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ON ROSENAU-TYPE APPROXIMATIONS TO
FRACTIONAL DIFFUSION EQUATIONS ∗

G. FURIOLI † , A. PULVIRENTI ‡ , E. TERRANEO § , AND G. TOSCANI¶

Abstract. Owing to the Rosenau argument [28], originally proposed to obtain a regularized
version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic
equation which approximates a fractional diffusion equation. We then show that the solution to
this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental
solution of the fractional diffusion (a Lévy stable law) at large times.

Key words. Fractional diffusion equations, non-local models, Fourier metrics, Rosenau approx-
imation, Lévy-type distributions.

subject classifications. 35K55, 35K60, 35K65, 35B40

1. Introduction In [28], Rosenau proposed a regularized version of the
Chapman-Enskog expansion of hydrodynamics, with a suitably modified viscosity
term. This model is given by the scalar equation

∂tf(v,t)+∂vΨ(f)(v,t) =Dεf(v,t), v∈R, t≥0 (1.1)

where ε�1 is a small positive parameter,

D̂εf(ξ,t) =
−εξ2

1+ε2m2ξ2
f̂(ξ,t),

and ĝ(ξ) denotes the Fourier transform of g(v)

Fg(ξ) = ĝ(ξ) =

∫
R
g(v)e−ivξdv, ξ∈R.

The operator on the right hand side looks like the usual viscosity term εfvv at low
wave-numbers ξ, while for higher wave numbers it is intended to model a bounded
approximation of a linearized collision operator, thereby avoiding the artificial in-
stabilities that occur when the Chapman-Enskog expansion for such an operator is
truncated after a finite number of terms.

Note that the right hand side of (1.1) can be written in the Fourier variable as

−εξ2

1+ε2m2ξ2
f̂(ξ,t) =

ε

(εm)2

(
1

1+ε2m2ξ2
f̂(ξ,t)− f̂(ξ,t)

)
=F

(
1

mε̄
(Nε̄ ∗f−f)

)
(ξ,t)

where ε̄=mε, ∗ denotes convolution and

Nγ(v) =
1

2γ
e−|v|/γ (1.2)
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2 Rosenau-type fractional diffusions

is a non-negative function satisfying ‖Nγ‖L1 = 1. In other words, the approximation
proposed by Rosenau consists in substituting the linear diffusion equation

∂tg(v,t) =∂2
vvg(v,t)

with the linear non-local kinetic equation

∂tg(v,t) =
1

ε2
[Nε ∗g(v,t)−g(v,t)] (1.3)

in which the background “Maxwellian” Nε is given by (1.2) [6, 24].
The study of the main properties of the Rosenau approximation (1.1) and of its

relaxation part (1.3) has attracted a lot of interest [21, 31, 27]. Indeed, while it is
clear that at fixed time the solution to (1.3) represents, for sufficiently small values
of the ε parameter, a good approximation of the solution to the heat equation, the
characteristics of its solution for large times, and its possible similarities with that of
the heat equation are not evident. This last problem has been recently addressed and
studied in details in [27].

In view of the recent results in [27], the argument proposed by Rosenau for the
linear heat equation appears to be of high interest for further applications. Maybe the
most natural extension of his idea is to apply a similar modification to other types of
linear diffusion equations, like the fractional diffusion equations. Fractional in space
diffusion equations share in fact with the linear diffusion a simple representation in
Fourier variables, which is at the basis of the introduction of a suitable Rosenau
approximation. However, while interesting for its possible applications, this type of
approximation has not been studied so far.

Fractional in space diffusion equations appear in many contexts. Among others,
the review paper by Klafter et al. [15] provides numerous references to physical
phenomena in which these anomalous diffusion occurs (cf. [9, 5, 12, 30, 22, 35] and
the reference therein for various details on both mathematical and physical aspects).

As it can be argued from the original application, the Rosenau approximation
establishes a clear connection between diffusion equations and non-local kinetic equa-
tions. Possible connections between Boltzmann type equations and fractional in space
diffusion equations have been studied only recently in [23, 11]. While the analysis of
Mellet, Mischler and Mouhot in [23] is devoted to the study of linear kinetic equations
of Boltzmann type, and their connection with fractional diffusion equations, the re-
sults in [11] refer to the nonlinear one dimensional Kac model for dissipative collisions
introduced in [26], and to its grazing collision limit.

The fractional diffusion equations read

∂tg(v,t) =−(
√
−∆)λg(v,t), (1.4)

where 0<λ<2. The fractional derivative operator (
√
−∆)λ is defined in the Fourier

variable as

F
(

(
√
−∆)λh

)
(ξ) = |ξ|λĥ(ξ). (1.5)

Similarly to (1.1), the Rosenau-type correction consists in substituting the fractional
diffusion equation (in Fourier variable)

∂tĝ(ξ,t) =−|ξ|λĝ(ξ,t) (1.6)
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with the equation

∂tĝ(ξ,t) =
−|ξ|λ

1+ |εξ|λ
ĝ(ξ,t) =

1

ελ

[
M̂λ(εξ)ĝ(ξ,t)− ĝ(ξ,t)

]
, (1.7)

where ε�1. Note that in this case the Maxwellian function is expressed in Fourier
variable by

M̂λ(ξ) =
1

1+ |ξ|λ
. (1.8)

It is notable that, for all 0<λ≤2, this Maxwellian function is the characteristic
function of a symmetric probability distribution known in probability theory with
the name of Linnik distribution [18, 19]. In addition, when λ>1, M̂λ∈L1(R), which
allows us to apply the inversion formula to conclude that Mλ is a probability density
function. Consequently, in the case of a fractional diffusion equation with λ>1,
Rosenau approximation consists in substituting the fractional diffusion (1.4) with the
non-local linear Boltzmann equation

∂tg(v,t) =
1

ελ
[Mλ,ε ∗g(v,t)−g(v,t)], (1.9)

where the Maxwellian Mλ,ε is defined through its Fourier transform by the formula

M̂λ,ε(ξ) =M̂λ(εξ). Unlikely we note that, on the contrary to what happens in the case
of the linear heat equation, where the Maxwellian Nγ is explicitly given by (1.2), in
(1.9) the expression of the Maxwellian (1.8) is no more explicit in the physical space.

This situation has evident analogies with the central limit theorem of probability
theory [20]. Indeed, while the Rosenau approximation of the heat equation is the
analogue of the classical central limit theorem, and the large-time behavior is driven by
a Gaussian density (the self-similar solution to the heat equation), the approximation
(1.9) is the analogue of the central limit theorem for stable laws, where the expression
of the stable law is explicitly known only in the Fourier variable.

Thanks to this analogy, the main features of the Maxwellian function (1.8) can be
extracted from classical results on the central limit theorem for stable laws [20, 1, 16].
The distribution function associated to the Maxwellian Mλ belongs in fact to the
domain of normal attraction of the Lévy symmetric stable distribution of order λ,
defined by

L̂λ(ξ) = e−|ξ|
λ

. (1.10)

We recall [10, 20] that a distribution function F belongs to the domain of normal
attraction of the stable law Lλ(v)dv if for any sequence of independent and identically
distributed real-valued random variables (Xn)n≥1 with common distribution function
F there exists a sequence of real numbers (cn)n≥1 such that the law of

X1 + ·· ·+Xn

n1/λ
−cn

converges weakly to the stable law Lλ(v)dv. We will come back to this and other prop-
erties of the Linnik distributions in Section 4 where we give a different characterization
of the domain of normal attraction in terms of the asymptotic behavior at infinity.
Without loss of generality, we will restrict our analysis to centered distributions, so
that cn= 0.



4 Rosenau-type fractional diffusions

It is important to outline that the fractional diffusion equation (1.4) has a funda-
mental solution, given by the Lévy distribution of order λ. Indeed, the Fourier version
(1.6) is easily solved to give the solution

ĝ(ξ,t) = ĝ0(ξ)e−|ξ|
λt. (1.11)

In addition to the aforementioned difficulties related to the fact that both Linnik
distributions and the Lévy distribution are not explicitly expressed in the physical
space, a second main difference with respect to the case of the heat equation is that
in this case the Maxwellian function has moments bounded only up to a certain
order. These facts mean that it is not immediate to assert that the correction (1.7),
for a fixed time and a sufficiently small ε, is a good approximation to the fractional
diffusion equation. Moreover, it is not clear whether or not the large-time behavior of
the solution to this approximation agrees with the large-time behavior of the solution
to the fractional diffusion.

