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EXPLICIT VERSIONS OF THE PRIME IDEAL THEOREM FOR

DEDEKIND ZETA FUNCTIONS UNDER GRH

LOÏC GRENIÉ AND GIUSEPPE MOLTENI

Abstract. Let ψK be the Chebyshev function of a number field K. Under GRH we prove
an explicit upper bound for |ψK(x)−x| in terms of the degree and the discriminant of K. The
new bound improves significantly on previous known results.

1. Introduction

For a number field K we denote

nK its dimension,
∆K the absolute value of its discriminant,
r1 the number of its real places,
r2 the number of its imaginary places,
dK := r1+r2−1.

Moreover, throughout this paper p denotes a nonzero prime ideal of the integer ring OK and
Np its absolute norm. The von Mangoldt function ΛK is defined on the set of ideals of OK
as ΛK(I) := log Np if I = pm for some p and m ∈ N>0, and is zero otherwise. Moreover, the
function πK and the Chebyshev function ψK are defined as

πK(x) := ]{p : Np ≤ x}
and

ψK(x) :=
∑
I/OK

0<NI≤x

ΛK(I) =
∑
p,m

Npm≤x

log Np.

The original prime number theorem states that

πQ(x) ∼ x

log x
as x→∞

and was independently proved in 1896 by Hadamard and de la Vallée–Poussin, both following
the ideas of Riemann. By the work of Chebyshev this claim is equivalent to

ψQ(x) ∼ x as x→∞.

The remainder in these asymptotic behaviors is strictly controlled by the distribution of the
nontrivial zeros of the Riemann zeta function. This was first suggested by Riemann himself,
and then confirmed by de la Vallée–Poussin in 1899, when he deduced the now standard
estimate for the remainder from the classical zero free region for the Riemann zeta function.
Actually, the Riemann Hypothesis

ζ(s) 6= 0 ∀Re(s) > 1/2
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2 L. GRENIÉ AND G. MOLTENI

is equivalent to the statements ∣∣∣πQ(x)−
∫ x

2

du

log u

∣∣∣� √x log x

and

|ψQ(x)−x| �
√
x log2 x,

as proved by von Koch in the first years of the twentieth century. A quantitative version of
the von Koch result was proved by Schoenfeld [19] in 1976: as a consequence of his previous
work in collaboration with Rosser [18] he showed that

(1.1) |ψQ(x)−x| ≤ 1

8π

√
x log2 x ∀x ≥ 73.2.

The arguments of Hadamard and de la Vallée–Poussin were quickly adapted by Landau to
prove analogous results for a generic number field K, and in 1977 Lagarias and Odlyzko [5]
modified the argument to explore the dependence of the remainder with respect to the param-
eters ∆K and nK. As a part of a more general result on Chebotarev’s theorem, they proved
that if ζK satisfies the Generalized Riemann Hypothesis

ζK(s) 6= 0 ∀Re(s) > 1/2,

then

|ψK(x)−x| �
√
x[log x log ∆K+nK log2 x],

where the implicit constant is independent of K. Oesterlé repeated their argument, aiming
to produce an explicit value of the absolute constants involved, and he proved that

(1.2) |ψK(x)−x| ≤
√
x
[( log x

π
+2
)

log ∆K+
( log2 x

2π
+2
)
nK

]
∀x ≥ 1

under GRH. This result was announced in [14], but unfortunately its proof has never appeared.
Very recently Winckler [22, Th. 8.1] has also produced an explicit version of Lagarias and
Odlyzko’s work, and proved a result similar to (1.2), but with 23

3 and 863
31 as coefficients of

logs in the log ∆K and nK parts, respectively.

In this paper we combine a new method to estimate convergent sums on zeros (see Lemma 3.1),
a very recent result of Trudgian [21] on the number of zeros in the critical strip and up to
±T , and an idea of Goldston [1], to deduce the following general result.

Theorem 1.1. (GRH) For every x ≥ 3 and T ≥ 5 we have:

(1.3) |ψK(x)−x| ≤ F (x, T ) log ∆K+G(x, T )nK+H(x, T )

with

F (x, T ) =

√
x

π

[
log
( T

2π

)
+6.01+

5.84

T
+

5.52

T 2

]
+1.02,(1.4)

G(x, T ) =

√
x

π

[1

2
log2

( T
2π

)
+
(

2+
5.84

T
+

5.52

T 2

)
log
( T

2π

)
−1.41+

29.04

T
+

31.46

T 2

]
−2.10,

H(x, T ) =
x

T
+

√
x

π

[
25.57+

25.97

T
+

28.57

T 2

]
+εK(x, T )+8.35+1.22

δnK≤2

x
,

where εK(x, T ) := max
(
0, dK log x−1.44nK

√
x
T

)
and δ is the Kronecker symbol.
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Setting T to a constant one gets a bound of Chebyshev kind, with a main term independent
of the parameters of the field; as a consequence the resulting bound is very strong when x is
small with respect to the degree or the discriminant.
Setting T = x/6 one gets (1.2), for x ≥ 105 for any non-rational field. By taking T = 8, the
range can be extended for x ∈ [20, 105]: it follows immediately for nK = 2 and ∆K ≥ 767842,
nK = 3 and ∆K ≥ 5700 or nK ≥ 4; the remaining cases for quadratic and cubic fields can be
checked by explicit computations.
Comparing the main increasing term

√
x log2

(
T
2π

)
with the main decreasing term x

T we are

led to use T (x) = c
√
x

log x for suitable values of c. In fact, combining different choices for c we

get the following result, which improves significantly on (1.2).

Corollary 1.2. (GRH) Suppose x ≥ 100. Then

(1.5) |ψK(x)−x| ≤
√
x
[( log x

2π
+2
)

log ∆K+
( log2 x

8π
+2
)
nK

]
.

