is the inflation rate, y is the output gap and ξ

is the systemic risk indicator. We estimate both a cointegrated relationship and an

Error Correction Model (ECM) respectively of the form:

it = φ+ ηt+ ψ′Zt + εt (2.25)

∆it = ω +
L
∑

l=1

ρl∆it−l +
L
∑

l=0

θ′l∆Zt−l + δεt−1 + ut (2.26)

where Zt ≡ [πt yt ξt] is a vector of explanatory variables, t represents a deterministic

trend, while εt and ut are white noise processes. We evaluate three alternative model

specifications. The first model, which we label as Model Specification 1 (MS1), is

estimated considering just inflation and output gap as explanatory variables, that

is Zt ≡ [πt yt]. The second model (MS2) is estimated considering also the sys-

temic risk indicator as explanatory variable, that is Zt ≡ [πt yt ξt]. The final

model (MS3) is estimated distinguishing between the case in which the systemic

risk indicator is above its equilibrium value from the case in which it is not, that is

Zt ≡ [πt yt ξ+t ξ−t ], where:

ξ+t ≡







ξt if ξt ≥ ξ∗t

0 otherwise
(2.27)
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ξ−t ≡







ξt if ξt < ξ∗t

0 otherwise
(2.28)

MS1 allows us to check whether the systemic indicator is indeed relevant for mone-

tary policy. MS2 is the benchmark. MS3 enables us to verify whether the Central

Banks react differently to systemic risk, depending on the extent that ξ is above or

below its equilibrium value.

In the empirical application, the system in Eqs. (2.25)-(2.26) is estimated starting

from Generalized Unrestricted Models (GUM), choosing L = 5 consistently with

the empirical macroeconomic literature. The GUMs are then reduced to parsimo-

nious correctly specified representations by controlling for the presence of structural

breaks, by means of AutometricsTM (Doornik, 2009, Castle et al., 2011), an auto-

matic procedure for model selection available in PcGiveTM .

We test for the presence of structural breaks by including in the model the following

dummies:

BM
d,t ≡ 1{t≥d} (2.29)

BT
d,t ≡ (t− d+ 1)1{t≥d} (2.30)

with d = 1, . . . , T , date of the break, and where 1{·} is the indicatrix function. BM
d,t

and BT
d,t are designed to capture breaks in the mean and in the trend, respectively.

The estimation using AutometricsTM is run fixing a restrictive target size of 1% for

the model selection procedure. The final selected model is then chosen using the

Schwarz (SC), the Hannan-Queen (HQ) and the Akaike (AIC) Information Criteria.

2.3.2 Data Description

The sample period for the Fed model spans over 1995:1-2011:4, while for ECB over

1999:1-2011:4 and for the BoE over 1997:1-2011:4. As for the target interest rate, the
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quarterly average of the Fed Funds Rates, the Euro Overnight Index Average (EO-

NIA) and the Sterling Overnight Interbank Average rate (SONIA) are considered

for the Fed, the EBC and the BoE, respectively.

In the Fed model, following Taylor (1993), Judd and Rudebusch (1998) and Hayford

and Malliaris (2005), we specify the inflation rate as annualized 4-th order moving

average of the percentage rate of change of the GDP deflator:

πt ≡ 100







[

1 +
1

4

4
∑

i=1

(

Pt−i+1

Pt−i

− 1

)

]4

− 1







(2.31)

where Pt is the quarterly series of the GDP deflator.

Inflation in the Euro Area is measured by the quarterly average of the one-year

growth rate of the Consumer Price Index (CPI), as in Gerlach-Kristen (2003).

In line with BoE (2012), we measure inflation using the Retail Price Index excluding

mortgage interest payments (RPIX) until December 2003 and the CPI from January

2004 onwards. We consider the quarterly average of the one-year growth rate of the

above indices.

Following Hayford and Malliaris (2005), the Congressional Budget Office (CBO)

estimate of the potential GDP is used in the construction of the output gap for

United States, while for the Euro Area the estimate provided by the HP filter is

employed (see Section 2.2.1). The OECD estimates of the output gap in UK is used

as cyclical indicator for the UK economy.

Refer to Tab. 2.3 for the details on the data series. Descriptive statistics for the

time series employed in the estimations are reported in Tab. 2.4, while the plot of

the series is in Figs. 2.4-2.6.

[Tabs. 2.3-2.4 and Figs. 2.4-2.6 about here.]
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From the graphical inspection of the series, there is evidence of different regimes

affecting the interest rate series. In the case of the Fed Funds rates, the most

notable turning points in the monetary conditions were in early 2000, in mid-2004

and in the second part of 2007. Similarly, for the ECB, we can distinguish phases of

accommodating monetary policy, as in the period 2001-2005 and since late 2008 on,

from periods characterized by restrictive decisions. The BoE figure is characterized

by a similar monetary policy conduct. For the three Institutions, the reaction to the

early 2000s slowdown and to the global financial crisis 2007-2009 are immediately

apparent.

In the following two sections we focus on the behaviour of the Fed, the ECB and

the BoE, exploring the differences in the timing, the magnitude and the reasoning

of their policy interventions.

2.3.3 Empirical Results

We begin the analysis by estimating the long-run relation as defined in Eq. (2.25).

The final parsimonious specifications for the three models (Fed, ECB and BoE) are

reported in Tab. 2.5.

[Tab. 2.5 about here.]

The estimated parameters are statistically significant and consistent with the eco-

nomic theory. Namely, the coefficients of πt and yt are positive, implying a restrictive

reaction in case of rising inflation and/or overheated economic growth. However, the

coefficient associated to the inflation term is never greater than 1 and thus it does

not confirm what expected from the original formulation of the Taylor rule. This

may depend on the choice of the inflation measure as highlighted by Hayford and
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Malliaris (2005). In the ECB model, the magnitude of the inflation elasticity is

coherent with what estimated in Gerlach and Lewis (2011).

The estimates are stable to the change at the head of the Board of the Fed in early

2006. This has been tested by substituting in Eq. (2.25) ψ with ψ + ψgrB
M
2006:1,·,

where ψgr, referring to the Greenspan period, is not significant.

The long-term decreasing trend is correctly detected by the trend component in-

cluded in the model. Notice how the detected breaks are consistent with the features

outlined in the Fig. 2.4 and how they capture the turning points in the monetary

conditions. Note also that the systemic risk indicator does not appear in the long-

run relationship. A comparison between the long-run component and the actual

data is proposed in Fig. 2.7.

[Fig. 2.7 about here.]

To test for the stability of the cointegration vector, we employ a KPSS residual-based

test suitable for the presence of structural breaks, that takes the form:

T−2ŵ−2

T
∑

t=1

(

t
∑

j=1

ε̂j

)2

(2.32)

where ŵ2 is a consistent estimate of the long-run variance of {εt}t=1,...,T . Following

Mogliani (2010), four alternatives are proposed for the kernel function employed

in the estimation of the long-run variance. The results are reported in Tab. 2.6.

Bootstrap and fast double bootstrap p-values (Davidson and MacKinnon, 2007) are

provided. The four tests confirm the stability of the cointegrating vector.

[Tab. 2.6 about here.]
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In a second stage, the ECM formulation in Eq. (2.26) is estimated, including the

first difference of the detected breaks in Eq. (2.25). In the case of the Fed model,

the inclusion of dummy variables on large residuals avoid misspecification problems

for 2 model specifications out of the 3 considered. Namely, running the standard

misspecification tests to check for the presence of autocorrelation, heteroscedasticity

and normality of the residuals, there is evidence of no misspecification in MS2 and

MS3, while the estimates for MS1 shows hetoroscedasticity in the residuals. On the

contrary, in the case of the ECB and the BoE models, we observe correct specification

for all the proposed alternative models. We thus employ the SC, the HQ and the

AIC jointly to choose between the correctly specified alternative formulations. There

is clear evidence of the superiority of the model specification MS3 for each of the

Central Banks, as it can be seen in Tab. 2.7.

[Tab. 2.7 about here.]

The final selected models are reported in Tab. 2.8.

[Tab. 2.8 about here.]

All coefficients but the constants in the Fed and in the BoE models are significant

at a 1% significance level. The models are correctly specified and provide a good

fitting of the data. Fig. 2.8 reports a comparison between actual and fitted values.

[Fig. 2.8 about here.]

The error correction term ε̂t−1 is statistically significant and negative in all the

models. The changes in the target interest rates are driven by an autoregressive

component, changes in the cyclical indicator and the inflation rates, and the first
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difference of the systemic indicator. In this setting, the breaks detection captures

the monetary regime shifting, while the indicator captures short term reactions to

increasing systemic risk.

Thus, there is evidence that the considered Institutions react to changes in systemic

risk conditions. The coefficients of the lagged ∆ξt terms, as expected, have negative

sign since an increase in the riskiness of the system is likely to induce an expansionary

decision by the monetary authorities. In the case of the Fed, the reaction is different

depending on whether the systemic risk is above or below its equilibrium value. This

is supported by both the dominance of MS3 on MS2 and by the magnitude of the

coefficients referred to ∆ξ+t−1 and ∆ξ−t−1. Systemic instabilities influence monetary

decisions at the Fed and the BoE up to lag 5.

In the next section, we evaluate when and in which systemic risk conditions the Fed,

the ECB and the BoE reacted to shifts in the riskiness of the system.

2.3.4 Reactions to Systemic Instability

The aim of this section is to compare the reactions of the Fed, the ECB and the

BoE to systemic risk events. Relying on the estimated models in Section 2.3.3, we

quantify the magnitude and analyse the timing of the policy decisions of the three

Central Banks.

Let Zξ
t,b with b = Fed,ECB,BoE be the regressors referred to ξ in the Fed, the

ECB and the BoE model, respectively, so that:

∆Zξ
t,Fed ≡

[

∆ξ+t−1 ∆ξ+t−5 ∆ξ−t−1

]

(2.33)

∆Zξ
t,ECB ≡ ∆ξ+t−1 (2.34)

∆Zξ
t,BoE ≡

[

∆ξ+t−1 ∆ξ+t−5

]

(2.35)
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and let θξb with b = Fed,ECB,BoE be the corresponding coefficients.

In each of the models, the null hypothesis that the residuals are normally distributed

can not be rejected, that is ut,b ∼ N (0, σ2
b I), where σb is the standard deviation of

ut,b, defined as the error term in model for Central Bank b, and I is the identity

matrix. Hence, the estimated parameters are also normally distributed:

θ̂ξb ∼ N
(

θξb ,Σθξ
b

)

(2.36)

where Σθξ
b

is the variance-covariance matrix of θξb , which, in absence of misspecifica-

tion, is consistently estimated as:

Σ̂θξ
b
= σ̂2

b

(

∆Zξ
·,b

′
∆Zξ

·,b

)−1

(2.37)

The estimated reactions to systemic risk are defined as:

∆îξt,b ≡ θ̂ξb
′∆Zξ

t,b (2.38)

Combining the previous results:

∆îξt,b

∣

∣

∣
∆Zξ

t,b ∼ N
(

θξb
′
∆Zξ

t,b,∆Z
ξ
t,b

′
Σθξ

b

∆Zξ
t,b

)

(2.39)

Thus, under the null hypothesis H0 : ∆i
ξ
t,b = 0:

∆îξt,b

(

∆Zξ
t,b

′
Σ̂θξ

b
∆Zξ

t,b

)−1/2 ∣
∣

∣
∆Zξ

t,b ∼ T (ν) (2.40)

where T (ν) is the t-Student distribution with ν degrees of freedom, where ν = T−p,

with T the number of observations and p is the number of parameters estimated in

the model.
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The significant reactions to systemic risk are plotted in Fig. 2.9. Significance is

evaluated with the usual 1% significance level.

[Fig. 2.9 about here.]

The sharper reactivity by the Fed with respect to the BoE and, in particular, to the

ECB is immediately apparent. Accommodative responses were given to the Russian

crisis in late 1998, during the early 2000s slowdown and in coincidence with the

recent financial crisis. A cyclical re-stabilizing behaviour is evident, too. Note the

case of 2009:4, where systemic risk have triggered an accommodative reaction, which

was offset by a reaction of opposite sign to rising inflation.

Instabilities have overall prompted less interventions by the ECB rather than by

the Fed and the BoE. There is, however, evidence that the European Central Bank

reacted to the early 2000s financial and economic slowdown, and, more evidently, it

responded to the recent financial crisis.

The Bank of England was more active than the ECB in addressing systemic risk,

although its reactions were not as sharp as in the case of the Fed. During 2010, we

can see that pressure was put on the Bank of England towards a restrictive move,

suggested by both a temporary improvements of the systemic risk conditions and

the rising inflation. This is part of a debate which is still very timely.

The most remarkable episode however, coincides with the 2008-09 financial crisis,

when, in the most harsh period of the crisis, the Fed, the ECB and the BoE, together

with other 4 industrialized countries’ Central Banks (Canada, Switzerland, Sweden

and Japan) reacted with a joint intervention to the worsening of the global macroe-

conomic situation. For all the Central Banks, we record flat rates since mid-2010

onwards, and correspondingly we observe no substantial reactions throughout the

2011. This coincides with the shift of monetary policy towards the adoption of un-

conventional monetary measures, such as the Quantitative Easing (QE) programmes
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deployed at the Fed and the BoE, and the Securities Markets Programme (SMP),

the Long-Term Refinancing Operations (LTROs) and the Covered Bond Purchase

Programme (CBPP) promoted by the ECB in recent years.

2.3.5 Robustness Checks using Alternative Tension Indica-

tors and Local Cyclical Indicators

In this section, we report a sensitivity analysis by comparing the performance of

the global systemic risk indicator with respect to alternative indicators of market

nervousness. We also evaluate Central Banks reaction when only local cyclical indi-

cators are considered in the definition of systemic risk.

2.3.5.1 Alternative Indicators of Market Tension

We consider alternative indicators of market nervousness and in particular the VIX,

the TED spread for the US, the Libor-OIS spread and the CISS in Hollo et al. (2012)

for the EU.

The VIX provides a 30-day forward-looking volatility measure for the US stock

market, being its value derived by S&P500 option contracts with 30 days to maturity.

It is a popular measure of stock market uncertainty, capable to provide an accurate

forecast of future volatility (see Blair et al., 2001).

The TED spread is defined as the spread between the rates on short term Eurodollar

future contracts and the rates on the short term US government debt. It is considered

by market participants as an indicator of the credit risk in the overall economy, as the

rates on the T-bills is perceived as “risk-free”, whereas the rates on the Eurodollar

deposit convey information on the counterparty risk embedded in interbank loans.

Similarly, the Libor-OIS spread is considered by many as an indicator of the health
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of the banking sector. Indeed, on the one hand, the Libor rate is the rate at which

highly rated banks are willing to lend money to other such banks, thus carrying

information about the risk of banking defaults. On the other hand, the Overnight

Indexed Swap (OIS) rate is the fixed rate in a swap contract where the floating leg

is the average of the overnight rates over the term of the contract. No exchange of

principal is required, thus little default risk is reflected in the OIS rate, which then

expresses the market expectations on overnight rates over the maturity of the swap

contract.

Finally, in the robustness check, we consider the Composite Indicator of Systemic

Stress (CISS) proposed by Hollo et al. (2012). The index is constructed by aggregat-

ing the information coming from market-specific subindices, referred to the sector of

bank and non-bank financial intermediaries as well as to security (equity and bond)

markets and foreign exchange markets. The aggregation is done in a dynamic cor-

relation framework, so that the resulting indicator highlights the periods in which

market stress prevails at the same time on all the subindices. The application to the

Euro Area shows the capability of the indicator of picking up the instability periods

in the recent financial history.

We look at the listed alternative indicators in the period in which the systemic risk

indicator has been evaluated. The quarterly average of the indicators is considered

and the corresponding trend component estimated via the HP filter. Fig. 2.10

provides a comparison between our indicator and the quarterly average of the VIX,

the TED spread, the Libor-OIS and the CISS, together with the respective long-run

values.

[Fig. 2.10 about here.]