The aim of this article is to give an answer to the previous questions in the range
1<λ<2 of fractional diffusion. Like in the case of the heat equation, these results
underline that the Rosenau-type approximation can be viewed as a particular case
of a general approximation to the fractional diffusion equation by means of a linear
kinetic equation of type (1.9), provided the background density Mλ is a probability
density function which lies in the domain of normal attraction of the stable law (1.10).
In Theorem 4.3, it will be shown that, in a certain metric equivalent to the weak*-
convergence of measures, the distance between the solution to the fractional diffusion
equation and the solution to the kinetic equation can be bounded in terms of ε and
t. While this bound allows us to obtain convergence for ε→0, validating in this way
the approximating model, the same bound is not enough to get convergence for large
times, even in this weak sense. The solution of equation (1.9), which in the Fourier
variable can be easily written as

ĝε(ξ,t) = e−tε
−λ(1−M̂ε,λ(ξ))ĝ0(ξ)

can be expressed at least in a formal way, as a convolution in the physical space

gε(v,t) =Pλ,ε(·,t)∗g0(v).

At difference with the solution to the fractional diffusion equation (1.11), since M̂λ,ε∈
C0(R) it follows that Pλ,ε(v,t) cannot belong to L1(R) at any positive time. Indeed,
as we will see in Section 3 resorting to a suitable expansion

Pλ,ε(v,t) = e−ε
−λtδ0 +e−ε

−λt
∞∑
n=1

(
t

ελ

)n
1

n!
M∗nλ,ε(v).

one identifies in the above expression a singular part e−ε
−λtδ0, which vanishes expo-

nentially fast both for ε→0 and t→+∞, and a regular part belonging to L1(R). For
the particular case when Mλ is a Linnik distribution (1.8), we will be able to recover
the long time asymptotic behavior in L1(R) at the price of discarding this singular
part. This will be done by introducing a regularized approximated solution, in which
the convolution kernel Pλ,ε is replaced by

Pλ,ε,reg(v,t) =Pλ,ε(v,t)+e−ε
−λt (Mλ,ε(v)−δ0(v)),
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obtained by substituting the e−ε
−λtδ0 ∗g0 term by e−ε

−λtMλ,ε ∗g0.
The plan on the article is then as follows. In Section 2 we list various properties

of the fractional diffusion equation. In particular, we prove convergence in L1(R) for
large times to the fundamental solution (1.11). In Section 3, using tools of the kinetic
theory of rarefied gases, we introduce a possible derivation and the main features
of the Rosenau approximation with a general Maxwellian belonging to the domain
of normal attraction of the stable law (1.10). This kinetic formulation is used to
obtain explicit solutions to the Rosenau equation (1.9), using both Fourier transform
and Wild sums [24]. In Section 4 we deal with the problem of approximating the
fractional diffusion at any fixed finite time with the Rosenau-type equation (1.9) with
a general Maxwellian. Last, in Section 5, we investigate the large time behavior of the
solutions to (1.9) with a Linnik distribution as a Maxwellian. We first show that with
a suitable time-scaling, the approximated solution behaves asymptotically in time as
the solution of the fractional diffusion equation in a suitable Fourier-based metric (see
next subsection). As a consequence, both scaled solutions converge in the same metric
towards the asymptotic profile of the fundamental solution. Then, we show that after
a suitable regularization of the Rosenau equation, obtained by discarding its singular
part, the approximated solution behaves asymptotically in L1(R) as the solution of
the fractional diffusion equation.

The case λ= 1 is a special case, since M̂1(ξ) = (1+ |ξ|)−1 is not in L1(R) and we
did not succeed in performing analogous calculations as in the cases 1<λ<2. How-
ever, the same results can be obtained with minor modifications provided the Linnik
distribution M̂1(ξ) is replaced in equation (1.9) by the Lévy distribution L̂1(ξ) = e−|ξ|

itself.
These technical results possess an evident interest for a consistent numerical ap-

proximation of the fractional diffusion equation (1.4). Indeed, let us start with a
probability density function g(v,t= 0) =g0(v). Then a semi-implicit Euler scheme ap-
plied to the kinetic equation (1.9) shows that, in a fixed small time-interval ∆t, the
solution can be approximated according to the rule

g(v,t+∆t) =
ε

ε+∆t
g(v,t)+

∆t

ε+∆t
Mλ,ε ∗g(v,t). (1.12)

Therefore, at the time step n+1, the solution is obtained by a convex combination
of the solution at the time step n, and of the convolution between the solution at the
time step n with the constant Maxwellian Mλ,ε. In particular, expression (1.12) can
be easily implemented by Monte Carlo methods [24].

1.1. Functional framework
Before entering into the main topic of this paper, we list below the various

functional spaces, distances and norms used in our analysis. For p∈ [1,+∞) and
q∈ [1,+∞), we denote by Lpq the weighted Lebesgue spaces

Lpq(R) :=

{
f :R→R measurable; ‖f‖p

Lpq
:=

∫
R
|f(v)|p (1+v2)q/2 dv<+∞

}
.

In particular, the usual Lebesgue spaces are given by

Lp :=Lp0.

Moreover, for f ∈L1
q, we can define for any α≤ q the αth order moment of f as the

quantity

mα(f) :=

∫
R
f(v)|v|αdv <+∞.
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For s∈N, we denote by W s,p the Sobolev spaces

W s,p(R) :=

f ∈Ls;‖f‖pWs,p :=
∑
|k|≤s

∫
R

∣∣∣f (k)(v)
∣∣∣p dv<+∞

.
If p= 2 we set Hs :=W s,2.

Given a probability density f , we define its Fourier transform Fv(f) by

Fv(f)(ξ) = f̂(ξ) :=

∫
R
f(v)e−iξvdv, ξ∈R

and the inverse Fourier transform as

ϕ∨(v) =
1

2π

∫
R
ϕ(ξ)eiξvdξ.

The Sobolev space Hs can equivalently be defined for any s≥0 by the norm

‖f‖Hs :=‖Fv (f )‖L2
2s
.

The homogeneous Sobolev space Ḣs is then defined by the homogeneous norm

‖f‖2
Ḣs

:=

∫
R
|ξ|2s|f̂(ξ)|2 dξ.

Finally, we introduce a family of Fourier-based metrics in the following way: given
s>0 and two probability densities f and g, their Fourier-based distance ds(f,g) is
the quantity

ds(f,g) := sup
ξ 6=0

∣∣∣f̂(ξ)− ĝ(ξ)
∣∣∣

|ξ|s
.

This distance is finite, provided that f and g have finite moment of order s and∫
vkf(v)dv=

∫
vkg(v)dv, k= 1,2,. .., [s]

where, if s /∈N, [s] denotes the entire part of s (or up to order s−1 if s∈N). Moreover
ds is an ideal metric [8]. Its main properties are the following

i) For all probability densities f , g, h,

ds(f ∗h,g∗h)≤ds(f,g);

ii) Define for a given nonnegative constant a the dilation

fa(v) =
1

a
f
( v
a

)
.

Then for any pair of probability densities f , g, and any nonnegative constant
a

ds(fa,ga) =asds(f,g). (1.13)
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The ds-metric is related to other more known metrics of large use in probability theory
[13]. In particular, two classical interpolation inequalities (see [7] for proofs) will be
used in the following:

‖f‖L1 ≤C ‖f‖
2α

1+2α

L2 mα(f)
1

1+2α , α>0

‖f‖L2 ≤C

(
sup
ξ 6=0

|f̂(ξ)|
|ξ|s

) 2s
1+4s

‖f‖
1+2s
1+4s

Ḣs
, s>0.

(1.14)

2. The fractional diffusion equation We recall here the existence result
for the Cauchy problem associated to the fractional diffusion equation of order λ,
0<λ<2, with initial data g0∈L1(R),{

∂tg(v,t) =−(
√
−∆)λg(v,t), v∈R, t>0

g(v,0) =g0(v)
(2.1)

and we briefly list properties of the solution that are used in our analysis.
By considering equation (2.1) in the Fourier variable it is straightforward to show

that for any initial data g0∈L1 there exists a unique solution

g(v,t) =
1

t1/λ
Lλ

( ·
t1/λ

)
∗g0(v), (2.2)

where Lλ is the Lévy distribution of order λ defined by L̂λ(ξ) = e−|ξ|
λ

. For the sake
of simplicity we denote the fundamental solution of the fractional diffusion equation
by

Pλ(v,t) =
1

t1/λ
Lλ

( v

t1/λ

)
,

and so

g(v,t) =Pλ(·,t)∗g0(v).

To outline the analogies between the present problem and the classical central
limit theorem for stable laws [20], we will further assume in the rest of the paper
that g0 is a probability density function. By mass conservation, the solution g(t) will
remain a probability density for all subsequent times.

It is well known [20] that in the interval 0<λ<2, Lλ belongs to C0(R) and it is an
even probability density. For λ= 1 the Lévy symmetric stable distribution coincides
with the Cauchy distribution

L1(v) =
1

π

1

1+v2
.

Even though for λ 6= 1 Lλ(v) is not known explicitly in the physical variable, its
behavior for large v is known in details [25]. It holds

Lλ(v)∼ 1

π
Γ(1+λ)sin

(
πλ

2

)
|v|−(1+λ), |v|→+∞.