The range x ≥ 100 can be extended for fields of large degree, in particular one has x ≥ 24
when nK ≥ 8, x ≥ 29 for nK = 7, x ≥ 43 for nK = 6 and x ≥ 72 for nK = 5. Only small
improvements are possible for cubic and quadratic fields with this method, and only at the
cost of a very large quantity of numerical computations.

A different choice of c yields even better results for large x.

Corollary 1.3. (GRH) For every x ≥ 3, we have

|ψK(x)−x| ≤
√
x
[( 1

2π
log
(18.8x

log2 x

)
+2.3

)
log ∆K+

( 1

8π
log2

(18.8x

log2 x

)
+1.3

)
nK+0.3 log x+14.6

]
.

Moreover, if x ≥ 2000, then

|ψK(x)−x| ≤
√
x
[( 1

2π
log
( x

log2 x

)
+1.8

)
log ∆K+

( 1

8π
log2

( x

log2 x

)
+1.1

)
nK+1.2 log x+10.2

]
.

The first bound is stronger than (1.2) for x ≥ 1700 if K 6= Q (but x ≥ 280 suffices when
nK ≥ 3 and x ≥ 115 when nK ≥ 4), and stronger than (1.5) for x ≥ 1.4·1016 (but x ≥ 5.6·1010

suffices when nK ≥ 3 and x ≥ 2.2·108 when nK ≥ 4).
The second bound is always stronger than (1.2) when K 6= Q and stronger than (1.5) for
x ≥ 1.4·1032 (but x ≥ 9.3·1010 suffices when nK ≥ 3 and x ≥ 6.3·105 when nK ≥ 4; the bad
behavior for quadratic fields comes from the term 1.2 log x). It is also stronger than (1.1), but
only for extremely large x (actually x ≥ 3·10871). This is a consequence of the fact that our
computations have not been optimized for Q: actually this is possible in several steps and we
believe that doing so the method should produce a better bound.

From Corollary 1.3 one quickly deduces the following explicit bound for the remainder of the
πK(x) function.

Corollary 1.4. (GRH) For x ≥ x̄ ≥ 3 we have∣∣∣πK(x)−πK(x̄)−
∫ x

x̄

du

log u

∣∣∣
≤
√
x
[( 1

2π
− log log x

π log x
+

5.8

log x

)
log ∆K+

( 1

8π
− log log x

2π log x
+

3

log x

)
nK log x+0.3+

13.3

log x

]
.
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We have made available at the address:
http://users.mat.unimi.it/users/molteni/research/psi_GRH/psi_GRH_data.gp

a file containing the PARI/GP [16] code we have used to compute the constants in this article.

Acknowledgments. We wish to thank Alberto Perelli, for his valuable remarks and com-
ments and Michael Rubinstein, who provided us the necessary zeros for a lot of Dirichlet
L-functions we have used to check the strength of our Lemma 3.1. A special thank to Tim-
othy Trudgian, who helped us with illuminating discussions on his work. At last, we thank
the referee for her/his suggestions.

2. Preliminary inequalities

For Re(s) > 1 we have

−
ζ ′K
ζK

(s) =
∑
p

∞∑
m=1

log(Np)(Np)−ms,

which in terms of standard Dirichlet series reads

−
ζ ′K
ζK

(s) =
∞∑
n=1

Λ̃K(n)n−s, with Λ̃K(n) :=


∑

p|p, fp|k

log Np if n = pk

0 otherwise,

where fp is the residual degree of p. The definition of Λ̃K shows that Λ̃K(n) ≤ nKΛ(n) for
every integer n.
Let

(2.1) ΓK(s) :=
[
π−

s+1
2 Γ
(s+1

2

)]r2[
π−

s
2 Γ
(s

2

)]r1+r2

and

(2.2) ξK(s) := s(s−1)∆
s/2
K ΓK(s)ζK(s),

then the functional equation for ζK reads

(2.3) ξK(1−s) = ξK(s).

Moreover, since ξK(s) is an entire function of order 1 and does not vanish at s = 0, we have

(2.4) ξK(s) = eAK+BKs
∏
ρ

(
1−s

ρ

)
es/ρ

for some constants AK and BK, where ρ runs through all the zeros of ξK(s), which are precisely
those zeros ρ = β+iγ of ζK(s) for which 0 < β < 1 and are the so-called “nontrivial zeros”
of ζK(s). From now on ρ will denote a nontrivial zero of ζK(s). We recall that the zeros are
symmetric with respect to the real axis, as a consequence of the fact that ζK(s) is real for
s ∈ R.
Differentiating (2.2) and (2.4) logarithmically we obtain the identity

(2.5)
ζ ′K
ζK

(s) = BK+
∑
ρ

( 1

s−ρ
+

1

ρ

)
−1

2
log ∆K−

[1

s
+

1

s−1

]
−

Γ′K
ΓK

(s),

valid identically in the complex variable s.
Stark [20, Lemma 1] proved that the functional equation (2.3) implies that BK = −

∑
ρ ρ
−1

http://users.mat.unimi.it/users/molteni/research/psi_GRH/psi_GRH_data.gp
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(see also [12] and [6, Ch. XVII, Th. 3.2]), and that once this information is available one
can use (2.5) and the definition of the gamma factor in (2.1) to prove that the function
fK(s) := Re

∑
ρ

2
s−ρ can be exactly computed via the alternative representation

(2.6) fK(s) = 2Re
ζ ′K
ζK

(s)+log
∆K
πnK

+Re
(2

s
+

2

s−1

)
+(r1+r2)Re

Γ′

Γ

(s
2

)
+r2Re

Γ′

Γ

(s+1

2

)
,

where
∑

ρ ρ
−1 and

∑
ρ(s−ρ)−1 must be intended as symmetrical sums.