From a graphical comparison of the VIX with our indicator, we can see that the

two have the same long-run dynamic behaviour. However, from a closer inspection,
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a few important discrepancies can be highlighted. There are two notable periods

when the VIX peaked over its trend, while on the contrary the indicator stays below

it: they are the second half of 1997 and of 2007, associated to the Asian crisis

and the US subprime crisis respectively2. As argued in Section 2.2.3, these two

periods are associated with country or sector specific crises, which are not relevant in

systemic terms. Furthermore, this emphasizes the fact that high volatile markets are

a necessary, but not sufficient, condition for systemic risk to increase. On the other

hand, sluggish volatility on the markets does not imply an immediate contraction in

systemic risk, as the period 2008-2009 shows.

The TED spread and the Libor-OIS have a common remarkable peak in correspon-

dence of the 2008-09 financial crisis. With this respect, they characterize as good

indicators for the different phases of the 2008-09 financial crisis. However, they do

not convey any other strong signals in the data span considered, not being very

informative before 2007.

The CISS is a local indicator, referred in particular to the European economy. When

we compare it with our indicator, we can see the latter signalling with more strength

the shocks which are common to the whole system. As an example of this, see for

instance the case of the early 2000s slowdown.

We formulate a methodology to perform a robustness check for the final models

reported in Tab. 2.8, comparing the explicative power of our indicator and of the

considered alternative indicators.

Let Zξ
t,b, with b = Fed,ECB,BoE, be the regressors referred to ξ in the Fed, the

ECB and the BoE model, respectively (see Eqs. 2.33-2.35). Let θξb denote the

corresponding estimated parameters, It be the quarterly average of the alternative

indicator at time t and I∗t the corresponding trend component extracted via the HP

2A similar discrepancy can be noticed for the last quarter of 2011. For further details, see the
postscript of this chapter on p. 84.
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filter. As in the case of ξt, define:

I+t ≡







It if It ≥ I∗t

0 otherwise
(2.41)

I−t ≡







It if It < I∗t

0 otherwise
(2.42)

The robustness check consists in the inclusion of the term
(

∆ZI
t,b −∆Zξ

t,b

)

in each

of the two models, where:

∆ZI
t,Fed ≡

[

∆I+t−1 ∆I+t−5 ∆I−t−1

]

(2.43)

∆ZI
t,ECB ≡ ∆I+t−1 (2.44)

∆ZI
t,BoE ≡

[

∆I+t−1 ∆I+t−5

]

(2.45)

Denote as δIb the coefficients corresponding to the extra-term
(

∆ZI
t,b −∆Zξ

t,b

)

.

Under the null hypothesis H0 : θξb = δIb , there is superiority of the alternative

indicator I to the systemic risk indicator in explaining interest rates dynamics.

Tab. 2.9 reports the p-value associated with this null hypothesis, as well as the p-

value associated with the hypothesis that the coefficients of
(

∆Zξ
t,b,∆Z

I
t,b

)

are jointly

insignificant, and the partial adjusted R2 associated with the couple
(

∆Zξ
t,b,∆Z

I
t,b

)

.

[Tab. 2.9 about here.]

The null hypothesis H0 is rejected in all the cases with a high confidence level.

Furthermore, there is clear evidence that the coefficients associated with ∆ZI
t,b are

jointly insignificant, whereas the variables referred to ξ are always significant. Thus,
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the numbers in Tab. 2.9 all confirm in favour of the evidence of the superiority of

the risk indicator with respect to the considered alternative indicators.

2.3.5.2 Local Cyclical Indicators

A further robustness analysis was performed to check whether the Central Banks

reacted differently to systemic risk, when in addition to financial variables, only local

cyclical indicators were considered as components of the systemic risk indicator.

The resulting indicators together with a comparison with the original series of the

indicator is reported in Fig. 2.11.

[Fig. 2.11 about here.]

A robustness check was carried out in the same way as described above for the

alternative tension indicators. The main finding is that the pattern of the reaction

functions of the institutions does not change, though there is evidence of higher

reaction to local macroeconomic factors.

2.4 Final Remarks

In this chapter, we proposed a comprehensive indicator able to measure systemic

risk at a global level. The indicator is constructed by integrating the dynamics of

international financial and commodity markets with signals emerging from the eco-

nomic cycle. Based upon the 1995-2011 crisis events, the indicator interpreted quite

accurately recent financial history. We also showed that financial markets severe

downturns and increasing volatility are not sufficient to explain the overall systemic

risk in the economy, but an insight on the current outlook on the macroeconomic

situation is also crucial for detecting instabilities at the global level.
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We then evaluated the interaction of the indicator with monetary policy decisions

undertaken by the Fed, the ECB and the Bank of England. We identified important

differences between Central Banks’ monetary conducts during a prolonged period of

economic and financial crisis. There is evidence that expansionary decisions adopted

by the Fed and the Bank of England were led by riskiness of the system, while

the ECB showed some reluctance to give up its role in maintaining price stability,

except during the recent period of economic and financial instability. The response

of the monetary authority is not prompted by the conditions in the global financial

markets alone, but also by the global outlook on the real side of the economy,

with the two factors being captured by the systemic risk indicator we proposed.

Finally, we compared the proposed indicator with alternative coincident measures

of systemic risk and showed its ability in capturing the materialization of systemic

risk instabilities which triggered the reaction of the Fed, the ECB and the BoE.
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Postscript of the Chapter

The aim of this postscript is the updating of the proposed systemic risk indicator,

using out-of-sample data for the year 2012, which consist of the latest data available

at the time of writing (April, 2013). An updated version of Fig. 2.3 is reported in

Fig. 2.12.

[Fig. 2.12 about here.]

The evaluation of the indicator up to the end of 2012 highlights a new period of

instability, corresponding to the spreading of the European sovereign debt crisis.

The indicator goes beyond the equilibrium level in Q3:2011 and Q4:2011, and stays

just below it during the first half of 2012. The last part of 2011 has been identified

in Chapter 1 as the moment in which the crisis spread from the peripheral countries

in Europe to the rest of the continent and ultimately to the US. However, when

looking at the magnitude of the late 2011 figure, the EU crisis does not show up

as vigorously as the 2007-09 financial crisis, which was characterized by a value of

the indicator approaching 1. This extent is further investigated in the next chapter,

where a dissection of the features of the two crises is proposed by means of a novel

modelling set-up to test for contagion versus excess interdependence during periods

of financial instability.
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Table 2.1: Market data for the systemic risk indicator. We report a description of the market data employed
for the construction of the systemic risk indicator. ID Index is a sequential identification index for the i-th market, with
i = 1, . . . , N . We report the asset class and the geographical area (columns 2 and 3) which the index belongs to. Columns
4 and 5 report the name and the ticker under the data provider system (DatastreamTM ). The last column contains the

date of the first available observation.

ID Index Asset Class Area Name Ticker Base date

1 Equity United States MSCI US MSUSAML 31-Dec-69
2 ” Euro Area MSCI EMU MSEMUIL 31-Dec-87
3 ” United Kingdom MSCI UK MSUTDKL 31-Dec-69
4 ” Japan MSCI JAPAN MSJPANL 31-Dec-69
5 ” EM Countries MSCI EM MSEMKFL 31-Dec-87
6 Government Bond United States JPM GBI US JGUSAU$ 01-Sep-03
7 ” Euro Area JPM GBI EUR JGEUAEE 01-Sep-03
8 ” United Kingdom JPM GBI UK JGUKAU£ 01-Sep-03
9 ” Japan JPM GBI JAP JGJPAJY 01-Sep-03
10 ” EM Countries JPM EMBI+ COMP JPMPTOT 31-Dec-93
11 Corporate Bond United States ML US CORP MLCORPM 30-Mar-73
12 ” Euro Area ML EMU CORP MLCPLCE 31-Dec-96
13 ” United Kingdom ML CORP ALL UK ML£CAUL 07-May-04
14 ” Japan ML JAP CORP MLJPCPY 15-Sep-05
15 ” EM Countries ML EMRG CORP MLICD0$ 31-Dec-04
16 Money Market Instruments United States JPM US CASH 3M JPUS3ML 31-Dec-85
17 ” Euro Area JPM EURO CASH 3M JPEC3ML 22-Oct-86
18 ” United Kingdom JPM UK CASH 3M JPUK3ML 31-Dec-85
19 ” Japan JPM JAP CASH 3M JPJP3ML 31-Dec-85
20 ” EM Countries ML USD EMRG SOV MLIGD0$ 31-Dec-04
21 Commodity none S&P GSCI CGSYSPT 31-Dec-69
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Table 2.2: Data for the cyclical indicators. We report a description of the data employed for the estimation of the
cyclical indicator used in the construction of the systemic risk indicator. Columns 1 and 2 report the name and the ticker
under the data provider system (DatastreamTM ). Column 3 reports the frequency of the data. The last column contains

the date of the first available observation.

Name Ticker Frequency Base date

GDP US USGDP...D Quarterly 1950:1
GDP Euro Area EKGDP...D Quarterly 1995:1

GDP UK UKGDP...D Quarterly 1955:1
GDP Japan JPGDP...D Quarterly 1980:1

Citigroup Economic Surprise Indices TBCESIR Daily 01-Jan-03
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Table 2.3: Data employed in the empirical application for the Fed, ECB and BoE. Reported is a description
of the data employed in the empirical application in Section 2.3. We report the name and the ticker under the data
provider system (DatastreamTM ), as well as the frequency of the series used to build the target interest rate series, the
inflation rate and the cyclical indicator in the model for the Fed, the ECB and the BoE (top, middle and bottom panel,

respectively).

Variable Name Ticker Frequency

Target rate US Federal Funds FRFEDFD Daily
Inflation Index US GDP DEFLATOR USONA001E Quarterly

GDP US GDP USGDP...D Quarterly
Potential GDP US CBO Forecast - Potential GDP USFCGDPPD Quarterly

Variable Name Ticker Frequency

Target rate Euro OverNight Index Average (EONIA) EUEONIA Daily
Inflation Index CPI (no energy and unprocessed food) EKESCPXUF Monthly

GDP EK GDP EKGDP...D Quarterly

Variable Name Ticker Frequency

Target rate Sterling Overnight Interbank Average Rate (SONIA) BOESONI Daily
Inflation Index UK Retail Price Index (RPIX) UKRPAXMIF Monthly

UK Consumer Price Index (RPI) UKCPCOREF Monthly
Cyclical indicator UK Output Gap - OECD UKOCFOGPQ Quarterly
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Table 2.4: Descriptive statistics for the Fed, the ECB and the BoE model. Reported are the summary
statistics for the empirical application in Section 2.3. i is the target interest rate, π is the inflation rate, y is the cyclical
indicator and ξ is the systemic risk indicator. The normality test is the JarqueBera test. The top panel is referred to the
Fed model, the middle panel to the ECB model and the bottom panel to the BoE. The sample size respectively starts

from 1995:1, 1999:1 and 1997:1 for the Fed, ECB and BoE, and ends in 2011:4. The frequency is quarterly.

i π y ξ

Mean 3.347 2.085 -0.875 0.259
Standard deviation 2.235 0.723 2.830 0.266
Skewness -0.243 0.124 -0.993 1.337
Kurtosis 1.433 2.747 2.960 3.764
Min 0.075 0.458 -7.429 0.025
Max 6.520 3.522 3.537 0.989
Normality test 23.699 [0.0000]** 0.20576 [0.9022] 31.017 [0.0000]** 56.387 [0.0000]**

i π y ξ

Mean 2.585 1.713 0.076 0.285
Standard deviation 1.325 0.521 1.408 0.286
Skewness -0.182 0.056 0.173 1.133
Kurtosis 2.040 1.815 2.603 3.094
Min 0.345 0.856 -2.850 0.025
Max 4.844 2.637 3.144 0.989
Normality test 3.0474 [0.2179] 4.8367 [0.0891] 0.35648 [0.8367] 34.894 [0.0000]**

i π y ξ

Mean 4.186 2.285 -0.030 0.275
Standard deviation 2.086 0.669 2.224 0.276
Skewness -0.720 0.265 -0.677 1.203
Kurtosis 2.491 2.800 2.618 3.320
Min 0.409 1.054 -4.549 0.025
Max 7.364 3.902 3.886 0.989
Normality test 15.240 [0.0005]** 0.82703 [0.6613] 10.616 [0.0050]** 43.340 [0.0000]**
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Table 2.5: Long-run relation estimates. We report the estimation of the
long-run relation in Eq. (2.25) for the Fed, the ECB and the BoE, after the

reduction by AutometricsTM . Standard errors are reported in parenthesis.

Fed model ECB model BoE model

const. 4.738
(0.280)

3.191
(0.325)

5.0135
(0.462)

trend −0.073
(0.013)

−0.393
(0.122)

πt 0.825
(0.106)

0.411
(0.087)

0.7039
(0.164)

yt 0.365
(0.044)

0.466
(0.026)

0.5456
(0.0367)

BM
1999:1 −1.3414

(0.192)

BM
2001:3 −1.155

(0.305)

BM
2001:4 −1.259

(0.162)

−1.3227
(0.197)

BM
2003:1 −1.2632

(0.254)

BM
2003:3 −0.618

(0.132)

BM
2009:2 2.240

(0.354)

BT
1999:4 0.685

(0.146)

BT
2001:1 −0.279

(0.037)

BT
2001:2 −0.140

(0.030)

BT
2003:4 0.4030

(0.0733)

BT
2004:4 0.602

(0.044)

BT
2005:1 −0.4625

(0.0911)

BT
2007:2 −0.650

(0.044)

BT
2008:4 −0.192

(0.016)

−0.1545
(0.0333)
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Table 2.6: Test for the stability of the cointegration vector. We report the results of the test for the stability of
the cointegration vector for different choices of the kernel function employed for the estimation of the long-run variance
of the residuals (for details see Mogliani, 2010). Bootstrap p-values and fast double bootstrap p-values are provided
(Davidson and MacKinnon, 2007). The Fed model is in the top panel, the ECB model in the middle panel and the BoE

model in the bottom panel.

LR variance kernel Stat Bootstrap p-value Fast Double Bootstrap p-value

Bartlett 0.02181 0.53745 0.53895
Quadratic Spectral 0.01974 0.65157 0.65297

Parzen (Andrews and Monahan, 1992) 0.02228 0.53845 0.53835
Kurozumi (2002) 0.02227 0.58536 0.58816

LR variance kernel Stat Bootstrap p-value Fast Double Bootstrap p-value

Bartlett 0.03616 0.21772 0.21582
Quadratic Spectral 0.03694 0.14071 0.13681

Parzen (Andrews and Monahan, 1992) 0.04497 0.05911 0.05601
Kurozumi (2002) 0.03963 0.20352 0.20182

LR variance kernel Stat Bootstrap p-value Fast Double Bootstrap p-value

Bartlett 0.03277 0.20472 0.20732
Quadratic Spectral 0.03077 0.22652 0.23252

Parzen (Andrews and Monahan, 1992) 0.03650 0.10731 0.11421
Kurozumi (2002) 0.03298 0.26753 0.26743
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Table 2.7: Information criteria for the alternative model specifications.
MS1, MS2 and MS3 are three alternative model specifications for Eqs. (2.25)-
(2.26). We report information criteria for these alternative specifications. SC is
the Schwarz Criterion, HQ is the Hannan-Quinn Criterion and AIC the Akaike
Information Criterion (Fed model in the top panel, ECB model in the middle

panel and the BoE model in the bottom panel).

SC HQ AIC

MS1 - - -
MS2 0.527 0.403 0.323
MS3 0.145 -0.152 -0.343

SC HQ AIC

MS1 -0.639 -0.920 -1.085
MS2 -0.683 -0.989 -1.170
MS3 -0.771 -1.077 -1.258

SC HQ AIC

MS1 0.651 0.380 0.209
MS2 0.347 0.121 -0.0212
MS3 0.184 -0.0419 -0.184
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Table 2.8: Error correction specifications. We report the estimation of the
error correction model in Eq. (2.26) for the Fed, the ECB and the BoE, after the
reduction by AutometricsTM . Standard errors are reported in parenthesis. AR is
the Breusch-Godfrey test for residual serial correlation, ARCH is the Engle test for
the presence of ARCH effects, NORM is the Doornik-Hansen test for normality of
residuals and HT is the White test for heteroscedasticity. P -values are reported.

