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Chapter 1

Introduction

In many respect, Europe is more integrated nowadays than ever. For instance, the per-

capita wealth has converged signi�cantly relative to early post-war levels and as of 2004,

intra-EU trade has risen to approximately two-thirds of total trade and one-third of

total EU GDP. The current economic and �nancial crisis has slowed down if not stopped

the convergence process highlighting imbalances within the Euro area which had been

undervalued/overlooked during the years of economic growth and stability. It was as if

the sovereign debt markets had underestimated the possibility that governments might

default.

The �nancial crisis was triggered by the US-subprime crisis and then by the Lehman

& Brothers default in September 2008. The main message that this event delivered to

markets was that no institution is risk-free, that policy makers and monetary authorities

are not always willing to prevent them from defaulting, and this holds true for governments

too. As consequence, countries with high debt levels began to face more stress on their

debt servicing capabilities and, hence, were penalized more.

With the rescue of Greece and Ireland in 2010, and of Portugal and Greece again in

2011, it became clear that the origin of the sovereign debt crisis in Europe was beyond

the imbalances in public �nances. For instance the interconnection between the private

and public debt is important as, while the ratio of public debt in the euro area dropped

from 66% in 2003 to 63% in 2007, household debt increased from 41% to 56% of GDP

during the same period and �nancial institutions increased their debt levels from 126% of

GDP to around 200%. The main causes of the debt crises in Europe vary from country

to country. The origin of the debt crisis in Greece, Portugal and Italy was the structural

de�cit in the government sector. Greece and Italy�s large �scal de�cit and huge public

debt are the cumulative result of chronic macroeconomic imbalances. However, the case

of Portugal illustrates the importance of foreign debt; Portugal�s debt-to-GDP ratio (63%

at the end of December 2010) was much lower than Belgium�s (123%), but whilst the
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2 Introduction

latter is a net creditor towards the rest of the world, the markets are worried about

Portuguese high external debt, speci�cally, that of its private sector namely banks and

enterprises. In Ireland as well the crisis was mainly caused by imbalances in the private

sector, particularly a domestic housing boom which was �nanced by foreign borrowers

who did not require a risk premium related to the probability of default (Lane, 2011).

In Spain, since absorption exceeded production, the external debt grew and the real

exchange rate appreciated, implying a loss of competitiveness for the economy. Unlike

previous expansions, the resort to �nancing was not led by the public sector but by

private households and �rms. The average value of the debt-to-GDP ratio during the

period 2007-2010 in Spain was over 80% in the public sector and was close to 90% in the

private. Government exposure to weakness in the �nancial sector may have also become

a factor in explaining sovereign spreads in the euro area. In this respect, some countries

have committed large resources to guarantee �nancial institutions, thereby establishing a

potentially important link between �nancial sector distress and public sector bailouts.

Concerns about the solvency of the national �nancial sectors have risen in almost

every Euro country, particularly in Austria, Finland, Greece, and Portugal while for some

other countries, such as Belgium, Ireland, and Italy, worries are more focused on domestic

�scal sustainability.

Europe is under stress and integration among European countries seems more fragile

than during the �rst years of Euro-era. It is important to understand how dependent

countries belonging to a common monetary area are from each other. The strongest

measures of �nancial integration are those based on the law of one price. Insofar, as

government bonds are su¢ ciently homogeneous across the various Euro area markets,

one can directly test the law of one price by comparing the yields on local government

bonds across countries. If we assume that the degree of systematic risk is identical across

countries, then risk premia should also be identical in perfectly integrated markets, and

hence yields on government bonds with the same maturity should be identical as well. It

is important that the bonds from which these yields are calculated are as homogeneous

as possible: ideally, the bonds will all be on-the-run with the same maturity, liquidity,

coupon schedule, issuance date, and embedded options. Among the possible government

bonds, 10-year are usually considered as their markets are much more active than other

maturities.

In Figure 1.1, 10 years government yields of eleven countries belonging to the Euro

are reported.
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Figure 1.1: 10-year yields

In Figure 1.1 we report benchmark 10-year government yields for Euro denominated bonds for the years
1991-2013.

From picks in excess of 300 basis points in the pre-EMU period, 10-year yield con-

verged signi�cantly in correspondence to the monetary union creation: one year after the

introduction of the Euro the maximum spread was 30 basis points. Speci�cally, after the

introduction of the Euro in January 1999 and until the subprime crisis in global �nancial

markets in August 2007, spreads on bonds of Eurozone members moved in a narrow range

with only slight di¤erentiations across countries. The stability and convergence of spreads

was considered a hallmark of successful �nancial integration inside the Euro area. The

subprime crisis in 2007 set a turning point and yield spreads of Euro area issues with

respect to Germany spiraled in parallel with the rise in global �nancial instability. In

2008 and 2009, interest rate di¤erentials became sizeable but it was in 2010 and 2011 that

they went back to the levels (or even higher) than those of the pre-euro era: in only four

years the EMU bond markets went from a situation of stability and tranquility to their

current situation of turmoil.

As the crisis unfolded, several factors might have a¤ected the valuation of sovereign

bonds. First, the global market price for risk went up, as investors sought higher com-

pensation for risk. Deleveraging and balance sheet-constrained investors developed a

systemically stronger preference for a few selected assets vis-à-vis riskier instruments, the

so called �ight-to-quality. This behavior not only bene�ted sovereign securities as an asset
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class at the expense of corporate bonds and other riskier assets, but also introduced a

higher degree of di¤erentiation within the sovereign spectrum itself. Second, as the crisis

spread to the public sector and policy authorities stepped in to support troubled �nancial

institutions, probabilities of distress went up across sovereigns.

Typically spreads between government bonds re�ect three types of risks:

� Exchange rate risk, which refers to the risk for investors of an adverse exchange
rate movement (which in turn could be linked to in�ation di¤erentials, credibility

of monetary policies, as well as sustainability of �scal positions);

� Liquidity risk, which relates to the size and depth of the government�s bond market.
In particular this is the risk of selling less liquid assets at worse market conditions

(higher transaction costs, greater price impact) than more liquid ones;

� Credit or default risk, which refers to the country�s creditworthiness as re�ected by
its macroeconomic and �scal position and to its sustainability.

In addition, other technical factors such as di¤erences in taxation, or in the issuance

clearing and settlement procedures, may contribute to generate positive spreads together

with international risk aversion, i.e. investor sentiment towards this asset class for each

country. Finally, the e¤ect of announcements, for example macroeconomic news/surprises

or �scal policy events (e.g. government plans) might also play a role in the development

of sovereign bond spreads.

With the introduction of the single currency, the exchange rate risk obviously vanished

as well as the liquidity risk. Moreover, due to the centralization of the monetary policy,

credit risk was no longer perceived di¤erent for each European country and this lead to

reduce the �nancing costs for the less virtuous Member States. Anyway, at least from

a theoretical point of view, we would have expected bonds to be more accurately priced

due to higher �nancial integration as this represents a necessary condition for market

discipline: the more developed and integrated the �nancial markets are, the higher the

degree of market e¢ ciency and the more accurate prices are. Market-imposed discipline

of this kind is especially relevant in large federal states, such as Canada or the US,

and in monetary unions, such as the European Economic and Monetary Union (EMU),

where governments of the member states can issue debt in their own right but are more

restricted in their ability to respond to �nancial di¢ culties since they do not control their

own monetary policies. Faced with a �scal crisis, such governments are likely to turn to

other governments or the common central bank and ask for a bail-out.

The resulting remarkable compression of sovereign risk premium di¤erentials, expe-

rienced in the �rst years of the Euro era, has raised doubts about �nancial markets�

ability to provide �scal discipline across Euro area members, to discriminate between the
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qualities of �scal policies and to be coherent with economic rationality. Starting from

the sovereign debt crisis, this ability was by far regained by markets which became more

careful in monitoring the �scal performance of member states and restarted to exert dis-

ciplinary pressure on their governments. Anyway, while before the main concern was that

government spreads were too low and too close, now the question is whether these high

spreads re�ect the fundamentals of a country or whether they also re�ect a regime shift in

the market pricing of government credit risk: during crisis periods, market penalization

of �scal imbalances can be higher than during normal times.

Understanding what has prompted recent developments in sovereign risk is particularly

relevant for policymaking in particular for the macroeconomic consequences that their

movements can have. Persistently higher spreads could, in fact, have a major impact

on many euro area governments�marginal funding costs, possibly undoing the bene�cial

e¤ects of declining risk-free interest rates. Most importantly, any loss of market con�dence

is deemed to lead to increase in long-term real interest rates and debt-service costs, partly

o¤setting the stimulus e¤ects of measures taken to deal with the crisis both to consumption

and investment and further adding to �nancing pressures. Rollover risk can increase

too, as debt might have to be re�nanced at unusually high cost or, in extreme cases,

cannot be rolled over at all. Apart from the importance that government spreads levels

have per se, comovements are probably even more important. This distress dependence

among sovereigns might be due to several factors. For instance, trade linkages might play

an important role in an environment of slowing global demand. Capital �ow linkages

represent another possibility as �nancial institutions tend to engage in important cross-

border activities, and can therefore be another channel of contagion. In fact, several of

these sovereigns were required, almost simultaneously, to provide support to the banks

and other systemic �nancial institutions operating on their domestic markets.

According to Schuknecht (2010), bond yield spreads can still largely be explained on

the basis of economic principles during the crisis. Once the crisis started and through to

the rescue of Bear Stearns, the movement in spreads re�ected global factors, in particular

a �ight to quality and global �nancial sector instability. After the Bear Stearns rescue,

the global factors became less relevant and the prospects of the domestic �nancial sector

acquired a more prominent role in explaining changes in sovereign spreads. The sensi-

tivity of countries to their domestic vulnerabilities appears to be conditioned by their

loss of competitiveness over the upswing of the previous economic cycle. The countries

with the largest decline in competitiveness display a particularly strong link between the

prospects of the �nancial sector and sovereign spreads with impacts on governments debt

levels as well. A relationship also exists for the other countries, but its economic strength

is more moderate. The inference is that as external competitiveness has weakened, do-

mestic vulnerabilities have acquired greater salience. In addition to that, Manganelli and
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Wolswijk (2007) show that spreads in Euro area countries are systematically related to

credit ratings.

1.1 This dissertation and why

The European Monetary Union (EMU) brought to life an integrated market for �xed

income government securities in the Euro-area. Common euro denomination made bonds

issued by Euro-area Member States close, but not perfect, substitutes. European sov-

ereign bonds achieved only partial integration even before the recent �nancial turbulence

implying that monetary uni�cation is a necessary but not su¢ cient condition for �nan-

cial integration in the Euro area. Additionally, sovereign bond spreads are found to

re�ect macroeconomic expectations, as well as risk aversion, while the degree to which

the spreads are a¤ected by either macroeconomic or risk perceptions varies both across

sovereigns and through time.

The overall aim of this dissertation is to assess the impact of macroeconomics on

government bond spreads, through both macroannouncements and proper macroeconomic

fundamentals.

In particular, in Chapter 2 we draw our attention to jumps in European government

bond markets trying to assess whether a relationship exists between jumps in the dif-

ferent countries analyzed and public releases such as macroannouncements, government

bond auctions and rating actions. The purpose is to evaluate whether jumps react to

country speci�c releases, meaning that countries risk is idiosyncratic, or whether there

exists some systemic pattern arising from releases. To provide a global view of countries

sensitivity to jumps, we will go further taking into account even cojumps, that are con-

temporaneous jumps in more than one market. The contribution made by Chapter 2 is

both empirical as well as methodological. In fact, not only we evaluate a great amount of

macroannouncements referring to US, Euro area and individual countries while literature

on this topic generally limit the attention to US ones, but we �rstly propose to assess

the impact of government bond auctions too. To complete the picture, we consider even

rating actions. From a methodological point of view, we propose a uni�ed framework for

jointly modelling the impact of all the public events taken into consideration allowing to

disentangle even between a pre from a post announcement e¤ect.

In Chapter 3, we focus on comovements with the purpose of investigating the exis-

tence and the nature of the relationship between market volatility and correlation and

macroeconomic fundamentals. The idea is to estimate correlations using two di¤erent

time-scales, 15-minute and monthly data, in order to evaluate whether and how corre-

lations estimated using low frequency macroeconomic data impact on comovements at

the intraday level and therefore to assess whether a country�s credithowthiness has some



This dissertation and why 7

impacts on trading activity. The answer to this point requires the involvement of data

measures at both high as well as low frequency, issue that we address by MIxed DAta

Sampling. Examination and research on di¤erent types of comovements and correlations

in time is of a great importance. In fact, in addition to the time dimension of the market

dynamics, there are di¤erent types of investors who in�uence such dynamics. Starting

with noise traders with an investment horizon of several minutes or hours, the spectrum

of investors ranges through technicians with the horizon of several days to fundamental-

ists with the horizon of several weeks or months to pension funds with the investment

horizon of several years. Thus, apart from the time domain, there is a frequency do-

main approach, which represents various investment horizons. Again the contribution to

the current literature of Chapter 3 is twofold; from the methodological point of view we

extend a previous work recognizing the existence of two time domains, high and low fre-

quency, but where both were modeled by a pure time series approach while we propose to

model the low frequency component of both volatilities and correlations by slowly-varying

macroeconomic fundamentals. In addition to that, to the best of our knowledge, this is

the �rst work combining two so di¤erent frequencies, namely 15-minute and monthly.

