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ABSTRACT

Tuned Mass Damper (TMD) devices have been widely studiecbatichised in the frame-
work of persistent dynamic loadings, such as harmonic antewloise excitations, in order
to reduce as much as possible the steady-state responsasdigned primary structure. In
this sense, the present paper arises as a complementayyosttite topic, since here shock
input is assumed as dynamic loading, so as to investigatgigwtiveness of TMDs in reduc-
ing the transient structural response. In particular, gouisive loading has been considered,
acting as a base displacement, which is a situation that @y @n real applications. First,
a comprehensive dynamic analysis of the system compridiagpoimary structure and an
attached passive TMD is carried out in the time domain. Faxpkaced on the relationships
between the load input and the system properties, in ordexgtore the dynamic behaviour
of such system and to identify the main response trends,lynasta function of the free
TMD parameters, namely mass, frequency and TMD dampingsatbubsequently, a hy-
brid TMD has been considered, by adding a feedback controllgne previously optimised
passive TMD, so as to improve the performance of such a desspeecially in reducing the
peak response of the primary structure. The contents ofrdsept work have the final aim
of identifying the potential level offéectiveness of the TMD devices and to supply important
guidelines towards their optimal design in reducing thedtrral response also to shock exci-
tations. This should display significant relevance ifiedent practical applications, including
in the field of earthquake engineering.



1. INTRODUCTION

The present work concerns the optimisation of passive abddyuned Mass Damper de-
vices for structural systems subjected to impulse loadang, is placed within a wider on-
going research project at the University of Bergamo [1—4] @irthe University of Southamp-
ton [5-8].

Structural systems can be easily subjected to a wide rangaraiful dynamic actions
of different nature, especially from the point of view of duratiow antensity. Within this
context, the reduction and the control of the dynamic respalue to pulse loading is doubt-
less an important research topic, mostly for its potentatcbution in several engineering
applications, such as those in earthquake engineeringiahe automotive field.

In the framework of vibration control, the Tuned Mass Damisecertainly one of the
most studied devices. Indeed, despite that its introdocould be dated back to more than
a century ago, many studies on Tuned Mass Dampers are stiéintly under development,
especially on the optimal design, usually referred to agyrof its structural parameters.
The documented introduction of Tuned Mass Dampers is pigloapresented by the patent
of Frahm [9], and has been followed byfférent fundamental studies [10-12], which deter-
mined first the theoretical bases and formulas for the optdaaign of TMD devices, as-
suming as external loading a harmonic excitation, for ag@cting on an undamped primary
structure.

Subsequently, many works have focused on the optimal tusfifgined Mass Dampers,
in order to deepen the knowledge forffdrent response indices and dynamic excitations.
In particular, the usual framework of such studies congidex primary single-degree-of-
freedom (SDOF) damped structure with an added TMD subjeoteidher harmonic [13-15]
or white noise [16, 17] excitations, acting as a force on them@ry structure or as base
motion [4, 18-20].

In recent years, semi-active and active Tuned Mass Dampeestdeen also thoroughly in-
vestigated as complementary or alternative control deyigéh respect to passive TMDs [21—
23], for their inherent &iciency limits, mostly due to the operational narrow band #red
sensitivity to parameter variations, also called de-tgniAlso for these studies, persistent
signals of diferent characteristics have been considered, such as gé@emonic excita-
tion [24] or earthquake input [25, 26].

In the case of shock excitation, the passive Tuned Mass Damgenerally considered as
not significantly éective in reducing the structural response [27]. Howeveppears from
the literature that this field has not been thoroughly ingeséd yet. The present paper con-
siders this problem and deals with the study of the optimahiy of a Tuned Mass Damper
when the structural system is subjected to shock excitafigtructural system composed of
a damped SDOF primary structure and a Tuned Mass Damper addeg, when subjected
to a unit impulse base displacement has been considered.