Fed model ECB model BoE model

const. 0.014
(0.045)

0.263
(0.098)

0.012
(0.030)

∆it−1 0.701
(0.086)

0.374
(0.098)

0.348
(0.062)

∆it−4 −0.337
(0.068)

∆πt 0.316
(0.093)

0.295
(0.103)

0.246
(0.092)

∆πt−1 −0.518
(0.121)

∆πt−2 −0.392
(0.096)

∆πt−3 0.230
(0.112)

∆yt 0.126
(0.054)

0.301
(0.054)

0.305
(0.052)

∆yt−1 −0.197
(0.057)

∆yt−5 0.101
(0.035)

∆ξ+t−1 −0.827
(0.257)

−0.685
(0.239)

−0.730
(0.280)

∆ξ+t−5 −1.192
(0.247)

−0.874
(0.215)

∆ξ−t−1 −0.711
(0.278)

ε̂t−1 −0.480
(0.082)

−0.616
(0.124)

−0.325
(0.100)

∆BM
1999:1 −1.2741

(0.226)

∆BM
2001:4 −0.546

(0.149)

∆BM
2003:1 −0.4492

(0.213)

∆BM
2003:3 −0.466

(0.138)

∆BT
2001:1 −0.283

(0.103)

∆BT
2001:2 −0.204

(0.077)

∆BT
2004:4 0.440

(0.110)

∆BT
2007:2 −0.329

(0.095)

D2008:4 −1.127
(0.264)

T 62 46 54
R2 87.4% 93.5% 85.4%
AR 0.237 0.908 0.752

ARCH 0.129 0.586 0.870
NORM 0.902 0.030 0.096

HT 0.040 0.960 0.036
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Table 2.9: Robustness check with alternative indicators. Top panel: p-
values associated with the null hypothesis of superiority of the alternative indica-
tors in explaining interest rate dynamics. Middle panel: p-value associated with

the hypothesis that the two groups of coefficients of
(

∆Z
ξ
t,b,∆ZI

t,b

)

are jointly

insignificant. Bottom panel: partial adjusted R2 associated with the couple
(

∆Z
ξ
t,b,∆ZI

t,b

)

. Z
ξ
t,b denotes the regressors referred to ξ in the model for bank

b, with b = Fed,ECB,BoE. ZI
t,b denotes the same regressors, constructed us-

ing the alternative indicator I, with I denoting the VIX, the TED spread, the
Libor-OIS spread and the CISS indicator by Hollo et al. (2012).

Fed model ECB model BoE model

VIX 0.0001 0.0061 0.0018
TED spread 0.0005

Libor-OIS 0.0058
CISS 0.0071

Fed model ECB model BoE model

VIX (0.0001, 0.6187) (0.0062, 0.7048) (0.0018, 0.9025)
TED spread (0.0005, 0.4237)

Libor-OIS (0.0128, 0.6427)
CISS (0.0071, 0.6385)

Fed model ECB model BoE model

VIX (60.44%, 4.59%) (21.78%, 0.47%) (35.44%, 0.46%)
TED spread (55.43%, 6.18%)

Libor-OIS (17.37%, 0.66%)
CISS (19.98%, 0.68%)
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Figure 2.1: The estimated financial variables α, R2 and s. We plot the
estimated financial variables α, R2 and s entering in the systemic risk indicator
(quarterly data from 1995:1 to 2011:4). α and R2 are the slope and the determi-
nation coefficient of the regression in Eq. (2.3), whereas s is the cross-sectional
average percentage deviation of the market volatilities from their long-term value,

as defined in Eq. (2.4).
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Figure 2.2: Cyclical indicators. We plot the normalized value of the cyclical
indicators entering in the systemic risk indicator, as defined in Eq. (2.5) (quarterly

data from 1995:1 to 2011:4).
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Figure 2.3: The systemic risk indicator and the recent financial history. We plot the systemic risk indicator,
highlighting the most notable facts in the recent financial history (1995:1-2011:4). Shaded areas mark the periods in

which the indicator (solid line) is above its equilibrium value (dashed line).
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Figure 2.4: Data for the Fed model. We plot the data used in the Fed model (quarterly data from 1995:1 to 2011:4).
Top-left panel: quarterly average of the Fed Funds rates. Top-right panel: annualized 4-th order moving average of the
percentage rate of change of the US GDP deflator. Bottom-left panel: US cyclical indicator constructed using the CBO

estimate for the potential output (refer to Eq. 2.5). Bottom-right panel: systemic risk indicator.
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Figure 2.5: Data for the ECB model. We plot the data used in the ECB model (quarterly data from 1999:1 to
2011:4). Top-left panel: quarterly average of the EONIA rates. Top-right panel: quarterly average of the one-year growth
rate of the Consumer Price Index (CPI) for the Euro Area. Bottom-left panel: EU cyclical indicator, constructed using

the HP estimator of the potential output. Bottom-right panel: systemic risk indicator.
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Figure 2.6: Data for the BoE model. We plot the data used in the BoE model (quarterly data from 1997:1 to
2011:4). Top-left panel: quarterly average of the SONIA rates. Top-right panel: quarterly average of the one-year growth
rate of the Retail Price Index excluding mortgage interest payments (RPIX) until December 2003 and of the Consumer
Price Index (CPI) from January 2004 onwards. Bottom-left panel: UK cyclical indicator, constructed using the HP

estimator of the potential output. Bottom-right panel: systemic risk indicator.
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Figure 2.7: Cointegrating regression. Actual (solid line) vs. fitted (dashed
line) values in the estimation of the long run relation in Eq. (2.25) (Fed model in
the top panel, ECB model in the middle panel and the BoE model in the bottom

panel).
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Figure 2.8: Error correction specification. Actual (solid line) vs. fitted
(dashed line) values in the estimation of the error correction model in Eq. (2.26)
(Fed model in the top panel, ECB model in the middle panel and the BoE model

in the bottom panel).
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Figure 2.9: Fed, ECB and BoE reactions to systemic risk. We compute Central Banks’ reactions to the riskiness
of the system by stressing the estimated models with the observed variations of the systemic risk indicator. The estimated
reactions to systemic risk are defined as ∆î

ξ
t,b ≡ θ̂

ξ
b
′∆Z

ξ
t,b, where Z

ξ
t,b with b = Fed,ECB,BoE are the regressors referred

to ξ in the Fed, the ECB and the BoE model, respectively (see Eqs. 2.33-2.35) and θ
ξ
b are the corresponding coefficients.

We plot only the significant reactions at the 1% significance level. Significance is evaluated using the result in Eq. (2.40).
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Figure 2.10: Comparison with alternative systemic risk indicators. We report a graphical comparison between
our indicator and alternative financial tension indicators, namely the VIX, the TED spread, the CISS by Hollo et al.
(2012) and the EU Libor-OIS spread (clockwise order from top-left panel). The bold lines are the quarterly average of
the alternative indicators and the bold dashed lines are the corresponding trend components estimated via the HP filter.
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Figure 2.11: The systemic risk indicator with local cyclical indicators. We report a graphical comparison
between the proposed indicator and the indicator constructed using local cyclical indicators only for the US (top panel),

the Euro Area (middle panel) and the UK (bottom panel).
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Figure 2.12: Update of Fig. 2.3 to 2012:4. We update the indicator using out-of-sample data referred to 2012:1 to
2012:4.
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List of Symbols3

t time index

ξt systemic risk indicator

K number of variables entering in the systemic risk indicator

T sample size in the systemic risk indicator estimation

N number of the markets considered in the systemic risk indicator

estimation

J number of considered geographical areas

β two-dimensional column vector of parameters in the logistic map-

ping for the systemic risk indicator specification

γ K-dimensional column vector of parameters referred to X in the

systemic risk indicator specification

X T ×K matrix of exogenous variables for the systemic risk indicator

X̃ standardized version of the matrix X

µn,t mean return of index n in quarter t

σn,t standard deviation of returns on index n in quarter t

αt slope in the regression of µn,t over σn,t for quarter t

εn,t error term in the regression of µn,t over σn,t for quarter t

R2
t determination coefficient in the regression of µn,t over σn,t for quar-

ter t

σLT
n long-term standard deviation of index n

st cross-sectional average percentage deviation of the market volatili-

ties from their long-term value

yt,j output gap for the j-th geographical area at time t

3Variables denoted by a lowercase letter not appearing in this list are intended to be an index
varying from 1 to the integer represented by the corresponding uppercase letter, whose definition
can be found in this legend.
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gt,j logarithm of the actual GDP of the j-th geographical area at time

t

g∗t,j logarithm of the potential GDP of the j-th geographical area at

time t

λHP smoothing parameter in the HP filter

v K-dimensional vector of threshold values for the variables in X

R̄2 50-th constant percentiles of R2
t

s̄ 50-th constant percentiles of st

τ+ set of time indices corresponding to dates characterized by extreme

high systemic risk

τ− set of time indices corresponding to dates characterized by extreme

low systemic risk

X̃+ observations of X̃ corresponding to dates characterized by extreme

high systemic risk

X̃− observations of X̃ corresponding to dates characterized by extreme

low systemic risk

cX̃
+ K-dimensional row vector representing the centroid of X̃+

cX̃
− K-dimensional row vector representing the centroid of X̃−

γ̄ lower bound for the γ parameters

(z+t , z
−
t ) auxiliary variables used in the estimation of γ

p+ quota of the extreme high systemic risk observations

p− quota of the extreme low systemic risk observations

X̃+
γ̂ 100p+-th percentile of the linear combination X̃γ̂

X̃−
γ̂ 100p−-th percentile of the linear combination X̃γ̂

ξ∗t trend component of the systemic risk indicator

ξ̈∗t trend component of the systemic risk indicator detected using the

HP filter

ṽ normalized version of the threshold vector v
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ξ̄∗ value of ξ computed in correspondence of ṽ

λ decay factor in the specification of ξ∗t

ζ numerical tolerance for the estimation of the decay factor λ

it target interest rate

πt inflation rate

φ constant term in the long-run relation

η trend coefficient in the long-run relation

ψ cointegrating vector

Zt regressors in the cointegration model

εt error correction term

iLR fitted values in the long-run relation

L lag order of the ECM

ω constant term in the ECM

ρl autoregressive coefficient associated to lag order l in the ECM

θl vector of coefficients referred to the l-th lag of the regressors Z in

the ECM

δ coefficient referred to the error correction term

ut error term in the ECM

ξ+t systemic risk indicator when above its trend component ξ∗t

ξ−t systemic risk indicator when below its trend component ξ∗t

d date of a break with d = 1, . . . , T

BM
d,t time t value of the dummy variable capturing a break in the mean

occurred on date d

BT
d,t time t value of the dummy variable capturing a break in the trend

occurred on date d

Pt GDP deflator

ψgr change in the cointegrating vector associated to the Greenspan era

w2 long-run variance of the error correction term
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Dt spike dummy variable for time t

b index for the Central Bank with b = Fed,ECB,BoE

Zξ
t,b time t observation of the regressors referred to ξ in the model for

bank b

θξb coefficient referred to ∆Zξ
t,b

ut,b error term in the ECM for Central Bank b

σb standard deviation of ut,b

Σθξ
b

variance-covariance matrix of θξb

∆iξt,b reaction of institution b to systemic risk at time t

ν degrees of freedom in the ECM

p number of estimated parameters in the ECM

It quarterly average of the competing tension indicator index for quar-

ter t

I∗t trend component of It extracted via the HP filter

I+t quarterly average of It when above its trend component I∗t

I−t quarterly average of It when below its trend component I∗t

ZI
t,b time t observation of the regressors Zξ

·,b constructed using the com-

peting indicator I

δIb coefficients corresponding to the extra-term
(

∆ZI
t,b −∆Zξ

t,b

)

in the

ECM for robustness check



Chapter 3

Modelling Financial Markets

Comovements: A Dynamic

Multi-Factor Approach

3.1 Introduction

In this chapter, we propose an in-depth study of the two major crisis episodes of

recent times, the big recession of 2007-2009 and the on-going European sovereign

debt crisis. The scope of the study is to provide an insight on the features of the

two crises, measuring the extent to which financial markets tend to comove during

periods of financial distress.

In broader terms, the study of financial market comovements is of paramount im-

portance for its implications in both theoretical and applied finance. The practical

relevance of a thorough understanding of the mechanisms governing market corre-

lations lies in the benefits that this induces in the processes of asset allocation and

risk management. Recent crisis episodes have shifted the focus of the literature

109
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on the characterization of financial market comovements during periods of financial

turmoil. Most of the crises that have hit the financial markets in the past decades

are the result of the propagation of a shock which originally broke out in a specific

market. This phenomenon has been extensively explored in the literature and has

led to the use of the term “contagion” to denote the situation in which a crisis orig-

inated in a specific market infects other interconnected markets. For a review of the

contributions at the heart of the literature on contagion see the papers by Karolyi

(2003), Dungey et al. (2005) and Billio and Caporin (2010).

A well-documented phenomenon linked to a situation of contagion is an increase of

the observed correlations amongst the affected markets. The origins of this empirical

evidence trace back to the contributions of King and Wadhwani (1990), Engle et al.

(1990) and Bekaert and Hodrick (1992). Longin and Solnik (2001) and, in particular,

the influential paper by Forbes and Rigobon (2002), criticize the common practice to

identify periods of contagion using testing procedures based on market correlations.

Forbes and Rigobon (2002) show that the presence of heteroscedasticity biases this

type of testing procedure, leading to over-acceptance of the hypothesis of the pres-

ence of contagion. Bae et al. (2003), Pesaran and Pick (2007) and Fry et al. (2010)

propose testing procedures robust to the presence of heteroscedasticity.

In this chapter we take a different stand. We propose a modelling framework which

allows to contrast a situation of contagion, in the Forbes and Rigobon’s (2002) sense,

as opposed to the case in which excess interdependence on financial markets is trig-

gered by spiking market volatility. Contagion is no longer thought as correlation in

excess of what implied by an economic model (as in Bekaert et al., 2005, 2012), it

instead corresponds to a specific market situation which our modelling set-up can

capture. A situation of contagion entails a persistent change in financial linkages

between markets. On the contrary, conditional heteroscedasticy of financial time

series does not display trending behaviour (Schwert, 1989, Brandt et al., 2010), thus
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a rise in correlations caused by excess volatility has only a temporary effect. This

feature is in line with the literature on market integration (Bekaert et al., 2009),

which explores the degree of interconnectedness of markets through time, borrowing

from Forbes and Rigobon’s (2002) analysis the fact that excess interdependence,

triggered by volatility, might lead to spurious identification of cases of market in-

tegration. In this chapter, we bring together the literature on contagion with the

literature on market integration in that we associate a situation of contagion to a

prolonged episode of market distress altering the functioning of the financial system.

On the contrary, a situation of excess interdependence is a short lasting phenomenon.

Being able to distinguish between contagion and excess interdependence has a crucial

information content as to how a crisis develops and spreads out.

We study comovements amongst financial markets during crises, both in a multi-

country and a multi-asset class perspective, contributing to the extant empirical

literature on international and intra asset class shock spillovers. We analyse stock,

bond and FX comovements in US, Euro Area, UK, Japan and Emerging Countries,

providing an extensive coverage of the global financial markets. Most of the contri-

butions to the literature on comovements entail single asset classes, with the vast

majority focusing on stock and bond markets (see inter alia Driessen et al., 2003,

Bekaert et al., 2009, Baele et al., 2010). There is a strand of literature embracing a

genuine multi-country and multi-asset-class approach in the study of shock spillovers.

Dungey and Martin (2007) propose an empirical model to measure spillovers from

FX to equity markets to investigate the breakdown in correlations observed during

the 1997 Asian financial crisis. Ehrmann et al. (2011) analyse the financial trans-

mission mechanism across different asset classes (FX, equities and bonds) in the US

and the Euro Area, using a simultaneous structural model.

The main contribution of the chapter is threefold. First, we propose a dynamic

factor model which allows to test for the presence of excess interdependence versus
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contagion in a multi-asset and multi-country framework. Second, we disentangle

the different sources of comovements between financial markets, and analyse their

dynamics during financial crisis periods. Third, we report an empirical application

using a sample period which encompasses both the 2007-09 crisis as well as the

current sovereign debt crisis: this is an interesting laboratory to use the proposed

framework to explore financial market comovements during crisis periods.