From an empirical point of view, we provide evidence of the role that macroeconomic

factors had in driving both volatilities and correlations of European government spreads

even during the sovereign crisis although �nancial markets resulted more integrated than

what we would have expected relying on pure macroeconomic fundamentals.

Finally, Chapter 4 is more on the technical side as it is aimed at evaluating alternative

correlation matrix estimators relying on high frequency data recently proposed in litera-

ture. There is even an empirical motivation behind that analysis. In fact, as in Chapter

3 we identify peculiar patterns in correlations, we decide to adopt alternative estimators

to assess whether that pattern was model speci�c rather than a true characteristic of

our data. Estimating correlations using high frequency data require to deal with two

important features, such the asynchronicity of trading activity and microstructure noise

preventing from observing the true e¢ cient market prices. To deal with these two issues,

a number of synchronization methods and integrated covariance estimators were intro-

duced, although there is no clear picture about which one provides the best estimates

of the true integrated covariance matrix. Therefore we propose a comprehensive Monte

Carlo simulation exercise aimed at comparing the alternative integrated covariance esti-

mators combined with the possible synchronization schemes together with an empirical

risk management exercise based on backtesting both Value-at-Risk and tail risk measures

of a portfolio obtained combining the benchmark government bonds. Both applications

concur in identifying a couple of estimators and a synchronization method which work

particularly well in all the cases evaluated.

A �nal point is about that this dissertation focused on spreads based on yields reported
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in the secondary market trades of government bonds rather than on credit default swaps

(CDS), as CDS are an insurance premium on a notional outstanding amount and therefore

they o¤er another prospective on the market�s perception of default risk. Moreover, CDS

markets are thinner than conventional government bonds ones.
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Chapter 2

Macroannouncements, Bond
Auctions and Rating Actions in
the European Government Bond
Spreads

Abstract

This Chapter investigates the impact of macroannouncements, government bond auc-

tions and rating actions on the 10-year government bond spreads for Belgium, France,

Italy, the Netherlands, Spain with respect to Germany. Using a unique tick-by-tick dataset

over 1/02/2009-05/31/2012, we identify the impact of the three drivers via jump and co-

jump detection procedures. Disentangling the pre- from the post-announcement e¤ects,

real economy and forward looking news releases from US and Euro area, country speci�c

Spanish and German macroannouncements, and auctions hold in distressed countries such

as Italy and Spain have a statistically and economically signi�cant e¤ect. No role is played

by rating actions.

Keywords: Jumps, Cojumps, Government Bond Spreads, Macroannouncements,

Government Bond Auctions, Rating Actions.

J.E.L. Classi�cation Numbers: C58, C12, H63, G24.
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2.1 Introduction

Europe is under stress and integration among European countries seems more fragile

than ever. Starting from the subprime crisis in 2007, markets are more aware of the

di¤erences between European countries, and this sentiment is re�ected, amongst others,

in increasing di¤erentials of government bond yields. In 2008 and 2009, government

bond spreads become sizeable but it was in 2010 and 2011 that spreads substantially

increase, getting higher than the levels experienced in the pre-Euro era. In only four

years, the European bond markets went from a situation of stability and tranquility to

the current turmoil. The most recent European sovereign debt crisis involving Cyprus

is just the last of a series of systemic events whose market depth and persistence have

questioned the much celebrated markets� self-regulatory power as well as the ability of

policy makers and regulators to adopt overall stability measures and stimulate economic

growth. Thus, understanding which factors drive sovereign risk is particularly timely also

for the macroeconomic consequences of the comovements associated to these factors. For

instance, higher spreads deteriorate borrowing capabilities and market con�dence which

simultaneously impact on consumption and investment. The way to ameliorate the e¤ects

of the crisis on the real economy is a current political debate but the recipes to put in

place still to be fully understood.

In this Chapter-, we identify the role that market movers like macroeconomic an-

nouncements, government bond auctions and rating actions have in driving government

bond markets, and whether the occurrence of speci�c events in a country a¤ects other

European countries. To this aim, we make use of a unique dataset of high frequency

data on 10-year European government bond spreads. Moreover, we analyze the impact of

the three drivers on both conditional mean and variance speci�cations, disentangling the

pre- from the post-announcement e¤ect. The econometric analysis is conducted using re-

cent developments in the �nancial econometrics literature on jump and cojump detection

procedures.

In the literature, the relationship between macroannouncements and returns is widely

studied while the sensitivity of jumps is analyzed in a handful of papers such as Dungey

et al. (2008), Lahaye et al. (2011) and Jiang et al. (2011). In particular, Lahaye et al.

(2011) estimate jumps and cojumps at intradaily frequency mapping jumps and cojumps

to macro news to �nd that bond markets are the most sensitive to news releases and that

macroannouncement surprises are associated with cojumps even more consistently than

jumps. Lahaye et al. (2011) point out the advantage of using very high frequency data

to study the impact of such events. On the other hand, Jiang et al. (2011) conclude

that although a majority of jumps occurs at prescheduled news announcement times,

surprises related to macroannouncements have limited power in explaining bond price
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jumps. Moreover, authors show that liquidity shocks play a key role in explaining jumps

and that usually, during the preannouncement period, it is possible to observe a drop in

market depth. Jiang et al. (2011) explain this result as that, as also discussed in Fleming

and Piazzesi (2006), dealers tend to withdraw orders and place them further out to avoid

being picked o¤ in the upcoming information event. Thus, Authors conclude that jumps

observed in correspondence to macroannouncement releases are not only determined by

news, but also by the drop in liquidity that is a market mover per se.

As far as government bond auctions are concerned, we refer to Fleming and Remolona

(1997) where the impact of US treasury auctions on returns is assessed. Fleming and

Remolona (1997) compute the "surprise" e¤ect as the di¤erence between the yield in the

when-issued market with the actual ex-post yield without relevant �ndings.

Finally, although rating actions are expected to be an important determinant of

spreads, as the creditworthiness represents the long-term sustainability of countries�debt,

the role and reliability of credit rating agencies (CRA) has been under investigation. In ad-

dition to concerns on CRAs e¤ective capability to give accurate risk assessments, there is

a sustained debate about the timing of recent downgrades of European sovereigns claimed

to promote uncertainty in �nancial markets: see for instance Akdemir and Karsli (2012),

Alsakka and Gwilym (2012, 2013), He et al. (2012) and Opp et al. (2013). In terms of

the impact of rating actions, Afonso et al. (2012) reports that ratings are systematically

related to daily movements in sovereign bond spreads, to budgetary developments, and

that rating actions are not anticipated at 1-2 months horizon; in addition, Authors show

the existence of spillover e¤ects, especially from lower rated countries to higher rated

countries, as well as of persistent e¤ects for recently downgraded countries. In our analy-

sis, we consider S&P, Moody�s and Fitch separately to measure the distinct impact of

the three rating agencies motivated by the results reported in Hill and Fa¤ (2010) where

it is shown that S&P is more active and provides higher �ow of news information than

Moody�s and Fitch during crisis periods.

This Chapter makes an important contribution to the literature on the empirical de-

terminants of government bonds spreads. Using a unique tick-by-tick 10-year government

bonds spreads resampled at 5-minute frequency, we map jumps and cojumps to the three

main drivers of spreads. We show that jumps and cojumps are very sensitive to macroan-

nouncements from US and Euro area but also to individual countries releases in particular

to those related to Germany and Spain. As per the category of macroannouncements, a

very relevant role is played by real economy indicators, in particular US non-farm pay-

roll, and forward looking indicators, such as consumer con�dence and purchase manager

index. In addition, signi�cant is the role of the ECB Introductory Statement, bringing to

the market the key information concerning decisions on ECB rates. We show the impor-

tance of taking into account the pre-announcement e¤ect which explain a great amount of
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jumps. Pre- and post-announcements convey di¤erent kind of information, where the pre-

announcements provide an indication about traders�perception of future news relevance

and the post-announcements, captured by surprises, are able to lead traders to revise

their positions according to the actual releases. As far as government bond auctions are

concerned, they explain a great deal of jumps and cojumps, especially for auctions hold in

Italy and Spain. On the contrary, rating actions play no role as determinants of spreads�

movements. Finally, we observe an increasing number of jumps and cojumps during the

preannouncement periods for both macroannouncements and auctions.

The remainder of the Chapter- is organized as follows. In Section 2.2, we describe

the dataset while in Section 2.3 we introduce the testing procedures adopted to detect

jumps and cojumps and the summary statistics of identi�ed jumps and cojumps events

and related market activities (Section 2.3.1), we map jumps to macroannouncements,

auctions and rating actions and we introduce the mean and variance models we propose

(Section 2.3.2). The empirical results are reported and discussed in Section 2.4. Section

2.5 concludes.

2.2 Data and Methodology

2.2.1 Data Description

2.2.1.1 Spreads

We use data for the benchmark 10-year government bonds of Belgium, France, Germany,

Italy, the Netherlands and Spain over the period 2nd January 2009 - 31st May 2012. We

consider bid, rather than mid, data as more representative of the spreads during crisis

periods because of very large bid-ask spreads. The 10-year bond benchmarks are iden-

ti�ed according to maturity and liquidity criteria. Morningstar provided us with this

unique tick-by-tick data sample that we resampled at 5-minute frequency using calendar

time, excluding time intervals with missing values for at least one country. The 5-minute

frequency is robust to microstructure noise and o¤ers su¢ ciently high frequency to prop-

erly evaluate the impact of speci�c events. Moreover, this frequency is consistent with

previous seminal contributions such as Fleming and Remolona (1997) and Balduzzi et al.

(2001).

The trading period considered is 8 a.m. - 3:30 p.m. coordinated universal time (UTC).

We detect and remove holidays and outliers applying a �lter which is a modi�cation

of the procedure to remove outliers proposed in Brownlees and Gallo (2006) that we

implement following the steps suggested by Barndor¤-Nielsen et al. (2011, p. 156), that

we summarize below.

Let pt;i be a tick-by-tick time series of prices, where t denotes day and i the time
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interval of day t, then an observation is removed if:��pt;i � pt;i �kL��� > max f4MDt;i(k); n
g ^
��pt;i � pt;i �kR��� > max f4MDt;i(k); n
g

(2.1)

where k the bandwidth; pt;i
�
kL
�
and pt;i

�
kR
�
sample medians of the k=2 observations

respectively before (L for left) and after (R for right) (t; i); MDt;i(k) mean absolute

deviation from the median of the whole neighborhood of length k; ^ the intersection

operator; 
 mean of the k absolute returns; n is 
�multiplier.
The advantage of this rule lies in the separate comparison of the (t; i)�th trade against

the left and right neighbours while the measure of dispersion is calculated on the whole

bunch of k trades. This approach is speci�cally designed to avoid detecting jumps as false

outliers.