In consequence the heavy tailed density Lλ has bounded moments only up to some
order ∫

R
|v|αLλ(v)dv=mα(Lλ)<+∞, 0<α<λ. (2.3)
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The case λ= 2 in equation (2.1) corresponds to the heat equation{
∂tg(v,t) = ∆g(v,t) v∈R, t>0

g(v,0) =g0(v)∈L1(R).

In this case it is well known that the explicit solution is

g(v,t) = Ω(·,t)∗g0(v)

where Ω(v,t) =
1√
4πt

e−
v2

4t is the heat kernel. It can be shown [2, 32] that g(t) behaves

as the heat kernel as t→+∞, provided that g0 is a probability density of finite energy
and entropy, namely∫

R
v2g0(v)dv<+∞,

∫
R
| lng0(v)|g0(v)dv<+∞

and more precisely the following bound is known to be sharp

‖g(t)−Ω(t)‖L1 ≤ C√
1+2t

, t>0

where C is an explicit constant.
A similar behavior occurs for the solution of the fractional diffusion equation, but

in this case it appears difficult to obtain an explicit rate of approximation. However
one can state the following proposition.
Proposition 2.1. Let g(t) be the solution of the Cauchy problem (2.1), corresponding
to the initial value g0, a probability density function. Then

lim
t→+∞

∥∥∥∥g(t)− 1

t1/λ
Lλ

( ·
t1/λ

)∥∥∥∥
L1

= 0.

Proof. As in the case of the heat equation, this convergence can be obtained
by passing from the fractional diffusion equation (2.1) to the corresponding Fokker–
Planck equation

∂tu(v,t) =−(
√
−∆)λu(v,t)+

2

λ
∂v(vu(v,t)) (2.4)

through the change of unknown function

u(v,t) = e
2
λ tg

(
e

2
λ tv,

e2t−1

2

)
(2.5)

or, in an equivalent way,

g(w,τ) =
1(√

2τ+1
)2/λu

(
w(√

2τ+1
)2/λ , ln(2τ+1)

2

)
. (2.6)

If we write equations (2.1) and (2.4) in the Fourier variable

∂tĝ(ξ,t) =−|ξ|λĝ(ξ,t)

∂tû(ξ,t) =−|ξ|λû(ξ,t)− 2

λ
ξ∂ξû(ξ,t)
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and the explicit expression of the Fourier transform of the solution of the fractional

diffusion equation with g0 as initial data as ĝ(ξ,t) = e−|ξ|
λtĝ0(ξ), we get

û(ξ,t) = exp

(
−|ξ|λ 1−e−2t

2

)
ĝ0

(
e−

2
λ tξ
)
.

In [11], Proposition 3, it was proved that for a given probability density g0 we have

lim
t→+∞

∥∥∥∥u(t)−F−1

(
exp

(
−|ξ|

λ

2

))∥∥∥∥
L1

= 0.

This implies

lim
τ→+∞

∥∥∥∥u(·, ln(2τ+1)

2

)
−F−1

(
exp

(
−|ξ|

λ

2

))∥∥∥∥
L1

= 0.

By the scaling invariance of the L1 norm we get

lim
τ→+∞

∥∥∥∥∥ 1(√
2τ+1

)2/λu
(

·(√
2τ+1

)2/λ , ln(2τ+1)

2

)
−

F−1

exp

−
∣∣∣(√2τ+1

)2/λ
ξ
∣∣∣λ

2



∥∥∥∥∥∥∥
L1

= 0.

Therefore

lim
t→+∞

∥∥∥∥g(t)−F−1

(
exp

(
− (2t+1)

2
|ξ|λ
))∥∥∥∥

L1

= 0.

In order to get the desired result, it is enough to verify that

lim
t→+∞

∥∥∥∥g(t)− 1

t1/λ
Lλ

( v

t1/λ

)∥∥∥∥
L1

= lim
t→+∞

∥∥∥g(t)−F−1
(

e−t|ξ|
λ
)∥∥∥

L1
= 0.

This follows since

lim
t→+∞

∥∥∥∥F−1
(

e−t|ξ|
λ
)
−F−1

(
exp

(
− (2t+1)

2
|ξ|λ
))∥∥∥∥

L1

= 0.

Indeed

F−1
(

e−t|ξ|
λ
)

=
1

t1/λ
Lλ

( v

t1/λ

)
F−1

(
exp

(
− (2t+1)

2
|ξ|λ
))

=
1

(t+1/2)
1/λ

Lλ

(
v

(t+1/2)
1/λ

)

with Lλ the Lévy distribution, with Lλ(v)≤ Cλ
1+ |v|λ+1

for all v∈R.

Another important argument concerned with the solution of the fractional diffu-
sion equation is the evolution of moments which are initially bounded. We already
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noticed in (2.3) that the moments mα(Lλ) of Lλ are bounded for 0<α<λ. Let us
consider the Cauchy problem (2.1) with initial data g0, a probability density with
bounded moments in the range 0<α<λ,∫

R
|v|αg0(v)dv=mα(g0)<+∞.

Since

g(v,t) =Pλ(·,t)∗g0(v) =
1

t1/λ
Lλ

( ·
t1/λ

)
∗g0(v)

and ∫
R
|v|αPλ(v,t)dv=

∫
R
|v|α 1

t1/λ
Lλ

( v

t1/λ

)
dv= tα/λmα (Lλ) (2.7)

one obtains ∫
R
|v|αPλ(·,t)∗g0(v)dv=

∫
R

∫
R
|v|αPλ(v−w,t)g0(w)dwdv

=

∫
R

∫
R
|v−w+w|αPλ(v−w,t)g0(w)dwdv.

Let 0<α≤1. Then we get∫
R

∫
R
|v−w+w|αPλ(v−w,t)g0(w)dwdv≤∫

R

∫
R

(|v−w|α+ |w|α)Pλ(v−w,t)g0(w)dwdv= tα/λmα (Lλ)+mα(g0).

(2.8)

If 1<α<λ∫
R

∫
R
|v−w+w|αPλ(v−w,t)g0(w)dwdv≤

2α−1

∫
R

∫
R

(|v−w|α+ |w|α)Pλ(v−w,t)g0(w)dwdv= 2α−1
(
tα/λmα (Lλ)+mα(g0)

)
.

(2.9)
In both cases, the moments of the solution are uniformly bounded above by an explicit
function of time which grows as tλ/α.

We end this Section by proving that, in complete analogy with the heat equation,
any convex functional is non-increasing along the solution to the fractional diffusion
equation. First of all, we remark that for t2>t1>0

P̂λ(ξ,t2) = L̂λ(ξt
1/λ
2 ) = e−|ξ|

λt2 = e−|ξ|
λ(t2−t1)e−|ξ|

λt1 = P̂λ(ξ,t2− t1)P̂λ(ξ,t1).

Owing to expression (2.2) for the solution we obtain, for t2>t1>0,

g(v,t2) =Pλ(·,t2)∗g0(v) =Pλ(·,t2− t1)∗g(·,t1)(v).

Now, let ϕ(r), r≥0 be a (smooth) convex function of r and consider the functional

Φ(g)(t) =

∫
R
ϕ(g(v,t))dv.
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If t2>t1>0, we get

Φ(g)(t2) =

∫
R
ϕ(g(v,t2))dv=

∫
R
ϕ

(∫
R
Pλ(w,t2− t1)g(v−w,t1)dw

)
dv.

Now, use the fact that Pλ is a probability density, so that by Jensen’s inequality∫
R
ϕ

(∫
R
g(v−w,t1)Pλ(w,t2− t1)dw

)
dv≤

∫∫
R2

ϕ(g(v−w,t1))Pλ(w,t2− t1)dvdw

=

∫
R
ϕ(g(v,t1))dv= Φ(g)(t1).

Hence Φ(g) is non-increasing.

3. The linear kinetic equation
In this Section, we will briefly discuss both the derivation and the main properties

of the linear kinetic equation (1.9). Let us consider a system composed of many
identical particles. Let the number of particles with velocity v at time t be described
by the process X(t) with probability density g(t), and suppose that the variation of
X(t) is solely due to interaction with an external background. The background Bλ
is here described by a random variable with probability density Mλ, which we will
assume in the domain of attraction of a Lévy distribution of order λ, given by (1.10).
Let us further assume that the interaction process of a particle with velocity v with a
background particle with velocity w generates a post-interaction velocity v∗ given by

v∗=v+w. (3.1)

In terms of the process X(t) the law of change given by (3.1) can be rewritten as

X∗(t) =X(t)+Bλ,

which implies, in the case in which Bλ and X(t) are independent, that the law of
X∗(t) is the convolution of the laws of Bλ and X(t). Assuming that X(t),Bλ are
independent each other, for a given observable quantity ϕ(·), we then have that the
mean value of ϕ(X) satisfies

d

dt

∫
R
ϕ(v)g(v,t)dv=

d

dt
〈ϕ(X(t))〉=σ

∫∫
R×R

(ϕ(v∗)−ϕ(v)) g(v,t)Mλ(w)dvdw, (3.2)

where the constant σ>0 denotes as usual the interaction frequency. Note that choos-
ing ϕ(v) = 1 one shows that, independently of the background distribution, g(t) re-
mains a probability density if it so initially∫

R
g(v,t)dv=

∫
R
g0(v)dv= 1.