Using (2.2), (2.3) and (2.5) one sees that

(2.7)

ζ ′K
ζK

(s) =
r1+r2−1

s
+rK+O(s) as s→ 0

ζ ′K
ζK

(s) =
r2

s+1
+r′K+O(s+1) as s→ −1,

where

rK = BK+1−1

2
log

∆K
πnK
−r1+r2

2

Γ′

Γ
(1)−r2

2

Γ′

Γ

(1

2

)
r′K = −

ζ ′K
ζK

(2)−log
∆K
πnK
−nK

2

Γ′

Γ

(3

2

)
−nK

2

Γ′

Γ
(1).

In order to prove our result we need the following explicit bound for rK

(2.8) |rK| ≤ 1.02 log ∆K−2.10nK+8.35

which is Lemma 3.2 in [2].
At last, we need two elementary lemmas. The first one is an optimized version of a lemma
due to Littlewood [7].

Lemma 2.1. If x ≥ −1 and 1 ≤ Re(ν) ≤ 2, then

|(1+x)ν−1−νx| ≤
(1

2
+
( 1

Re(ν)
−1

2

)
max(0,−x)

)
|ν(ν−1)x2|.

Proof. The statement is obvious for ν = 1, ν = 2, x = −1 and x = 0, we thus suppose we are
in another case. From the equality f(x)−f(0)−f ′(0)x =

∫ x
0

∫ u
0 f
′′(v) dv du one gets

(2.9)
(1+x)ν−1−νx

ν(ν−1)
=

∫ x

0

∫ u

0
(1+v)ν−2 dv du.

Let x ≥ 0, then |1+v|Re(ν)−2 ≤ 1 thus

|(1+x)ν−1−νx|
|ν(ν−1)|

≤
∫ x

0

∫ u

0
dv du =

x2

2
.

Let x ∈ (−1, 0). Then

(2.10)
Re(ν)(Re(ν)−1)

x2

∣∣∣ ∫ x

0

∣∣∣ ∫ u

0
(1+v)Re(ν)−2 dv

∣∣∣du∣∣∣ =
(1+x)Re(ν)−1−Re(ν)x

x2
.

The right-hand side may be written as
∑∞

k=0

(Re(ν)
k+2

)
xk and its second derivative as

∑∞
k=0

(Re(ν)
k+4

)
(k+2)(k+1)xk. When x ∈ (−1, 0) each term of the series is positive; this proves that the
right-hand side in (2.10) is convex in (−1, 0) so that its graph is below the line connecting its
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points with x = −1 and x = 0. Said line has equation y = (1
2+(1

2−
1

Re(ν))x)Re(ν)(Re(ν)−1),

thus (2.10) gives ∣∣∣ ∫ x

0

∣∣∣ ∫ u

0
(1+v)Re(ν)−2 dv

∣∣∣ du∣∣∣ ≤ (1

2
+
(1

2
− 1

Re(ν)

)
x
)
x2

for Re(ν) > 1 immediately and for Re(ν) ≥ 1 by continuity. We get the claim comparing it
with (2.9). �

Lemma 2.2. Let

f1(x) :=
∞∑
r=1

x1−2r

2r(2r−1)
, f2(x) :=

∞∑
r=2

x2−2r

(2r−1)(2r−2)
,

Rr1,r2(x) := −(r1+r2−1)(x log x−x)+r2(log x+1)−(r1+r2)f1(x)−r2f2(x).

Let x ≥ 3, then

−(r1+r2−1) log x ≤ R′r1,r2(x) ≤ 1.22
δnK≤2

x
.

Proof. We have

f1(x) =
1

2

[
x log(1−x−2)+log

(1+x−1

1−x−1

)]
, f2(x) = 1−1

2

[
log(1−x−2)+x log

(1+x−1

1−x−1

)]
,

and

R′r1,r2(x) = −(r1+r2−1) log x−1

2
(r1+r2) log(1−x−2)−1

2
r2 log

(1−x−1

1+x−1

)
= −(r1+r2−1) log x−r1

2
log(1−x−2)−r2 log(1−x−1);

this equality already proves the lower bound. The upper bound immediately follows for the
cases where r1+r2 = 1. Suppose r1+r2 ≥ 2, writing R′r1,r2(x) as

R′r1,r2(x) = log x−r1

2
log(x2−1)−r2 log(x−1),

then for x > 1 one gets

R′r1,r2(x) ≤ log x−(r1+r2) log(x−1) ≤ log x−2 log(x−1) ≤ 0

where the last inequality is true for x ≥ 3+
√

5
2 = 2.61 . . . �

3. Upper bounds

For the proof of the theorem we need bounds for three sums on nontrivial zeros, namely
for ∑

|γ|≤T

1,
∑
|γ|≥T

1

|ρ|2
and

∑
|γ|≤T

1

|ρ|
.

The first sum is simply the number NK(T ) of nontrivial zeros in the rectangle 0 < Re(s) < 1,
|Im(s)| ≤ T . It has been explicitly estimated by Trudgian [21] in a work improving Kadiri–
Ng’s paper [4]. We estimate the second sum by partial summation using this result. For the
last one a simple partial summation is not possible since both Kadiri–Ng’s and Trudgian’s
results are proved only for T ≥ 1 and improve when the range is further restricted to T ≥ T0

with a T0 ≥ 1. As a consequence we bound the part of the third sum coming from the zeros far
enough of the real axis by partial summation, and the remaining with a different technique.
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In fact, in [2] we have shown a new method to bound converging sums on zeros under GRH.
The method works very well but depends on several parameters whose values are fixed via a
trial and error approach. Thus, in order to apply it we need to fix a value for T0, and the final
result will only be valid in the range T ≥ T0. After several tests the choice T0 = 5 seemed
to represent a good compromise between the need of having a large T0 (to take advantage of
the better estimante in Trudgian’s result) and a small T0 (to make the final theorem valid in
a larger range). Our result is as follows.