The paper is organised as follows. Firstly, the structunatext and the dynamic response
are explained in detail, then the numerical optimisatiorpa$sive Tuned Mass Dampers
is developed, showing the potential application benefitsenl the hybrid configuration of
the TMD is also considered, by the introduction of a feedlmmkroller between the primary
structure and the TMD, in order to investigate the possiblgrovement in terms oftéciency
in reducing the dynamic response of the primary structutk mspect to the passive case.

The optimisation process has been studied in detail, andi@view of the obtained re-
sults, in terms of optimal parameters of the Tuned Mass Daiape the corresponding ob-
tained reduction of the dynamic response, have been pesseagether with first significant
considerations for the design of TMDs within the considdrathework.



2. STRUCTURAL CONTEXT AND DYNAMIC RESPONSE
2.1 Dynamic responseto unit impulse base displacement

The structural system comprising of a single-degree-@édom primary structure and an
added Tuned Mass Damper, subjected to a generic base @isfatx;, is represented in
Fig. 1.
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Figure 1: Structural parameters and absolute dynamic degkfreedom of a 2DOF me-
chanical system comprised of a SDOF primary structure ()ipped with an added passive
TMD (2), subjected to generic base displacement.

The structural parameters which characterise the primangtsire (1) are the massy,,
the elastic sffnessk, and the viscous damping déieientc,. In a similar way, the Tuned
Mass Damper is represented by the magsthe elastic stfness constark, and the viscous
damping cofficientc,. The equations of motion of the system described above take t
following form, in terms of the absolute degrees of freedq(t) andx,(t):

m, %, (€) + (¢, + €)%, (1) = G, (1) + (K, + k)%, (1) — Ky %, (1) = €, % (1) + K, x,(1)
M, (1) — €%, (1) + G %, (1) — kX, (1) + K, %,(t) = 0

Such a system is assumed to be initially at rest and subjexeednit impulse excitation at
t = 0, which may be ideally defined by a Dirac delta function, elstarised by the property:

(1)

f st =1 )

(%)

Due to computational reasons, such loading has been mddielteal terms as a frequency-
variable versed-sine pulse [28], defined as follows:

All-cosw,t)], 0<t<T,
x,(t) =
0, elsewhere

3)

whereA,, T, andw, = 27/T  define the amplitude, the duration and the angular frequehcy
the versed-sine pulse, respectively.

In order to emulate the unit impulse, the versed-sine pxjl& must fulfil the condition
expressed by Eq. (2). Thus, since

[ +m[l — Cos, t)]dt = I :_p [1 - cos(_l_ﬁt)]dt =T, 4)

p

Ny
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one obtains the link:
A = 1 __°P (5)
b = =

p

Despite that the ideal case of a Dirac delta function may peesented only in the limit
for w, — o0, a sample study on the response of a SDOF system revealagthes not that
high of the versed-sine pulse frequency allow for a good@ppration of an impulse signal,
suitable for dynamical analyses. In this sense, for thegmtestudyw, = 1000 rads has been
assumed.

By substituting Eg. (3) into Eg. (1), in the case of versategiulse base displacement,
one obtains:

M50 + (€ + G5 (0 = 65,0 + (K + k)X (0) = kx, () =
W

:(:127(

sin(wpt) + kl%[l —coswpt)] ()

M (1) — G X, (1) + C%, (1) — KX, (1) + K, %,(t) = 0

The primary structure natural angular frequengyand damping rati@, are defined as

follows:
C C C
w, = kl > &= - -

_ 1
m, Coo  2km, 2w,m,

and, likewise, the TMD natural frequenay and damping ratig, are defined as:

()

w., = ﬁ g = C2 = C2 = C2
? rnZ ' ? CZ,cr 2Vk2m2 2(‘)2rn2
Besides the TMD damping rati), two further parameters are introduced for tuning pur-
poses, namely the mass rati@and the frequency ratib:

(8)

9)

The structural response in the time domain has been obtadedctly through a pair of
Laplace transforms of Eq. (6), with relevant procedure aralydical expressions reported in
Appendix A.