This is in general the unique conservation law associated to equation (3.2).
The effects of the background can be easily modulated by considering, for a given

small positive parameter ε, the random variable εBλ. To emphasize this dependence,
we will denote its distribution as

Mλ,ε(w) =ε−1Mλ(ε−1w).
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Then, by inserting Mλ,ε(w) into (3.2), and setting the interaction frequency σ= 1/ελ,
the kinetic equation (3.2) coincides with the Rosenau approximation (1.9) in weak
form. Hence, the Rosenau approximation of a fractional diffusion equation of order
λ describes a system of particles which modify their distribution through interac-
tions with a background distributed according to a probability law in the domain of
attraction of a Lévy stable law of order λ.

3.1. Representations of the solution to the Rosenau approximation
The Rosenau approximated equation

∂tgε(v,t) =
1

ελ
[Mλ,ε ∗gε(v,t)−gε(v,t)], ε�1 (3.3)

where M̂λ,ε(ξ) =M̂λ(εξ) and Mλ belongs to the domain of normal attraction of the
stable law (1.10), is a linear non local kinetic equation of Boltzmann type. Existence
results for this equation are well-established. To find a solution of the Cauchy problem
with g0∈L1 as initial data, we can resort to two equivalent methods. Resorting to
the equation in the Fourier variable one can get a first explicit representation of the
solution. This solution can be expressed as

gε(v,t) =Pλ,ε(·,t)∗g0(v), (3.4)

where, in the Fourier variable

P̂λ,ε(ξ,t) = e−ε
−λt(1−M̂λ,ε(ξ)). (3.5)

We underline that, since Mλ∈L1(R) for every t>0, P̂λ,ε(ξ,t) /∈C0(R) and conse-
quently Pλ,ε(v,t) /∈L1(R). This (unpleasant) feature of Pλ,ε(·,t) will appear in a
clearer way by applying the so-called Wild sum expansion.

This expansion allows a useful representation of the solution of equation (3.3). It
has been first introduced by Wild to construct a solution to the Boltzmann equation
for Maxwell molecules [33], and it appears well adapted to both linear and nonlinear

kinetic equations [24]. Let hε(v,t) = eε
−λtgε(v,t). Then the Cauchy problem associ-

ated to equation (3.3) can be written as a fixed point problem as follows. Since


(
∂tgε(v,t)+

1

ελ
gε(v,t)

)
eε
−λt=

eε
−λt

ελ
Mλ,ε ∗gε(·,t)(v)

gε(v,0) =g0(v),

then

gε(v,t)e
ε−λt−gε(v,0) =

1

ελ

∫ t

0

eε
−λsMλ,ε ∗gε(v,s)ds.

Therefore

hε(v,t) =g0(v)+
1

ελ

∫ t

0

Mλ,ε ∗hε(v,s)ds= Φε(hε)(v,t).

Starting from

h(0)
ε (v) =g0(v)
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and defining for any n≥0

h(n+1)
ε (v,t) = Φε(h

(n)
ε )(v,t)

we construct the monotone sequence

h(n)
ε (v,t) =h(n−1)

ε (v,t)+
(
tε−λ

)n 1

n!
M∗nλ,ε ∗g0(v),

which converges in L1(R) towards

hε(v,t) =g0(v)+

∞∑
n=1

(
t

ελ

)n
1

n!
M∗nλ,ε ∗g0(v).

Finally, we obtain the expression

gε(v,t) = e−ε
−λtg0(v)+e−ε

−λt
∞∑
n=1

(
t

ελ

)n
1

n!
M∗nλ,ε ∗g0(v). (3.6)

By comparing (3.6) with (3.4) one obtains an explicit representation of the funda-
mental solution Pλ,ε(·,t)

Pλ,ε(v,t) = e−ε
−λtδ0(v)+e−ε

−λt
∞∑
n=1

(
t

ελ

)n
1

n!
M∗nλ,ε(v). (3.7)

At difference with the fundamental solution of the original fractional diffusion equation
(1.4), expression (3.7) shows that Pλ,ε(·,t) contains a singular part, the Dirac delta
function δ0 located in v= 0, of size exponentially decaying with time and ε.

3.2. Properties of the solution to the Rosenau approximation Equation
(3.2) allows us to control the time evolution of the moments of g(t). For a given
constant α>0, let us take ϕ(v) = |v|α. We obtain

d

dt

∫
R
|v|αg(v,t)dv=

1

ελ

∫∫
R2

[|v∗|α−|v|α]g(v,t)Mλ,ε(w)dvdw.

Since |v∗|α= |v+w|α≤ cα(|v|α+ |w|α), the moment of g(t) of order α is bounded if
the corresponding moment of the background distribution is bounded. Proceeding as
in Lemma 5.7 one shows that the evolution of the moments is polynomial in time, in
perfect agreement with the evolution of the corresponding moments for the solution
of the fractional diffusion equation, as given by (2.8), (2.9) (see Remark 5.9).

Having in mind the discussion in [27], a further interesting analogy with the linear
diffusion is found by looking at the evolution of convex functionals along the solution.
Let ϕ(r), r≥0 be a (smooth) convex function of r and consider

Φ(g)(t) =

∫
R
ϕ(g(v,t))dv.

Then, using equation (1.9) we obtain

d

dt
Φ(g)(t) =

d

dt

∫
R
ϕ(g(v,t))dv=

∫
R
ϕ′(g(v,t))

∂g(v,t)

∂t
dv=
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1

ελ

∫
R
ϕ′(g(v,t))(Mλ,ε ∗g(v,t)−g(v,t)) dv.

Thanks to the convexity of ϕ, for r,s≥0

ϕ′(s)(r−s)≤ϕ(r)−ϕ(s),

and one obtains

d

dt

∫
R
ϕ(g(v,t))dv≤ 1

ελ

∫
R

(ϕ(Mλ,ε ∗g(v,t))−ϕ(g(v,t))) dv.

Now, use the fact that Mλ,ε is a probability density, so that by Jensen’s inequality∫
R
ϕ(Mλ,ε ∗g(v,t))dv=

∫
R
ϕ

(∫
R
g(v−w,t)Mλ,ε(w)dw

)
dv≤

∫
R2

ϕ(g(v−w,t))Mλ,ε(w)dvdw=

∫
R
ϕ(g(v,t))dv

to conclude

d

dt

∫
R
ϕ(g(v,t))dv≤0.

Thus any convex functional is non-increasing along the solution to the Rosenau type
kinetic equation (1.9).

4. An approximation result
As briefly discussed in the Introduction, one of the main novelties that can be

extracted by the Rosenau approximation is that the kinetic model (3.3) has an evident
interest from the point of view of its numerical approximation. This feature has been
extensively investigated in the case of the linear diffusion in [27], where it has been
shown that the linear kinetic model represents a consistent approximation of the heat
equation even if the Maxwellian density generated by the Rosenau idea is substituted
by a different one, provided that some properties about moments are fulfilled. One
of the results of this investigation has been the inclusion of a singular Maxwellian
producing the central difference scheme, among the admissible Maxwellian densities
for the corresponding linear kinetic model. Trying to get a similar result for the
problem under consideration, we consider a linear kinetic equation of type (3.3)

∂tgε(v,t) =
1

ελ
[Mλ,ε ∗gε(v,t)−gε(v,t)],

in which the Linnik density (1.8) is replaced by a Maxwellian Mλ with the properties
to be even and the density of a centered distribution function belonging to the domain
of normal attraction of the stable law Lλ(v)dv, of exponent λ∈ (1,2). The evident
advantage to work with a Maxwellian density different from Linnik distribution is
that, as we will see, one can resort to a density which is explicitly known in the
physical space.

In the rest of this section, we aim at proving that, with a suitable choice of dis-
tance, at any fixed time the solutions to (3.3) and to the fractional diffusion equation,
are getting closer in terms of the parameter ε. First of all we underline that it is
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not even clear in which sense the solution to (3.3) represents an approximation to the
solution of the fractional diffusion equation (1.4) as ε tends to zero. This is in contrast
with what happens to the original Rosenau approximation to the heat equation (1.3).

In this case the Maxwellian function Nε(v) =
1

2ε
e−
|v|
ε has finite moments of any order,

and the meaning of approximation is standard. Let us consider equation (1.3) in weak
form

d

dt

∫
R
gε(v,t)ϕ(v)dv=

1

ε2

∫∫
R2

(ϕ(v+w)−ϕ(v))gε(v,t)Nε(w)dvdw.