The empirical analysis suggests interesting findings. In our multi-factor framework,

the global factor is the most pervasive of the considered factors, while the asset class

factor is the most persistent and the country factor is negligible. We find evidence of

contagion stemming from the US stock market during the 2007-09 financial crisis and

presence of excess interdependence during the spreading of the European debt crisis

from mid-2010 onwards. Any contagion or excess interdependence effect disappears

at the overall average level, because of that some of the considered assets display

diverging repricing dynamics during crisis periods.

The remainder of the chapter is organized as follows. In Section 3.2, a description of

the dataset is provided. In Section 3.3, we specify the model. Section 3.4 presents

the empirical results. Section 3.5 concludes.

3.2 Data

We analyse comovements of equity indices, foreign exchange rates, money market

instruments, corporate and government bonds in US, Euro Area, UK, Japan and

Emerging Countries. To minimise the impact of nonsynchronous trading across

different markets, we base the study on weekly data from 1st January 1999 to 14th

March 2012, yielding to 690 weekly observations. The starting date coincides with

the adoption of the Euro, being the Euro Area one of the key geographical areas

considered in the analysis. The sample offers the possibility to explore a variety of
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different market scenarios. The most notable facts are the speculation driven market

growth of late 1990s, the financial and economic slowdown of early 2000s, the burst

of the markets during the mid-2000, the financial turmoil of the period 2007-2009

and the following slow recovery, still pervaded by a big deal of uncertainty, prompted

by the sovereign debt crisis in Europe and US between 2010 and 2012. This allows

us to pick up from an in-sample analysis which are the distinctive features of market

comovements during crisis periods.

Details on the time series used are in Tab. 3.1. The data sources are DatastreamTM

and BloombergTM . We embrace the MSCI definition of Emerging Markets and we

select the 5 most relevant countries in term of size of their economy, according to

the ranking based on the real annual GDP provided by the World Bank. Thus we

select Brazil, India, China, Russia and Turkey as Emerging Countries. We exclude

from the analysis money and government bond markets for Japan and Emerging

Market, as the series were affected by excess noise caused by measurement errors.

We consider the US dollar as the numeraire: all the series are US dollar denominated

and the US dollar is the base rate for the FX pairs in the dataset.

[Tab. 3.1 about here.]

In what follows, each of the variable is considered in the form of simple percentage

weekly returns. In Tab. 3.2, we report the list of the modelled variables together

with descriptive statistics.

[Tab. 3.2 about here.]

The most remarkable facts are the extreme values which were recorded in corre-

spondence of the 2008-2009 crisis period. This was particularly evident for stock

markets and for short term rates, whereas along the country spectrum, the most
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hit were Emerging Markets. All of the series exhibit the typical characteristic of

non-normality with high asymmetry and kurtosis. The price series are plotted in

Fig. 3.1. The downturn at the end of the year 2008 is immediately apparent and

common to all the considered series.

[Fig. 3.1 about here.]

We propose a dynamic factor model with multiple sources of shocks, at global, asset

class and country level. In order to validate this approach, a first preliminary in-

sample correlation analysis is undertaken. We observe high correlation intra asset

class groups. Particularly remarkable are the cases of equity and government bond

yields, with correlations in the 70-80% range. We observe substantial correlation

even within countries, in particular there is evidence of high interconnection between

corporate bonds and FXmarkets at country level: Euro Area (91.3%), Japan (83.6%)

and UK (83.3%). Hence, there is evidence for the presence of both an asset class

and a country effect. However, the asset class effect seems to be systematically more

pervasive than the country one.

3.3 A Dynamic Multi-Factor Model

In this section, we set up the modelling framework. We present the general formula-

tion, explore the issues related to the estimation methods implemented and use the

proposed model to dynamically analyse market comovements.

The novelty of the work is the formulation and the estimation of a dynamic factor

model which allows to test for the presence of contagion in the Forbes and Rigobon’s

(2002) sense versus the presence of volatility triggered episodes of excess interdepen-

dence.
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Since the seminal works of Ross (1976) and Fama and French (1993), multifactor

models for asset returns have been the main tool for studying and characterizing

comovements. Building on this standard latent factor financial literature, let Ri,j
t

represent the weekly return for the asset belonging to asset class i = 1, . . . , I and

county j = 1, . . . , J at time t. The general representation of the model is as follows:

Ri,j
t = E[Ri,j

t ] + F i,j
t βi,j

t + εi,jt (3.1)

βi,j
t = diag(1− φi,j)βi,j + diag(φi,j)βi,j

t−1 + ψi,jZt−1 + ui,jt (3.2)

where E[Ri,j
t ] is the expected return for asset class i in country j at time t, βi,j

t is

a vector of dynamic factor loadings, mapping from the zero-mean factors F i,j
t to

the single asset returns. F i,j
t is a 3-dimensional row vector of factors at the global,

asset class and country level. We entertain the possibility that the factors F i,j
t are

heteroscedastic, that is E[F i,j
t

′
F i,j
t ] = Σi,j

F,t, where Σ
i,j
F,t is the time-varying covariance

matrix of the factors. εi,jt is assumed to be white noise and independent of F i,j
t . βi,j

is the long-run value of βi,j
t , φi,j and ψi,j are 3-dimensional vectors of parameters to

be estimated, {ui,jt }t=1,...,T are independent and normally distributed. We assume

ui,jt to be independent of εi,jt . diag(·) is the diagonal operator, transforming a vector

into a diagonal matrix. Zt is a conditional variable controlling for period of market

distress.

Following Dungey and Martin (2007), different sources of shocks are considered, at

global, asset class and country level, in a latent factor framework. A first factor,

denoted as Gt, is designed to capture the shocks which are common to all financial

assets modelled, whereas Ai
t is the asset class specific factor for asset class i = 1, . . . , I

and the country factor Cj
t is the country specific factor for county j = 1, . . . , J at

time t. We denote F i,j
t ≡ [Gt A

i
t C

j
t ] and, correspondingly, for the factor loading we

specify βi,j
t ≡ [γi,jt δi,jt λi,jt ]′.
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The full model is a multi-factor model with dynamic factor loadings and heteroscedas-

tic factors. This model setting allows us to explore and characterize dynamically the

comovements among the considered assets. Time-dependent exposures to different

shocks let us disentangle dynamically the different sources of comovement between

financial markets, namely distinguishing among shocks spreading at a global level,

at the asset class or rather at the country level. On the other hand, the presence

of time-varying exposures to common factors enables us to test for the presence of

contagion, controlling at the same time for excess interdependence induced by het-

eroscedasticity in the factors. In the following sections, we explore the features of

the model and use it to characterize financial market comovements during crises.

3.3.1 Factor Estimation

Model (3.1)-(3.2) is estimated in the following form:

Ri,j
t = E[Ri,j

t ] + F̂ i,j
t βi,j

t + εi,jt (3.3)

βi,j
t = diag(1− φi,j)βi,j + diag(φi,j)βi,j

t−1 + ψi,jẐt−1 + ui,jt (3.4)

where F̂ i,j
t and Ẑt are an estimate of the factors F i,j

t and Zt. In this section, we

concentrate on the estimation of F i,j
t , whereas the estimation of Zt is presented in

Section 3.3.2. The factors F i,j
t are estimated by means of principal component anal-

ysis (PCA). The choice of PCA is dictated by model simplicity and interpretability,

yet providing consistent estimates of the latent factors1.

1In the factor model literature, consistency of the factor estimation is a well established result
for the case in which the factor loadings are stable. In this chapter, we make use of the limiting
theory developed by Stock and Watson (1998, 2002, 2009) and Bates et al. (2012), which suggests
that PCA remains a consistent method for factor estimation even for the case of unstable factor
loadings.
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The global factor G is extracted using the entire set of variables considered, whereas

A and C are by construction asset class and country specific, being extracted from

the different asset class and country groups, respectively. In this setting, the number

of variables from which the factors are extracted, sayK, is fixed and small, whilst the

number of observations T tends to infinity (T → +∞). Let us first consider the case

of the global factor G. To estimate it, we define the series of the demeaned returns

as ri,jt ≡ Ri,j
t − E[Ri,j

t ] and we stack them into the matrix r. We then consistently

estimate the variance-covariance matrix of r, say Σr, via maximum likelihood, as:

Σ̂r ≡
1

(T − 1)
r′r (3.5)

Let (lk,wk) be the eigencouples referred to the covariance matrix Σr, with k =

1, . . . , K, such that l1 > l2 > . . . > lK . We estimate (lk,wk) by extracting the

eigenvalue-eigenvector couples from the estimated covariance matrix of the returns

Σ̂r, denoted as (l̂k, ŵk).

The estimate Ĝ of the common factor G is given by the principal component ex-

tracted using the matrix Σ̂r, that is:

Ĝ = rŵ1 (3.6)

Ĝ is a consistent estimator of the factor G. Indeed, from the standpoint that Σ̂r is a

consistent estimator of Σr, we claim that, as a direct consequence of the invariance

property for maximum likelihood estimators, the estimated eigencouples (l̂k, ŵk)

consistently estimate (lk,wk) (Anderson, 2003).

Analogously, to estimate the asset class and the country specific factors Ai and Cj

(with i = 1, . . . , I and j = 1, . . . , J), we define ri ≡ [ri,jt ]j=1,...,J and rj ≡ [ri,jt ]i=1,...,I as

the matrices of returns referred to asset class i and country j, respectively. Denote
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as Σri and Σrj the corresponding covariance matrix and let ŵi
1 and ŵj

1 be the

eigenvectors corresponding to the largest eigenvalues of the estimates Σ̂ri and Σ̂rj .

The estimates of the asset class and the country specific factors Âi and Ĉj are then

given by:

Âi = riŵi
1 (3.7)

Ĉj = rjŵj
1 (3.8)

As we use demeaned return, the extracted factors will have zero mean by construc-

tion.

When the number K of variables from which factors are extracted is fixed and

small, no criteria is available regarding how to establish the number of factors to

be extracted (see inter alia Bai and Ng, 2002). Then, following Dungey and Martin

(2007), and from the standpoint of the descriptive analysis in Section 3.2, we assume

that the relevant factors are three: the first at a global level, and the other two at

an asset class and country levels, respectively.

For the sake of model interpretability, we orthogonalize the factors, so that the three

groups of factors are mutually uncorrelated. The preliminary correlation analysis

presented in Section 3.2 suggests that the asset class factors are more pervasive than

the country ones. So, we first orthogonalize the asset class factors with respect to

the global factor. Then, we orthogonalize the country factors with respect to the

asset class and the global factors. This ensures for instance that the US factor is

uncorrelated of the global factor and of the equity factor. The orthogonalization

process, however, is not carried out within the groups of factors, so then the equity

factor might have a nonzero correlation with the bond factor, and so the US factor

with the EU factor. In the application, we show that the results are robust to the

case in which one orthogonalizes the country factors with the global one and then

the asset class factors with respect to the others.
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3.3.2 Dynamic Multi-Factor Loading Estimation

The factor model proposed in Eqs. (3.1)-(3.2) allows for time-dependent exposures of

the single assets to the different classes of factors. In the literature there are different

approaches to accommodate this feature on the factor loadings. The specification

we propose in Eq. (3.2) is within the class of the so-called “conditional time-varying

factor loading approach” (see Bekaert et al., 2009), and it nests as a special cases

both the static specification βi,j
t ≡ βi,j , which we consider as the baseline, and an

alternative dynamic approach, which in the literature is known as “time-varying

factor loading approach” (see Eq. 3.14 below) adopted inter alia by Bekaert et al.

(2009) using fixed-length time windows. This section is designed to provide details

on the main features of the alternative factor loading specifications.

In the “conditional time-varying factor loading approach”, the factor loadings are

assumed to follow a structural dynamic equation (see for instance Baele et al., 2010)

of form:

βi,j
t ≡ β(Ft−1, Xt) (3.9)

where {Ft}t=1,...,T is the information flow and Xt is a set of conditional variables.

Our explicit specification of Eq. (3.9) for the factor loadings βi,j
t is as in Eq. (3.2),

that we re-write for convenience:

βi,j
t = diag(1− φi,j)βi,j + diag(φi,j)βi,j

t−1 + ψi,jZt−1 + ui,jt (3.10)

where βi,j is the long-run value of βi,j
t , φi,j and ψi,j are 3-dimensional vectors of

parameters to be estimated, ui,jt is a white noise error term and Zt is a control

factor extracted from pure exogenous variables. Zt measures market nervousness and

accounts for potential increase in the factor loading during market distress periods.

We estimate Zt as the principal component extracted from the VIX, which is widely

recognized as indicator of market sentiment, the TED spread and the Libor-OIS
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spread for Europe, which measure the perceived credit risk in the system. Widening

spreads corresponds to a lack of confidence in lending money on the interbank market

over short-term maturities, together with a flight to security in the form of overnight

deposits at the lender of last resort.

The dynamic specification in Eq. (3.10) is convenient in the sense that it emphasizes

that βi,j
t tends to its long-run value βi,j while following an autoregressive type of

process of order one with a purely exogenous variable Z. Being Z a zero-mean

variable, βi,j can indeed be interpreted as the long-run value for βi,j
t .

Under the hypothesis:

H ′
0 :



















φi,j = 0

ψi,j = 0

ui,jt = 0

∀i = 1, . . . , I ∀j = 1, . . . , J ∀t = 1, . . . , T (3.11)

Model (3.10) boils down to the following static specification:

βi,j
t ≡ βi,j, ∀i = 1, . . . , I, ∀j = 1, . . . , J (3.12)

This corresponds to the assumption that the exposure of all modelled variables to

the different groups of factors are held at constant through time.

On the contrary, under the null hypothesis:

H ′′
0 : ψi,j = 0 ∀i = 1, . . . , I ∀j = 1, . . . , J (3.13)

Model (3.10) reduces to:

βi,j
t = diag(1− φi,j)βi,j + diag(φi,j)βi,j

t−1 + ui,jt (3.14)
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This specification follows the so called “time-varying factor loading approach”. No

exogenous variables are generally considered in the process they follow. Typically,

under this approach, subsamples of fixed length are used to estimate dynamic betas,

so that the factor loadings are constant within pools of observations (see Bekaert

et al., 2009). This corresponds to the following specification for the factor loadings:

βi,j
t ≡ βi,j,s s = 1, . . . , S (3.15)

where βi,j,s is the static factor loading estimate referred to subsample s, while S is

the number of subsamples considered. Bekaert et al. (2009) partition their sample

in semesters and re-estimate the model every six months. On the contrary, in the

specification in Eq. (3.14), we do not make any arbitrary choice about the inertia

as to which factor loadings evolve through time.

We estimate the unconstrained version of model in Eqs. (3.3)-(3.4) as well as under

the hypotheses H ′
0 and H ′′

0 . H
′
0 corresponds to the static case, which we consider

as the baseline. In this case, OLS gives consistent estimates. By considering the

alternative specifications in Eqs. (3.10) and (3.14), we entertain the possibility that

the factor loadings show evidence of contagion either in a conditioned way (ψi,j 6= 0)

or in an unconditioned way (ψi,j = 0), according to the specified control variable.

In these other two cases, consistent estimates are obtained by applying the Kalman

filter. The models are nested and thus, the standard likelihood ratio test can be

employed for model selection.

3.3.3 Heteroscedastic Factors

We set up the modelling framework so that we can contrast between spikes in co-

movements due to increasing exposures to common risk factors, from the case in

which they are triggered by excess volatility in the common factors. For this reason,
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besides allowing for dynamic factor exposures, we allow for heteroscedastic factors.

Namely, we model heteroscedasticity using Engle’s (2002) Dynamic Conditional Cor-

relations (DCC) model in its standard form, by choosing the order (1,1) for the DCC

process, and employing a GARCH(1,1) for the marginals with normal innovations.

The extent that the three groups of factors are mutually uncorrelated by construc-

tion greatly simplifies the estimation. For the case of the global factor Gt, a uni-

variate GARCH(1,1) with normal innovation is employed to estimate time-varying

volatility. For the asset class and the country factors, we apply the Engle’s DCC

model separately on At and Ct, defined by stacking the factors into matrices as

follows: At ≡ [Ai
t]i=1,...,I and Ct ≡ [Cj

t ]j=1,...,J . We obtain consistent estimates of

the time-varying covariance matrices of the factors, estimating the DCC model via

quasi-maximum likelihood estimation.