3. PASSIVE TMD
3.1 Tuning process

The optimal tuning of the TMD parameters, i.e. mass ratifrequency ratiof and TMD
damping ratiaZ,, which have been defined in Egs. (8)—(9), can be easily turiteda clas-
sical optimisation problem, where an assigned multi-\@ei@bjective (or cost) function is
minimised:

n]/in FV), [, <v<u, (10)

wherev is the vector of the tuning variables,(is the objective functionl, andu, are
the lower and upper bound vectors of the tuning variablespeetively. In this work, the
scalar objective function to be minimised is assumed to bara of the displacement of the
primary structure in the time domax)(t), denoted in Eq. (A.7) with index = 1.

The typical approach in the literature will be adopted heyevall, towards seeking the
optimal TMD parameters, i.e. by assuming the value of thesmetsou as given within some
reasonable typical range suitable for engineering apgics, while the frequency ratiband
the TMD damping rati@, are taken as the optimisation variables. A reliable rangalfes
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of the primary structure damping ratiphas been also considered, so that one may study the
influence of this parameter on the best TMD parameters apdamel dficiency. The optimi-
sation problem related to the response quantity (given in(Eqd)) is quite complex to be
solved analytically, therefore recourse to numericalropgation methods become suitable, if
not necessary. In this sense, in the present work the ogtiimishas been developed within a
MATLABenvironment [1-4], by means of tfiminconfunction, which allows for constrained
non-linear optimisation. In a preliminary stage of numargimulations, dterent norms of

the displacement of the primary structure have been comrsidél'he H norm of a general
response quantityis defined as follows [31]:

N T
X, = (Z xL) (11)

whereN is the total number of time samples»in the assumed time interval. The present
tests considered Hand H, norms, leading to the control of the overall and the maximum
displacement, respectively. The values of the structusehmeters considered in this trial
arem, = 100 kg,k, = 10000 Nm, £, = 0.05 andu = 0.05. These trials identified that the
optimisation of the H norm leads to disappointing results, since the reductioh®fpeak
(H_ norm) displacement turns out to be negligible and the ol@talnorm) displacement of
the primary structure may even appear to be increased. Qaililee hand, the optimisation
of the H, norm allows for a significant decrease in the overall resppagen if the peak of
displacement is again not significantly reduced. Thus,l#tier norm has been assumed as
the objective function in the following optimisation pr@se The parameters (assumed by
considering engineering applications) and bounds adopitiin the optimisation process,
have been shown in Table 1.

Tuning variables v=I[f;¢]

Lower bounds |, = [1073; 1079

Upper bounds u, = [5;1]

Mass ratio range p =[0.0025 : 00025 : 01]
Primary structure damping ratio rangé&, = [0,0.01 0.02 0.03,0.05]
Tolerance on variable parameter 40