Lemma 3.1. (GRH) One has∑
|γ|≤5

1

|ρ|
≤ 1.02 log ∆K−1.63nK+7.04.

Proof. We apply the same technique we have already used for Lemma 4.1 in [2]. Thus,
let f(s, γ) := 4(2s−1)/((2s−1)2+4γ2), so that fK(s) =

∑
γ f(s, γ), and let g(γ) := 2(1+

4γ2)−1/2χ
[−5,5](γ), so that

∑
|γ|≤5 |ρ|−1 =

∑
γ g(γ). We look for a finite linear combination of

f(s, γ) at suitable points sj such that

(3.1) g(γ) ≤ F (γ) :=
∑
j

ajf(sj , γ) ∀γ ∈ R,

so that

(3.2)
∑
|γ|≤5

1

|ρ|
≤
∑
j

ajfK(sj);

once (3.2) is proved, we recover a bound for the sum on zeros recalling the identity (2.6).
According to this approach the final coefficient of log ∆K will be the sum of all aj , thus we
are interested into linear combinations for which this sum is as small as possible. We set
sj = 1+j/2 with j = 1, . . . , 2q+3 for a suitable integer q. Let Υ ⊂ (0,∞) be a set with q
numbers. We require:

(1) F (γ) = g(γ) for all γ ∈ Υ∪{0, 5},
(2) F ′(γ) = g′(γ) for all γ ∈ Υ,
(3) limγ→∞ γ

2F (γ) = limγ→∞ γ
2g(γ) = 0.

This produces a set of 2q+3 linear equations for the 2q+3 constants aj , and we hope that these
satisfy (3.1) for every γ. We choose q := 22 and Υ := {0.6, 1, 1.9, 2.9, 3.9, 10, 13, 14, 15, 16, 17,
18, 19, 20, 30, 40, 50, 100, 103, 104, 105, 106}. Finally, with an abuse of notation we take for aj
the solution of the system, rounded above to 10−7: this produces the numbers in Table 4.
Then, using Sturm’s algorithm, we prove that the values found actually give an upper bound
for g, so that (3.2) holds with such aj ’s. These constants verify

(3.3)

∑
j

aj = 1.011 . . . ,

∑
j

aj
Γ′

Γ

(sj
2

)
≤ −1.13,

∑
j

aj

( 2

sj
+

2

sj−1

)
≤ 7.04,

∑
j

aj
Γ′

Γ

(sj+1

2

)
≤ −0.31.

We write
∑

j aj
ζ′K
ζK

(sj) as

−
∑
n

Λ̃K(n)S(n) with S(n) :=
∑
j

aj
nsj

.
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We check numerically that S(n) > 0 for n ≤ 60975 and that it is negative for 60975 < n ≤
128000. Then, since the sign of aj alternates, we can easily prove that each pair a1

ns1 + a2
ns2 ,

. . . ,
a2q+1

ns2q+1 +
a2q+2

ns2q+2 and the last term
a2q+3

ns2q+3 are negative for every n ≥ 128000, thus∑
j

aj
ζ ′K
ζK

(sj) = −
∑
n

Λ̃K(n)S(n) ≤ −nK
∑

n>60975

Λ(n)S(n)(3.4)

= −nK
[ ∞∑
n=1

Λ(n)S(n)−
∑

n≤60975

Λ(n)S(n)
]

= nK

[∑
j

aj
ζ ′

ζ
(sj)+

∑
n≤60975

Λ(n)S(n)
]
≤ 0.12nK.

The result now follows from (2.6), and (3.2–3.4). �

Now we can bound the sums.

First sum. Trudgian [21] has proved that

(3.5)
∣∣∣NK(T )−T

π
log
(( T

2πe

)nK
∆K

)∣∣∣ ≤ 1

π
(c1(η)WK(T )+c2(η)nK+c3(η)) ∀T ≥ T0 ≥ 1,

where WK(T ) := log ∆K+nK log(T/2π), c1(η) = πD1, c2(η) = π(D2+D1 log 2π) and c3(η) =
πD3 and the Dj are Trudgian’s constants which depend on T0, η ∈ (0, 1

2 ] and on two other
parameters p and r. We thus have

NK(T ) ≤ T

π

(
1+

c1(η)

T

)
WK(T )−T

π

(
1−c2(η)

T

)
nK+

c3(η)

π
∀T ≥ T0.

We fix η = 1
2 , p = −η = −1

2 (this choice differs from the one in [21]) and r = 1+η−p
1/2+η (as

in [21]), so that actually r = 2; recall that T0 = 5. Following Trudjan’s argument we find
D1 = 0.459 . . ., D2 = 1.996 . . ., D3 = 2.754 . . ., hence

(3.6) NK(T ) ≤ T

π

(
1+

1.45

T

)
WK(T )−T

π

(
1−8.93

T

)
nK+

8.66

π
∀T ≥ 5.

Second sum. We proceed by partial summation. Let Formula (3.5) for NK(T ) be written
as A(T )+R(T ), respectively the asymptotic and the remainder term. Then∑

|γ|≥T

1

|ρ|2
=
∑
|γ|≥T

1

1/4+γ2
≤
∫ +∞

T

dA(γ)

1/4+γ2
+

R(T )

1/4+T 2
+

∫ +∞

T

2γR(γ) dγ

(1/4+γ2)2

=

∫ +∞

T

dA(γ)

1/4+γ2
+

2R(T )

1/4+T 2
+

∫ +∞

T

R′(γ) dγ

1/4+γ2

=

∫ +∞

T

dA(γ)

1/4+γ2
+

2R(T )

1/4+T 2
+
c1(η)

π
nK

∫ +∞

T

γ−1 dγ

1/4+γ2

≤
∫ +∞

T

dA(γ)

1/4+γ2
+

2R(T )

T 2
+
c1(η)

2πT 2
nK.