By expanding ϕ(v+w) in Taylor series around v

ϕ(v+w) =ϕ(v)+ϕ′(v)w+
ϕ′′(v)

2
w2 +

ϕ′′′(ṽ)

3!
w3, ṽ∈ (v,w)

we get

d

dt

∫
R
gε(v,t)ϕ(v)dv=

1

ε2

∫∫
R2

(
ϕ′(v)w+

ϕ′′(v)

2
w2 +

ϕ′′′(ṽ)

3!
w3

)
gε(v,t)Nε(w)dvdw.

Since ∫
R
wNε(w)dw= 0,

∫
R
w2Nε(w)dw= 2ε2,

∫
R
|w|3Nε(w)dw= 12ε3,

we end up with the equation

d

dt

∫
R
gε(v,t)ϕ(v)dv=

∫
R
gε(v,t)ϕ

′′(v)dv+C(ε),

where the remainder satisfies

|C(ε)|≤2ε‖ϕ′′′‖L∞
∫
R
|w|3N(w)dw→0, ε→0.

In the case of the fractional diffusion approximation, the operator (
√
−∆)λ is non-

local and the Maxwellian Mλ,ε has finite moments only for α<λ. This requires a
different way of looking to the problem. We begin by defining in which sense we can
consider equation (3.3) as an approximation of the fractional diffusion equation.

We recall that a centered distribution function F belongs to the domain of normal
attraction of the stable law Lλ(v)dv if for any sequence of independent and identically
distributed real-valued random variables (Xn)n≥1 with common distribution function
F , the law of

X1 + ·· ·+Xn

n1/λ
(4.1)

converges weakly to the stable law Lλ(v)dv.

Let us recall some properties of a distribution F belonging to the domain of
normal attraction of a stable law. More information about this topic can be found
in the book [14] or, among others, in the papers [3], [4]. It is well-known that a
centered distribution F belongs to the domain of normal attraction of the λ-stable
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law (1.10) with density Lλ(v) if and only if F satisfies |v|λF (v)→ c as v→−∞ and
vλ(1−F (v))→ c as v→+∞ i.e.

F (−v) =
c

|v|λ
+S1(−v) and 1−F (v) =

c

vλ
+S2(v) (v>0)

Si(v) =o(|v|−λ) as |v|→+∞, i= 1,2
(4.2)

where c= Γ(λ)
π sin

(
πλ
2

)
. Concerning the moments of the distribution function F and

of the distributions Fn associated to the sum (X1 + ·· ·+Xn)/n1/λ considered in (4.1),
we recall the following Propositions.

Proposition 4.1 (see [14], Theorem 2.6.4 page 84). Let F belong to the domain
of normal attraction of Lλ. Then, for any α such that 0<α<λ∫

R
|v|αdF (v)<+∞.

Proposition 4.2 (see [14], Lemma 5.2.2 page 142). Let Fn denote the distri-
bution function associated to the sum (X1 + ·· ·+Xn)/n1/λ converging weakly to the
stable law Lλ(v)dv. Then, for any 0<α<λ∫

R
|v|αdFn(v)

is uniformly bounded with respect to n. The behavior of F in the physical space
(4.2) leads to a characterization of the domain of normal attraction of Lλ in terms of
characteristic functions. Indeed, if Φ is the characteristic function of the distribution
function F satisfying (4.2) then

1−Φ(ξ) = (1+v0(ξ))|ξ|λ,

where

v0∈L∞(R) and |v0(ξ)|=o(1), |ξ|→0.

In the following we will consider a stronger assumption on the characteristic function.
We will denote by Mλ any density of a centered distribution function belonging to the
domain of normal attraction of the stable law with density Lλ, which has the extra
property that the Fourier-Stieltjes transform of the function Mλ satisfies

1−M̂λ(ξ) = (1+v0(ξ))|ξ|λ, (4.3)

where v0(ξ) is such that, for some δ>0

v0∈L∞(R) and |v0(ξ)|=O
(
|ξ|δ
)
, |ξ|→0. (4.4)

A main example is furnished by the so-called Barenblatt function

Bλ(v) =
α

(1+(βv)2)(1+λ)/2
, v∈R (4.5)

where α,β>0,
β

α
=

∫
R

dv

(1+v2)(1+λ)/2
and

α

λβ1+λ
=

Γ(λ)sin(πλ2 )

π
. This type of func-

tions is mainly related to the study of nonlinear equations for fast diffusion, given by

∂tg(v,t) =∂2
vvg

p(v,t), (4.6)
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as p<1. The Barenblatt function (4.5) corresponds to the case p= (λ−1)/(λ+1).
The function t(λ+1)/(2λ)Bλ(t(λ+1)/(2λ)x) represents the intermediate asymptotic pro-
file of the nonlinear diffusion (4.6) [34]. The case p<1 appears when modelling diffu-
sion in metals and ceramic materials. In these materials, in fact, over a wide range of
temperatures, the diffusion coefficient can be approximated as u−α, where 0<α<2
[29].

The distribution function F (x) =
∫ x
−∞Bλ(v)dv is such that

lim
x→+∞

xλ(1−F (x)) =
α

λβ1+λ
=

Γ(λ)sin
(
πλ
2

)
π

= c.

Moreover for any 0<δ<2 there exists a constant C>0 such that for any x>0 we
have ∣∣xλ+δ(1−F (x))−cxδ

∣∣<C.
This in enough to guarantee that the Fourier transform of Bλ satisfies the extra prop-
erty (4.3)-(4.4) (see [4]). Property (4.4) has been already considered in kinetic theory.
In particular, it has been used to determine the rate of convergence to equilibrium for
the dissipative Kac model [4].

Under this condition on the Maxwellian function, we can prove convergence of
the approximated solution (3.3) to the solution to the fractional diffusion equation
(1.4) in the Fourier-based distance ds, as ε→0.
Theorem 4.3. Let 1<λ<2, and let g(t) and gε(t) be the solutions of the fractional
diffusion equation (2.1) and, respectively, of the Rosenau approximation (3.3), cor-
responding to the same initial probability density g0. Let us suppose moreover that
the Maxwellian Mλ in (3.3) satisfies the extra properties (4.3)- (4.4). Then for any
0<s<λ there exists a positive constant C=C(λ,s,δ) such that

ds(g(t),gε(t))≤Cts/(λ+δ)εsδ/(λ+δ).

Proof. Since g0 is a probability density, |ĝ0(ξ)|≤1, and we have

ds(g(t),gε(t)) = sup
ξ 6=0

∣∣∣ĝ0(ξ)
(

e−|ξ|
λt−e−ε

−λt(1−M̂λ,ε(ξ))
)∣∣∣

|ξ|s

≤ sup
ξ 6=0

∣∣∣e−|ξ|λt−e−ε
−λt(1−M̂λ,ε(ξ))

∣∣∣
|ξ|s

.

Therefore, for any R>0

ds(g(t),gε(t))≤
2

Rs
+ sup

0<|ξ|≤R

∣∣∣e−|ξ|λt−e−ε
−λt(1−M̂λ,ε(ξ))

∣∣∣
|ξ|s

.

Thanks to the inequality |e−x−e−y|≤ |x−y|, valid for any x,y≥0, we get

sup
0<|ξ|≤R

∣∣∣|ξ|λt−ε−λt(1−M̂λ,ε(ξ)
)∣∣∣

|ξ|s
≤ sup

0<|ξ|≤R

t|ξ|λ |v0 (εξ)|
|ξ|s

.
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In the last inequality we used the expression of the Fourier transform of Mλ (4.3).
Thanks to (4.4) we obtain

sup
0<|ξ|≤R

t|ξ|λ |v0 (εξ)|
|ξ|s

≤C sup
0<|ξ|≤R

t|ξ|λ |εξ|δ

|ξ|s
≤CtRλ+δ−sεδ.

Finally, choose R=

(
2

Ctεδ

)1/(λ+δ)

to obtain

ds(g(t),gε(t))≤Cts/(λ+δ)εsδ/(λ+δ).

5. Large time behavior
The result of the previous section justifies the choice of a Barenblatt type

Maxwellian density in the linear kinetic model (1.7), to obtain an explicit in space
linear kinetic equation which approximates, at any fixed time, the fractional diffusion
equation. The result of Theorem 4.3, however, is such that the rate of convergence
in the ds-metric is time-dependent, and fails as t→∞. As the analysis in [27] shows,
the weakness of this result with respect to time could be generated by the choice of
a general Maxwellian in the linear kinetic model, that, while maintaining the kinetic
form of the approximation, is loosing the precise shape of the Maxwellian predicted
by the Rosenau idea. Consequently, in this section we will restrict the study of the
large time behavior of the solution to the approximated Rosenau equation (1.7), where
Mλ,ε is a Linnik distribution (1.8). Provided that we discard the singular part of the
approximating solution, our analysis will confirm that in this case the solution to (1.7)
behaves like the fractional diffusion equation for large times.