Tolerance on constraint violation 10

Tolerance on objective function 10

Max. number of iterations 300

Max. number of function evaluation 300

Table 1. Chosen parameter values for the optimisation peoce

3.2 Results

A significant extract of the results achieved from the opgmtion process is presented in
Figs. 2—-3, where the optimal TMD parameters, the percenictezh of the cost function and
a sample of the time response in terms of the displacemehegdrimary structure are repre-
sented. Such results lead to the following consideratiéirstly, the trends assumed by the
optimal TMD parameter$°® and{°"" as a function of the mass ratig displayed in Fig. 2,
are quite similar to those obtained in the case of persistgnit usually assumed in TMD
analysis, e.g. harmonic or white noise loading [4]. Inddedjncreasing mass rati@ and
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primary structure damping ratiqy, the frequency ratid decreases and the TMD damping
ratio £, increases, with typical trends (Fig. 2a). In fact, it is viorioting the insensitivity
of the TMD damping rati@, with respect to the variation of the primary structure damgpi
ratioZ, (Fig. 2b). In Fig. 3a, from the achieved percentage respagtiection it can be noted
that the diciency of the optimal TMD increases as the mass rafitccreases, and decreases
significantly at increasing,. For instance, by considering an assigned mass piatid.05,
one obtains a reduction of the primary structure displacgmmieabout 70% for, = 0 and of
30% forZ, = 0.05. The increase in the Tuned Mass Damggciency is remarkable, specifi-
cally in the range of values of mass ratic< 0.05, beyond which any further improvementin
the TMD performance is less noticeable. These results dstrata that, in principle, optimal
passive Tuned Mass Dampers may reduce significantly thalbdgnamic response of struc-
tural systems even in the case of shock loadings, such asfhdsive excitation considered
here. The time history of the primary structure displacen(Emg. 3b), wherez, = 0.05 is
assumed, indicates that a TMD characterised by a massurati©.02 allows for a consid-
erable reduction of the primary structure displacementéwthole time window, especially
after the first peaks in the response. With an increase in #ssmatio tq: = 0.05, a notice-
able improvement of TMD féiciency is obtained also for the initial part of the responss,
after the transient input has been applied. However, thermar response, which in case of
shock loading for a system initially at rest occurs at the fissak of the dynamic response,
seems not to befiected by the insertion of a passive TMD.
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Figure 2: Optimal TMD parameters at varialpléor different values of the primary structure
damping ratia’;: (a) frequency ratid ; (b) TMD damping ratiaZ,.
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Figure 3: (a) Percentage reduction of thendrm of the displacement of the primary structure
at variableu for different values of, and (b) displacement time history with = 0.05.



4. HYBRID TMD
4.1 Statement of feedback control

From the results presented in the previous section, theveabsned Mass Damper appears
not to be &ective in reducing significantly the peak displacement,clwloccurs during the
early dynamic response for the case of impulsive loadingbgioly due to its own inertia.
It is therefore meaningful to attempt upgrading such a abrtevice from the previously
analysed merely passive version to a hybrid form, by theothiction of a feedback con-
troller, apt to supply an external relative control forzé). The control force is taken as a
linear combination of terms of the dynamic response, whegecbnstant cdicient values
of the combination are called gains. Such a structural systabjected to a generic base dis-
placement, is represented in Fig. 4 and its dynamic behraisalescribed by the following
equations of motion, in terms of the absolute degrees ofltneex (t) andx,(t):

{mﬁ&(t) +(C, + )X, (1) = &, %,(1) + (K +K,)X (1) = k(1) + Fe(t) = ¢,% (1) + Ky x,(1)
M, %,(1) — X, (1) + G (1) — kX, (1) + Ky %, (1) — f.(t) = O

12)

Figure 4: Structural parameters and absolute dynamic degrefreedom of a 2DOF me-
chanical system composed of a SDOF primary structure (Ljppgd with an added hybrid
TMD (2), subjected to generic base displacement.

The feedback strategy assumed here is based on a functitdmefactive relative control
force exploiting the acceleration of the primary structaral the relative velocity between
primary structure and TMD, by means of acceleration andoigl@ainsg, andg,, respec-
tively:

f(8) = 9. %, (1) + 9,(%, (1) — %,(1)) (13)

By substituting Eq. (13) into Eqg. (12), in the case of versew pulse base displacement,
Egs. (3)-(5), one obtains:

(M, +g)% (1) + (¢, + ¢, + 9,)%,(t) — (C, + g )% (1) + (k, + k)%, (1) — kX, (t) =
0)2
= 6,22 sin@, 1) + kI%[l ~ cos@pt] (14)

= 0% (1) + mX,(1) — (C, + 9,)%, (1) + (C, + 9)%(1) - kX, (1) + k%, () = 0

The dynamic response has been obtained again through theckapmnsform of Eq. (14),
and relevant expressions are reported in Appendix A.