3.3.4 Market Comovement Measures

Most of the key results of this chapter entail the dynamic behaviour of the co-

movements amongst the financial markets considered. On the basis of the proposed

dynamic factor model, we derive the expression for the covariance between pairs of

financial assets.

For the sake of simplifying the notation, let us introduce the one-to-one mapping

n ≡ n(i, j), with which we identify asset n (n = 1, . . . , N), belonging to asset class i

and country j. From Eq. (3.1), given the independence between the factors Ft and

the error term εt, it follows immediately that the covariance between asset n1 and

asset n2 (for n1 6= n2) at time t is given by:

covt(R
n1 , Rn2) = E[βn1

t
′F n1

t
′F n2

t βn2
t ] + E[εn1

t ε
n2
t ] (3.16)
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The first term on the right-hand side is what is generally referred to as model-

implied covariance, whereas the second is called residual covariance. The empirical

counterpart of Eq. (3.16) is given by:

ˆcovt(R
n1 , Rn2) = β̂n1

t
′Σ̂n1,n2

F,t β̂n2
t + Σ̂n1,n2

ε,t (3.17)

which we rewrite for convenience, as:

ˆcovn1,n2,t = ˆcovFn1,n2,t
+ ˆcovεn1,n2,t

(3.18)

where:

ˆcovFn1,n2,t
≡ β̂n1

t
′Σ̂n1,n2

F,t β̂n2
t (3.19)

ˆcovεn1,n2,t
≡ Σ̂n1,n2

ε,t (3.20)

Correspondingly, define the quantities ˆcorrFn1,n2,t
and ˆcorrεn1,n2,t

dividing by the ap-

propriate variances. We provide the estimates of corrεn1,n2,t
via DCC. We deliberately

do not adjust the residuals of the model by heteroscedasticity and/or serial correla-

tion, which are instead treated as genuine features of the data. We denote the model-

implied variance of the n-th market by varn,t, which is defined as varn,t ≡ covn,n,t.

During period of financial distress, soaring empirical covariances are in general ob-

served. Eq. (3.17) shows that the covariance between Rn1 and Rn2 can rise through

three different channels: an increase in the factor loadings βn1
t and βn2

t , an increase

in the covariance of the factors Σn1,n2

F,t , and an increase residual covariance Σn1,n2
ε,t .

Bekaert et al. (2005) and the related literature identify contagion as the comove-

ment between financial markets in excess of what implied by an economic model. In

this view, contagion is associated with spiking residual covariance between markets,

which refers to Eq. (3.20), the second term on the right-hand side of Eqs. (3.17)

and (3.18). In our modelling set-up, we take a different stand. Consistently with

the case brought by Forbes and Rigobon (2002, pp.2230-1), contagion is thought
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as an episode of financial distress characterized by increasing interlinkages between

markets. This extent finds its model equivalent in a surge in the factor loadings βt.

On the contrary, spiking volatility in the factor conditional covariances is associated

with excess interdependence. We formalize this notion in Definitions 3.1 and 3.2

below.

Following Bekaert et al. (2009), we consider the average measure of model-implied

comovements:

ΓF
t ≡

2

N(N − 1)

N
∑

n1=1

N
∑

n2>n1

ˆcorrFn1,n2,t
(3.21)

and similarly we define Γε
t as the residual comovement measure.

We can get further insights into the covariance decomposition outlined in Eq. (3.16),

by recalling that the factors F i,j
t = [Gt A

i
t C

j
t ] are by construction mutually uncor-

related. Thus, from Eq. (3.16), it follows that:

covt(R
n1 , Rn2) = E[γn1

t
′G′

tGtγ
n2
t ] + E[δn1

t
′Ai1

t

′
Ai2

t δ
n2
t ] + E[λn1

t
′Cj1

t

′
Cj2

t λ
n2
t ] + E[εn1

t ε
n2
t ]

(3.22)

with empirical counterpart of the form:

covt(R
n1 , Rn2) = γ̂n1

t
′Σ̂n1,n2

G,t γ̂n2
t + δ̂n1

t
′Σ̂n1,n2

A,t δ̂n2
t + λ̂n1

t
′Σ̂n1,n2

C,t λ̂n2
t + Σ̂n1,n2

ε,t (3.23)

which for convenience we write as:

ˆcovn1,n2,t = ˆcovGn1,n2,t
+ ˆcovAn1,n2,t

+ ˆcovCn1,n2,t
+ ˆcovεn1,n2,t

(3.24)

Eq. (3.24) shows that within the proposed model framework, we can discriminate

among comovements due to global, asset class or country specific shocks. We define
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a measure of comovement prompted by the global factor as:

ΓG
t ≡

2

N(N − 1)

N
∑

n1=1

N
∑

n2>n1

ˆcorrGn1,n2,t
(3.25)

where ˆcorrGn1,n2,t
is defined as:

ˆcorrGn1,n2,t
≡

ˆcovGn1,n2,t
√

ˆvarFn1,t
ˆvarFn2,t

(3.26)

and can be seen as the part of the correlation between markets n1 and n2, due to the

common dependence on the global factor. In the same manner, we define ΓA
t and

ΓC
t as the measures of comovements prompted by asset class and country factors,

respectively. By construction we have: ΓF
t ≡ ΓG

t + ΓA
t + ΓC

t .

We decline the same Γ-measures of comovements even at the asset class and county

level. Let Ii be the set of indices from the sequence n = 1, . . . , N referred to markets

belonging to the asset class i, and Jj be the indices referred to markets in county j,

that is:

Ii =
{

n
∣

∣n = n(i, j); j = 1, . . . , J
}

(3.27)

Jj =
{

n
∣

∣n = n(i, j); i = 1, . . . , I
}

(3.28)

The model-implied comovement measure for asset class i is given by:

Γi
t ≡

2

|Ii| (|Ii| − 1)

∑

n1∈Ii

∑

n2∈Ii
n2>n1

ˆcorrFn1,n2,t
(3.29)

and in the same manner for country j, we have:

Γj
t ≡

2

|Jj| (|Jj| − 1)

∑

n1∈Jj

∑

n2∈Jj
n2>n1

ˆcorrFn1,n2,t
(3.30)
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As in Bekaert et al. (2009), along with the definition of comovement measures intro-

duced so far, we propose a modification of them, to test for contagion versus excess

interdependence. In the case of ΓF
t , besides the definition in Eq. (3.21), we consider

also:

ΓF
t,ED ≡

2

N(N − 1)

N
∑

n1=1

N
∑

n2>n1

ˆcorrFn1,n2,t,ED (3.31)

ΓF
t,V D ≡

2

N(N − 1)

N
∑

n1=1

N
∑

n2>n1

ˆcorrFn1,n2,t,V D (3.32)

where ˆcorrFn1,n2,t,ED and ˆcorrFn1,n2,t,V D are the correlation coefficients respectively

associated with the following covariances:

ˆcovFn1,n2,t,ED ≡ β̂n1
t

′Σ̂n1,n2

F β̂n2
t (3.33)

ˆcovFn1,n2,t,V D ≡ β̂n1 ′Σ̂n1,n2

F,t β̂n2 (3.34)

where Σ̂n1,n2

F is an estimate of Σn1,n2

F ≡ E (F n1 ′F n2) and Σ̂n1,n2

F,t is its time-varying

counterpart.

ΓF
t,ED differs from ΓF

t in the sense that the correlations used in its definition are

computed assuming constant factor volatilities. In this case, the dynamics of the

correlation between two markets is triggered by their time-varying exposures to

common factors. We label this correlation measure as exposure driven (ED). On the

contrary, ΓF
t,V D is an average measure of comovements triggered by factor volatility

only, while the exposures to the factors are kept constant according to their long-run

values. We tag this type of comovements as volatility driven (VD). We consider the

same two definitions for ΓG
t , Γ

A
t and ΓC

t , as well as for Γ
i
t and Γj

t .

The tools used in the analysis of the resulting time series are based on the Impulse-

Indicator Saturation (IIS) technique implemented in AutometricsTM , as part of the

software PcGiveTM (Hendry and Krolzig, 2005, Doornik, 2009, Castle et al., 2011).
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Castle et al. (2012) show that AutometricsTM IIS is able to detect multiple breaks

in a time series when the dates of breaks are unknown. Furthermore, Authors

demonstrate that the IIS procedure outperforms the standard Bai and Perron (1998)

procedure. In particular, IIS is robust in presence of outliers close to the end and

the start of the sample.

Following Castle et al. (2012), we look for structural breaks in the generic Γ
(·)
t average

comovement measures, by estimating the regression:

Γ
(·)
t = µ+ ηt (3.35)

where µ is a constant and ηt is assumed to be white noise. We then saturate the

above regression using the IIS technique. IIS will retain into the model individual

impulse-indicators in the form of spike dummy variables, signalling the presence of

instabilities in the modelled series. These dummies will occur in block between the

dates of the breaks. In line with the procedure outlined in Castle et al. (2012), we

group the dummy variables “with the same sign and similar magnitudes that occur

sequentially” to form segments of dummies, whereas the impulse-indicators which

can not be grouped will be labelled as outliers. We interpret the segments of spike

dummies as a step dummy for a particular regime. We can now state the following:

Definition 3.1. (Contagion). A situation of contagion is defined as the case in

which a segment of dummy variables is detected through the IIS procedure for the

average comovement measure Γ
(·)
t,ED.

Definition 3.2. (Excess Interdependence). A situation of excess interdepen-

dence is defined as the case in which a segment of dummy variables is detected

through the IIS procedure for the average comovement measure Γ
(·)
t,V D.
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We set a restrictive significance level of 1%, which leads to a parsimonious specifi-

cation, as shown in Castle et al. (2012). Section 3.4.3 gives account of the results of

the outlined methodology applied to our data.

3.4 Empirical Results

In this section, we report the empirical estimates of the model formulated in Section

3.3. Section 3.4.1 outlines the results regarding the estimation of the factors and

model selection, while in Sections 3.4.2 and 3.4.3 we provide an analysis of market

comovements.

3.4.1 Factor Estimates and Factor Loading Selection

We start the empirical analysis by extracting the factors according to the methodol-

ogy outlined in Section 3.3.1. We extract the first principal component at a global,

asset class and country level from the estimate of the covariance matrix of the de-

meaned return time series. The factors have by construction zero mean.

The extracted factors account in total for 83.28% of the overall variance, thus ex-

plaining a substantial amount of the variation of the considered return series. In

particular, the global factor extracts as much as the 37.27% of the overall variance,

whereas the asset class and the country factors account for a quota in the 50-80%

range of the variation in the groups they are extracted from.

We then orthogonalize the extracted factors, so that the system F̂ i,j
t ≡ [Ĝt Â

i
t Ĉ

j
t ]

with i = 1, . . . , I and j = 1, . . . , J consists of orthogonal factors. We first orthog-

onalize each of the asset class factors with respect to the global factor and then

orthogonalize the country factors with respect to both the global and the asset class
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factors. In Section 3.4.2, we show that all our main results do not depend on the

particular way the orthogonalization is carried out.

To validate the interpretations we attached to the factors, we map the contributions

of the original variables onto the factors via linear correlation analysis. The result

of this analysis is reported in Tab. 3.3.

[Tab. 3.3 about here.]

We find that the stock indices are the most correlated with the global factors, with

correlations in the 80-90% range. This characterizes the global factor as the mo-

mentum factor. Such an interpretation seems reasonable in view of the fact that

the equity asset class can be thought as the most direct indicator of the financial

activity among the asset classes here considered.

More generally, when we sort the different markets by the magnitude of their cor-

relation with the global factor, they tend to group by asset class, rather than by

country, with the government bond and the FX market figure in the 30-50% range

and the money market and the corporate bond market in the 0-30% range. This

again supports the evidence that the asset class effect is more pervasive then the

country effect. The extent that the global factor contains part of the asset class

effect, however, does not pollute the interpretation of the asset class factors, which

remain positively and strongly correlated with the variables which they are extracted

from, even after the orthogonalization process.

To test for excess interdependence prompted by changes in the volatility of the

factors, we entertain the possibility that the factor time series might be characterized

by volatility clustering. The Engle test for residual heteroscedasticity suggests that

at the 5% confidence level this is indeed the case for 7 out of the 11 estimated factors.

See Tab. 3.4 for details.
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[Tab. 3.4 about here.]

We fit the Engle’s DCC model on the series of the estimated factors to get a time-

varying estimate of their covariance matrix.

In Section 3.3.2, we proposed three alternative specifications for the factor loadings

βi,j
t in Model (3.1) that we report below for convenience:

βi,j
t = βi,j (3.36)

βi,j
t = diag(1− φi,j)βi,j + diag(φi,j)βi,j

t−1 + ui,jt (3.37)

βi,j
t = diag(1− φi,j)βi,j + diag(φi,j)βi,j

t−1 + ψi,jZt−1 + ui,jt (3.38)

which we labelled as static, time-varying and conditional time-varying factor loading

specification, respectively.

We estimate Eq. (3.3) via OLS when we use the static formulation in Eq. (3.36)

for the factor loading, while when the factor loadings are specified as in either the

time-varying model (Eq. 3.37) or the conditional time-varying factor loading model

(Eq. 3.38), we estimate Eq. (3.3) via the Kalman filter using maximum likelihood

estimation method. The models are nested and thus the likelihood ratio test can

be employed for model selection. The likelihood ratio statistics are reported in Tab.

3.5.

[Tab. 3.5 about here.]

The test strongly rejects the static alternative in favour of the dynamic ones. The

conditional time-varying factor loading approach dominates the time-varying factor

loading approach. Thus, there is evidence that the fitting of the model improves

when we control for market nervousness by means of the control factor Z.
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3.4.2 Comovements Dynamics

We turn now to analyse the average measures of comovements introduced in Section

3.3.4. We start with the comparison between ΓF
t and Γε

t. The two measures are

plotted in Fig. 3.2.

[Fig. 3.2 about here.]

As it can be clearly seen, the residual component is negligible throughout the sample

period and on average does not convey any information about the dynamics of the

comovements of the considered markets. We observe only a little jump in the idiosyn-

cratic component in correspondence to the late 2008, which has been considered by

many the harshest period of the 2007-09 global financial crisis. The model-implied

measure of average comovements ΓF
t fluctuates around what can be regarded as a

constant long-run value of roughly 20%. This erratic behaviour does not allow us

to identify any peak in correlation possibly associated to crisis periods. During the

period 2007-09 a slightly lower average correlations seem to be observed instead.

We give account of this fact in what follows, by disaggregating the model-implied

covariation measure ΓF
t .

We start doing this by considering the decomposition of the overall comovement

measure ΓF
t into ΓG

t , Γ
A
t and ΓC

t , which is presented in Fig. 3.3. The global factor

appears to be the most pervasive of all the three factors considered, shaping the

dynamics of the average overall measure. The asset class factor is slightly less per-

vasive, but it is the most persistent of the three, meaning that its contribution is

more resilient to change over time. This expresses the fact that the characteristics

which are common to the asset class contribute in a constant proportion to the aver-

age overall market correlation. The least important factor is the country one, which

is almost negligible. Thus, comovements typically propagate through two channels:
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a global one, in a time varying manner, and an asset class channel, according to a

constant contribution.

[Fig. 3.3 about here.]

We consider robustness check of these conclusions, by pursuing an alternative strat-

egy in orthogonalizing the system of factors here considered. We first orthogonalize

the country factor against the global and then the asset class one with respect to

the other two. Then we re-estimate the model and construct the comovement mea-

sures. Embracing this alternative approach, Fig. 3.3 gets modified into the Fig.

3.4. The dynamics of the comovements is similar. The decomposition changes in

favour of the global factor, which is even more pervasive than before. However, the

country contribution is almost absent, even when the country factors are extracted

and orthogonalized with priority, thus validating our orthogonalization method.

[Fig. 3.4 about here.]