Using ∫ +∞

T

dγ

1/4+γ2
= 2 atan

( 1

2T

)
which is ≤ 1

T
, and ≥ 1

T
−1/12

T 3
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T

log γ

1/4+γ2
dγ ≤

∫ +∞

T
γ−2 log γ dγ =

log(eT )

T
,

one has ∫ +∞

T

dA(γ)

1/4+γ2
≤ WK(T )

πT
+
(

1+
log 2π

12T 2

)nK
πT

.

Thus∑
|γ|≥T

π

|ρ|2
≤WK(T )

T
+
(

1+
log 2π

12T 2

)nK
T

+
2

T 2

[
c1(η) log ∆K+

(
c1(η) log

( T
2π

)
+c2(η)+

c1(η)

4

)
nK+c3(η)

]
=
(

1+
2c1(η)

T

)WK(T )

T
+
(

1+
log 2π

12T 2

)nK
T

+
(

2c2(η)+
c1(η)

2

)nK
T 2

+
2c3(η)

T 2

hence

(3.7)
∑
|γ|≥T

π

|ρ|2
≤
(

1+
2.89

T

)WK(T )

T
+
(

1+
18.61

T

)nK
T

+
17.31

T 2
∀T ≥ 5.

Third sum. We proceed again by partial summation, plus the contribution of Lemma 3.1
to bound the part of the sum coming from low-lying zeros. We have∑

|γ|≤T

1

|ρ|
=
∑
|γ|≤T

1

(1/4+γ2)1/2
≤
∑
|γ|≤5

1

|ρ|
+
∑

5≤|γ|≤T

1

(1/4+γ2)1/2

≤
∑
|γ|≤5

1

|ρ|
+

∫ T

5

dA(γ)

(1/4+γ2)1/2
+

2R(5)√
101

+
R(T )

(1/4+T 2)1/2
+

∫ T

5

γR(γ) dγ

(1/4+γ2)3/2

=
∑
|γ|≤5

1

|ρ|
+

∫ T

5

dA(γ)

(1/4+γ2)1/2
+

4R(5)√
101

+

∫ T

5

R′(γ) dγ

(1/4+γ2)1/2

=
∑
|γ|≤5

1

|ρ|
+

4R(5)√
101

+

∫ T

5

dA(γ)

(1/4+γ2)1/2
+
c1(η)

π
nK

∫ T

5

γ−1 dγ

(1/4+γ2)1/2

≤
∑
|γ|≤5

1

|ρ|
+

4R(5)√
101

+0.2
c1(η)

π
nK+

∫ T

5

dA(γ)

(1/4+γ2)1/2
.

Using ∫ T

5

dγ

(1/4+γ2)1/2
= log

(2T+
√

4T 2+1

10+
√

101

)
which is ≤ log T−log 5 and ≥ log T−1.62 for T ≥ 5, and∫ T

5

log γ dγ

(1/4+γ2)1/2
≤
∫ T

5

log γ

γ
dγ =

log2 T

2
− log2 5

2
,

one has ∫ T

5

dA(γ)

(1/4+γ2)1/2
≤
(

log
( T

2π

)
+0.23

) log ∆K
π

+
(

log2
( T

2π

)
−0.01

)nK
2π

thus recalling Lemma 3.1 we get∑
|γ|≤T

π

|ρ|
≤
(

log
( T

2π

)
+0.23

)
log ∆K+

nK
2

(
log2

( T
2π

)
−0.01

)
+
∑
|γ|≤5

π

|ρ|
+

4πR(5)√
101

+0.2c1(η)nK
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≤
(

log
( T

2π

)
+0.23

)
log ∆K+

nK
2

(
log2

( T
2π

)
−0.01

)
+π(1.02 log ∆K−1.63nK+7.04)

+
4√
101

(
c1(η)(log ∆K+nK log

( 5

2π

)
)+c2(η)nK+c3(η)

)
+0.2c1(η)nK

=
(

log
( T

2π

)
+0.23+1.02π+

4√
101

c1(η)
)

log ∆K+7.04π+
4√
101

c3(η)

+
(1

2
log2

( T
2π

)
−1

2
0.01−1.63π+

4 log(5/2π)√
101

c1(η)+
4√
101

c2(η)+0.2c1(η)
)
nK

hence

(3.8)
∑
ρ

|γ|≤T

π

|ρ|
≤
(

log
( T

2π

)
+4.01

)
log ∆K+

(1

2
log2

( T
2π

)
−1.41

)
nK+25.57 ∀T ≥ 5.

4. Proofs

Proof of Theorem 1.1. Let

ψ
(1)
K (x) :=

∫ x

0
ψK(t) dt.

As observed by Goldston [1], since ψK(x) ≥ 0, one has the double inequality

(4.1)
ψK(x) ≤

ψ
(1)
K (x+h)−ψ(1)

K (x)

h
if h > 0,

ψK(x) ≥
ψ

(1)
K (x+h)−ψ(1)

K (x)

h
if −x < h < 0.