4.2 Stability analysis

Before proceeding to the optimisation of the feedback ailetr parameters, a preliminary
stability analysis has been developed, so as to estabkshatnds on the values that gains
0., 9, may assume (which will be further considered in the optitiesaprocess), in order
to ensurea priori a limited magnitude of the dynamic response in time for amgiveunded
input signal (BIBO, Bounded-Input-Bounded-Output stid§)] such as the versed-sine pulse
considered in this study.

In this sense, the necessary anflisient condition required for the stability of the system
is negative real parts of the closed-loop poles [30], whatttie considered structural system
and feedback strategy are the roots of the following charestic equation:

D.. (9 :s“(mlm2 +0.m) + s?’(clm2 +Cc,m +c,m +g,(m +m,))+
+52(C1C2 + k2m1 + k1mz + kzmz + gvcl) + S(Cle + C2k1 + gvkl) + k1k2 =0

In particular, for each pair of given values of the gamsg,, the sign of the less negative
(or more positive) real part of the closed-loop poles of ty&tesn has been investigated, in
order to establish a sort of instability threshold, by adapthe structural parameters of the
system described in Section 3.1. In this sense, furtheyseswith diterent pairs of values
of (u, ¢,) have been carried out, by showing however negligible ceamgth respect to the
trends presented here, which therefore shall be considesraduitable reference.

The results of this analysis are represented in Fig. 5, wtinerestability region within a
range of the acceleration gagn, for given values of the velocity gam, is displayed.

(15)
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Figure 5: Maximum value of the real part of the system pples a function of the gairg,
g, for primary structure damping rat§) = 0.05 and mass ratip = 0.05, with focus (a) on
values ofg, aroundg, = —m, and (b) on values aj, around O.

As can be inspected from the plots, the stability of the systeay be discussed from the
point of view of both gains. Considering firstly the velocgging,, it essentially ensures a
dynamically stable system mostly for positive values, wleNen for slightly negative values
it may lead to system instability. On the other hand, theaflit range for the acceleration
gaing, is characterised by a lower and an upper bound. The formeathed for the value
g, = —m,, beyond which the system becomes unstable, whilst the takes place for slightly
positive values 0f,, which increase a small amount for increasing valueg .of

Hence, as a general indication, it can be pointed out thastddality of the system is
assured mostly for positive values of the velocity gaiand for negative values of the accel-
eration gairg, larger than-m,.



4.3 Optimal gains

Once the stability range for the controller gains has beénetd such gains have been opti-
mised, starting from the structural system composed ofrag structure and an optimised
passive Tuned Mass Damper, as defined in Section 3.1. Thhisved by means of the

same numerical algorithm for nonlinear constrained o@ation, and by assuming as new
objective function in this phase the following combinatadrihe displacement of the primary

structurex, (t) and the supplied active control fordgt):

F(V) = Xl + ll f.(Olls (16)

wherev = [g,; g,] is now the vector of the gains, which play the role of optiatisn variables,
and « is a weight factor, which allows for balancing the optimisat in order to reduce
the efect of either the structural response or the supplied cthetrfiorce and to even out
the magnitude and the measure units of the two components.pdaitameters and bounds
adopted within the optimisation process have been showmaliteT2. It can be noted from
Eqg. (16) that the objective function considers thembrm of the displacement of the primary
structure, instead of the ,Hhorm previously considered for the tuning of the passive TMD
This choice is due to the main task behind the introductiaihefeedback controller, that is,
the reduction of the peak response of the primary structure.

Tuning variables v=1I[g,9]
Lower bounds |, = [-90; 0]
Upper bounds u, = [0;150]
Tolerance on variable parameter 10
Tolerance on constraint violation 16
Tolerance on objective function 19

Max. number of iterations 1000

Max. number of function evaluation 1000

Table 2. Chosen parameter values for the controller gaitisigation process.