Finally, we also remove the �rst return of the day that occurs at 8 a.m. as it largely re-

�ects the adjustment to information accumulated overnight and hence exhibits a spurious

excess variability compared to any other �ve-minute intervals. Data selecting procedure

is summarized in Table 2.1.
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Table 2.1: Government bond yields and spreads: data selection and summary
statistics

DE IT FR ES BE NL
PANEL A

No. ticks 2,980,063 917,630 1,035,631 903,233 799,610 605,155
Limiting trading time 2,294,951 704,701 794,602 796,529 682,408 512,789

Outliers: No. (%) 2,528 (0.11) 1,247 (0.18) 1,468 (0.18) 1,372 (0.17) 1,313 (0.19) 772 (0.15)
No. trades per day: Mean (SD) 2,629 (1,197) 805 (316) 908 (358) 910 (356) 780 (326) 586 (290)
Trade duration: Mean (SD) [s] 10.17 (27.01) 33.09 (62.97) 29.38 (58.16) 28.49 (57.85) 34.15 (69.05) 45.42 (82.33)

5-minute intervals 79,534 79,534 79,534 79,534 79,534 79,534
Exclude 1st daily obs 78,660 78,660 78,660 78,660 78,660 78,660

Bid YTM
Mean (SD) [%] 2.76 (0.58) 4.67 (0.80) 3.29 (0.37) 4.67 (0.75) 3.82 (0.42) 3.11 (0.57)

Median (1st - 99th pct) [%] 3.00 (1.44 - 3.57) 4.49 (3.75 - 7.05) 3.39 (2.49 - 3.97) 4.39 (3.75 - 6.49) 3.82 (2.94 - 4.87) 3.29 (1.93 - 4.04)
Bid-Ask Spread of YTM

Mean (SD) [bps] 0.63 (0.05) 0.65 (0.05) 0.80 (0.07) 0.76 (0.05) 0.97 (0.04) 0.70 (0.03)
Median (1st - 99th pct) [bps] 0.60 (0.55 - 0.76) 0.64 (0.59 - 0.81) 0.82 (0.68 - 0.94) 0.76 (0.70 - 0.90) 0.97 (0.89 - 1.08) 0.70 (0.64 - 0.77)

Bid Spread
Mean (SD) [bps] - 191 (124) 54 (34) 192 (117) 106 (63) 35 (16)

Median (1st - 99th pct) [bps] - 148 (60 - 513) 38 (20 - 154) 184 (50 - 481) 90 (34 - 295) 30 (15 - 81)
Bid-Ask Spread of Spread

Mean (SD) [bps] - 0.03 (0.05) 0.18 (0.06) 0.13 (0.07) 0.35 (0.07) 0.07 (0.06)
Median (1st - 99th pct) [bps] - 0.03 (-0.08 - 0.14) 0.17 (0.10 - 0.30) 0.13 (0.00 - 0.24) 0.35 (0.19 - 0.48) 0.10 (-0.04 - 0.19)

PANEL B
Around macroannouncements
No. trades per hour: Mean (SD) 298 (211) 86 (54) 96 (61) 96 (62) 83 (54) 63 (44)
Trade duration: Mean (SD) [s] 9.56 (25.05) 33.10 (63.87) 29.65 (60.45) 28.61 (58.68) 34.34 (71.29) 44.91 (82.37)

Other
No. trades per hour: Mean (SD) 314 (178) 100 (46) 114 (53) 110 (54) 98 (48) 73 (41)
Trade duration: Mean (SD) [s] 10.65 (23.40) 32.96 (59.28) 29.09 (51.98) 28.31 (51.78) 33.83 (63.00) 45.49 (77.65)

Around auctions
No. trades per hour: Mean (SD) 257 (199) 80 (53) 89 (60) 92 (62) 75 (52) 56 (43)
Trade duration: Mean (SD) [s] 10.26 (30.86) 33.81 (72.50) 30.03 (64.25) 28.86 (63.25) 35.74 (77.55) 47.45 (92.91)

Other
No. trades per hour: Mean (SD) 334 (190) 103 (47) 116 (54) 110 (56) 100 (49) 75 (42)
Trade duration: Mean (SD) [s] 10.12 (21.62) 32.69 (58.43) 28.99 (52.21) 28.20 (51.43) 33.37 (63.17) 44.40 (76.38)

Around rating actions
No. trades per hour: Mean (SD) 263 (205) 74 (52) 82 (58) 83 (59) 70 (51) 59 (44)
Trade duration: Mean (SD) [s] 8.87 (24.40) 31.65 (51.31) 28.66 (49.94) 27.36 (50.68) 33.30 (58.21) 39.47 (59.91)

Other
No. trades per hour: Mean (SD) 355 (184) 109 (44) 123 (50) 119 (53) 105 (46) 79 (41)
Trade duration: Mean (SD) [s] 10.17 (22.22) 33.06 (60.62) 29.31 (53.97) 28.44 (53.36) 34.07 (65.63) 45.44 (79.33)

PANEL A of Table 2.1 reports the data procedure selection on government bond yields and spreads together with some summary statistics. Limiting
trading time means removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described
in (2.1) in the text. Tick-by-tick data are resampled using calendar time (see details in the body of the chapter). The 1st observation of each day is
removed as it presents excess volatility. In square brackets is the unit of measurement. PANEL B of Table 2.1 o¤ers an analysis of trading activity
around the three categories of events analyzed: macroannouncements, government bond auctions and rating actions. The window around the event ranges
from 1 hour before the release up to 1 hour after.

In Panel A, for each time series, we report the overall number of ticks available from

which we remove holidays, weekends and trades occurred outside the trading period 8

a.m. - 3:30 p.m. UTC. We also remove outliers following the description in (2.1) which

lead us to detect percentage of outliers ranging from 0.11% for Germany to the 0.19% for

Belgium. In addition, we also report some descriptive statistics to get useful insights about

market liquidity. In particular, we compute the mean number of trades per day and the

time elapsed between two consecutive trades; both statistics indicate that the most liquid

market is the German one with a daily average number of trades of 2,629 and a trade

duration of 10.2 seconds, followed by Spain (910 trades, 28.5 seconds), France (908 trades,

29.4 seconds), Italy (805 trades, 33.1 seconds), Belgium (780 trades, 34.1 seconds) and the
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Netherlands (586 trades, 45.4 seconds). After resampling at the 5-minute frequency and

removing the 8 a.m. time interval for each day, we end up with 78,660 returns, covering

874 days corresponding to 90 observations per day. In Table 2.1, we also report descriptive

statistics about yields and spreads with respect to German Bund: Italy and Spain have

the highest average yields, both corresponding to 4.67%, while Germany has the lowest

equal to 2.76% denoting its safe heaven status; the average bid spread on Germany is

equal to 192 bps for Spain, 191 for Italy, 106 for Belgium, 54 for France and 35 for the

Netherlands. Of course, the information that the average indicator o¤ers is limited in the

light that government bond spreads vary a lot throughout our sample period as can be

seen from Figure 2.1.

Figure 2.1: 10-year government bond spreads

Figure 2.1 reports the 10-year government bond spreads (in bps) with respect to Germany for Italy,
France, Spain, Belgium and the Netherlands over the period 2nd January 2009 - 31st May 2012. Spreads
are computed on bid yields at 5-minute sampling frequency.

Government bond spreads were moving very closely until May 2010, when markets

start to pay more attention to sovereign debt risk in correspondence to the burst of

the Greek crisis. In May 2010, Greek government de�cit was revised and estimated to be

13.6% of GDP with a correspondent decrease in international con�dence in Greece�s ability

to repay its sovereign debt. As consequence, despite the �rst rescue package approved

by Eurozone countries and the IMF, concerns about Euro countries solvability began to

raise together with spreads.
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In Panel B of Table 2.1, we report the analysis of the trading activity around the

public events we are taking into consideration namely macroannouncements, government

bond auctions and rating actions. The time window analyzed ranges from 1 hour before

up to 1 hour after the release of each event. We compare both the number of trades per

hour as well as the time elapsed between two consecutive trades with respect to trading

hours with no particular events. Results in Table 2.1 show that there is no great evidence

of a di¤erent trading activity around the events analyzed.

2.2.1.2 Macroannouncements

Macroannouncements are a wide range of news, coming from a number of countries,

which constitute one of the most important source of information driving trading activ-

ity. The reason why bond markets are generally found to be more in�uenced by macroan-

nouncement releases is hilighted by the Fisher equation stating that the Yield-To-Maturity

(YTM) of a bond can be decomposed into two parts: the real interest rate component

(yrt ), which is closely linked to expectations about economic activity, and the average in-

�ation expected to prevail over the maturity of the bond (�t). Consequently, the nominal

yield ynt may be expressed as:

ynt = E (yrt j
t) + E (�tj
t) (2.2)

From this decomposition it is clear that every change in ynt is determined by the infor-

mation set 
 at time t. Unlike stocks or corporate bonds, government bonds returns are

hardly a¤ected by any asset-speci�c or private information; therefore we can claim that


 is to a great extent formed by public information in the form of regularly scheduled

announcements, macroeconomic or not, which constitute the main source of volatility for

this asset class at the intraday level.

We consider news releases related to the US, the Euro area, Belgium, France, Germany,

Greece, Italy, the Netherlands, Portugal and Spain. In some cases, we are unable to use all

available macroannouncements as they are released when some markets are still closed.

This is for instance the case of France, with releases occurring between 6:30 and 7:45

a.m. UTC. Finally, in case of Spain, although macroannouncements are released at 8:00

a.m. UTC, we keep these indicators shifting them to 8:05 a.m. in order to match with

spreads data. Data related to macroannouncements are median expected value by survey

panelists (E), forecasts standard deviation (�) and actual value of the release (A) and they

were collected from Bloomberg. Surveys are conducted on a number of forecasters by the

Money Market Service (MMS) and these data are generally found to possess reasonable

properties as expectations series as they are unbiased, pass simple forecast rationality

tests and outperform naive time series forecasts (see, for instance, Balduzzi et al. (2001)).
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In our application, we adopt the standard surprise measure de�ned as S = (A�E)=�: A
complete list of the macroannouncements analyzed is presented in Table 2.2.

Table 2.2: Macroannouncements with prescheduled releases

Country Macroannouncement Frequency Release time No. Category Surprise

(UTC) Mean (SD)

US Business inventories M 15:00 41 RE -0.55 (2.08)

Chicago PMI M 14:45 39 FL 0.87 (2.54)

Consumer con�dence M 15:00 39 FL -0.29 (3.40)

CPI M 13:30 41 P 0.01 (1.03)

Durable goods M 13:30 40 FL -0.59 (2.70)

Factory orders M 15:00 40 FL 0.16 (1.11)

GDP advance Q 12:30 / 13:30 14 RE -0.13 (1.00)

GDP preliminary Q 12:30 / 13:30 14 RE -0.53 (1.45)

GDP �nal Q 12:30 / 13:30 13 RE 0.00 (2.28)

Industrial production M 14:15 41 RE -0.29 (1.82)

Initial jobless claim W 13:30 175 RE 0.00 (0.00)

Nonfarm payroll M 13:30 39 RE -0.09 (2.23)

Philadelphia FED Index M 15:00 41 FL -0.10 (3.69)

PPI M 13:30 41 P 0.06 (1.75)

Retail sales M 13:30 41 RE 0.05 (1.81)

University of Michigan M 14:55 39 FL 1.12 (1.49)

EA Business climate M 09:00 42 FL 0.17 (2.05)

Consumer con�dence M 10:00 42 FL 0.14 (2.00)

Flash HICP M 10:00 42 P 0.07 (1.40)

HICP M 10:00 41 P 0.00 (0.00)

Industrial production M 10:00 41 RE -0.29 (1.82)

Introductory Statement M 13:30 40 RE -

M3 M 09:00 41 P -0.44 (2.66)

Monthly Bulletin M 10:00 41 RE -

PMI �ash M 09:00 41 FL 0.18 (2.51)

PMI �nal M 09:00 41 FL 0.79 (2.87)

PPI M 10:00 41 P -0.05 (0.86)

Retail sales M 10:00 41 RE -0.79 (1.66)

Unemployment M 10:00 41 RE 0.41 (1.67)

DE CPI preliminary M 13:00 37 P 0.00 (1.32)

IFO: business con�dence M 09:00 41 FL 1.24 (2.55)

Industrial production M 11:00 41 RE -0.15 (2.58)

Unemployment M 08:55 42 RE -0.63 (2.54)

ZEW M 10:00 41 FL 0.73 (2.53)

IT Business con�dence M 08:30 / 09:00 41 FL 0.26 (2.85)

CPI preliminary M 10:00 42 P 0.35 (2.49)

CPI �nal M 09:00 / 10:00 41 P -0.98 (3.00)

GDP preliminary Q 09:00 / 10:00 13 RE -1.33 (2.78)

GDP �nal Q 09:00 / 10:00 12 RE -0.25 (0.87)

Industrial production M 09:00 41 RE -0.04 (2.44)

FR Industrial production M 07:45 / 08:45 2 RE 6.67 (25.93)

ES CPI M 08:00 41 P 0.06 (0.75)



20 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

Table 2.2: Macroannouncements with prescheduled releases

Country Macroannouncement Frequency Release time No. Category Surprise

(UTC) Mean (SD)

GDP preliminary Q 08:00 14 RE 0.14 (2.03)

GDP �nal Q 08:00 14 RE -0.29 (0.73)

Industrial production M 08:00 40 RE -0.38 (2.69)

Unemployment Q 08:00 14 RE 0.75 (1.42)

PT CPI M 10:00 40 P -0.84 (2.79)

GDP preliminary Q 10:00 14 RE 6.43 (10.70)

GDP �nal Q 11:00 12 RE -3.00 (2.38)

NL CPI M 08:30 39 P 0.02 (1.18)

Industrial production M 08:30 39 RE -0.65 (3.74)

Unemployment M 08:30 41 RE -0.37 (2.14)

BE Business con�dence M 14:00 41 P 0.10 (2.19)

GR CPI M 10:00 40 P -0.84 (3.49)

GDP preliminary Q 08:30 / 10:00 8 RE -0.19 (1.03)

GDP �nal Q 08:30 / 10:00 7 RE -3.00 (2.38)

Unemployment M 10:00 38 RE -0.02 (2.61)

Table 2.2 reports a description of macroeconomic announcements released in the period 2nd January 2009 - 31st

May 2012. In some cases the release time changes according to the summertime. FL stands for Forward Looking,

P for price and RE for Real Economy macroannouncement categories. Surprise is computed as (Actual Release

-Median Forecasts)/SD Forecasts.