3.4.3 Testing for Contagion versus Excess Interdependence

In this section, we propose an empirical analysis of the comovement measures in-

troduced above by testing for the presence of different regimes in the resulting time

series by means of AutometricsTM . Figs. 3.5 to 3.7 report the time series analysed.

Tabs. 3.6 to 3.8 show the result of this procedure applied to our data.

[Figs. 3.5-3.7 and Tabs. 3.6-3.8 about here.]

Let us start with the analysis of the results for ΓF
t , Γ

F
t,ED and ΓF

t,V D as reported in

Tab. 3.6. As previously noted for Fig. 3.2, not surprisingly, we do not find any
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structural clear pattern in the IIS retained by AutometricsTM when applied to ΓF
t .

We find outliers only, instead. However, when looking at ΓF
t,V D we find evidence

of excess interdependence, that is excess average correlation prompted by the het-

eroscedasticity of common factors, in correspondence of the most severe period of

the 2007-09 crisis, i.e. the last part of 2008, as well as in August 2011, when the

sovereign debt crisis spread from the peripheral countries in Europe to the rest of

the continent and ultimately to the US. On the other hand, we detect a significant

negative break in the contagion measure ΓF
t,ED from late 2007 to the end of 2008,

which offsets the peak in ΓF
t,V D, so that no peaks are detected in ΓF

t , as shown before.

When only factor exposures are concerned, we observe an average de-correlation of

more than 6%. To explore this issue, in what follows, we further disaggregate the

Γ-measures at the asset class and country level. Along with the detected segments,

we observe a few outliers, too. In the case of ΓF
t,ED, we find a couple of outliers in

proximity of the Dot-Com bubble burst, witnessing de-correlation on the market.

All the other IIS identified by AutometricsTM are in proximity of the start and the

end of the sample, a fact observed also in Castle et al. (2012).

We turn our attention to Tab. 3.7 which reports the results referred to the single

asset classes. For stock indices, we find evidence of contagion from Aug-07 to mid-09,

with correlation significantly up by 5% from the average level of 79%. We also find

evidence of excess interdependence for three less extended periods, in correspondence

of the most dramatic months of 2008 and 2009, as well as in May-2010 and from

Aug-2011 on, with a surge of 13-15% in the average correlation. We associate the

former extent to the first EU intervention in the Greece’s bailout programme, which

marked the triggering of the sovereign debt crisis in Europe. The latter identified

period has already been epitomized as the moment in which the sovereign debt crisis

spread across and outside Europe. At the aggregate level, the 2007-09 crisis and the

debt crisis remain the most relevant episodes in terms of average market correlations.
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Detecting contagion and excess interdependence in the stock markets during crises

is very much in line with the mainstream literature on comovements. For the other

asset classes, the same periods are detected, but most of them are associated with

decreasing market correlations. This is particularly evident at the aggregate level

for corporate bonds (with average slumps in correlation as high as 41.34% in the

last part of 2008) and foreign exchange rates (-39.93% in roughly the same period).

This phenomenon is still present when we look for contagion and excess interdepen-

dence. The de-correlation observed in the case of foreign exchange rates is due to the

contrasting effects of the crisis on the different currencies. Because of the low costs

related to a borrowing position in Yen, since the early 2000s, the Japanese currency

has been, together with the US Dollar, the currency used by investors to finance their

positions in risky assets. The massive outflow from the markets experienced in the

late 2000s, led to the unwinding of these borrowing positions, which fuelled a steady

appreciation of the Japanese currency. This results in a massive de-correlation of the

Yen against the other currencies. As part of the same phenomenon, the Japanese

corporate bond market, even though it experienced a sharp capital outflow during

the first period of the late 2000s financial crisis, continued to grow rapidly (see Shim,

2012), proving to be a safe haven during this period of generalized financial distress.

This again triggered de-correlation of the Japan market with the other countries.

See Fig. 3.8 for a graphic comparison of the market dynamics in these periods.

[Fig. 3.8 about here.]

Similarly, the money markets are pervaded by comovement shocks of alternate signs,

especially at the aggregate level and when testing for excess interdependence. The

series here considered are indicative of the status of the country interbank markets

as well as a proxy of the conduct of the monetary policy. The negative breaks in

comovements reflect the asymmetries in the shocks on the interbank markets and

the differences in the reactions of the monetary policy to the spreading of the crisis,
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as documented in Chapter 2 for the Fed, the ECB and the BoE. We detect a positive

sign at the aggregate level and at the volatility driven level in correspondence to the

joint monetary policy intervention in October 2008 by the Fed, the ECB, the Bank

of England and the Bank of Japan together with other 3 industrialized countries’

Central Bank (Canada, Switzerland and Sweden). See Section 2.3 for more details on

this topic. We find no breaks for the government bond yield series at the aggregate

level.

We now move on to Tab. 3.8 and analyse the same average comovement measures

at the country level. We find evidence of a peak in the overall comovements in

US during the 2007-09 crisis. In particular there is strong evidence of contagion at

the national level characterized by an escalation in the magnitude of the breaks in

correspondence to the worsening of the crisis in late 2008. Similarly, in the other

countries, we observe peaks during financial crises. In particular, in Europe excess

interdependence is detected for most of the period between 2008 and 2012. In the UK

we find positive breaks in the correlations at the aggregate level and at the volatility

driven level both for the 2007-09 crisis and for the sovereign debt crisis. For Japan

we observe the de-correlation phenomenon described above, with the stock market

correlated with the other stock markets, while the national currency was following

a steady appreciation path.

The first evidence of contagion during the late 2000s economic and financial crisis

was observed for equity markets and the US, as early as in the August 2007, antic-

ipating the all-time peak of the S&P500 in October, epitomizing the beginning of

the 2007-09 global financial crisis. This combined evidence is in line with what has

been observed in reality: the crisis originated in the US, spread across the country

and then propagated to the global financial markets, affecting first the global stock

markets. On the contrary, there is evidence that the sovereign debt crisis originated

in Europe was characterized by excess interdependence, rather than as an example of
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contagion. Indeed, in this case the most extended episode of excess interdependence

was recorded for equity indices and for Europe.

3.5 Final Remarks

This chapter studied the determinants of the comovements between different finan-

cial markets, with a particular focus on the late 2000s global crisis and the current

European sovereign debt crisis. We proposed a dynamic factor model with multiple

sources of shocks, at global, asset class and country level and use it to test for the

presence of contagion versus excess interdependence. The model is specified with

time-varying factor loadings, to allow for time-dependent exposures of the single as-

sets to the different shocks. We statistically validated the supremacy of this model

as compared to a standard static approach and an alternative dynamic approach.

The main findings of the empirical analysis can be summarized as follows. First, the

global factor is the most pervasive of the considered factors, shaping the dynamics

of the comovements of the considered financial markets. On the contrary, the asset

class factor is the most persistent through time, suggesting that the structural com-

monalities of markets belonging to the same asset class systematically contributes

in a constant proportion to the average overall comovements. In our multiple asset

class framework, the country factor is negligible. In a robustness check, we showed

that this result does not depend on the order in which the system of factors is

orthogonalized.

Secondly, we found evidence of contagion stemming from the US and the stock

market jointly in correspondence to the harshest period of the 2007-09 financial cri-

sis. On the contrary, the currency and sovereign debt crisis originated in Europe

characterized for the presence of excess interdependence from mid-2010 onwards.

According to the literature on comovements, this let us characterize the spillover
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effects during the 2007-09 financial crisis as persistent, altering the strength of the

financial linkages worldwide. On the other hand, the shock transmission experi-

enced during the recent debt crisis has so far to be understood as temporary, being

prompted by excess factor volatilities, which do not display trend in the long-term.

Finally, at the overall average level, we did not find any evidence of contagion nor

excess interdependence. We like to interpret this result as follows. During the crises

some of the securities considered in the study, the Japanese currency and corporate

bond market in particular, displayed a diverging dynamics as result of the unwinding

of carry positions, previously built to finance risky investments.

The findings in this chapter suggest several developments. First, as most of the

described dynamics were prompted by the worsening of credit conditions, an inter-

esting extension of this work would be the inclusion of credit indices in the analysis,

provided the availability of the relevant data. Second, we modelled heteroscedastic-

ity in the factors using the DCC approach. It would be interesting also to explicitly

model high order moment dynamics as well as high order comovements between

financial markets. Third, part of the conclusions entails the on-going sovereign debt

crisis which broke out in the Euro Zone. The results of this chapter might be worth

reconsidering when the turmoil period will be over. Finally, it may be useful to

use this model set-up to forecast financial market comovements, to support asset

allocation and risk management decisions. We leave these developments to future

research.
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Table 3.1: Variables used in the empirical application. We report the acronyms used to identify each variable (ID
variable), the asset class and the country to which they belong, the name of the series, together with the data provider

and the ticker for series identification.

ID variable Asset class Country Name Source (Ticker)

CorpBond/US Corporate Bond US BOFA ML US CORP DatastreamTM (MLCORPM)
CorpBond/EU ” Euro Area BOFA ML EMU CORP DatastreamTM (MLECEXP)
CorpBond/UK ” UK BOFA ML UK CORP DatastreamTM (ML£CAU$)
CorpBond/JP ” Japan BOFA ML JAP CORP DatastreamTM (MLJPCP$)
CorpBond/EM ” Emerging Countries BOFA ML EMERG CORP DatastreamTM (MLEMCB$)
EqInd/US Equity Indices US MSCI USA DatastreamTM (MSUSAML)
EqInd/EU ” Euro Area MSCI EMU U$ DatastreamTM (MSEMUI$)
EqInd/UK ” UK MSCI UK U$ DatastreamTM (MSUTDK$)
EqInd/JP ” Japan MSCI JAPAN U$ DatastreamTM (MSJPAN$)
EqInd/EM ” Emerging Countries MSCI EM U$ DatastreamTM (MSEMKF$)
FX/EU Foreign Exchange Euro Area FX Spot Rate BloombergTM (EURUSD Curncy)
FX/UK ” UK FX Spot Rate BloombergTM (GBPUSD Curncy)
FX/JP ” Japan FX Spot Rate BloombergTM (JPYUSD Curncy)
FX/EM ” Emerging Countries FX Spot Rate BloombergTM (BRLUSD, CNYUSD,

INRUSD, RUBUSD, TRYUSD
Curncy)

MoneyMkt/US Money Market US 3 month US Libor BloombergTM (US0003M Index)
MoneyMkt/EU ” Euro Area 3 month Euribor BloombergTM (EUR003M Index)
MoneyMkt/UK ” UK 3 month UK Libor BloombergTM (BP0003M Index)
GovBond/US Government Bond US US Govt 10 Year Yield BloombergTM (USGG10YR Index)
GovBond/EU ” Euro Area EU Govt 10 Year Yield BloombergTM (GECU10YR Index)
GovBond/UK ” UK UK Govt 10 Year Yield BloombergTM (GUKG10 Index)
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Table 3.2: Descriptive statistics for market returns. We report summary statistics for the variables used in
the empirical application. The numbers reported refer to the entire sample, which consists of weekly observations from

Jan-1999 to Mar-2012.

Mean Standard Deviation Min Max Skewness Kurtosis

CorpBond/US 0.119% 0.748% -5.355% 3.171% -0.935 8.553
CorpBond/EU 0.103% 1.558% -5.815% 5.385% -0.194 3.512
CorpBond/UK 0.100% 1.612% -13.152% 5.628% -1.075 10.651
CorpBond/JP 0.092% 1.347% -5.356% 8.924% 0.572 6.755
CorpBond/EM 0.163% 0.826% -9.332% 3.724% -3.717 38.973
EqInd/US 0.014% 2.747% -20.116% 11.526% -0.748 8.850
EqInd/EU -0.011% 3.502% -26.679% 12.245% -1.073 9.576
EqInd/UK -0.009% 3.091% -27.618% 16.243% -1.249 14.920
EqInd/JP 0.009% 2.887% -16.402% 11.016% -0.258 4.823
EqInd/EM 0.184% 3.380% -22.564% 18.538% -0.775 8.889
FX/EU 0.017% 1.468% -6.048% 4.992% -0.213 3.831
FX/UK -0.009% 1.341% -8.348% 5.195% -0.588 6.546
FX/JP 0.050% 1.498% -6.027% 7.445% 0.253 4.304
FX/EM -0.142% 1.517% -17.401% 4.786% -2.961 29.634
MoneyMkt/US -0.350% 3.814% -27.877% 21.137% -1.850 16.873
MoneyMkt/EU -0.187% 2.087% -11.989% 15.021% -0.717 11.723
MoneyMkt/UK -0.262% 2.091% -26.170% 8.374% -4.357 43.968
GovBond/US -0.126% 3.596% -19.122% 12.110% -0.045 5.511
GovBond/EU -0.116% 3.056% -17.838% 14.018% -0.353 6.476
GovBond/UK -0.105% 2.805% -16.758% 11.153% -0.362 5.943
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Table 3.3: Correlations between the market returns and the extracted factors. We report the correlation
between the factors and the market returns from which the factors are extracted. There are 20 series displayed in the
rows and 11 factors (one global, 5 asset class and 5 country factors), which are displayed in the columns. The numbers

reported are in-sample linear correlations.

Asset class factors Country factors

Global factor CorpBond EqInd FX MoneyMkt GovBond US EU UK JP EM

CorpBond/US -0.188 0.595 0.684 0.325 -0.337 -0.714 -0.234 0.017 0.032 0.098 0.059
CorpBond/EU 0.237 0.884 0.350 0.822 -0.211 -0.472 0.028 0.150 -0.120 -0.039 -0.044
CorpBond/UK 0.185 0.882 0.425 0.700 -0.131 -0.550 0.038 -0.163 0.145 0.052 -0.022
CorpBond/JP -0.300 0.450 0.279 0.402 -0.128 -0.245 -0.106 0.107 -0.027 -0.129 0.015
CorpBond/EM 0.281 0.587 0.413 0.377 -0.248 -0.475 -0.007 -0.078 -0.153 0.061 0.278
EqInd/US 0.816 -0.072 0.248 -0.146 0.004 -0.214 0.138 -0.029 -0.035 -0.136 -0.167
EqInd/EU 0.907 0.193 0.275 0.127 -0.066 -0.284 -0.008 0.263 -0.024 -0.129 -0.156
EqInd/UK 0.875 0.206 0.290 0.119 -0.057 -0.307 -0.016 -0.011 0.312 -0.118 -0.188
EqInd/JP 0.541 0.177 0.350 0.096 -0.063 -0.288 -0.143 -0.181 -0.101 0.624 0.036
EqInd/EM 0.854 0.143 0.289 0.078 -0.072 -0.290 0.009 -0.177 -0.167 0.016 0.422
FX/EU 0.313 0.730 0.167 0.830 -0.117 -0.293 -0.012 0.226 -0.114 -0.078 -0.099
FX/UK 0.373 0.683 0.133 0.720 -0.032 -0.260 -0.061 -0.185 0.328 0.027 -0.092
FX/JP -0.205 0.379 0.226 0.441 -0.104 -0.186 -0.089 0.044 -0.024 -0.026 0.022
FX/EM 0.557 0.225 0.122 0.421 -0.061 -0.222 0.119 -0.131 -0.169 0.088 0.212
MoneyMkt/US -0.021 -0.241 -0.175 -0.139 0.973 0.187 0.133 -0.019 -0.034 -0.059 0.040
MoneyMkt/EU 0.092 -0.061 -0.138 -0.030 0.551 0.108 -0.360 0.152 -0.021 0.193 -0.096
MoneyMkt/UK 0.065 -0.104 -0.150 -0.010 0.697 0.118 -0.332 -0.031 0.176 0.120 -0.109
GovBond/US 0.559 -0.474 -0.716 -0.350 0.153 0.738 0.309 -0.142 -0.123 -0.025 0.028
GovBond/EU 0.577 -0.403 -0.700 -0.224 0.130 0.708 -0.229 0.248 -0.045 0.016 -0.025
GovBond/UK 0.536 -0.439 -0.695 -0.239 0.118 0.712 -0.250 -0.059 0.266 0.023 -0.017
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Table 3.4: Test for residual heteroscedasticity for the estimated factors. We report the results of the Engle
test for residual heteroscedasticity for the 11 extracted factors (one global, 5 asset class and 5 country factors). The first
columns reports the name of the factor, the second reports the test statistics in the Engle test for residual heteroscedas-
ticity. In the third column, ***, ** and * indicate rejection of the null of no ARCH effect at the 1%, 5% and 10%

significance level, respectively.