A study based on a wide range of valuesrdias been carried out, which pointed out that
there is a sort of threshold value @fwhich strongly separates the case of an optimisation
devoted to the structural response, obtained for valuesrldan the threshold one, with
respect to the case dedicated to the supplied controllee favhich takes place for higher
values. Further analyses on this framework revealed tisastiarp change of the optimisation
task is probably due to the inherent sudden nature of the Igiveuexcitation. Indeed, it
could be possible to demonstrate that, for less sudderegixcis, the switch between the two
types of optimisation should be more gradual, allowing forirgermediate range of values
of a which lead to partial optimisation, where both dynamic cesge and supplied force are
minimised. A further interesting outcome of this study is thigh sensitivity of the obtained
optimal gains with respect to the variation of the given siand optimisation parameters.

The trends of the two contributions in the objective funetias a function of the gains
0., 9,, are represented in Fig. 6. The minimum values of the pegkatisment of the pri-
mary structure (Fig. 6a) are obtained correspondinglyédtineshold valug, = —m,. How-
ever, this region is close to that of the maximum values, Winiccur for values o, just
smaller than-m,. The proximity of the region of maxima to the region of minimay easily
cause some problems in the optimisation process, sincattee may not be found by the
algorithm. It is interesting to note that all the considenas above are in fact a function of
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g, only, since the behaviour with respectdpis almost unfiected. Another region where
the two components exhibit very low values, close to the mum ones, is found for values
of g, > —m, and for a small range of values gf. Such areas doubtless represent a suit-
able alternative to the actual optimal region, since théywafor a significant reduction of
the peak response, together with the introduction of a &metintroller force. On the other
hand, the peak of the supplied controller force (Fig. 6bgsakalues almost constant within
the overall considered range of valuegypfwhile the magnitude of such peaks increases for
increasingg, .

9. kel

2

45 60 75 90 105 120 135 150 ~0 15 30 45 60 75 90 105 120 135 150
g, [Ns/m] g, [Ns/m]

(a) (b)

Figure 6: (a) Percent reduction of peak displacement oftinegpy structure [%] and (b) sup-
plied controller force [N] as a function of the feedback gain g, .

Several trials have been developed, in order to fully exptbe dhiciency of the hybrid
Tuned Mass Damper, in terms of response reductioru(fer0). A significant sample of such
studies is represented by the time history of the displacémieboth the primary structure
and the Tuned Mass Damper, reported in Fig. 7. For this cheelitained optimal values
for the feedback gains agg = —86.1549 kg andy, = 724089 Ngm. This physically means,
respectively, that the controller attempts to counteraainach as possible the inertia force
due to the primary structure and, at the same time, to amjbléyelative damping force, so
that to reduce thefiect of the TMD movement, which in particular conditions magd to
an increase in the displacement of the primary structuteaasof reducing it.

== Passive TMD
—— Hybrid TMD

No TMD
== Passive TMD
= Hybrid TMD

3 3
t[s] t[s]

(a) (b)

Figure 7: (a) Displacement of the primary structure and {lihe Tuned Mass Damper, for
primary structure damping ratiy = 0.05 and mass ratip = 0.05.
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The plotindicates that, despite that the aim of the optitrosgrocess was that of reducing
the peak response, the overall displacement of the printiargtare has also been remarkably
decreased. Indeed, the peak response has been reduceduby?a¥%g while the overall
response has been decreased by about 54%. The presenceppiiadstorce implies the
initial introduction of a peak displacement, which occue$doe the peak response in the case
of passive system. A further benefit due to the action of tedliack controller is obtained for
the TMD displacement. Indeed, the peak response and tHestaike of the passive device
have been reduced of about 62% and 77% respectively, whesutiied control force is
introduced. This latter feature should be of great interesiew of practical applications,
where the allowable movement of the control device may beedjmited. It is worth noting
that the results presented above have been obtained byctieglpossible design bounds,
which should likely limit the allowable amount of suppliedntroller force. However, even
a low contribution of the feedback controller should implyeanarkable reduction in the
dynamic response.