The size of the surprises related to US and Euro area macroannouncements are smaller

than those concerning individual countries, implying a more accurate forecast by surveyors

in the �rst two cases, though it is fair to mention that the number of surveyors interviewed

for US and Euro area releases is higher than for individual countries. Finally, we drop

the France industrial production given that in only two cases macroannouncements were

released after 8 a.m. UTC, and the Portugal preliminary GDP because of its very high

dispersion (standard deviation equals 10.7) due to both poor forecasts and low number

of surveyors for this speci�c news. For the Euro area HICP we did not dispose about

forecasts. The distribution of macroannouncement surprises is represented in Figures

2.2-2.5:
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Figure 2.2: US macroannouncement surprises

Figure 2.2 presents the distribution of surprises related to US macroeconomic announcements released in
the period 2nd January 2009 - 31st May 2012.

Figure 2.3: EA macroannouncement surprises

Figure 2.3 presents the distribution of surprises related to Euroa area macroeconomic announcements
released in the period 2nd January 2009 - 31st May 2012.
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Figure 2.4: National countries macroannouncement surprises (1)

Figure 2.4 presents the distribution of surprises related to German, French, Italian and Spanish macro-
economic announcements released in the period 2nd January 2009 - 31st May 2012.

Figure 2.5: National countries macroannouncement surprises (2)

Figure 2.5 presents the distribution of surprises related to Spanish, Portuguese, Belgian, Greek and Dutch
macroeconomic announcements released in the period 2nd January 2009 - 31st May 2012.
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2.2.1.3 Bond Auctions

We take into consideration auctions of European countries issuing Euro-denominated

bonds: Austria, Belgium, Finland, France, Germany, Greece, Italy, Portugal, Spain and

the Netherlands. Most auctions take place between 8 and 10 a.m. UTC. To capture the

performance of an auction, we use two main variables: the average yield at which the

government sells the bonds and the bid-to-cover, that is how many bids the Government

received with respect to the total o¤er. These two data were collected just for auctions

relative to 10-year bonds as they not only correspond to the maturity of the spreads

analyzed but they even represent the most relevant ones.

In Table 2.3, we report the total number of auctions per country together with the de-

tail of 10-year bond auctions for which we provide details on mean and standard deviation

of the average yield and the bid-to-cover.

Table 2.3: Government bond auctions

No. of auctions No. of 10-year Average yield [%] Bid-to-cover
bond auctions Mean (SD) Mean (SD)

Austria 34 15 3.64 (0.68) 2.16 (0.44)

Belgium 113 25 3.98 (0.55) 2.07 (0.56)

Finland 8 4 2.75 (0.46) na

France 271 38 3.61 (0.59) 2.34 (0.75)

Germany 220 35 3.04 (0.84) 1.53 (0.29)

Greece 53 0 - -

Italy 193 46 4.76 (0.75) 1.42 (0.17)

Portugal 104 16 5.01 (0.79) 2.05 (0.76)

Spain 163 25 4.85 (0.81) 1.94 (0.40)

the Netherlands 142 18 3.42 (0.74) na

Table 2.3 reports a description on government bond auctions hold in the period 2nd Janaury 2009 - 31st
May 2012. Average yield: yield at which the government allocated the bonds issued in an auction. Bid-
to-cover: ratio between the number of bids the Government received and the amount of bonds o¤ered.
Average yield and bid-to-cover are collected just for auctions concerning 10-year bonds.

Bid-to-covers are very similar for all the countries analyzed ranging from a minimum of

1.42 for Italian auctions to a maximum of 2.34 for French ones, while average yields re�ect

countries di¤erent sovereign risk: safer countries such as Finland and Germany succeed

in selling bonds at higher prices and lower returns, with an average yield of 2.75% and

3.04% respectively, while riskier countries such as Italy, Spain and Portugal allocate their

bonds at an average yield of 4.76%, 4.85% and 5.01%, respectively.

The distributions of bid-to-cover and average yield per country are reported in Figures

2.6 and 2.7 respectively:
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Figure 2.6: Bid-to-cover

Figure 2.6 presents the distribution of bid-to-cover for 10-year government bond auctions hold in the
period 2nd January 2009 - 31st May 2012. Bid-to-cover o¤er information about the number of bids the
Government received with respect to the total o¤er.

Figure 2.7: Average Yield

Figure 2.7 presents the distribution of average yields for 10-year government bond auctions hold in the
period 2nd January 2009 - 31st May 2012. Average yields are the yield at wihich the Government succeded
in selling its bonds.
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2.2.1.4 Rating Actions

We collect data concerning rating actions from the three main rating agencies: Standard

& Poor�s, Moody�s and Fitch. The aim is not only to assess whether downgradings have

an impact on government bond spreads but also to investigate whether some agencies

have bigger and/or more lagged impacts in comparison to the others. Note that in our

sample we deal mainly with downgrading actions as only two upgrading actions occurred

during the period considered, namely on 22nd February 2011 and 13th March 2012 for

Greece. Downgrading actions were undertaken against Austria, Belgium, France, Greece,

Ireland, Italy, Portugal and Spain as reported in Table 2.4.
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Table 2.4: Rating actions

S&P�s Moody�s Fitch
Austria 13-Jan-12 - -

Belgium 25-Nov-11 16-Dec-11 27-Jan-12

France 13-Jan-12 - -

Greece 14-Jan-09 22-Dec-09 22-Oct-09
16-Dec-09 22-Apr-10 08-Dec-09
27-Apr-10 14-Jun-10 09-Apr-10
29-Mar-11 07-Mar-11 14-Jan-11
09-May-11 01-Jun-11 20-May-11
13-Jun-11 25-Jul-11 13-Jul-11
27-Jul-11 02-Mar-12 22-Feb-11 (�)
27-Feb-12 09-Mar-12
02-May-12 13-Mar-12 (�)

17-May-12

Ireland 30-Mar-09 02-Jul-09 08-Apr-09
08-Jun-09 19-Jul-10 04-Nov-09
24-Aug-10 17-Dec-10 06-Oct-10
23-Nov-10 15-Apr-11 09-Dec-10
02-Feb-11 12-Jul-11
01-Apr-11

Italy 19-Sep-11 05-Oct-11 07-Oct-11
13-Jan-12 13-Feb-12 27-Jan-12

Portugal 21-Jan-09 13-Jul-10 24-Mar-10
27-Apr-10 16-Mar-11 23-Dec-10
24-Mar-11 05-Apr-11 24-Mar-11
29-Mar-11 06-Jul-11 01-Apr-11
24-Nov-11 24-Nov-11
13-Jan-12

Spain 19-Jan-09 30-Sep-10 28-May-10
28-Apr-10 10-Mar-11 07-Jul-11
13-Oct-11 18-Oct-11 27-Jan-12
13-Jan-12 13-Feb-12 07-Jun-12
26-Apr-12

Table 2.4 reports the rating actions undertaken by S&P�s, Moody�s
and Fitch during the period 2nd Janaury 2009 - 31st May 2012. All
the rating actions presented in Table 2.4 are downgradings, the only
exceptions are the two upgradings (�) which took place on 22nd Feb-
ruary 2011 and 13th March 2012 for Greece by Fitch.

2.3 Econometric Identi�cation andModelling of Jumps and
Cojumps

2.3.1 Identifying jumps and cojumps

We brie�y describe the testing procedures implemented to correctly identify jumps and

cojumps.
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2.3.1.1 Detecting jumps

There exist a vast range of jump detecting procedures proposed in literature and Dumitru

and Urga (2012) report a comprehensive comparison among the available tests. As we are

interested in identifying the exact time of occurrence of jumps, the Andersen, Bollerslev

and Dobrev (2007, ABD henceforth) and the Lee and Mykland (2008, LM) jump detecting

procedures are the only two suitable tests to this purpose.

ABD and LM both assume a continuous time jump-di¤usion data generating process

in the following log price process:

dpt;i = �t;id(t; i) + �t;idW (t; i) + �t;idq(t; i) t = 1; :::; T , i = 1; :::N (2.3)

where pt;i log asset price for the i-th subinterval belonging to day t; N number of equally

spaced subintervals belonging to day t with the interval time length being equal to �;

�t;i locally bounded variation process; �t;i volatility process, strictly positive and càdlàg;

W (t; i) Wiener process; dq(t; i) counting process, possibly a non-homogenous Poisson

process; �t;i = pt;i � pt;i� jump size. The Brownian motion W (t; i), the jump sizes �t;i
and the counting process q(t; i), are independent of each other. Moreover, in the absence

of jumps, the drift �t;i and the instantaneous volatility �t;i are such that the underlying

data generating process is an Itô process with continuous sample paths.

The ABD test can be summarized as follows. The �rst step consists in choosing the

size � of the jump test at the daily frequency and de�ning � = 1�(1� �)� the level of the
corresponding (1� �) con�dence interval for a randomly drawn intraday di¤usive return
approximately distributed as a normal with zero mean and variance N �BVt, where BVt
is the bipower variation for day t: The bipower variation is de�ned in Appendix 2.A.

In mathematical terms, the ABD test statistics is de�ned as:

kt;i (�) = rt;iI

"
jrt;ijp
BVt (N)

> � (1� �=2)
#

(2.4)

where jrt;ij is the absolute value of return on day t and time-interval i de�ned as pt;i �
pt;i�1; � (1� �=2) refers to the corresponding critical value from the standard normal

distribution. Anyway, this procedure will tend to over-reject the di¤usive null hypothesis

whenever there is substantial intraday variation in volatility; therefore Andersen et al.

(2007) suggest to set � to a conservatory level 10e�5 in order to achieve satisfactory

practical performance in terms of e¤ective power and size.

The LM test di¤ers from the ABD just for the number of observations the BV is

computed on (K < N) and for the choice of the critical value, here not coming from

the normal but from the Gumbel distribution. The jump test statistic Lt;i is de�ned as

follows:

Lt;i =
jrt;ijq

BVt (K)
1

K�2

(2.5)
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The window size K should be large enough so that the e¤ect of jumps on the estimation

of the instantaneous volatility disappears but at the same time it should be smaller than

the total number of observations per day, N . The condition K = Op (�
�) with �1 <

� < �0:5 satis�es the requirements. Therefore there exists a relationship between the
choice of the sampling frequency � and the window length K. In general for N , number

of observations per day, we have that
p
252�N � K � 252 � N . Moreover, results

in Lee and Mykland (2008) show that when K is within the range, increasing K only

elevates the computational burden without marginal contribution and therefore the opti-

mal choice seems to be the smallest integer satisfying the necessary condition,
p
252�N .

Lee and Mykland (2008) speci�c recommendation of optimal window sizes for one-week,

one-day, one-hour, 30-minute, 15-minute and 5-minute data are 7, 16, 78,110, 156 and

270 respectively for a 24-hour trading day.

As stated, the LM test does not use critical values from the normal distribution rather

from the maximum of the test statistics. Under some assumptions, it is possible to show

that:
max (Lt;i)� C(T�N)

S(T�N)
! � (2.6)

where � has a Gumbel cdf : P (� � x) = exp (�e�x) ; T�N represents the total number of

observations, CT�N = (2 log (T �N))1=2� log �+log(log(T�N))
2(2 log(T�N))1=2

and S(T�N) =
1

(2 log(T�N))1=2
:

Therefore, the null hypothesis of no jump is rejected in case:

Lt;i � C(T�N)
S(T�N)

> �� (2.7)

where P (� � ��) = exp
�
�e���

�
= 1� �.

The main drawback of ABD and LM tests is that they assume that spot volatility

measured by BV is approximately constant over the local window, hence one day for

the ABD or roughly the 90% of the observations in a day for LM. In fact, although the

volatility is time varying through a day, ABD and LM tests are both based on an estimate

of the average volatility of the returns in the local window. In order to deal with this

problem, Andersen et al. (2007) introduce the �ltered J test (FJ) statistic based on the

standardization of returns even by a periodicity estimate st;i which has the function of

making the volatility time-varying through the local window:

FJt;i =
jrt;ijdBV tbst;i (2.8)

To obtain an estimate of the periodicity component bst;i, we implement the Boudt et
al. (2010) robust estimation technique based on the Truncated Maximum Likelihood

(TML) estimator. Boudt et al. (2010) show that the �ltered jump test statistics increases

the accuracy of intraday jump detection methods. Finally, to control for the intraday
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periodicity, we adopt the Andersen and Bollerslev (1998) formulation modi�ed with the

inclusion of government bond auctions and rating actions as follows:

bst;i = exp f
�
�̂TML;xt;i

�
s

1
N

NP
i=1

�
exp f

�
�̂TML;xt;i

��2 8t = 1; :::; T (2.9)

f
�
�̂TML;xt;i

�
= �0 + �0;1

i

N1
+ �0;2

i2

N2
+

JX
j=1

�jS
j
t;i +

BX
b=1

�bR
b
t;i +

4X
j=1

#jWeekdaysj +

PX
p=1

�
�c;p cos

�
2�p

N
i

�
+ �s;p sin

�
2�p

N
i

��
+ "t;i (2.10)

where N number of intraday intervals i belonging to day t; N1 = (N+1)=2 and N2 = (N+

1)(N+2)=6 normalizing constants; Sjt;i surprise for macroannouncements and government

bond auctions (for the last ones, surprise is computed as the di¤erence in bid-to-cover

between current and previous 10-year auction); J the sum of macroannouncements and

auctions considered; Rbt;i dummy variable for rating action undertaken by rating agency b;

B is the number of rating agencies; �j and �b event speci�c loading coe¢ cients; P tuning

parameter determining the order of the expansion of the sinusoids; �̂TML full parameter

vector to be estimated.