As in [3, Ch. IV Sec. 4, p. 73] and [5, Sec. 5], considering the integral representation

ψ
(1)
K (x) = − 1

2πi

∫ 2+i∞

2−i∞

ζ ′K
ζK

(s)
xs+1

s(s+1)
ds

one gets for every x > 1 the identity

ψ
(1)
K (x) =

x2

2
−
∑
ρ

xρ+1

ρ(ρ+1)
−xrK+r′K+Rr1,r2(x)

where Rr1,r2(x) is defined in Lemma 2.2 and rK and r′K are defined in (2.7). Thus

ψ
(1)
K (x+h)−ψ(1)

K (x)

h
= x+

h

2
−
∑
ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−rK+R′r1,r2(η)

for a suitable η in the interval between x and x+h. Hence, for every x ≥ 3 and h 6= 0 such
that x+h > 1, Lemma 2.2 gives

(4.2) −dK log x ≤
ψ

(1)
K (x+h)−ψ(1)

K (x)

h
−
(
x+

h

2
−
∑
ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−rK

)
≤ 1.22

δnK≤2

x
.

We will now split the sum on the zeros in two parts: above and below T . The technique is the
same for h > 0 and h < 0 but the constants are slightly different, we thus proceed separately
for the two cases.
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Suppose first h > 0. Under GRH we have∣∣∣ ∑
|γ|≥T

(x+h)ρ+1−xρ+1

hρ(ρ+1)

∣∣∣ ≤ ∑
|γ|≥T

x
3
2

(
1+h

x

) 3
2 +1

h|ρ(ρ+1)|
≤ Ax

3
2

h

∑
|γ|≥T

1

|ρ2|
,

with A := 1+
(
1+h

x

) 3
2 , thus from (3.7) and for T ≥ 5 we get∣∣∣ ∑

|γ|≥T

(x+h)ρ+1−xρ+1

hρ(ρ+1)

∣∣∣ ≤ Ax
3
2

πTh

((
1+

2.89

T

)
WK(T )+

(
1+

18.61

T

)
nK+

17.31

T

)
.

We rewrite ∑
|γ|<T

(x+h)ρ+1−xρ+1

hρ(ρ+1)
=
∑
|γ|<T

xρ

ρ
+
∑
|γ|<T

(x+h)ρ+1−xρ+1−h(ρ+1)xρ

hρ(ρ+1)

=
∑
|γ|<T

xρ

ρ
+hx−1/2

∑
|γ|<T

wρx
iγ

with

wρ :=

(
1+h

x

)ρ+1−1−(ρ+1)hx

ρ(ρ+1)
(
h
x

)2 .

From Lemma 2.1 we know that |wρ| ≤ 1
2 so that from (3.6) we deduce∣∣∣ ∑

|γ|<T

wρx
iγ
∣∣∣ ≤ 1

2π

[
(T+1.45)WK(T )−(T−8.93)nK+8.66

]
for every T ≥ 5, giving∣∣∣∑

ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ ≤ Ax
√
x

πTh

[(
1+

2.89

T

)
WK(T )+

(
1+

18.61

T

)
nK+

17.31

T

]
+

Th

2π
√
x

[(
1+

1.45

T

)
WK(T )−

(
1−8.93

T

)
nK+

8.66

T

]
.

The comparison of the main terms suggests taking h = 2x
T ; this brings A = 1+

(
1+ 2

T

)3/2 ≤
2+ 3

T + 3
2T 2 and

π√
x

∣∣∣∑
ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ ≤ (1+
3

2T
+

3

4T 2

)[(
1+

2.89

T

)
WK(T )+

(
1+

18.61

T

)
nK+

17.31

T

]
+
[(

1+
1.45

T

)
WK(T )−

(
1−8.93

T

)
nK+

8.66

T

]
.

After some simplifications we thus have for T ≥ 5

(4.3)
π√
x

∣∣∣∑
ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ ≤ [2+
5.84

T
+

5.52

T 2

]
WK(T )

+
[29.04

T
+

31.46

T 2

]
nK+

25.97

T
+

28.57

T 2
.
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For h < 0 the computation is similar with only a few differences. We now have A ≤ 2 and

|wρ| ≤ 1
2+ |h|6x from Lemma 2.1, thus∣∣∣∑

ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ ≤ 2x
√
x

πT |h|

[(
1+

2.89

T

)
WK(T )+

(
1+

18.61

T

)
nK+

17.31

T

]
+
T |h|

2π
√
x

(
1+
|h|
3x

)[(
1+

1.45

T

)
WK(T )−

(
1−8.93

T

)
nK+

8.66

T

]
.

The situation is the same, thus we similarly take h = −2x
T (we then have x+h > 1 if T ≥ 5),

producing

π√
x

∣∣∣∑
ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−
∑
|γ|<T

xρ

ρ

∣∣∣ ≤ [(1+
2.89

T

)
WK(T )+

(
1+

18.61

T

)
nK+

17.31

T

]
+
(

1+
2

3T

)[(
1+

1.45

T

)
WK(T )−

(
1−8.93

T

)
nK+

8.66

T

]
and after some simplifications we get

(4.4)
π√
x

∣∣∣∑
ρ

(x+h)ρ+1−xρ+1

hρ(ρ+1)
−
∑
|γ|<T

xρ

ρ

∣∣∣
≤
[
2+

5.01

T
+

0.97

T 2

]
WK(T )+

[26.88

T
+

5.96

T 2

]
nK+

25.97

T
+

5.78

T 2
.

Let MW,±(T ), Mn,±(T ) and Mc,±(T ) be the functions of T such that the right-hand side of
(4.3) and (4.4) respectively are

MW,+(T )WK(T )+Mn,+(T )nK+Mc,+(T )

MW,−(T )WK(T )+Mn,−(T )nK+Mc,−(T ),

and their differences let be denoted as

DW (T ) := MW,+(T )−MW,−(T ) =
0.83

T
+

4.55

T 2

Dn(T ) := Mn,+(T )−Mn,−(T ) =
2.16

T
+

25.50

T 2

Dc(T ) := Mc,+(T )−Mc,−(T ) =
22.79

T 2
.