5. CONCLUSIONS

In the present work, the optimal tuning of the free paransetéTuned Mass Dampers has
been analysed for the case of impulsive base displacembatafialytical expression of the
dynamic response in terms of displacement of a structusdésycomposed by a SDOF pri-
mary structure and an added TMD has been obtained first, bpsdaa Laplace transform
of the equations of motion. The tuning process, developghinva numerical optimisation
method, has been firstly carried out by assuming a passivediMiass Damper and by con-
sidering norms of the displacement of the primary strucasréhe objective function.

The results achieved exhibit trends quite similar to thdst@ioed in previously reported
literature for the case of persistent input such as harmoniwhite noise excitations. In
terms of optimal TMD parameters, at increasing mass fatie frequency ratid decreases
while the TMD damping rati@, increases, with characteristic trends. Moreover, botkedun
parameters seem to be quite insensitive to variations gfriheary structure damping ratio.

On the other hand, the level offectiveness of the Tuned Mass Damper is fairly dependent
on ¢, since for lower values of this parameter the level of theiotidn in the response is
significantly higher, and, as expected, it increases alsméoeasing mass ratjo.

In general, the introduction of a passive Tuned Mass Damip@vsfor significant de-
crease in the overall dynamic response, therefore this mgyast the potential presence of
such a device in structural systems. In the case of pulsengahd a system initially at
rest, a peak occurs at the very beginning of the dynamic ressgpand does not appear to be
substantially reduced, probably due to the intrinsic iaest the passive system, which needs
some time before becoming fully operative.

It is mainly for this reason that the upgrading of the TMD frpassive to hybrid may be-
come useful, by addition of a feedback controller, whichpdigs a force based on a selected
control strategy. The strategy assumed in this study has tagen as a linear combination
of the acceleration of the primary structure and of the redatelocity between the primary
structure and secondary mass. A preliminary stability ysisalhas been performed, so as
to define the range of possible values for the gainffc@ents involved in the control strat-
egy. The results obtained have clearly shown that the sysiem out more stable as the
velocity gaing, increases. On the other hand, even small positive valudseadceleration
gaing, lead to an unstable system, whilst negative values implgllesystem, until a limit
value, which is found to be equal tam ; beyond this bound, the system becomes unstable
again. The optimisation of the controller parameters has beveloped so as to take into ac-
count the minimisation of both the structural response apgksed controller force, through
a weight factox.
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When only the structural response is minimised within thénoigation process, the feed-
back controller has been proved to be quitecegent in improving the performance of the pas-
sive Tuned Mass Damper, with a remarkable reduction of bettk@and overall responses.
The obtained results indicate that the optimal paramedeithé gains might lead to a theoret-
ical amount of supplied force which could be excessive facpcal engineering applications.
However, even a smaller magnitude of control force shoubdgtide a significant response re-
duction. The introduction of the controller force also altofor significant reduction in the
TMD displacement and stroke, which in the case of the paslgviee may result quite large.
Such a fact might have important consequences in pracpgédications, which usually place
strict limits on the displacement of the control devices.

In conclusion, the results obtained in this study indictg remarkable benefits come
from the insertion of a Tuned Mass Damper in a structuralesystThe performance of the
device allows for a substantial reduction of the dynamipoese also under pulse excita-
tion. Moreover, being the optimal TMD parameters similatitose evaluated for persistent
excitations, a general and comprehensive tuning of TMD®ssible, with potentially rele-
vant consequences towards engineering applicationshdfurmhprovement of such a device,
where necessary or required by applications, may be olatdipehe addition of a feedback
controller, i.e. by switching from a passive TMD to a hybrisD.
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APPENDIX A. RESPONSE FUNCTIONS
Appendix A.1 SDOF primary structure with passive TMD