Moreover, the loading coe¢ cients �j and �b are modeled applying the Andersen and

Bollerslev (1998) decay-structure which allows the speci�c event to impact over a time

window but with decaying weights. Macroannouncement surprises are allowed to impact

starting from 30 minutes before the release up to one hour and 30 minutes after, as in

Andersen and Bollerslev (1998). As far as government bond auctions are concerned, we

use a wider window, ranging from two hours before the auction ends, up to one hour

after it as we want to take into account the uncertainty in the markets during the auction

period. Finally, as the timing of rating actions is not foreseeable, we set the start of the

window in correspondence of the rating action up to two hours after it.

2.3.1.2 Detecting Cojumps

In order to evaluate whether and how markets are dependent from each other, we assess

whether markets share a simultaneous jump, that is whether there is evidence of a cojump.

To do that we �rstly need to characterize co-jumps.
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Let consider the multivariate version of (2.3) so that the log-prices of M assets can be

written as Xt;i =
�
p1t;i; :::; p

M
t;i

�0
for (t; i) � 0. Assuming the log-price vector of Xt;i is a

semimartingale on some �ltered probability space
�

;z(t;i)�0; P

�
, the continuously com-

pounded log-return can be written as:

d logXt;i = ut;id(t; i) + st;idW (t; i) + Ct;idJ (t; i) t = 1; :::; T , i = 1; :::N (2.11)

where ut;i M -vector drift rate, z(t;i) adapted càdlàg process; st;i (M �M) matrix, z(t;i)
adapted càdlàg process; W (t; i) M -vector of independent standard Brownian motions;

J (t; i) M -vector of counting process independent of W (t; i); Ct;i (M �M) matrix of
jump sizes, independent of each other and identically distributed. Ct;i is assumed to be

independent from W (t; i) and J (t; i).

The most naïve method to test for the presence of co-jumps is to apply the univariate

test simultaneously on each asset and then to evaluate whether they occur simultaneously;

for example some early literature detected co-jumps by applying standard Barndor¤-

Nielsen and Shephard (2004) test. Let consider to deal with M assets for which we want

to test the presence of co-jumps at � con�dence level. In case we don�t care about the

correlation among the assets, the con�dence level for each test should be set at �=M .

Anyway, as the assets are usually correlated, the total signi�cant level is lower than �

and therefore we might loose some power or signi�cance in the inference. In light of that,

before conducting the tests, returns are usually standardized by a robust estimation of

the instantaneous covariance matrix accounting for the local covariation of the returns

from the continuous part of the process.

Following developments in testing procedures for cojumps are introduced by Gobbi

and Mancini (2007) and Jacod and Todorov (2009) who speci�cally propose strategies

to test for co-jumps between a particular pair of asset returns. Instead Bollerslev et al.

(2008) introduce a panel based test statistic explicitly based on the covariance structure

in order to deal with idiosyncratic noise in individual returns.

In the empirical part of this Chapter, we adopt the de�nition proposed in Lahaye et

al. (2011), recently extended by Maini and Urga (2012). Given C assets, the contempo-

raneous cojump is de�ned as:

CoJumpt;i =

CY
c=1

I
����FJct;i���� (2.12)

where I(:) indicator function taking value 1 in case on day t at the interval i there was

a signi�cant jump FJt;i as per (2.8). In order to identify a su¢ cient number of cojumps

for further analysis, we de�ne a cojump if two or more jumps occur within a 15 minutes

time window.
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2.3.2 Modelling jumps and cojumps

2.3.2.1 Mapping Jumps

We now turn to assess the linkage between jumps and their possible determinants, namely

macroannouncements, government bond auctions and rating actions. To this purpose, we

compare the number of jumps around a pre-speci�ed event with respect to other periods

as it is discussed later in the Chapter. However, this simple comparison does not take into

account neither other variables which could cause the observed di¤erence going beyond

the impact of the single event nor the concurrence with other news. Moreover, it is widely

documented (see for instance Balduzzi et al. (2001); Lu and Wu (2009); Rangel (2011))

that it is not the release per se which explains jumps as the surprise related to a particular

event; in case of government bond auctions we de�ne the surprise as the di¤erence in the

bid-to-cover and the average yield with the previous auction of bond of the same maturity.

When the release is within market expectation, there is no reason for market to jump after

the announcement. Moreover, when two releases occur simultaneously, the only way to

impute the impact to the correct release is to use surprise.

The econometric model we propose is able to map jumps to macroannouncements,

government bond auctions and rating actions in both the process governing the conditional

mean and the conditional variance of government bond spreads. With respect to the

conditional mean, we extend the Tobit-GARCH model in Lahaye et al. (2011):

jFJt;ij =

8<: �+ �t;i + �t;i + �t;i + "t;i

0

if >0

otherwise
(2.13)

where jFJt;ij absolute size of signi�cant detected jumps; �t;i linear combination of day-of-

the-week dummies; �t;i standardized US news surprises
JP
j=1

�j

���Sjt;i���; �t;i intraday periodic
component and N number of intraday periods within a day. Lahaye et al. (2011) allow for

a potential delayed response to news by testing for lagged news; moreover they correct for

heteroskedasticity estimating the Tobit-GARCH model of Calzolari and Fiorentini (1998)

as proposed in Andersen et al. (2011).

With respect to the model for the conditional variance, rather than a simple GARCH

model as in Lahaye et al. (2011), we use a GARCH formulation driven by macroan-

nouncements as in de Goeij and Marquering (2006):

ht;i = !1+!2Dt;i�1+�ht;i�1+
�
�1 + �2D

�
t;i�1

�
"2t;i�1+

�
�1 + �2D

�
t;i�1

��
"�t;i�1

�2
(2.14)

where macroannouncements impact in three alternative ways. First, !2 allows for the

unconditional volatility level to di¤er from !1 when an announcement Dt;i�1 is sched-

uled in the near future. This is the so-called preannouncement e¤ect and, when it is



32 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

found to be positive, it implies a higher unconditional volatility level in the period pre-

ceding the releases. Second, the coe¢ cient �2 captures the di¤erence in persistency of

macroannouncements with respect to other kind of news. In particular, D
�
t;i�1 are dummy

variables taking value 1 in case the absolute size of the surprise is greater than its stan-

dard deviation and zero otherwise. If the parameters �2 are found to be negative/positive

and statistically signi�cant, this means that macroannouncements are less/more persis-

tent with respect to regular shocks. Finally, �2 accounts for a di¤erent leverage e¤ect

in correspondence to macroannouncements and, if it is found to be positive/negative, it

implies that negative surprises have higher/lower impact than positive ones and that the

leverage e¤ect is more/less pronounced for macroannouncements with respect to other

kind of news.

2.3.2.2 Modelling Jumps

The jump model we estimate is a Tobit-GARCH where both the mean and variance

processes are driven by macroannouncements, government bond auctions and rating ac-

tions. In particular, we allow for a pre-announcement e¤ect that takes into account of

future releases of macroannouncements and government bond auctions for a pre-speci�ed

number of time intervals, while rating actions are excluded as they are not prescheduled.

As per post-announcement, in our model we capture news announcement e¤ect directly

via surprise e¤ects related to macroannouncements and auctions rather than via dummy

variables, the only exception being the rating actions which indeed enter the model by

dummy variables taking value 1 after the rating action is public. Finally, another novelty

in our model is that we allow the surprise e¤ect to impact for a pre-speci�ed time window

after the release by modelling the coe¢ cients loading the surprises by the polynomial

decay structure proposed in Andersen and Bollerslev (1998). Andersson et al. (2006)

as well as Lahaye et al. (2011) account for delayed response of the dependent variable

after an announcement but entering the model with lags of the surprise each loaded by

its own coe¢ cient making the estimation procedure extremely complex. In our model,

the response pattern for each macroannouncement and auction is 12 periods long corre-

sponding to one hour after the release. The model for the mean equation is formalized as

follows:
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jFJt;ij = �+

JX
j=1


1;jD
j
�I [� 2 ((t; i) ; (t; i+�))] +

JX
j=1


2;j
��Sj� �� I [� 2 ((t; i��) ; (t; i))] +

BX
b=1


2;J+bR
b
�I [� 2 ((t; i��) ; (t; i))] + �t;i + "t;i (2.15)

where jFJt;ij absolute size of signi�cant detected jumps at � = 0:05 by the LM test �ltered

by the intraday periodicity estimated by (2.9) and (2.10); Dj
� dummy variable taking value

1 if macroannouncements or government bond auctions are prescheduled in the next �

periods after (t; i);
���Sj� ��� absolute surprise for macroannouncements and government bond

auctions released up to � periods before (t; i); J sum of the number of macroannounce-

ments and auctions; Rb� dummy variable taking value 1 if a rating action was undertaken

up to � periods before (t; i); �t;i = �1
i
N1
+ �2

i2

N2
+

5P
p=1

�
�2+p cos

2�p
N i+ �7+p sin

2�p
N i
�
in-

traday periodicity as per Lahaye et al. (2011); "t;ijzt;i�1 � N (0; ht;i), zt;i�1 being the
information set available up to (t; i� 1).

The conditional volatility ht;i is speci�ed as follows:

ht;i = !1 +
JX
j=1

!2;jD
j
�I [� 2 ((t; i) ; (t; i+�))] + �ht;i�1 +0@�1 + JX

j=1

�2;jD
� j
� I [� 2 ((t; i��� 1) ; (t; i� 1))]+

BX
b=1

�2;J+bR
b
�I [� 2 ((t; i��� 1) ; (t; i))]

!
"2t;i�1 +0@�1 + JX

j=1

�2;jD
� j
� I [� 2 ((t; i��� 1) ; (t; i� 1))]

1A+
BX
b=1

�2;J+bR
b
�I [� 2 ((t; i��) ; (t; i))]

!�
"�t;i�1

�2
(2.16)

where Dj
� denotes the dummy variable taking value 1 if a macroannouncement or an

auction is scheduled to take place in the next � periods after (t; i); D� j
� denotes the

dummy variable taking value 1 for large macroannouncement surprises or big changes in

bid-to-cover or average-yield occurred in the previous � periods; Rb� denotes the dummy

variable taking value 1 if in the previous � periods a rating action occurred.
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Unlike de Goeij and Marquering (2006), we de�ne large surprises if the absolute sur-

prise is higher than one half of the standard deviation of this measure for all the macroan-

nouncement of the same kind in order to set a unique rule for macroannouncements and

bond auctions as, for auctions, we do not dispose of standard deviation of forecasts.

The Tobit-GARCH approximate log-likelihood is given by (2.17):

logL =

TX
t=1

NX
i=1

log (1� � (#)) I (jFJt;ij = 0)

�1
2

TX
t=1

NX
i=1

 
log
�eht;i�+ "2t;ieht;i

!
I (jFJt;ij > 0) (2.17)

where # =
cFJt;i�Thresholdt;ieh1=2t;i

with Thresholdt;i the threshold adopted to identify jumps in

(2.8); � normal cdf function; eht;i de�ned as in (2.16) where, instead of "t;i we substituteeut;i�1 which is obtained as:
eut;i�1 =

8<: "2t;i if jFJt;ij > 0

�
bh1=2t;i�1�(#)

1��(#) if jFJt;ij = 0
with � normal pdf function.