By (4.1–4.4) we have

(4.5)
∣∣∣ψK(x)−x−

∑
|γ|<T

xρ

ρ

∣∣∣ ≤ √x
π

(
MW,+(T )WK(T )+Mn,+(T )nK+Mc,+(T )

)
+
x

T
+|rK|+1.22

δnK≤2

x
+max

(
0, dK log x−

√
x

π

(
DW (T )WK(T )+Dn(T )nK+Dc(T )

))
.

The last term is bounded by εK(x, T ), since Dc(T ) is positive and 1
nK
DW (T )WK(T )+Dn(T ) ≥

1.44π/T when T ≥ 5. Moreover, by (3.8) we have

(4.6)
∣∣∣ ∑

ρ
|γ|<T

xρ

ρ

∣∣∣ ≤ √x
π

[(
log
( T

2π

)
+4.01

)
log ∆K+

(1

2
log2

( T
2π

)
−1.41

)
nK+25.57

]
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for T ≥ 5, thus the claim follows from (4.5), (4.6) and the upper bound for |rK| in (2.8). �

Proof of Corollary 1.2. When K = Q the claim is weaker than (1.1), thus from now on we
can assume that nK ≥ 2. Let the claim in the corollary be written as

|ψK(x)−x| ≤ Fc,∆(x) log ∆K+Gc,n(x)nK.

We prove that for every field the bound coming from the theorem is smaller than the one in
the corollary, i.e. that

(4.7) (Fc,∆(x)−F (x, T )) log ∆K+(Gc,n(x)−G(x, T ))nK−H(x, T ) ≥ 0

for every x ≥ 100. In order to prove it we need a choice for T = T (x): we set T (x) = c
√
x

log x

with c ∈ [4.8, 8] (in this way T ≥ 5 for every x ≥ 36). An elementary argument proves that
the left-hand side in (4.7) is

√
x times a function which increases in x when x ≥ 100.

Proof. Dividing the left-hand side of (4.7) by
√
x
π we get[1

2
log x−

[
log
( T

2π

)
+6.01+

5.84

T
+

5.52

T 2

]
+

0.98π√
x

]
log ∆K

+
[1

8
log2 x−

[1

2
log2

( T
2π

)
+
(

2+
5.84

T
+

5.52

T 2

)
log
( T

2π

)
−1.41+

29.04

T
+

31.46

T 2

]
+

4.10π√
x
− π

nK
√
x
H(x, T )

]
nK

whose derivative is[ 1

2x
−
[

log
( T

2π

)
+6.01+

5.84

T
+

5.52

T 2

]′
−0.49π

x
√
x

]
log ∆K

+
[ log x

4x
−
[1

2
log2

( T
2π

)
+
(

2+
5.84

T
+

5.52

T 2

)
log
( T

2π

)
−1.41+

29.04

T
+

31.46

T 2

]′
−2.05π

x
√
x
−
( π
nK

H(x, T )√
x

)′]
nK.

Since T ′ > 0 for x ≥ e2, the function − log(T/2π)
T 2 is increasing for

√
x

log x ≥
2π
√
e

c , and since

c ∈ [4.8, 8], it is satisfied for every x ≥ 100. Moreover,

−πεK(x, T )

nK
√
x

= −πmax
(

0,
dK
nK
−1.44

c

) log x√
x

increases for x ≥ e2 for every combination of dK, nK and c. Thus, removing some increasing
terms it is sufficient to prove that[ 1

2x
−
(

log
( T

2π

))′
−
(5.84

T

)′
−0.49π

x
√
x

]
log ∆K+

[ log x

4x
−1

2

(
log2

(e2T
2π

))′
−
( π
nK

√
x

T

)′
−5.84

( 1

T
log
( T

2π

))′
−
(29.04

T

)′
−2.05π

x
√
x

]
nK ≥ 0

which after some computations becomes

[ 2

log x
+

5.84

c

log x−2√
x
−0.98π√

x

]
log ∆K

+
[
1− 2π

cnK
−log

( ce2

2π log x

)(
1− 2

log x

)
+

5.84

c
√
x

log
( c

√
x

2πe log x

)
(log x−2)+

29.04

c

log x−2√
x
−4.10π√

x

]
nK ≥ 0.

Recalling the restriction c ∈ [4.8, 8], one proves that both the coefficient of log ∆K and of nK
are positive for all x ≥ 12. �
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We further notice that the coefficients of log ∆K and of nK in (4.7) are positive when
x ≥ 100: in fact they can be written as

√
x times a monotonous function of x (repeating the

previous argument, this time without the contribution of H(x, T )), and their value in x = 100
is positive for every c ∈ [4.8, 8]. Now we split the argument according to the value of nK.

nK ≥ 8. We are assuming GRH, so log ∆K ≥ nK log(11.916)−5.8507 (see [8–11,13] and entry
b = 1.6 of Table 3 in [9]). Thus we can prove the claim by proving that

(Fc,∆(x)−F (x, T ))(nK log(11.916)−5.8507)+(Gc,n(x)−G(x, T ))nK−H(x, T ) ≥ 0,

and since the coefficient of nK is positive, it is sufficient to prove it for nK = 8. We set c = 8.
We have verified that the left-hand side is

√
x times an increasing function (for x ≥ 100),

thus the inequality can be proved for every x ≥ 100 simply by testing its value in x = 100.

nK = 5, 6 and 7. We repeat the previous argument, but now with the minimal discriminants
which are 1609, 9747 and 184607, respectively (see [13, Table 1]).

2 ≤ nK ≤ 4. For every such degree one checks that (4.7) holds true when ∆K > ∆K where
∆K is in Table 1 (by monotonicity in x it is sufficient to check the claim for x = 100); we
adjust the parameter c to get a smaller ∆K.