5.1. Convergence in the Fourier based metric In analogy with the solution
of the fractional diffusion equation, for all ξ∈R we have

lim
t→+∞

(
ĝε(t,ξ)−e−|ξ|

λt
)

= 0.

This convergence can be refined using the Fourier-based distance ds. In order to
capture the asymptotic profile in the limit for t→+∞ we consider the scaled solution
obtained by the change of variable ξ 7−→ ξ

(1+t)1/λ
. Let us denote by

h(v,t) = (1+ t)1/λg((1+ t)1/λv,t)

hε(v,t) = (1+ t)1/λgε((1+ t)1/λv,t).
(5.1)

the scaled solutions of the fractional diffusion equation and of the approximated equa-
tion respectively. Then using the explicit representation of the solution established in
(3.4)-(3.5), we get

ĥε(ξ,t) = P̂λ,ε

(
ξ

(1+ t)1/λ
,t

)
ĝ0

(
ξ

(1+ t)1/λ

)
= exp

(
−ε−λt

(
1−M̂λ,ε

(
ξ

(1+ t)1/λ

)))
ĝ0

(
ξ

(1+ t)1/λ

)
and since

ε−λt

(
1−M̂λ,ε

(
ξ

(1+ t)1/λ

))
=

t|ξ|λ

1+ t+ελ|ξ|λ
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for t→+∞ we get, for ξ∈R and ε>0 fixed

lim
t→+∞

ĥε(ξ,t) = exp
(
−|ξ|λ

)
ĝ0(0).

Proposition 5.1. Let 1<λ<2, and let h(t) and hε(t) be the solutions of (5.1), the
scaled fractional diffusion equation (2.1) and, respectively, of its Rosenau approxima-
tion (1.7), corresponding to the same initial probability density g0. If ds(g0,Lλ)<+∞
for some 0<s<λ, then there exists a positive constant C=C(λ,s) such that

ds(h(t),hε(t))≤C εs/2
ts/2λ

(1+ t)s/λ
, (5.2)

and

ds(hε(t),Lλ)≤C
(

1

(1+ t)s/λ
+εs/2

ts/2λ

(1+ t)s/λ

)
. (5.3)

Proof. By the scaling rule (1.13), we have

ds(h(t),hε(t)) =
1

(1+ t)s/λ
ds(g(t),gε(t)).

The first inequality (5.2) follows therefore from Theorem 4.3. Indeed, M̂λ(ξ) =
1

1+ |ξ|λ
and so

1−M̂λ(ξ) = |ξ|λ
(

1− |ξ|λ

1+ |ξ|λ

)
= |ξ|λ (1+v0(ξ))

with

v0(ξ) =− |ξ|λ

1+ |ξ|λ
=O(|ξ|λ), |ξ|→0.

The second inequality (5.3) is a consequence of the first one. Indeed, we apply
the triangular inequality

ds(hε(t),Lλ)≤ds (hε(t),h(t))+ds (h(t),Lλ) ,

where

ds (h(t),Lλ) =sup
ξ 6=0

∣∣∣ĝ0

(
ξ

(1+t)1/λ

)
exp(− |ξ|

λt
1+t )−exp(−|ξ|λ)

∣∣∣
|ξ|s

≤ 1

(1+ t)s/λ
ds(g0,Lλ).

5.2. Strong convergence in L1 of a regularized solution
As given by expression (3.7), the fundamental solution Pλ,ε(·,t) contains a singular

part, with a size which is exponentially decaying to zero. The effect of this singular
part on the solution to the approximation is clear. For this reason, we study here the
large time behavior of the regularized part. The main result will be that this suitable
regularized solution to the Rosenau approximation converges in strong sense (namely
in L1-norm) to the solution of the fractional diffusion equation.
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We define the regularized fundamental solution to the Rosenau approximation by

gε,reg(v,t) =Pλ,ε,reg(·,t)∗g0(v) (5.4)

where

Pλ,ε,reg(v,t) =Pλ,ε(v,t)+e−ε
−λt (Mλ,ε(v)−δ0(v)) (5.5)

Remark 5.2. Note that function (5.5) is obtained from (3.7) by substituting the
singular part with the order zero term of the sum. In this way, the difference between
the fundamental solution and the regularized one is still exponentially decaying to zero
both with respect to time and ε, with the additional property to vanish at the point
ξ= 0. In other words, the regularized solution is constructed in such a way that the
masses of Pλ,ε(·,t) and Pλ,ε,reg(·,t) coincide.
Remark 5.3. It is immediate to prove that Pλ,ε,reg(t)∈L1(R) for each value of t>0.
Indeed

Pλ,ε,reg(t) = e−ε
−λt

+∞∑
n=1

(
tε−λ

)n 1

n!
M∗nλ,ε+e−ε

−λtMλ,ε, (5.6)

and the Maxwellian term Mλ,ε belongs to L1(R). Then the series in (5.6) converges
in L1(R) for any t>0. The main result of this paper is contained in the following
Theorem 5.4. Let 1<λ<2, and let g(t) and gε,reg(t) denote the solutions of the
Cauchy problem for the fractional diffusion equation (2.1) and, respectively, the solu-
tion of the regularized Rosenau approximation (5.4), corresponding to the same initial
density g0. Then, if for all 0<α<λ, g0 has bounded moment of order α

lim
t→+∞

‖gε,reg(t)−g(t)‖L1 = 0

By Theorem 5.4 and Proposition 2.1 we get immediately the following Corollary.
Corollary 5.5. Let 1<λ<2, and let g0 be a probability density with bounded mo-
ment of order α, for all 0<α<λ. Then

lim
t→+∞

∥∥∥∥gε,reg(t)− 1

t1/λ
Lλ

( ·
t1/λ

)∥∥∥∥
L1

= 0

with Lλ the Lévy symmetric stable distribution (1.10). The proof of Theorem 5.4
follows by various steps, we will split into different lemmas, that we will prove below.
The first one is concerned with the convergence (after scaling) of the fundamental
solution of the fractional diffusion equation to the regularized fundamental solution.
For the sake of simplicity let us denote

P̃λ(v,t) = (1+ t)1/λPλ((1+ t)1/λv,t),

P̃λ,ε,reg(v,t) = (1+ t)1/λPλ,ε,reg((1+ t)1/λv,t).
(5.7)

The result follows in consequence of Proposition 5.1.
Lemma 5.6. Let 1<λ<2. For any 0<s<λ there exists a positive constant C=
C(λ,s) such that

ds(P̃λ(t),P̃λ,ε,reg(t))≤C
εs/2

(1+ t)s/(2λ)
, t>0.
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The second lemma describes the growth of the α-moment of the scaled fundamental
solution of the fractional diffusion equation and of the scaled regularized fundamental
solution of the Rosenau approximation.
Lemma 5.7. Let 1<λ<2. For any 0<α<λ and any t>0

mα(P̃λ(t)) =

∫
R
|v|αP̃λ(v,t)dv≤mα(Lλ).

Moreover, there exist positive constants C=C(λ,α) such that

mα(P̃λ,ε,reg(t)) =

∫
R
|v|αP̃λ,ε,reg(v,t)dv≤C.

The third lemma deals with the evolution of the Sobolev norms of both the scaled
fundamental solution of the fractional diffusion equation and of the scaled regularized
fundamental solution of the Rosenau approximation.
Lemma 5.8. Let 1<λ<2. For any 0<s< (λ−1)/2, any 0<β<1/λ and for t large
enough there are positive constants C1 =C1(λ,s) and C2 =C2(λ,β,s) such that∥∥∥P̃λ(t)

∥∥∥
Ḣs
≤C1,∥∥∥P̃λ,ε,reg(t)∥∥∥
Ḣs
≤C2

1

εs+1/2
(1+ t)(s+1/2)(1/λ−β).

With these results at hand, we can prove Theorem 5.4.
Proof of Theorem 5.4. The proof of the theorem can be divided into different
steps. Recalling that ‖g0‖L1 = 1, g(t) =Pλ(t)∗g0 and gε,reg(t) =Pλ,ε,reg(t)∗g0, we get
for t>0

‖g(t)−gε,reg(t)‖L1 ≤‖Pλ(t)−Pλ,ε,reg(t)‖L1 .

Thanks to the invariance by scaling of the L1 norm we get

‖Pλ(t)−Pλ,ε,reg(t)‖L1 =
∥∥∥P̃λ(t)− P̃λ,ε,reg(t)

∥∥∥
L1
,

with P̃λ and P̃λ,ε,reg defined in (5.7). By using the interpolation inequalities (1.14),
for t>0 and α,s∈ (0,λ) we obtain∥∥∥P̃λ(t)− P̃λ,ε,reg(t)

∥∥∥
L1

≤C
∥∥∥P̃λ(t)− P̃λ,ε,reg(t)

∥∥∥ 2α
1+2α

L2

[
mα(P̃λ(t))+mα(P̃λ,ε,reg(t))

] 1
1+2α

≤Cds
(
P̃λ(t),P̃λ,ε,reg(t)

) 4sα
(1+4s)(1+2α)

∥∥∥P̃λ(t)− P̃λ,ε,reg(t)
∥∥∥ 2α(1+2s)

(1+4s)(1+2α)

Ḣs[
mα(P̃λ(t))+mα(P̃λ,ε,reg(t))

] 1
1+2α

.