2.3.2.3 Modelling Cojumps

In order to determine the probability of a cojump occurrence we adopt a simple logit

model. We consider even the opportunity to estimate a multinomial model allowing to

distinguish between 2, 3, 4 or 5 cojumps occurrence probability but this model could

not be implemented because only very few observations are available for each class of

cojumps. Therefore we collapse cojump in a simple dummy variable: occurrence vs. non

occurrence. The model has the same speci�cation adopted for jump mean in (2.15) except

for the estimation of the response pattern as here we load macroannouncement surprises

and delta in average yield and bid-to-cover for 10 years government bond auctions with

unitary weights throughout the time window considered. We model the cojumps identi�ed

by the LM test �ltered by the parametric estimate of intraday periodicity discussed in

Section 2.3.1.1. Considering that although we are modeling the simple event, cojump

vs no-cojump, the identi�ed cojumps are usually very few and that logit model requires

at least 20% of events to get robust estimates (see for instance Tomz et al. (2003)),

we proceed with an oversampling by creating an arti�cial sample of size M with all

the identi�ed cojumps representing 20% of M while the other observations are chosen

randomly. The procedure provides consistent and e¢ cient estimates provided appropriate

statistical corrections are implemented. To this purpose, a prior correction approach can

be implemented consisting in computing the usual logistic regression estimators corrected
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using prior information about the fraction of ones in the population, � , and the observed

fraction of ones in the sample, y. For the logit model, the MLE b�i estimator for the
covariate in the subsample is a statistically consistent estimate of �i while the corrected

estimate for the intercept �0 is:

b�0 � ln ��1� ��
��

y

1� y

��
: (2.18)

2.4 Empirical Findings

2.4.1 Preliminary Analysis

Though, as already mentioned, we may identify jumps by applying the ABD and LM

testing procedures, we only report the LM tests adjusted for the intraday periodicity

estimated by TML as this is the procedure allowing to reduce spurious jumps detection

(see for instance Boudt et al. (2010)). As �rst step in assessing the relationship between

jumps and macroannouncements, bond auctions and rating actions, we compare jumps

occurrence around a speci�c event with respect to other periods. We set the time window

for the macroannouncement releases and government bond auctions ranging from 1 hour

before up to 1 hour after while for rating actions, given that these events are not presched-

uled as the other two cases, we set the window equal to two hours after the release. For

the selection of the time windows, we refer to Pearce and Roley (1983, 1985) and Jain

(1988) who �nd that the stock price response essentially completes in the trading day

and, more precisely, within one hour after the announcements. Wongswan (2006) shows

that announcement surprises induce large but short-lived increases in volatility within

thirty minutes of the announcements. Balduzzi et al.(2001), Gurkaynak et al. (2005) and

Andersen et al. (2007) con�rm that reaction times to news are very short. Moreover, in

order to properly set response time windows, we analyze the empirical behaviour of the

absolute returns around the event speci�ed. In Figures 2.8-2.9, we report the mean ab-

solute returns around macroannouncements, government bond auctions and rating actions

together with the 95% con�dence level, on the left, and the same statistics but for days

with no event although around the typical hour of release on the right. We distinguish

between US and Euro Area macroannouncements as the usual release time is between

13:30 and 15:00 UTC and between 8:00 and 10:00 UTC respectively. On the x-axis we

report the number of 5-minute intervals preceding/following the time of release.
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US macroannouncements Not US macroannouncements

Euro area macroannouncements Not Euro area macroannouncements

Individual countries macroannouncements Not individual countries macroann.

Figure 2.8: Market activities around events: US, Euro area and individual
countries macroannouncements

The left-hand column of Figure 2.8 plots the mean absolute returns together with the 95% con�dence
interval around the release of the US, Euro area and individual countries macroannouncements. The
right-hand column of Figure 2.8 plots the mean absolute returns around the typical average release time
of the news: 14:15 UTC for US macroannouncements, 9:00 UTC for Euro area and individual countries
macroannouncements. On the x-axis, we report the number of 5-minute intervals preceding/following the
time of the release.
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Auctions Not auctions

Rating actions Not rating actions

Figure 2.9: Market activities around events: government bond auctions and
rating actions

The left-hand column of Figure 2.9 reports the plots of the mean absolute returns with the 95% con�dence
interval around the government bond auctions and rating actions. The right-hand column of Figure 2.9
plots the mean absolute returns around the typical average release time of the news: 9:00 UTC for
government bond auctions and 8:00 UTC for rating actions. On the x-axis, we report the number of
5-minute intervals preceding/following the time of the release.

In Table 2.5, we report the jumps detected for each country and a comparison of jump

occurrences during news with respect to no-news periods. Estimates for the intraday

periodicity in (2.10) are reported in Appendix I.
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Table 2.5: Jumps: summary statistics
All IT FR ES BE NL

PANEL A
No. 4,255 1,134 486 1,313 961 361

P(Jump) 1.10 1.46 0.63 1.69 1.24 0.47

Mean abs. size [%] 1.73 1.56 1.77 1.50 2.40 1.32

z-test z-test z-test z-test z-test z-test
PANEL B: Macroannouncements

All 3.69 *** 2.56 *** 2.02 ** 2.30 ** 3.73 *** 3.35 ***
US 5.16 *** 3.53 *** 3.55 *** 2.51 *** 4.99 *** 4.17 ***

Euro area 2.02 ** 2.06 ** 0.35 1.93 ** 1.12 0.02

Individual countries -0.40 -0.25 -0.35 0.25 0.23 1.14

US - Real economy 4.82 *** 2.98 *** 3.34 *** 2.02 ** 5.38 *** 4.47 ***
US - Forward looking 1.86 ** 2.07 ** 0.34 1.06 1.00 1.54 *

US - Price 1.28 0.05 2.32 ** 0.79 0.81 -0.09

Euro area - Real economy -0.72 0.46 -1.40 -0.83 -0.03 -0.62

Euro area - Forward looking 3.03 *** 1.91 ** 1.42 * 2.93 *** 2.15 ** 1.81 **
Euro area - Price 1.11 1.34 * 0.39 1.22 0.27 -2.01

Individual countries - Real economy -1.46 -0.83 -1.42 -0.84 -1.60 -0.34

Individual countries - Forward looking 2.37 *** 1.34 * 0.87 2.08 ** 2.42 *** 3.22 ***
Individual countries - Price -1.31 -0.86 -0.85 -0.64 -0.49 -0.39

PANEL C: Bond auctions
All 1.90 ** 0.01 0.28 2.72 *** 0.13 0.02

France -1.99 -2.30 0.02 -1.29 -1.40 -0.50

Germany 0.55 -0.57 1.11 2.60 *** -0.36 1.23

Greece 3.35 *** 0.61 2.00 ** 1.20 2.41 *** 2.38 ***
Italy 3.65 *** 2.42 *** 1.09 3.62 *** 1.65 ** 0.78

Spain 2.95 *** 3.01 *** 1.94 ** 0.88 -0.21 0.96

PANEL D: Rating actions
All 2.15 *** 2.04 *** -0.22 0.96 1.07 -0.34

S&P 1.99 ** 1.57 * 0.01 1.63 * 0.77 -1.14

Moody�s 1.16 -0.24 -0.16 1.06 1.78 ** 0.36

Fitch 0.25 1.95 ** -0.32 -1.21 -0.80 0.20

Belgium 5.22 *** 1.83 ** 2.24 ** 2.45 *** 6.34 *** -0.59

Greece -0.23 0.82 -1.53 -0.91 -1.09 0.57

Ireland -0.03 -1.27 -0.02 1.08 -0.01 -1.23

Italy 2.73 *** 6.00 *** -0.97 0.93 0.11 0.36

Portugal 0.19 0.84 0.55 0.03 -0.65 0.29

Spain 1.94 ** 1.74 ** 0.09 0.86 1.20 -0.34

Panel A of Table 2.5 reports the number of 5-minute returns identi�ed as jumps by applying the Lee and Mykland
(2008) test adjusted by the intraday periodicty of volatility according to Boudt et al. (2010), de�ned in (2.8), at the
5% signi�cance level as well as the average absolute size of jumps. Panels B-D provide a preliminary analysis of
the degree of association between jumps and macroannouncements, government bond auctions and rating actions
by applying the z-test to compare the frequency of jumps occurrence around the event in analysis with respect
to no-event situation. The null hypothesis is that the two percentages are equal. As per macroannouncements,
we just show the analysis according to the classi�cation in real economy, forward looking and price releases as
reported in Table 2.2 while for government bond auctions, we report only relevant countries. ***, **, * denote
1%, 5% and 10% signi�cance level, respectively.

Overall, macroannouncements play an important role in explaining jumps in all coun-

tries. In particular, the biggest impact is due to US and Euro area releases while news
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concerning individual countries do not seem to determine jumps. As far as the economic

category of macroannouncements is concerned, news regarding the US real economy, such

as production and employment indicators with the non-farm payroll (the so called "king of

macroannouncements") are the most important together with Euro area forward looking

indicators, such as con�dence indicators and purchase manager index, and some national

forward looking indicators.

As far as government bond auctions are concerned, their impact on jumps is
particularly important when we focus on countries with very high public debt, such as

Italy and Greece, when we see that around auctions, government bond spreads of almost

all countries jump substantially. Note that in 2011, Italy public debt was 120% of GDP

and in Greece 160%, while it was 106% for Portugal, 98% for Belgium, 86% for France,

81% for Germany 72% for Austria, 68% for Spain, 66% for the Netherlands and 48% for

Finland. In particular, around the Greek auctions, there is evidence of jumps in France,

Belgium and the Netherlands, while around the Italian auctions, the Italian, Spanish and

Belgian spreads jump signi�cantly. Some evidence of presence of jumps is also found when

Spanish auctions take place, a¤ecting in particular Italy and France. We interpret this

result as a sign of raising concern about Spanish government�s solvability.

Turning to rating actions, there is evidence that downgradings cause jumps when
considering all rating actions in all markets but the three rating agencies do not seem to

have a di¤erent impact. However, a crucial role is played by the country which was the

object of the rating action. In particular, actions taken against countries such as Belgium,

Italy and Spain cause jumps on government bond spreads while actions against smaller

and more fragile countries such as Greece, Ireland and Portugal do not seem to have any

signi�cant e¤ect. This result contradicts those reported in other studies. Alsakka and

Gwilym (2012) �nd that Moody�s decision to downgrade Greece to Caa1 from B1 on 1st

June 2011 determined an increase by 12 basis point in Greek 10-year government bond

yields and a decline of bond prices for Ireland, Spain and Portugal. On 13 June 2011, S&P

downgraded Greece from B to CCC (with negative outlook), causing Greek, Portuguese

and Irish 10-year bond yields to jump of 16.79%, 10.66% and 11.34% respectively. See

also Alsakka and Gwilym (2013)

Cojumps. To detect a large number of cojumps, we de�ne cojumps whether two or
more jumps occur in a 15-minute time window rather than 5-minute window. When we

de�ne a cojump considering a 5-minute time window we come up with just 475 cojumps

while, when expanding the time window to 15 minutes, we can detect up to 2,392 cojumps.

However, whenever possible, we conduce our analysis on both 5-minute and 15-minute

window with substantially unchanged results.

In Table 2.6, we report the analysis for cojumps identi�ed applying (2.12).



40 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

Table 2.6: Cojumps: summary statistics
� 2 2 3 4 5

PANEL A
No. 1,196 828 271 62 35

P(Cojump) 1.54 1.07 0.35 0.08 0.05

P(Cojump|Jump) 33.15 22.95 7.51 1.72 0.97

z-test z-test z-test z-test z-test
PANEL B: Macroannouncements

All 1.87 *** 0.23 1.10 3.15 2.51 ***
US 2.00 ** 0.06 1.24 2.98 *** 3.88 ***
EA 4.22 *** 3.74 *** 0.90 1.13 2.41 ***

Individual countries -0.55 -0.31 -0.55 1.02 na

US - Real economy 3.07 *** 0.97 1.77 ** 3.00 *** 4.25 ***
US - Forward looking -1.71 -2.11 -0.67 na na

US - Price -0.11 0.68 na na na

EA - Real economy 0.33 0.32 -0.57 na 3.30 ***
EA - Forward looking 4.92 *** 4.25 *** 1.86 ** na na

EA - Price 0.69 0.51 0.00 na na

Individual countries - Real economy 0.06 0.63 -0.04 na na

Individual countries - Forward looking 1.29 * 0.05 2.91 *** -0.16 -0.64

Individual countries - Price -2.64 -1.17 -4.03 1.16 na

PANEL C: Bond auctions
All 1.57 * 0.96 0.54 1.52 * 0.94

France -0.97 -1.01 0.17 na na

Germany 1.02 -0.76 1.24 0.84 5.03 ***
Greece 3.06 *** 3.20 *** 1.12 na na

Italy 4.30 *** 2.68 *** 1.80 ** 3.76 *** na

Spain 1.86 ** 2.59 *** -0.88 na na

Panel A of Table 2.6 reports the number of contemporaneous cojumps identi�ed by applying (2.12)
on jumps identi�ed by applying the Lee and Mykland (2008) test adjusted by the intraday periodicty
of volatility according to Boudt et al. (2010), de�ned in (2.8), at the 5% signi�cance level. Moreover,
in order to identify a su¢ cient number of cojumps for further analysis, we de�ne a cojump if two
or more jumps occured in a 15-minute time window. P(Cojump|Jump) denotes the probability of
a cojump given that at least one of the country had a jump. Panels B-C provide a preliminary
analysis of the degree of association between cojumps and macroannouncements and government
bond auctions by applying the z-test to compare the frequency of cojumps occurrence around the
event in analysis with respect to no-event. The null hypothesis is that the two percentages are equal.
We did not report tests for rating actions as we observe a very low number of cojumps around rating
actions which did not allow us to carry out the tests. In case one of the two categories has less than
10 observations, the test statistic is not reported (na). As per macroannouncements, we just show
the analysis according to the classi�cation in real economy, forward looking and price releases as
reported in Table 2.2 while for government bond auctions, we report only relevant countries. ***,
**, * denote 1%, 5% and 10% signi�cance level, respectively.