In this section, the procedure for obtaining the dynamipoese of the structural system
in time domain, through a pair of Laplace transforms [28, 20Explained and reported in
detail. Firstly, the Laplace transform, in terms of the ctewpvariables, of the versed-sine

pulse expressed by Eq. (3) takes the form:

w2

@t ) -

X,(8) = LIx, O] = A,

Then, Eq. (6) are transformed as well as follows, by sulistguEq. (A.1) and considering
the amplitudeA, in Eq. (5), with zero initial conditions:

w3
["m,+5(C, + C,)+ (K, + k)X, (9)+[-S G —K,]X,(s) = [SQ+K]WZ‘U2)(1—€_TP %) (A.2)

[-sG-KIX (9+[Pm,+sC + K]X,(s) =0

Such a system of equations can be represented in the fotiawatrix form:
[zn zu] [Xl(s)] _ [
Z, Zy| |X(9)
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Then, the transfer functions may be easily worked out thndDigamer’s rule:

fl Z:LZ le fl
_ f2 222 _ Nl(s) _ 221 f2 _ Nz(s)
N I T R A RN R TE A4
Ly Ly Ly Ly
where:
Ny(9) =w¥(1 - e Tp)[S(e;m) + S*(k;m, + c.c,) + S(KC, + C k) + K,k ]
—a)3 _ —Tp S
N,(9) =3(1 - e T 9)[$(c,c,) + S(K G, + G k) + Kk ] e
D(9) =27 S(S” + w?)[s'(m,m,) + $°(c,m, +¢,m, +¢,m,)+
+84(C,C, + oM, + kym, + km,) + ek, + C,k,) + Kk, ]
The transfer functions may be rewritten in factorised foR9|{
w K 1 K 2 Kn3 Kn4 Kn5 KnG Kn7
X (9) = =2 2ty — - : ’ ’ - (A.6)

——+————+ —+ —+ —+ .
2r| s s-iw, s+iw, s—-a—ib s-a+ib s-a-ib, s-a+ib,

where the denominator of each partial fraction is in the ferap,, p, being thej-th system’s

pole, and the constant§; are the system’s residues, where the indices 1,2 andj =

1, ..., 7 mark the degrees of freedom of the structural system anmd ¢t ofD(s) respectively.

It is worthy to note that, despite that it being possible ttedaine analytical expressions for

these constants, their complexity, even in the case of &vellasimple mechanical system

as that considered here, is such that the recourse to nahmethods becomes suitable.
Once the residues have been evaluated, the inverse Lapaséorm of Eq. (A.6) gives

the expression of the response in the time domain:

_ b. —-ib b. -ib
Xn(t) = Ep[ Kn,1+ Kn,zel u)pt+ Kn,3e Iu)pt+ Kn’4e(a1+l l)t+ Kn’se(a]_ l 1)t+ Kn’ee(azﬂ 2)t + Knje(az l z)t] (A?)

Appendix A.2 SDOF primary structure with hybrid TMD

The Laplace transform of Eq. (14), for zero initial condisp takes the form:

[Sz(ml + ga) + S(Cl +C + gv) + (k1 + kQ)]Xl(S) + [_S(Cz + gv) - kz]xz(s) =
(U3

"barkly e

1-e™% (ag)

[-5°0, — S(C, + 6,) — KX (5) + [Sm, + S, + ) + K]X,() = 0

Following the procedure explained in the previous sectiloa transfer functions relevant
to the displacement of the primary structure and the TunessNDmper take in this case the
form:

N(9) =wi(1 - &P 9)[S(e,m) + S (MK, +C,C, +€,0,) + S(C K, + K + k) + k]
N,(9) =w3(1 - € TP 9)[S(@,C,) + SH(C,C, + €, G, + G,k)) + S(C.k, + Gk, + g k) + kK]

D(9) =27 (s + W))[S'(mm, +g,m) + $°(c,m, + c,m, + ¢,m, + g, (M, + m,))+
+57(c,C, + k,m, + km, +k,m, +g,c,) + S(C,K, + Gk, + k) + K k]

The response in time domain may be then obtained likewisg# &.6)—(A.7).

(A.9)
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