(5.8)

Thanks to estimate (5.8), the bounds in Lemmas 5.6, 5.7 and 5.8 imply

‖P̃λ(t)− P̃λ,ε,reg(t)‖L1

≤C
[

ε
s
2

(1+ t)
s
2λ

] 4sα
(1+4s)(1+2α)

[mα(Lλ)+C]
1

1+2α ·

·
[
C1 +C2

1

εs+1/2
(1+ t)(s+1/2)(1/λ−β)

] 2α(1+2s)
(1+4s)(1+2α)

≤Cεγ(s,α)(1+ t)δ(s,α)
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where C>0 depends on λ, s and β, γ(s,α) = 4s2α−2α(1+2s)2

2(1+4s)(1+2α) and δ(s,α) =
−4s2α+2α(1+2s)2(1−λβ)

2λ(1+4s)(1+2α) . By choosing 1−λβ small enough, we get δ(s,α)<0. Hence

the result follows.

5.3. Proofs of the Lemmas

Proof of Lemma 5.6. We have

ds(P̃λ(t),P̃λ,ε,reg(t))

= sup
ξ 6=0

1

|ξ|s

∣∣∣∣∣e−|ξ|λ t
1+t −

[
e
−ε−λt

(
1−M̂λ,ε

(
ξ

(1+t)1/λ

))
−e−ε

−λt

(
1−M̂λ,ε

(
ξ

(1+ t)1/λ

))]∣∣∣∣∣
≤ sup
ξ 6=0

1

|ξ|s

∣∣∣∣∣e−|ξ|λ t
1+t −e

−ε−λt
(

1−M̂λ,ε

(
ξ

(1+t)1/λ

))∣∣∣∣∣+
sup
ξ 6=0

1

|ξ|s

∣∣∣∣e−ε−λt(1−M̂λ,ε

(
ξ

(1+ t)1/λ

))∣∣∣∣
= I+II.

The term II can be written in the form

II= sup
ξ 6=0

∣∣∣e−ε−λt(1−M̂λ,ε

(
ξ

(1+t)1/λ

))∣∣∣
|ξ|s

=
e−ε

−λt

(1+ t)s/λ
sup
ξ 6=0

∣∣∣1−M̂λ,ε(ξ)
∣∣∣

|ξ|s
.

Therefore, since 1<λ<2, and 0<s<λ for ξ 6= 0 we get∣∣∣1−M̂λ,ε(ξ)
∣∣∣

|ξ|s
=

ελ|ξ|λ

|ξ|s(1+ελ|ξ|λ)
≤ελ|ξ|λ−s.

Thus, for any given positive constant R>0

sup
ξ 6=0

∣∣∣1−M̂λ,ε(ξ)
∣∣∣

|ξ|s
≤ 1

Rs
+ sup

0<|ξ|≤R

∣∣∣1−M̂λ,ε(ξ)
∣∣∣

|ξ|s
≤ 1

Rs
+ελRλ−s.

By choosing R= 1/ε we get

II≤2εs.

Finally, we get the bound

II≤Cεs e−ε
−λt

(1+ t)s/λ
.

The first term coincides with the term estimated in Proposition 5.1. For this term we
proved the bound

I≤Cεs/2 ts/(2λ)

(1+ t)s/λ
.

This is enough to conclude.
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Proof of Lemma 5.7. Let us now estimate the moments. Let us remind that

P̃λ(v,t) = (1+ t)1/λPλ((1+ t)1/λv,t)

and that in (2.7) we stated that∫
R
|v|αPλ(v,t)dv= tα/λmα(Lλ).

Hence we obtain∫
R
|v|αP̃λ(v,t)dv=

∫
R
|v|α(1+ t)1/λPλ((1+ t)1/λv,t)dv=

1

(1+ t)α/λ

∫
R
|v|αPλ(v,t)dv≤mα(Lλ).

To estimate mα(P̃λ,ε,reg(t)), we remark that, thanks to expression (5.6), it is enough
to prove that ∫

R
|v|α

(
e−ε

−λt
+∞∑
n=1

(
t

ελ

)n
1

n!
M∗nλ,ε(v)

)
dv≤ tα/λC.

By definition

M∗nλ,ε(v) =ε−1M∗nλ (ε−1v),

and this implies ∫
R
|v|αM∗nλ,ε(v)dv=εα

∫
R
|v|αM∗nλ (v)dv.

Now, consider that n1/λM∗nλ (n1/λv) is the density of the sum (X1 + ·· ·+Xn)/n1/λ,
where (Xn)n≥1 is a sequence of independent and identically distributed real-valued
random variables with common density Mλ in the domain of normal attraction of
Lλ(v)dv. This fact can be used to write∫

R
|v|αM∗nλ (v)dv=nα/λ

∫
R
|w|αn1/λM∗nλ (n1/λw)dw.

Since Mλ is a centered distribution, (X1 + ·· ·+Xn)/n1/λ converges in law to Lλ(v)dv.
Therefore, thanks to Lemma 5.2.2 in [14] (see Proposition 4.2) one obtains∫

R
|w|αn1/λM∗nλ (n1/λw)dw≤C,

and this implies ∫
R
|v|αM∗nλ,ε(v)dv≤Cεαnα/λ.

In conclusion∫
R
|v|α

(
e−ε

−λt
+∞∑
n=1

(
t

ελ

)n
1

n!
M∗nλ,ε(v)

)
dv= e−ε

−λt
+∞∑
n=1

(
t

ελ

)n
1

n!

∫
R
|v|α M∗nλ,ε(v)dv

≤Cεα e−ε
−λt

+∞∑
n=1

(
t

ελ

)n
1

n!
nα/λ.



24 Rosenau-type fractional diffusions

We will now prove that

e−ε
−λt

+∞∑
n=1

(
t

ελ

)n
1

n!
nα/λ≤ t

α/λ

εα
,

or, in an equivalent way

+∞∑
n=1

(
t

ελ

)n
1

n!

(n
t

)α/λ
≤ eε

−λt

εα
.

If τ =ε−λt, and β=α/λ, this amounts to prove that, if 0<β<1

+∞∑
n=1

τn

n!

(n
τ

)β
≤ eτ .

To this end, it is enough to remark that, if β= 0

+∞∑
n=1

τn

n!
= eτ −1.

On the other side, if β= 1 we get

+∞∑
n=1

τn

n!

(n
τ

)
=

+∞∑
n=0

τn

n!
= eτ .

Hence, if 0<β<1

+∞∑
n=1

τn

n!

(n
τ

)β
≤

+∞∑
n=1

τn

n!
max

(
1,
n

τ

)
≤max

(
+∞∑
n=1

τn

n!
,

+∞∑
n=0

τn

n!

)
= eτ .

All these bounds imply∫
R
|v|αP̃λ,ε,reg(v,t)dv≤ tα/λ

(1+ t)α/λ
C≤C.

Remark 5.9. A direct consequence of this Lemma is that the moment of order α
of the approximated solution gε(t) of equation (3.3), grows at a polynomial rate in
time in correspondence to any generic centered distribution Mλ(v)dv belonging to the
domain of normal attraction of the stable law Lλ(v)dv∫

R
|v|αgε(v,t)dv≤Ctα/λ.

Proof of Lemma 5.8. By definition

P̃λ(v,t) =

(
1+ t

t

)1/λ

Lλ

((
1+ t

t

)1/λ

v

)
.

Therefore, for t>0 large enough and s>0∥∥∥P̃λ(t)
∥∥∥
Ḣs

=

(
1+ t

t

)(s+1/2)/λ

‖Lλ‖Ḣs ≤C1.
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Expressions (5.5) and (3.5) lead to

F
(
P̃λ,ε,reg

)
(ξ,t) = e−ε

−λt

[
exp

(
ε−λ tM̂λ,ε

(
ξ

(1+ t)1/λ

))
−1+M̂ε,λ

(
ξ

(1+ t)1/λ

)]
.

Therefore

∥∥∥P̃λ,ε,reg(t)∥∥∥2

Ḣs
≤C

∫
R
|ξ|2sexp

(
−2tε−λ

)(
exp

(
ε−λt M̂λ,ε

(
ξ

(1+ t)1/λ

))
−1

)2

dξ+∫
R
|ξ|2sexp

(
−2tε−λ

)
M̂λ,ε

(
ξ

(1+ t)1/λ

)2

dξ=A+B.