Global 51.982 ***
CorpBond 7.577 ***
EqInd 0.458
FX 3.254 *
MoneyMkt 59.335 ***
GovBond 0.318
US 31.535 ***
EU 21.421 ***
UK 26.668 ***
JP 3.386 *
EM 25.878 ***
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Table 3.5: Likelihood ratio test for the alternative models. We report the test statistics for the likelihood ratio
test comparing the proposed alternative models. The test is employed to evaluate the null hypothesis that the Null

model provides a better fit than the Alternative model. The models refer to the following alternative formulation for the
factor loadings: the static factor loading in Eq. (3.36), the time-varying factor loading in Eq. (3.37) and the conditional

time-varying factor loading in Eq. (3.38). *** indicates rejection of the null model at the 1% significance level.

Alternative model
Null model Time-varying factor loading Conditional time-varying factor loading
Static factor loading 260142.36*** 261869.86***
Time-varying factor loading 1727.50***
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Table 3.6: IIS results for the overall average comovement measures.
ΓF
t is the average comovement measure at the overall level, defined as the mean of

the model-implied correlations between all the couples of asset considered. ΓF
t,ED

(ΓF
t,V D) considers the correlations for the case in which factor exposures are allowed

to vary with time (held at constant) and factor covariances are held at constant
(allowed to vary with time). We present the results of the saturation of model
in Eq. (3.35) by means of AutometricsTM . We report the dates detected via the
IIS technique, together with the estimated coefficients. Segment refers to group
of sequential dummies with the same size and similar magnitude. Outliers are
dummies which can not be grouped. Constant refers to the constant term µ in
Eq. (3.35). ***, ** and * indicate significance of the coefficient at the 1%, 5%

and 10% significance level, respectively.

ΓF
t

Outliers
26/02/1999 -0.0583 **
. . .
16/12/2011 -0.0584 **
Constant 0.2230 ***

ΓF
t,ED

Segments
17/08/2007 - 21/11/2008 -0.0670 ***
Outliers
07/04/2000 -0.0608 **
30/06/2000 -0.0607 **
09/03/2001 -0.0746 ***
25/11/2011 -0.0646 ***
02/12/2011 -0.0583 **
Constant 0.2282 ***

ΓF
t,V D

Segments
31/10/2008 - 05/12/2008 0.0564 ***
12/08/2011 - 26/08/2011 0.0594 ***
Outliers
23/04/1999 -0.0507 ***
Constant 0.2320 ***
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Table 3.7: IIS results for the average comovements measures at the asset class level. ΓCorpBond
t is the average

comovement measure within the corporate bond market, defined as the mean of the model-implied correlations between
all the couples of securities in the corporate bond asset class. ΓEqInd

t , ΓFX
t , ΓMoneyMkt

t and ΓGovBond
t are analogously

defined for the other asset classes. Exposure-driven (middle panel) and volatility-driven (bottom panel) comovement
measures consider the correlations for the case in which factor exposures are allowed to vary with time (held at constant)
and factor covariances are held at constant (allowed to vary with time). Refer to the caption of Tab. 3.6 for a legend of

the results of the estimation.

Γ
CorpBond
t Γ

EqInd
t ΓFX

t Γ
MoneyMkt
t ΓGovBond

t

Segments Segments Segments Segments Outliers

24/08/2007 - 26/09/2008 -0.1614 *** 10/10/2008 - 27/03/2009 0.1664 *** 26/05/2006 - 04/08/2006 -0.1623 *** 29/01/1999 - 20/04/2001 -0.0748 *** 15/01/1999 -0.4502 ***
03/10/2008 - 23/01/2009 -0.4134 *** 12/08/2011 - 03/02/2012 0.1447 *** 16/03/2007 - 25/07/2008 -0.1681 *** 14/03/2008 - 28/03/2008 -0.9199 *** . . .

06/02/2009 - 04/06/2010 -0.1867 *** Outliers 19/09/2008 - 15/05/2009 -0.3993 *** 11/04/2008 - 19/09/2008 -0.0650 *** 16/12/2011 -0.7062 ***
12/08/2011 - 03/02/2012 -0.3610 *** 01/01/1999 0.1596 *** 12/08/2011 - 27/01/2012 -0.2528 *** 26/09/2008 - 14/11/2008 0.0521 ** Constant 0.8238 ***
Outliers 18/02/2000 -0.1695 *** Outliers 06/02/2009 - 22/01/2010 -0.1794 ***
22/01/1999 -0.1643 *** 24/03/2000 -0.1718 *** 22/01/1999 -0.1107 ** 07/05/2010 - 28/05/2010 0.0525 **
21/04/2000 -0.1535 *** Constant 0.7408 *** 07/04/2000 -0.1149 *** 15/04/2011 - 29/07/2011 -0.1010 ***
28/09/2001 -0.1812 *** 09/03/2001 -0.1756 *** 12/08/2011 - 19/08/2011 -1.2057 ***
05/10/2001 -0.1859 *** 28/09/2001 -0.1433 *** 11/11/2011 - 27/01/2012 -0.1060 ***
12/10/2001 -0.1343 *** 21/05/2004 -0.1340 *** Outliers

Constant 0.8557 *** 24/07/2009 -0.1781 *** 28/09/2001 0.0570 **
21/05/2010 -0.1111 ** 16/11/2001 0.0550 **
Constant 0.7481 *** 22/11/2002 -0.1174 ***

21/02/2003 -0.0593 **
28/03/2003 -0.1570 ***
04/04/2003 -0.0613 **
27/06/2003 -1.2632 ***
01/02/2008 0.0524 **
29/02/2008 -0.0606 **
05/12/2008 -0.3098 ***
26/12/2008 0.0502 **
02/07/2010 -0.0835 ***
03/09/2010 0.0522 **
26/11/2010 -0.0771 ***
14/01/2011 -0.0900 ***
Constant 0.9421 ***

Γ
CorpBond
t,ED

Γ
EqInd
t,ED

ΓFX
t,ED Γ

MoneyMkt
t,ED

ΓGovBond
t,ED

Segments Segments Segments Segments Outliers

24/08/2007 - 05/09/2008 -0.0805 *** 24/08/2007 - 15/05/2009 0.0448 *** 19/03/1999 - 09/07/1999 -0.1037 *** 08/11/2002 - 29/11/2002 -0.0623 *** 08/01/1999 -0.1247 **
19/09/2008 - 03/04/2009 -0.1858 *** Outliers 20/05/2005 - 19/09/2008 -0.1385 *** 14/02/2003 - 20/06/2003 -0.0190 *** . . .

10/04/2009 - 18/09/2009 -0.0686 *** 01/01/1999 0.1132 *** 26/09/2008 - 02/01/2009 -0.2525 *** 17/08/2007 - 01/02/2008 -0.0207 *** 16/12/2011 -0.7230 ***
12/08/2011 - 23/12/2011 -0.0628 *** 26/03/1999 0.0267 *** 09/01/2009 - 15/05/2009 -0.1326 *** 14/03/2008 - 21/03/2008 -1.3015 *** Constant 0.8304 ***
Outliers 18/06/1999 0.0387 *** 12/08/2011 - 25/11/2011 -0.1176 *** 04/04/2008 - 24/04/2009 -0.0313 ***
22/01/1999 -0.0803 *** 02/03/2001 -0.0931 *** Outliers 05/06/2009 - 27/11/2009 -0.0204 ***
22/10/1999 -0.0574 *** 28/09/2001 -0.0413 *** 22/01/1999 -0.0871 ** 14/05/2010 - 29/07/2011 -0.0311 ***
21/04/2000 -0.0419 *** 05/10/2001 -0.0386 *** 14/01/2000 -0.1109 *** 12/08/2011 - 19/08/2011 -1.2619 ***
15/09/2000 0.0415 *** 15/03/2002 0.0367 *** 07/04/2000 -0.1090 *** 26/08/2011 - 16/12/2011 -0.0321 ***
10/11/2000 0.0403 *** 09/03/2007 -0.0312 *** 09/03/2001 -0.2604 *** Outliers

08/12/2000 0.0493 *** 17/07/2009 -0.0435 *** 16/03/2001 0.1068 *** 18/06/1999 -0.0142 ***
05/01/2001 0.0440 *** 14/08/2009 -0.0267 *** Constant 0.7349 *** 30/07/1999 -0.0134 ***
02/08/2002 -0.0440 *** 12/03/2010 -0.0257 *** 17/09/1999 0.0157 ***
01/08/2003 0.0403 *** 14/05/2010 -0.0460 *** 08/10/1999 -0.0175 ***
Constant 0.8276 *** 21/05/2010 -0.0336 *** 12/01/2001 -0.0233 ***

20/08/2010 0.0271 *** 10/08/2001 -0.0259 ***
08/04/2011 -0.0345 *** 28/12/2001 -0.0165 ***
15/04/2011 -0.0522 *** 08/02/2002 -0.0148 ***
26/08/2011 0.0293 *** 27/06/2003 -1.2770 ***
23/09/2011 0.0290 *** 28/03/2008 -0.2650 ***
11/11/2011 0.0305 *** 01/05/2009 -1.0106 ***
Constant 0.7860 *** 29/05/2009 -0.2165 ***

Constant 0.9720 ***

Γ
CorpBond
t,V D

Γ
EqInd
t,V D

ΓFX
t,V D Γ

MoneyMkt
t,V D

ΓGovBond
t,V D

Segments Segments Segments Segments Segments

28/09/2001 - 26/10/2001 -0.1392 *** 18/02/2000 - 14/04/2000 -0.1367 *** 28/09/2001 - 02/11/2001 -0.1156 *** 29/01/1999 - 30/04/1999 -0.0511 ** 01/10/1999 - 05/05/2000 -0.0650 ***
23/12/2005 - 27/01/2006 0.0485 * 12/09/2008 - 13/03/2009 0.1491 *** 01/04/2005 - 15/04/2005 0.0495 * 17/12/1999 - 10/03/2000 -0.0891 *** 06/12/2002 - 21/03/2003 -0.0536 ***
24/08/2007 - 28/09/2007 -0.1147 *** 14/05/2010 - 28/05/2010 0.1366 *** 19/09/2008 - 04/12/2009 -0.1399 *** 26/09/2008 - 16/01/2009 0.0540 ** 31/10/2008 - 07/11/2008 0.0571 ***
17/10/2008 - 31/07/2009 -0.1823 *** 12/08/2011 - 10/02/2012 0.1347 *** 14/05/2010 - 16/07/2010 -0.0955 *** 06/02/2009 - 20/03/2009 -0.1680 *** 17/04/2009 - 11/09/2009 -0.0502 ***
14/05/2010 - 11/06/2010 -0.1108 *** Constant 0.7437 *** 15/07/2011 - 17/02/2012 -0.1452 *** 22/05/2009 - 29/05/2009 0.0534 ** Outliers

08/07/2011 - 24/02/2012 -0.1627 *** Outliers 17/07/2009 - 11/09/2009 0.0525 ** 29/01/1999 -0.0454 **
Outliers 14/05/1999 -0.0794 *** 16/10/2009 - 20/11/2009 -0.0697 *** 12/08/2011 0.0545 ***
21/04/2000 -0.0857 *** 18/10/2002 -0.1335 *** 07/05/2010 - 03/09/2010 0.0541 ** Constant 0.8791 ***
04/07/2003 0.0503 * 25/10/2002 -0.0899 *** Outliers

12/12/2003 0.0499 * 30/07/2004 0.0523 * 15/10/1999 0.0491 **
30/09/2005 0.0513 * Constant 0.7604 *** 19/09/2008 -0.0521 **
15/02/2008 -0.0854 *** 19/06/2009 -0.0690 ***
Constant 0.8623 *** 08/01/2010 -0.0504 **

26/11/2010 -0.0522 **
11/11/2011 -0.0583 **
06/01/2012 -0.0865 ***
13/01/2012 -0.1019 ***
Constant 0.9401 ***
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Table 3.8: IIS results for the average comovements measures at the country level. ΓUS
t is the average

comovement measure within the US market, defined as the mean of the model-implied correlations between all the couples
of securities in the US group. ΓEU

t , ΓUK
t , ΓJP

t and ΓEM
t are analogously defined for the other countries. Exposure-driven

(middle panel) and volatility-driven (bottom panel) comovement measures consider the correlations for the case in which
factor exposures are allowed to vary with time (held at constant) and factor covariances are held at constant (allowed to

vary with time). Refer to the caption of Tab. 3.6 for a legend of the results of the estimation.

ΓUS
t ΓEU

t ΓUK
t ΓJP

t ΓEM
t

Segments Outliers Segments Segments Outliers
22/10/1999 - 29/10/1999 0.0576 *** 27/06/2008 -0.2400 ** 11/02/2000 - 21/04/2000 0.1197 *** 08/10/1999 - 12/05/2000 -0.2752 *** 22/01/1999 0.1323 ***
04/02/2000 - 18/02/2000 0.0643 *** 05/12/2008 0.2282 ** 04/07/2003 - 08/08/2003 -0.1149 *** 17/08/2007 - 24/07/2009 -0.3622 *** . . .
24/11/2000 - 22/12/2000 0.0516 *** 19/12/2008 0.2436 ** 10/10/2008 - 13/03/2009 0.1552 *** 21/05/2010 - 25/06/2010 -0.2484 *** 09/12/2011 0.0618 **
28/09/2001 - 02/11/2001 -0.0532 *** 10/07/2009 -0.2203 ** 12/08/2011 - 18/11/2011 0.1079 *** 12/08/2011- 27/01/2012 -0.3288 *** Constant 0.6248 ***
19/07/2002 - 27/09/2002 0.0568 *** 07/05/2010 -0.2203 ** Outliers Outliers
24/08/2007 - 26/09/2008 0.0566 *** 07/01/2011 -0.2155 ** 06/11/2009 0.1012 *** 30/05/2003 0.1582 *
03/10/2008 - 19/12/2008 0.1524 *** 29/07/2011 0.2320 ** 16/07/2010 0.1076 *** 16/06/2006 -0.2002 **
02/01/2009 - 16/07/2010 0.0545 *** 12/08/2011 0.2404 ** 03/12/2010 -0.0992 *** Constant 0.3496 ***
Outliers 26/08/2011 0.2648 ** Constant 0.1988 ***
08/08/2003 -0.0515 *** 21/10/2011 0.2253 **
Constant -0.1399 *** 18/11/2011 0.2779 ***

23/12/2011 0.2197 **
06/01/2012 0.2225 **
Constant 0.1667 ***

ΓUS
t,ED ΓEU

t,ED ΓUK
t,ED ΓJP

t,ED ΓEM
t,ED

Segments Outliers Outliers Segments Outliers
06/08/1999 - 08/12/2000 0.0331 *** 13/08/1999 -0.2253 ** 01/01/1999 0.0567 *** 27/08/1999 - 02/06/2000 -0.2321 *** 22/01/1999 0.1545 ***
19/07/2002 - 11/10/2002 0.0291 *** 04/02/2000 -0.2319 ** . . . 17/08/2007 - 10/07/2009 -0.3365 *** . . .
23/07/2004 - 14/04/2006 -0.0147 * 03/03/2000 -0.2266 ** 01/10/2010 -0.0249 *** 12/08/2011 - 20/01/2012 -0.2486 *** 21/10/2011 0.1071 ***
17/08/2007 - 05/09/2008 0.0436 *** 14/04/2000 -0.2216 ** Constant 0.1989 *** Outliers Constant 0.6273 ***
12/09/2008 - 30/01/2009 0.0766 *** 23/06/2000 -0.2245 ** 12/03/2004 0.2703 ***
06/02/2009 - 17/07/2009 0.0447 *** 23/02/2001 -0.2252 ** 04/02/2005 0.1355 *
12/08/2011 - 09/03/2012 0.0331 *** 07/06/2002 -0.2163 ** 27/05/2005 0.1404 *
Outliers 11/10/2002 -0.2222 ** 08/07/2005 0.1449 *
11/06/2010 0.0252 ** 07/03/2003 -0.2263 ** Constant 0.3521 ***
03/12/2010 0.0275 *** 23/07/2004 -0.2145 **
Constant -0.1457 *** 20/08/2004 -0.2269 **