Table 1. Minimal discriminants ∆K for (4.7).

r2\nK 2 (c = 4.8) 3 (c = 5.1) 4 (c = 6)

0 172921407 1350275 10311
1 103995324 369421 2584
2 648

This proves the claim for all fields but those with nK ≤ 4 and ∆K ≤ ∆K. Actually, all fields
with small degree and small discriminants are known [15] (for quadratic fields we use the
fundamental discriminants below ∆K), and the number of these exceptions is in Table 2.

Table 2. Number of exceptional fields for (4.7).

r2\nK 2 3 4

0 52561764 74747 54
1 31610787 65708 73
2 22

For each exceptional field we come back to (4.7) and prove it for every x ≥ x̄ in Table 3 (using
again the monotonicity in x); we adjust the parameter c to get a smaller x̄.

Table 3. Minimal x for the exceptional fields for (4.7); the minimal dis-
criminants come from [13, Table 1]; x̄ is the one associated with the smallest
discriminant.

nK 2 (c = 4.8) 3 (c = 5) 4 (c = 5)

minimal ∆K 3 23 117
x̄ 1566020 980 184
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At last we test the claim for the exceptional fields in the exceptional range in Table 3 by
computing |ψK(x)−x| (with PARI/GP [16]) and by checking that the difference with the
bound is at least 1: in this way we only need to check the integers x in the range. This idea
works for the fields in our list of degree 3 and 4. For quadratic fields both the number of fields
and x̄ are much larger. Luckily, the value of x̄ drops down quickly when the discriminant
increases, and for discriminants larger that 100 it is already only 5040, which can be checked
very fast. Therefore the really long computations are only those for quadratic fields with
discriminants below 100. The entire check can be made in approximately 40 hours on a 2011
personal computer. �

Proof of Corollary 1.3. In (1.4) we make the choice T = 10
e

√
x

log x , for which the condition T ≥ 5

is satisfied for every x ≥ 3. The term εK(x, T ) in Theorem 1.1 is ≤ 0.61dK log x, and

F (x, T ) ≤
√
x

π

[1

2
log
(
x

25e2

π2

e
11.68
T

+ 11.04
T2

log2 x

)
+4.01

]
+1.02,

G(x, T ) ≤
√
x

π

[1

8
log2

(
x

25e2

π2

e
11.68
T

+ 11.04
T2

log2 x

)
−3.41+

17.36

T
+

3.37

T 2
−32.23

T 3
−15.23

T 4

]
−2.10,

H(x, T ) ≤ e

10

√
x log x+25.57

√
x

π
+0.61dK log x+2.75 log x+8.76.

The first claim in Corollary 1.3 follows plugging these bounds in (1.3), after some simpli-

fications. For the second inequality we set T = 2π
e2

√
x

log x ; in this case the term εK(x, T ) in

Theorem 1.1 is 0, the condition T ≥ 5 requires x ≥ 2000, and the claim follows as the
previous one. �

Proof of Corollary 1.4. Let

ϑK(x) :=
∑
p

Np≤x

log Np.

Then one has

πK(x)−πK(x̄)−
∫ x

x̄

du

log u
=

∫ x

x̄

d(ϑK(u)−u)

log u
,

which by partial integration gives

(4.8)
∣∣∣πK(x)−πK(x̄)−

∫ x

x̄

du

log u

∣∣∣ ≤ ∫ x

x̄

d|ϑK(u)−u|
log u

≤ |ϑK(x)−x|
log x

+

∫ x

x̄

|ϑK(u)−u|du
u log2 u

.

Moreover, there are at most nK ideals of the form pm (p prime) of a given norm in K, so

|ψK(x)−ϑK(x)| ≤ nK|ψQ(x)−ϑQ(x)| ≤ 1.43nK
√
x,

where the last inequality is Theorem 13 in [17]. This shows that ϑK(x) satisfies the same
bound of ψK(x), at the cost of adding 1.43nK

√
x. Substituting this bound and the first

inequality in Corollary 1.3 into (4.8) and after some numerical approximations one gets the
corollary. �
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Table 4. Constants for
∑
|γ|≤5 |ρ|−1 in Lemma 3.1.

j aj ·107 j aj ·107

1 −324328089 25 −52154912212245427675107284117

2 115693093357 26 72227309752304735434420743120
3 −10579381239203 27 −91546659026910381192366828396
4 495540769876127 28 106117853961289012764032450733

5 −14528281352885983 29 −112369546004525999862866475251
6 296347058332550155 30 108533470948598920563558219043
7 −4498154499661073603 31 −95431698456287244651252772381

8 53248447239339829090 32 76206788473674179730998288621
9 −508947342104081739447 33 −55105812322315804526845019881

10 4033084416071505510477 34 35955970546002972861665837368

11 −27051470635668143949707 35 −21079935102298710141936369413
12 156121546937577920978167 36 11047616237574616067334355219
13 −785529078417852387859619 37 −5143709248575449263188160534

14 3482495472267374521416188 38 2111566552644017238627810350
15 −13720533216155265613103988 39 −757162365842762640320305866

16 48375037637788872322025183 40 234379624034767935847527151

17 −153492067547835461489301521 41 −61692234538384117080736694
18 440289327629182231371781424 42 13534020670767148307863583

19 −1145934878685670756527108765 43 −2407266538638620726296042
20 2713965041058219158192688004 44 333452115133845423979326
21 −5861973594145453618923885659 45 −33740880236473501034280

22 11566694720865120123031709900 46 2218003445878553284287
23 −20874589384842483010331503670 47 −71076474624305025203
24 34482298986730410055952580804 — —
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