The results con�rm what already reported for the jumps analysis. In particular,

US and Euro area macroannouncements are the most important drivers of cojumps, with

particular relevance of those concerning real economy and those related to forward looking

measures. As per auctions, those impacting the most are again those hold in Italy, Greece

and Spain while we did not report the analysis for rating actions as we did not dispose of

su¢ cient information to carry out a meaningful comparison. It is worth noting that the

largest impact of macroannouncements and auctions is found when considering cojumps
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in 4 or 5 countries simultaneously with respect to fewer series. For instance, in 6 out of

8 events (75%) for which we can compare the occurrence of cojumps in 5 series, cojumps

take place more often in correspondence to macroannouncements and auctions; when

considering 4 time series instead, we �nd cojumps in 4 out of 10 events (40%), while when

3 time series are considered we have 4 out of 18 (22%), and for 2 time series 5 out of 19

(26%). These �ndings are in support of the presence of systemic factors a¤ecting all the

markets simultaneously.

2.4.2 Results for the Jump Model

The �rst step to estimate the model for the absolute jump size in (2.15) is the estimation

of the response pattern of jumps on macroannouncements and government bond auctions.

In Figure 2.10 we report some examples of response patterns.

Figure 2.10: Jump responses patterns

In Figure 2.10 we report some examples of jump responses patterns. These patterns capture the possible
delayed response of jumps to macroannouncements and government auctions surprises in a one hour time
window. The underlying assumption is that jumps responses vanish as time passes and therefore the
polynomial decay structure by Andersen and Bollerslev (1998) is adopted.

Once jumps response patterns are estimated, we pre-select, for the mean equation,

statistically signi�cant variables at � = 0:30 using a simple Tobit regression. After this

pre-selection, we estimate jointly the mean and the variance equations (2.15) and (2.16),

respectively, following Calzolari and Fiorentini (1998).
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2.4.2.1 Mean Equation.

Table 2.7 reports the results of mean equation in (2.15). When interpreting Tobit coef-

�cients remember that they measure the impact of a change in the corresponding inde-

pendent variable on the latent dependent variable weighted by the probability of being

above the threshold that in our case corresponds to the probability of observing a jump.

Table 2.7: Jumps: mean model

IT FR ES BE NL

constant -1.2294 *** -1.6069 *** -1.2543 *** -1.2023 *** -2.3056 ***

Macroannouncements - pre-release


1;2 (US - Chicago PMI) 0.1146 *** 0.2635 *** -0.0932


1;5 (US - Durable goods) 0.0625 ***


1;7 (US - GDP advance) -1.0008 *** -1.1920 ***


1;8 (US - GDP preliminary) -1.6089 ***


1;10 (US - Industrial production) 0.0526 *** 0.0361 ***


1;12 (US - Nonfarm payroll) 0.1906 *** 0.0175 *** 0.2522 *** -0.0936 *** 0.3491 ***


1;13 (US - Philadelphia FED index) -0.2954 ***


1;14 (US - PPI) -0.9893 *** -0.1098 *** -0.9936 ***


1;18 (EA - Consumer con�dence) 0.1010 *** 0.1099 ***


1;21 (EA - Industrial production) 0.0563 *** -0.0673 *** 0.1215 *** 0.0824


1;22 (EA - Introductory Statement) 0.0921 *** -0.2162 *** 0.0378 *** 0.0683 *** -0.1960 ***


1;23 (EA - M3) -0.1935 ***


1;24 (EA - Monthly Bulletin) -0.0871 *** 0.0471 ***


1;25 (EA - PMI Flash) 0.0082 **


1;26 (EA - PMI Final) 0.0705 *** 0.0468 ** -0.1487 ***


1;27 (EA - PPI) 0.1948 ***


1;28 (EA - Retail sales) -0.1257 ***


1;34 (DE - ZEW) -0.0131 *** 0.1393 *** 0.0095 ***


1;30 (DE - CPI preliminary) -0.0937 *** -1.0607 ***


1;31 (DE - IFO Business con�dence) 0.0662 *** 0.1883 ***


1;32 (DE - Industrial production) -0.1276 *** -0.0364 *** -0.182 ***


1;33 (DE - Unemployment) 0.0779 ***


1;37 (IT - GDP �nal) 0.2157 ***


1;40 (IT - Industrial production) -0.1329 ***


1;42 (ES - CPI) -0.1138 *** -0.1662 ***


1;47 (PT - CPI) -0.0899 *** -0.1786 *** -1.1927 ***


1;50 (NL - CPI) -0.1031 *** -0.3226 ***


1;52 (NL - Unemployment) 0.0663 *** 0.0905 *** -0.0625


1;53 (BE - Business con�dence) -0.0337 ***


1;54 (GR - CPI) 0.2102 *** 0.1006 *** -0.1495 ***


1;55 (GR - GDP preliminary) -0.9971 ***



Empirical Findings 43

Table 2.7: Jumps: mean model

IT FR ES BE NL

Macroannouncements - post-release


2;2 (US - Chicago PMI) -0.8424 ***


2;4 (US - CPI) 0.7151 ***


2;7 (US - GDP advance) 1.0035 ***


2;8 (US - GDP preliminary) -0.1218 *** 0.5839 *** -0.0951 ***


2;10 (US - Industrial production) -0.6848 ***


2;11 (US - Initial jobless claim) 0.9997 *** -1.0000 ***


2;12 (US - Nonfarm payroll) 0.3075 *** 0.0671 *** 0.5770 *** 0.5992 *** 1.4448 ***


2;13 (US - Philadelphia FED index) -0.1163 ***


2;15 (US - Retail sales) -0.2377 *** 0.2867 *** 0.3586 ***


2;16 (US - University of Michigan) 0.8618 ***


2;17 (EA - Business climate) -0.8374 *** 0.0321 ***


2;18 (EA - Consumer con�dence) 0.1723 ***


2;19 (EA - Flash HICP) -0.0134 ***


2;22 (EA - Introductory Statement) 0.0866 *** 0.0905 *** 0.2380 *** -0.0957


2;23 (EA - M3) -0.5505 ***


2;24 (EA - Monthly Bulletin) -0.1758 *** -1.4494 ***


2;25 (EA - PMI �ash) 0.0439 *** 0.0045


2;26 (EA - PMI �nal) -0.0631 *** 0.4480 *** -0.3419 ***


2;30 (DE - CPI preliminary) -0.9986 ***


2;33 (DE - Unemployment) -0.8114 *** -0.4523 ***


2;42 (ES - CPI) 0.2379 *** -0.6807


2;44 (ES - GDP �nal) -1.0042 *** -0.9992 *** 2.0739 *** 0.8127 ***


2;45 (ES - Industrial production) -0.1800 *** -0.7106 *** 0.2289 ***


2;46 (ES - Unemployment) -0.1959 *** 0.9603 *** -0.5733 ***


2;54 (GR - CPI) 0.2096 *** 0.2496 ***


2;55 (GR - GDP preliminary) -0.1251 ***


2;56 (GR - GDP �nal) 1.2908 ***


2;57 (GR - Unemployment) -0.1795 ***

Auctions - pre-release


1;58 (Austria) -0.0534 ***


1;59 (Belgium) 0.0361 *** 0.0259 *** 0.0438 *** 0.0678 *** 0.3233 ***


1;60 (Finland) 0.1539 *** 0.1032 *** 0.1309 ***


1;61 (France) -0.0756 *** -0.1313 *** -0.0218 -0.0163


1;62 (Germany) 0.0145 ***


1;63 (Greece) -0.1215 *** -0.2130 ***


1;64 (Italy) -0.0212 **


1;65 (the Netherlands) 0.1484 *** -0.0137 0.1097

Auctions - post-release (bid-to-cover)


2;58 (Austria) 1.0154 *** 1.0107 ***


2;59 (Belgium) -1.0029 ***
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Table 2.7: Jumps: mean model

IT FR ES BE NL


2;61 (France) -0.7427 *** 1.0022 ***


2;62 (Germany) -1.0011 *** 1.0041

Auctions - post-release (average yield)


2;71 (France) 1.0058 ***


2;72 (Germany) 1.0039 *** 1.0015 *** 1.0013 *** 1.0007 *** 1.0052


2;74 (Italy) -0.8344 *** 0.7390 ** 0.9945 *** 1.0035 ***


2;75 (the Netherlands) 1.0016 *** -0.9904 ***


2;76 (Portugal) 1.0094 ***


2;77 (Spain) -0.6236 *** 1.0260 ***

Rating actions


2;78 (S&P) -0.0351 ***

Table 2.7 reports the estimates for the mean equation of the Tobit-GARCH model in (2.15). The dependent variable is the

absolute size of jumps identi�ed by applying the Lee and Mykland (2008) test corrected by the intraday periodicity of the

volatility as proposed by Boudt et al. (2010) and de�ned in (2.8). Macroannouncements and auctions pre-release
are dummy variables taking value equal to 1 for time intervals preceding the release up to 1 hour before. Macroannounce-
ments and auctions post-release e¤ect is captured by the absolute size of surprise associated to the speci�c release. For
bond auctions we de�ne surprise as the di¤erence in average yield and bid-to-cover with respect to the previous auction.

These "surprises" are available just for 10-year bond auctions. Surprises are loaded by specifc polynomial which have a

decay structure as proposed by Andersen and Bollerslev (1998) up to 1 hour after the release. Rating actions are dummy
variables taking value 1 for time intervals following the action up to 2 hours after the release, zero otherwise.

We report just variables which are signi�cant at 10% level for at least one country. In some cases estimates are missing

because the correspondent dependent variable was not selected in the pre-selection procedure described in Section 2.4.2.

Estimates for the periodic component � are not reported. ***, **, * denote 1%, 5% and 10% signi�cance level, respectively.

It is evident the relevance that macroannouncements and government bond auctions

have in explaining jumps in government bond spreads and in particular both e¤ects, pre-

and post-announcement, turned out to be statistically signi�cant. Moreover, releases con-

cerning individual countries are often important in explaining government bond spreads

of other countries. This result constitutes an additional evidence in favour of the strong

linkages existing among European countries. No role is found for rating actions. Note

that the strong relevance of macroannouncements and government bond auctions in de-

termining jumps we �nd can also be interpreted along the Veronesi (1999) equilibrium

model showing that stock prices overreact to bad news in good times and underact to

good news in bad times.

Macroannouncements. The results in Table 2.7 suggest that the pure knowledge
about a forthcoming announcement in the following hour is statistically important in ex-

plaining jumps. 8 out of 16 US, 9 out of 13 Euro area and 15 out of 26 individual countries

future macroannouncement releases signi�cantly determine jumps. US non-farm payroll

together with the Introductory Statement are the most important factors of jumps in
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the �ve series considered with a coe¢ cient ranging from a -0.0936 for Belgium to 0.3491

for the Netherlands in the case of US Nonfarm payroll and from -0.2162 for France to

0.0683 for Belgium as far as the ECB Introductory Statement. Besides these two an-

nouncements, the other main drivers of jumps during the pre-announcement period are

US PPI on France, Spain and the Netherlands, Euro area industrial production on Italy,

France and Belgium and Euro area purchase manager index �nal on France, Spain and

Belgium, German ZEW on Italy, France and the Netherlands and German industrial pro-

duction on Italy, Spain and Belgium. Turning now to the post-announcement e¤ects, 10

out of 16 from US, 8 out of 13 from Euro area and 11 out of 26 from individual coun-

tries surprises are statistically signi�cant. In particular, the most important releases are

non-farm payroll, explaining large absolute jump sizes for all the �ve spread series con-

sidered with coe¢ cient ranging from 0.3075 for Italy to 1.4448 for the Netherlands, the

Introductory Statement determining sizeable jumps in Italy (0.0866), France (0.0905) and

Belgium (0.2380), and the Spanish GDP release explaining jumps for France (-1.0042),

Spain (-0.9992), Belgium (2.0739) and the Netherlands (0.8127). Among other macroan-

nouncements, we notice the statistical signi�cance of US GDP preliminary on Italy, Spain

and the Netherlands, US retail sales on Italy, France and Belgium, Euro area purchase

manager index �nal on Italy, Spain and Belgium and other Spanish releases such as in-

dustrial production on Italy, France and Spain and unemployment on Italy, Belgium and

the Netherlands.

The most important �nding of our analysis so far is the high sensitivity of government

bond spreads to US and Euro area macroannouncements together with a low sensitivity to

individual countries, the only exception being Spain and Germany. The worsening of the

Spanish macroeconomic fundamentals represents an important news for the markets and

particularly important is the role of unemployment (at present the highest in Europe)

and the industrial production, that is falling more than any other European country.

Moreover, while Greece and Portugal are small economies, Spain is the fourth largest

economy in the Euro area and this makes the deterioration of its macro fundamentals

extremely relevant to the markets. As far as Germany is concerned, the largest economy

in Europe, markets pay attention to signals coming from Germany�s economic indicators

as they serve as leading indicators for the entire Euro area.

As per the category of macroannouncements, there is a con�rmation of what already

reported in the preliminary analysis that is the important role played by economic indica-

tors such as employment level and industrial production, and forward looking variables,

with Euro area purchase manager index and German ZEW, as opposite to those related

to the consumer prices/in�ation indicator.