08/04/2005 -0.2288 **
Constant 0.1805 ***

ΓUS
t,V D ΓEU

t,V D ΓUK
t,V D ΓJP

t,V D ΓEM
t,V D

Segments Segments Segments Segments Segments
28/09/2001 - 19/10/2001 -0.0484 *** 27/06/2003 - 08/08/2003 -0.0716 ** 04/07/2003 - 08/08/2003 -0.1111 *** 20/06/2003 - 27/02/2004 0.1288 *** 23/04/1999 - 04/06/1999 0.0683 ***
26/07/2002 - 20/09/2002 0.0451 *** 23/01/2004 - 01/10/2004 -0.0565 * 17/10/2008 - 20/03/2009 0.1308 *** 17/10/2008 - 19/12/2008 -0.1532 *** 30/07/1999 - 20/08/1999 -0.0542 ***
20/06/2008 - 25/09/2009 -0.0365 *** 17/10/2008 - 26/12/2008 0.1748 *** 06/11/2009 - 13/11/2009 0.0826 ** 19/11/2010 - 14/01/2011 0.1434 *** 26/01/2001 - 02/11/2001 0.0680 ***
19/11/2010 - 17/12/2010 -0.0336 ** 02/01/2009 - 23/07/2010 0.1044 *** 02/07/2010 - 16/07/2010 0.0863 ** 12/08/2011 - 18/11/2011 -0.1162 *** 05/07/2002 - 01/11/2002 0.0660 ***
19/08/2011 - 09/03/2012 -0.0377 *** 08/07/2011 - 27/01/2012 0.1300 *** 12/08/2011 - 11/11/2011 0.1050 *** Constant 0.2815 *** 07/05/2004 - 21/05/2004 0.0519 ***
Constant -0.1346 *** Outliers Outliers 24/08/2007 - 14/09/2007 0.0688 ***

31/08/2007 0.0796 ** 20/06/2008 -0.0976 *** 18/04/2008 - 31/10/2008 0.0479 ***
Constant 0.2112 *** 03/12/2010 -0.0978 *** 12/08/2011 - 11/11/2011 0.0505 ***

Constant 0.1994 *** Outliers
29/09/2000 0.0593 ***
Constant 0.6394 ***
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Figure 3.1: Price data used in the empirical application. We plot the weekly price series for the considered
markets. Asset classes are displayed in the rows, whereas countries are in the columns. Corporate bond, equity indices
and foreign exchange rates (top three rows) are rebased using the first available observation. US foreign exchange is
excluded from the analysis because is used as the numeraire. The other missing series are not considered due to lack of

data.
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Figure 3.2: Model-implied versus residual average correlation measures. ΓF
t is the average comovement

measure at the overall level, defined as the mean of the model-implied correlations between all the couples of asset
considered. Γε

t is the average residual comovement measure, defined as the mean of the correlations between the error
term in the model for all the couples of asset considered.
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Figure 3.3: Decompositions of the overall average comovements by source of the shock. ΓG
t , Γ

A
t ΓC

t are the
average measures of comovement prompted by the global, the asset class and the country factor, respectively.
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Figure 3.4: Robustness check of the decomposition by source. Fig. 3.3 reports the decompositions of the overall
average comovements by source of the shock, for the case in which the asset class factors are first orthogonalized with
respect to the global factor and then the country factors are orthogonalized with respect to the asset class and the global
factors. Here we report the same decomposition for the case in which the country factors are orthogonalized with respect

to the global factor and then the asset class factors are orthogonalized with respect to the others.



C
h
ap

te
r
3.

M
od
el
li
n
g
F
in
an

ci
al

M
ar
ke
ts

C
om

ov
em

en
ts
:
A

D
yn

am
ic

M
u
lt
i-
F
ac
to
r

A
pp
ro
ac
h

15
0

1999 2001 2003 2005 2007 2009 2011
0.12
0.14
0.16
0.18
 0.2
0.22
0.24
0.26
0.28
 0.3

Γ
F
t

1999 2001 2003 2005 2007 2009 2011
0.14

0.16

0.18

 0.2

0.22

0.24

0.26

0.28

Γ
F
t,ED

1999 2001 2003 2005 2007 2009 2011
0.18

 0.2

0.22

0.24

0.26

0.28

 0.3

Γ
F
t,V D

Figure 3.5: Average correlation measures. ΓF
t (top panel) is the average comovement measure at the overall level,

defined as the mean of the model-implied correlations between all the couples of asset considered. ΓF
t,ED -mid panel-

(ΓF
t,V D -bottom panel-) considers the correlations for the case in which factor exposures are allowed to vary with time

(held at constant) and factor covariances are held at constant (allowed to vary with time).
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Figure 3.6: Average correlation measures at the asset class level. ΓCorpBond
t is the average comovement measure

within the corporate bond market, defined as the mean of the model-implied correlations between all the couples of
securities in the corporate bond asset class. ΓEqInd

t , ΓFX
t , ΓMoneyMkt

t and ΓGovBond
t are analogously defined for the other

asset classes. Exposure-driven (second column) and volatility-driven (third column) comovement measures consider the
correlations for the case in which factor exposures are allowed to vary with time (held at constant) and factor covariances

are held at constant (allowed to vary with time).
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Figure 3.7: Average correlation measures at the country level. ΓUS
t is the average comovement measure within

the US market, defined as the mean of the model-implied correlations between all the couples of securities in the US
group. ΓEU

t , ΓUK
t , ΓJP

t and ΓEM
t are analogously defined for the other countries. Exposure-driven (second column) and

volatility-driven (third column) comovement measures consider the correlations for the case in which factor exposures are
allowed to vary with time (held at constant) and factor covariances are held at constant (allowed to vary with time).
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Figure 3.8: Comparison among selected securities during the detected regimes. We report corporate bond
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Chapter 3. Modelling Financial Markets Comovements: A Dynamic Multi-Factor
Approach 154

List of Symbols

i index for the i-th asset class with i = 1, . . . , I

j index for the j-th country with j = 1, . . . , J

t time index

Ri,j
t weekly return for the asset belonging to asset class i and county j

F i,j
t three-dimensional row vector containing the global factor, the i-th

asset class factor and the j-th country factor at time t

Zt factor controlling for period of market distress

εi,jt idiosyncratic term for asset class i and county j

βi,j
t three-dimensional column vector of dynamic factor loadings

βi,j long-run value of βi,j
t

φi,j three-dimensional column vector of parameters for the dynamics of

βi,j
t

ψi,j three-dimensional column vector of parameters referred to the con-

ditional variable Zt in the specification of βi,j
t

ui,jt error term in the model for βi,j
t

Σi,j
F,t time-varying variance-covariance matrix of the factors F i,j

t

Gt global factor

Ai
t i-th asset class factor

Cj
t j-th country factor

γi,jt factor loading mapping from the global factor Gt onto R
i,j
t

δi,jt factor loading mapping from the asset class factor Ai
t onto R

i,j
t

λi,jt factor loading mapping from the country factor Cj
t onto Ri,j

t

K number of variables from which the factors are extracted

T number of observations

ri,jt demeaned counterpart of Ri,j
t

r matrix containing the demeaned returns ri,jt
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ri matrix containing the columns of r referred to asset class i

rj matrix containing the columns of r referred to country j

Σr variance-covariance matrix of r

Σri variance-covariance matrix of ri

Σrj variance-covariance matrix of rj

lk k-th eigenvalue of the covariance matrix Σr with k = 1, . . . , K

wk eigenvector referred to the k-th eigenvalue of the covariance matrix

Σr with k = 1, . . . , K

wi
1 eigenvector corresponding to the largest eigenvalue of the covariance

matrix Σri

wj
1 eigenvector corresponding to the largest eigenvalue of the covariance

matrix Σrj

Ft information set at time t

Xt set of conditional variables in the general formulation of the model

for the factor loadings

H ′
0 null hypothesis in Eq. (3.11)

H ′′
0 null hypothesis in Eq. (3.13)

βi,j,s factor loading referred to subsample s with s = 1, . . . , S

At matrix containing the asset class factors

Ct matrix containing the country factors

n index referred to the n-th market for n = 1, . . . , N

Ii set of indices from the sequence n = 1, . . . , N referred to markets

belonging to asset class i

Jj set of indices from the sequence n = 1, . . . , N referred to markets

belonging to country j

varn,t model-implied variance of the n-th market at time t

covt(R
n1 , Rn2) covariance between asset n1 and asset n2 (for n1 6= n2) at time t

covn1,n2,t ibidem
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covFn1,n2,t
model-implied covariance

covεn1,n2,t
residual covariance

covGn1,n2,t
covariance prompted by the global factor

covAn1,n2,t
covariance prompted by the asset class factors

covCn1,n2,t
covariance prompted by the country factors

covFn1,n2,t,ED model-implied covariance triggered by exposure to common factors

covFn1,n2,t,V D model-implied covariance triggered by factor volatility

corrFn1,n2,t
model-implied correlation

corrεn1,n2,t
residual correlation

corrGn1,n2,t
correlation prompted by the global factor

corrFn1,n2,t,ED model-implied correlation triggered by exposure to common factors

corrFn1,n2,t,V D model-implied correlation triggered by factor volatility

ΓF
t average measure of model-implied comovements

Γε
t average measure of residual comovements

ΓG
t average measure of comovement prompted by the global factor

ΓA
t average measure of comovement prompted by the asset class factors

ΓC
t average measure of comovement prompted by the country factors

Γi
t average measure of model-implied comovements for asset class i

Γj
t average measure of model-implied comovements for country j

ΓF
t,ED average measure of model-implied comovements triggered by expo-

sure to common factors

ΓF
t,V D average measure of model-implied comovements triggered by factor

volatility

Γi
t,ED average measure of model-implied comovements triggered by expo-

sure to common factors for asset class i

Γi
t,V D average measure of model-implied comovements triggered by factor

volatility for asset class i
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Γj
t,ED average measure of model-implied comovements triggered by expo-

sure to common factors for country j

Γj
t,V D average measure of model-implied comovements triggered by factor

volatility for country j

Σn1,n2

F covariance matrix between F n1 and F n2

Σn1,n2

F,t time-varying counterpart of Σn1,n2

F

ΣG,t time-varying variance of the global factor Gt

Σn1,n2

A,t time-varying covariance between Ai1
t and Ai2

t where i1 and i2 are

the asset-class indices for markets n1 and n2 respectively

Σn1,n2

C,t time-varying covariance between Cj1
t and Cj2

t where j1 and j2 are

the country indices for markets n1 and n2 respectively

µ constant in the regression used for break detection

ηt error term in the regression used for break detection





Conclusions and Further Research

The main goal of this work was to contribute to the timely debate about the conse-

quences of the materialization of financial instability on the soundness of the financial

and the economic system. We developed a modelling framework to assess the degree

of financial tension in the system and to gather early-warning signals of future sys-

temic threats. We offered an in-depth dissection of the recent crisis periods together

with an analysis of the orientation of the macro-prudential and stabilization policies

adopted by Central Banks during this prolonged period of economic stress.

In Chapter 1, systemic risk is defined as the risk of a multiple default of large fi-

nancial institutions and sovereign entities. For the sake of systemic risk assessment,

an estimator for the joint default probability of multiple entities has been proposed.

Pairwise default probabilities are bootstrapped from market data and then the single

defaults are correlated through their common dependence on the financial macro-

cycle, by means of a credit risk model with a factor model structure. This toolkit

has been applied to the recent EU sovereign debt crisis, to find evidence of increasing

systemic risk and danger of contagion from as early as 2007 and more significantly

from late 2011 onwards. The estimates show to be very reactive to changes in market

conditions and their magnitude is coherent with what found by Radev (2012) and

Zhang et al. (2012). The forecasting power of the proposed estimates has been vali-

dated through an out-of-sample comparison with the dynamics of the EuroStoxx50,

which epitomized the different phases of the recent sovereign debt crisis.
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In spite of its predicting capability, the indicator presented in Chapter 1 do not

consider signals from the real side of the economy, as the impact of the macroeco-

nomic outlook is assessed only a-posteriori. However, the joint treatment of financial

markets’ and economic cycle’s information to measure systemic risk appears a re-

quirement for policy makers and global institutions alike: indeed recent crises show

the limits of risk models for the financial crisis which neglect the economic cycle.

Thus, in Chapter 2, we proposed a comprehensive indicator of global systemic risk,

which integrates the dynamics of international financial markets with signals emerg-

ing from the economic cycle. The accuracy of the proposed indicator at peaking up

episodes of financial instability has been validated on the basis of the crisis events

occurred in the 1995-2011 time span. The other main contribution of Chapter 2 is

the study of the reactions of monetary policy makers to systemic threats. There is

evidence that the Bank of England and the Fed in particular, boldly reacted to the

materialization of financial instabilities throughout the past two decades. On the

contrary, the ECB showed a greater degree of commitment to its anti-inflationary

mandate than to the goal of addressing financial instability, with the only exception

of the recent period of economic and financial turmoil.

The update of the indicator proposed in Chapter 2 showed that the great recession

of 2007-2009 had a much bigger impact on the stability of the global economic and

financial system, when compared to the on-going sovereign debt crisis. This extent

was further investigated in Chapter 3, which studied the determinants of the comove-

ments within the global financial market during crisis periods. For this sake, we set

up a dynamic factor model in a latent multi-factor framework, which is employed to

test for the presence of contagion versus excess interdependence during crisis periods.

The main findings of the empirical analysis can be summarized as follows. First,

the global factor is the most pervasive of the considered factors, shaping the dynam-

ics of financial comovements through time. On the contrary, the asset class factor

characterizes as the most persistent, suggesting that the structural communalities of
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markets belonging to the same asset class systematically contributes in a constant

proportion to the average overall comovements. Secondly, we found evidence of con-

tagion stemming from the US and the stock market jointly during the burst of the

2007-09 financial crisis. On the other hand, the currency and sovereign debt crisis

originated in Europe characterized for the presence of excess interdependence from

mid-2010 onwards. This let us conclude that the spillover effect observed during

the 2007-09 financial crisis altered the strength of the financial linkages worldwide,

resulting in a prolonged period of financial distress. On the contrary, the shock

transmission experienced during the recent debt crisis has so far to be understood

as temporary, being prompted by excess factor volatilities, which do not display

trend in the long-term. Finally, at the overall average level, we did not find any

evidence of contagion nor excess interdependence, since, during the crises, some of

the securities considered in the study, and in particular the Japanese currency and

corporate bond market, displayed a diverging dynamics as result of the unwinding

of carry positions, previously built to finance risky investments.

There are a number of areas for further research. In Chapter 1, we extracted infor-

mation on counterparty risk from the basis and excluded the positive values, due

to manifestation of market imperfections. It would be interesting to further explore

the issue and model the determinants of this phenomenon. Also, alternative less

parsimonious copula functions might be worth considering once an appropriate es-

timation method consistent with our methodology is derived. Developments on the

model to test for the forecasting capability of our indicator might also be interesting

to consider. The comprehensive approach adopted in Chapter 2, which integrates in-

formation from both the real and the financial side of the economy, can be extended

in an early-warning fashion, with the idea of specifying a leading indicator to guide

monetary policy in preventing systemic threats. Furthermore, it will be interesting

to extend the analysis to unconventional monetary policy measures as a new tool

to address systemic instabilities. Finally, the findings in Chapter 3 suggest several
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developments. First, since most of the described market dynamics were prompted

by the worsening of credit conditions, in particular for the case of the sovereign debt

crisis in Europe, an interesting extension of our work would be the inclusion of credit

indices in the analysis, provided the availability of the relevant data. Second, we

modelled heteroscedasticity in the factors using the DCC approach. It would be in-

teresting also to explicitly model high order moment dynamics as well as high order

comovements between financial markets. Third, part of the conclusions entails the

on-going sovereign debt crisis which broke out in the Euro Zone. The results might

be worth reconsidering when the turmoil period will be over. Finally, it may be

useful to use this model set-up to forecast financial market comovements, to support

asset allocation and risk management decisions. We leave these developments to

future research.
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