(5.9)
By a change of variable, term B can be estimated as follows

B= (1+ t)(2s+1)/λexp
(
−2tε−λ

)
‖Mλ,ε‖2Ḣs = (1+ t)(2s+1)/λ exp

(
−2tε−λ

)
ε2s+1

‖Mλ‖2Ḣs

≤Cλ,s(1+ t)(2s+1)/λ exp
(
−2tε−λ

)
ε2s+1

(5.10)
for s<λ−1/2.

Likewise, the term A can be expressed as

A= (1+ t)(2s+1)/λ

∫
R
|η|2s

(
exp

(
−tε−λ

(
1−M̂λ,ε(η)

))
−exp

(
−tε−λ

))2

dη=

(1+ t)(2s+1)/λIε(t).

To estimate the term Iε(t), consider that it satisfies the differential equation

dIε(t)

dt
=−2ε−λIε(t)+2ε−λAε(t),

where Aε(t) can bounded in a precise way. In fact

dIε(t)

dt
=

∫
R
|η|2s2

(
exp

(
−tε−λ

(
1−M̂λ,ε(η)

))
−exp

(
−tε−λ

))
×(

−exp
(
−tε−λ

(
1−M̂λ,ε(η)

)) 1−M̂λ,ε(η)

ελ
+

1

ελ
exp

(
−tε−λ

))
dη

=−2ε−λ
∫
R
|η|2s

(
exp

(
−tε−λ

(
1−M̂λ,ε(η)

))
−exp

(
−tε−λ

))2

dη+

2ε−λ
∫
R
|η|2s

(
exp

(
−tε−λ

(
1−M̂λ,ε(η)

))
−exp

(
−tε−λ

))
·

·M̂λ,ε(η) exp
(
−tε−λ

(
1−M̂λ,ε(η)

))
dη=−2ε−λIε(t)+2ε−λAε(t).

It remains to estimate the term Aε(t). For a given β>0, we split the Aε(t) term into
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two terms

Aε(t) =

∫
R
|η|2sM̂λ,ε(η)exp

(
−2tε−λ

(
1−M̂λ,ε(η)

))(
1−exp

(
−tε−λM̂λ,ε(η)

))
dη

=

∫ 1

(1+t)β

0

|η|2sM̂λ,ε(η)exp
(
−2tε−λ

(
1−M̂λ,ε(η)

))(
1−exp

(
−tε−λM̂λ,ε(η)

))
dη+∫ +∞

1

(1+t)β

|η|2sM̂λ,ε(η)exp
(
−2tε−λ

(
1−M̂λ,ε(η)

))(
1−exp

(
−tε−λM̂λ,ε(η)

))
dη

=A1 +A2.

Since 0<M̂λ,ε(η)≤1, we have

A1≤
∫ 1

(1+t)β

0

|η|2sdη=
2

2s+1

1

(1+ t)β(2s+1)
=

Cs
(1+ t)β(2s+1)

.

Moreover

A2 =

∫ +∞

1

(1+t)β

|η|2sM̂λ,ε(η)exp
(
−2tε−λ

(
1−M̂λ,ε(η)

))(
1−exp

(
−tε−λM̂λ,ε(η)

))
dη

≤ sup
|η|> 1

(1+t)β

exp
(
−2tε−λ

(
1−M̂λ,ε(η)

))∫ +∞

1

(1+t)β

|η|2sM̂λ,ε(η)dη

=Cλ,s
1

ε2s+1
sup

|η|> 1

(1+t)β

exp
(
−2tε−λ

(
1−M̂λ,ε(η)

))
,

where Cλ,s=
∫
R |η|

2sM̂λ(η)dη<+∞ for s< (λ−1)/2. Now, since M̂λ,ε(η) =
1

1+ |εξ|λ
we obtain

sup
|η|> 1

(1+t)β

exp
(
−2tε−λ

(
1−M̂λ,ε(η)

))
= sup
|η|> 1

(1+t)β

exp

(
− 2t|η|λ

1+ελ|η|λ

)
.

Since the function exp
(
− 2t|η|λ

1+ελ|η|λ

)
is decreasing in η, we get

sup
|η|> 1

(1+t)β

exp

(
− 2t|η|λ

1+ελ|η|λ

)
= exp

(
−2t

1
(1+t)βλ

1+ελ 1
(1+t)βλ

)
= exp

(
− 2t

ελ+(1+ t)βλ

)
.

If 0<β<1/λ, we conclude that there exists a constant Cβ>0 such that

exp

(
− 2t

ελ+(1+ t)βλ

)
≤ e−Cβt

1−βλ
.

In the end, for t>0 and 0<β<1/λ there exists a constant C=C(λ,s,β)>0 such
that

Aε(t)≤
(

Cs
(1+ t)β(2s+1)

+
Cλ,s
ε2s+1

e−Cβt
1−βλ

)
≤ C

ε2s+1

1

(1+ t)β(2s+1)
. (5.11)
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With this estimate we can study the differential relation

dIε(t)

dt
=−2ε−λIε(t)+2ε−λAε(t).

For a>0 to be suitably chosen, we get

Iε(t)e
2ε−λt−Iε(aελ)e2a= 2ε−λ

∫ t

aελ
Aε(σ)e2ε−λσdσ.

Since, for 0<s<λ−1/2,

Iε(aε
λ) =

∫
R
|η|2s

(
e−a(1−M̂λ,ε(η))−e−a

)2

dη=
e−2a

ε2s+1

∫
R
|ξ|2s

(
e

a

1+|ξ|λ −1
)2

dξ

=Cs,a
1

ε2s+1
<+∞,

(5.12)

for t≥a≥aελ we get

Iε(t) = Iε(aε
λ)e−2ε−λ(t−aελ) +2ε−λ

∫ t

aελ
Aε(σ)e−2ε−λ(t−σ) dσ. (5.13)

Thanks to estimate (5.11) we get∫ t

aελ
Aε(σ)e−2ε−λ(t−σ) dσ≤ C

ε2s+1

∫ t

aελ

e−2ε−λ(t−σ)

σβ(2s+1)
dσ. (5.14)

Integrating by parts∫ t

aελ

e−2ε−λ(t−σ)

σβ(2s+1)
dσ=

ελ

2

1

tβ(2s+1)
− ε

λ

2

e−2ε−λ(t−aελ)

aβ(2s+1)ελβ(2s+1)
+

ελ

2
β(2s+1)

∫ t

aελ

e−2ε−λ(t−σ)

σβ(2s+1)+1
dσ≤ ε

λ

2

1

tβ(2s+1)
+
ελ

2

β(2s+1)

aελ

∫ t

aελ

e−2ε−λ(t−σ)

σβ(2s+1)
dσ.

Let us choose a such that 1− β(2s+1)
2a >0 (a depends on s and β). We obtain∫ t

aελ

e−2ε−λ(t−σ)

σβ(2s+1)
dσ≤Cs,β

ελ

tβ(2s+1)
.

Getting back to (5.12), (5.13) and (5.14), we proved that there exists a constant
C=C(λ,s,β)>0 such that

Iε(t)≤C
1

ε2s+1

(
e−2tε−λ +

1

tβ(2s+1)

)
. (5.15)

Finally, by (5.9), (5.10) and (5.15), we get∥∥∥P̃λ,ε,reg(t)∥∥∥2

Ḣs
≤C (1+ t)(2s+1)/λ

ε2s+1

(
e−2tε−λ +

1

tβ(2s+1)

)
≤C 1

ε2s+1
(1+ t)(2s+1)(1/λ−β)

and denoting C2 =C∥∥∥P̃λ,ε,reg(t)∥∥∥
Ḣs
≤C2

1

εs+1/2
(1+ t)(s+1/2)(1/λ−β).
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6. Conclusions In this paper we studied an approximation to fractional dif-
fusion equations obtained by using the argument originally proposed for the linear
diffusion equation by Rosenau [28]. As it happens for the linear diffusion, the ap-
proximation coincides with a linear kinetic equation of Boltzmann type, in which
the Maxwellian background is now represented by a Linnik distribution [18, 19]. A
detailed analysis of the solution to this kinetic equation allows us to obtain various
interesting properties. Among others, it was interesting to discover that the solution
to the Rosenau approximation can be split into two parts, easily identified in terms
of their regularity: one singular, and the other regular. The former simply represents
a perturbation of mass zero, and it decays to zero exponentially both with respect to
time and to the small parameter ε characterizing the approximation. The latter is
shown to approach in time, for any fixed value of the parameter ε, the fundamental
solution to the fractional diffusion equation in strong sense. This allows us to conclude
that the Rosenau argument introduces in a natural way a consistent approximation
of fractional diffusion equations, which not only reproduces the limit phenomenon
at fixed time and for small values of the parameter ε, but also reproduces, apart of
rapidly decaying perturbations, the limit phenomenon for large times. Out of doubts,
these results could be fruitfully employed to construct new numerical approximations
to fractional diffusion equations.
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