It is interesting to compare and contrast the results of our analysis with those reported

in the literature. For instance, we �nd a very high sensitivity of European government
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bond spreads to US releases. This result con�rms the �ndings in Ehrmann and Fratzscher

(2003), who investigate US, Germany and the Euro area money markets reaction to

monetary policy announcements by the Federal Reserve, the Bundesbank and the ECB

respectively. Authors show that linkage between money markets has increased over time

as movements in interest rate and volatility in either the US or the Euro area are mirrored

in the other market; in particular German and Euro area react to Federal Reserve decision

but no evidence supports the other way round. The important role played by the non-

farm payroll and GDP is also documented in Lahaye et al. (2011), Jiang et al. (2011)

and Miao et al. (2012). This variable indeed plays a fundamental role given it represents

an important leading indicator of economy�s strength as, among US real economy, it is

released before durable goods, factory orders, retails sales and production index. This

result is consistent also with what reported in Andersen et al. (2007) where it is showed

that announcements released earlier impact much more than those released later in time.

Focusing now on Andersson et al. (2006), the only paper analyzing the impact of a broad

range of US, Euro area and individual countries macroannouncements, namely Germany,

France and Italy, Authors report that US are the most important macroannouncements in

explaining returns of German bond market while our analysis shows that, in addition to

the US ones, also a wide range of Euro area as well as individual countries measures have

explanatory power for jumps. Note that this result in Andersson et al. (2006), con�rming

the evidence also in Andersen et al. (2007), stress the importance of the timing of the

news releases, and so macroannouncements related to Euro area, released earlier than

the US ones, already discount news coming from the US market and therefore have a

lower impact. Andersson et al. (2006) �ndings include the assessment of the importance

of non-farm payroll, Euro area industrial production and consumer con�dence, German

and French industrial production together with forward looking measures such as IFO,

ZEW and French, Italian business con�dence and Introductory Statement in driving the

volatility equation. These �ndings are quite in line with what reported in our analysis.

There are some novel and interesting results from our analysis that the existing liter-

ature does not document. First of all, we �nd evidence of the important role played by

the ECB Introductory Statement bringing to the market the key information concerning

decisions on ECB rates. Moreover, our results show the sensitivity of European govern-

ment bond spreads not only towards US and Euro area releases but also to individual

countries, with particular reference to those related to Germany and Spain. Finally, we

showed the importance of taking into account the pre-announcement e¤ects which are

found to explain a great amount of jumps. Pre- and post-announcement convey di¤erent

kind of information with the �rst providing an indication about traders�perception of fu-

ture news relevance while the second one, captured by surprises, leading traders to revise

their positions according to the actual releases.
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Government bond auctions. Focusing on government bond auctions, the di¤er-
ence in bid-to-cover with respect to the previous 10-year auction of 4 out of 7 countries

(Austria, Belgium, France and Germany) signi�cantly explains government bond spread
in at least one case although the average yield of 10-year bond auctions has a greater

impact. In particular the German and Italian auctions are relevant for Italy (coe¢ cients:

1.0039 and -0.8344), France (1.0015 and 0.7390), Spain (1.0013 and 0.9945) and Belgium

(1.0007 and 1.0035), while Spanish are for Italy (-0.6236) and Spain (1.0260). In addition,

we distinguish the post from the pre-release e¤ect �nding evidence of sizeable jumps even

before the publication of auctions results hold in 8 out of 10 countries namely Austria,

Belgium, Finland, France, Germany, Greece, Italy and the Netherlands. It is worth notic-

ing that we consider dummies for future auctions regardless of the maturity of bonds while

when turning to bid-to-cover and average yield we just analyze 10-year bond auctions.

When analyzing the pre-publication period, no clear pattern is found in that almost

all auctions, regardless of the country where they are hold, determine jumps, including

countries such as Finland and the Netherlands, while when focusing on average yield

we �nd strong impact of auctions hold in distressed countries, namely Italy and Spain,

together with those hold in Germany, representing a benchmark in the Euro area. This

result is not surprising as average yields to which bonds are allocated provide a better

signal of the performance of an auction and allow to discriminate more between safer and

riskier countries.

Rating actions. Turning now to the rating actions, this factor is statistically irrel-
evant and there is no di¤erence among the rating agencies. Our results contrast with

�ndings in the literature assessing the impact of rating actions on returns or jumps. Ki¤

et al. (2012) discuss that the most of the incremental information value is transmitted

through negative credit warnings (i.e., �outlooks,� �reviews,� and �watches,�), rather

than actual rating changes. The same conclusion is also reported in Pukthuanthong-Le

et al. (2007), Hooper et al. (2008) and Hill and Fa¤ (2010). Our analysis instead con-

�rms a "reputation issue" attached to rating agencies: market participants do not rely on

rating agencies assessment in default risks in government bonds in the current European

sovereign debt crisis in the light that they were unable to correctly quantify risk in the

structured products on US mortgage loans.

2.4.2.2 Variance Equation.

Table 2.8 reports the results of variance equation (2.16).
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Table 2.8: Jumps: variance model

IT FR ES BE NL

!1 0.0038 0.1916 *** 0.0283 *** 0.0539 *** 0.2122 ***

Macroannouncements - pre-release

!2;2 (US - Chicago PMI) -0.0003 -0.0391 *** -0.0007 0.0043 * -0.0184 ***

!2;4 (US - CPI) 0.0021 0.0295 *** -0.0015 0.0011 -0.2051

!2;5 (US - Durable goods) -0.0003 -0.0067 0.0012 -0.0190 *** -0.0423 ***

!2;7 (US - GDP advance) 0.0028 -0.0465 0.0227 *** -0.0023 0.0232 ***

!2;8 (US - GDP preliminary) 0.0022 0.0041 0.0371 *** -0.0050 0.0281 ***

!2;9 (US - GDP �nal) 0.0030 -0.1457 0.0030 -0.0388 *** -0.2047

!2;10 (US - Industrial production) -0.0013 0.0236 0.0052 -0.0013 0.0159 **

!2;12 (US - Nonfarm payroll) 0.0018 0.1141 *** -0.0091 ** 0.0243 *** 0.0157

!2;15 (US - Retail sales) 0.0007 0.0264 *** 0.0077 ** 0.0099 *** 0.0307

!2;16 (US - University of Michigan) 0.0011 -0.0335 *** 0.0043 -0.0033 -0.0140

!2;17 (EA - Business climate) -0.0015 -0.0466 *** -0.0034 -0.0075 *** -0.0186

!2;22 (EA - Introductory Statement) 0.0009 0.0580 -0.0003 0.0103 *** 0.1089 ***

!2;23 (EA - M3) -0.0004 0.1089 *** 0.0024 0.0050 * 0.0227

!2;25 (EA - PMI �ash) 0.0006 0.0229 *** 0.0041 0.0107 *** 0.0220 *

!2;29 (EA - Unemployment) 0.0010 -0.0588 *** -0.0054 0.0041 -0.1049 ***

!2;37 (IT - GDP �nal) 0.0001 0.0629 *** 0.0053 0.0216 *** 0.0239

!2;40 (IT - Industrial production) -0.0012 0.0280 *** 0.0014 -0.0099 *** -0.0748

!2;52 (NL - Unemployment) 0.0013 -0.0409 *** -0.0074 -0.0015 0.0114

!2;53 (BE - Business con�dence) 0.0026 0.0381 *** 0.0062 -0.0036 0.0624 ***

!2;54 (GR - CPI) 0.0001 -0.0240 -0.0064 0.0110 *** -0.0182 **

!2;56 (GR - GDP �nal) -0.0005 -0.1160 *** -0.0070 0.0152 *** 0.0557

!2;57 (GR - Unemployment) -0.0001 0.0365 *** 0.0041 0.0050 * 0.0270

Auctions - pre-release

!2;62 (Germany) -0.0004 0.0126 *** 0.0018 -0.0041 -0.0108

!2;63 (Greece) 0.0004 0.0026 0.0066 0.0032 ** 0.1048 ***

!2;66 (Portugal) -0.0001 -0.0153 *** -0.0017 0.0002 -0.0090

!2;67 (Spain) 0.0008 0.0049 0.0001 0.0142 *** -0.0113 *

� 0.9548 * 0.0548 *** 0.7337 *** 0.6268 *** 0.2269 ***

�1 0.0191 0.0760 *** 0.00427 0.0471 *** 0.0840 ***

Macroannouncements - post-release

�2;2 (US - Chicago PMI) -0.0006 -0.0699 0.0352 -0.0138 *** -0.0834 ***

�2;3 (US - Consumer con�dence) 0.0018 0.1864 *** 0.0054 0.0024 0.1161 ***

�2;4 (US - CPI) -0.0030 -0.0618 ** -0.0079 0.0016 -0.0479

�2;5 (US - Durable goods) 0.0039 -0.0431 *** -0.0316 -0.0227 *** 0.0207

�2;7 (US - GDP advance) 0.0085 -0.0016 -0.0399 0.0986 *** 0.0876 ***

�2;8 (US - GDP preliminary) -0.0189 -0.0730 -0.0317 *** 0.0003 -0.0066

�2;9 (US - GDP �nal) -0.0165 -0.0745 *** -0.0050 -0.0319 *** -0.0842

�2;12 (US - Nonfarm payroll) -0.0039 0.1442 *** 0.0436 0.0305 *** 0.0916

�2;16 (US - University of Michigan) 0.0027 -0.0052 0.0068 -0.0189 *** 0.0831 **
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Table 2.8: Jumps: variance model

IT FR ES BE NL

�2;21 (EA - Industrial production) -0.0005 -0.0162 0.0497 * -0.0055 -0.0470

�2;22 (EA - Introductory Statement) -0.0074 0.1162 *** 0.0296 *** 0.0062 0.0742 ***

�2;26 (EA - PMI �nal) -0.0122 -0.0353 0.0249 *** -0.0299 *** -0.0072

�2;33 (DE - Unemployment) 0.0023 0.1261 *** -0.0175 0.0052 -0.0789

�2;37 (IT - GDP �nal) -0.0179 -0.0718 -0.0265 -0.0325 *** -0.0840 **

�2;45 (ES - Industrial production) 0.0050 -0.0479 0.0208 0.0384 *** 0.2065 ***

�2;47 (PT - CPI) 0.0031 -0.0335 ** -0.0238 0.0245 *** 0.0857

�2;52 (NL - Unemployment) 0.0056 0.0161 0.0210 0.0261 *** 0.1948 ***

�2;53 (BE - Business con�dence) -0.0124 -0.0320 * -0.0017 0.0206 *** -0.0366

Auctions - post-release (bid-to-cover)

�2;61 (France) 0.0012 0.0122 -0.0228 *** 0.0456 *** -0.0028

Auctions - post-release (average yield)

�2;75 (the Netherlands) 0.0058 0.1715 * -0.0277 0.0084 ** -0.0027

�2;76 (Portugal) 0.0289 0.0490 0.1135 ** 0.0993 *** 0.2423

�1 0.0056 0.3343 *** 0.1516 *** 0.1002 *** 0.2692

Macroannouncements - post-release - Asymmetric e¤ect

�2;1 (US - Business Inventories) 0.0113 -0.0351 *** -0.0282 *** -0.0071 ** -0.0105

�2;2 (US - Chicago PMI) -0.0002 -0.0410 *** -0.0591 *** -0.0002 0.0331

�2;3 (US - Consumer con�dence) -0.0070 * -0.2700 *** -0.0416 *** -0.0883 *** -0.2885 ***

�2;4 (US - CPI) 0.0046 -0.0834 *** -0.0089 ** -0.0266 *** -0.0633

�2;5 (US - Durable goods) -0.0036 0.0017 0.0288 *** -0.0085 ** -0.0009

�2;6 (US - Factory orders) 0.0134 *** -0.0750 *** -0.0061 * -0.0017 -0.0129 ***

�2;7 (US - GDP advance) -0.0065 * -0.0983 *** 0.0061 * -0.0936 *** -0.2295 ***

�2;8 (US - GDP preliminary) 0.0227 *** 0.0007 0.0053 -0.0071 ** 0.0000

�2;9 (US - GDP �nal) 0.0194 *** -0.0561 *** 0.0555 *** -0.0153 *** -0.0092 **

�2;10 (US - Industrial production) 0.0015 -0.0381 *** 0.0042 -0.2667 0.0018

�2;11 (US - Initial jobless claim) 0.0031 -0.0721 *** -0.0080 ** 0.0011 -0.0983 ***

�2;12 (US - Nonfarm payroll) -0.0010 -0.3404 *** -0.0508 *** -0.0466 *** -0.1100 ***

�2;13 (US - Philadelphia FED Index) 0.0097 *** -0.2049 *** 0.0037 -0.0482 *** -0.0005

�2;14 (US - PPI) -0.0076 ** 0.0048 -0.0028 -0.6172 0.0034

�2;16 (US - University of Michigan) -0.0060 * -0.0825 *** -0.0074 ** -0.0044 -0.0983 ***

�2;17 (EA - Business con�dence) 0.0069 * -0.0003 -0.0157 *** 0.0052 -0.0079 **

�2;18 (EA - Consumer con�dence) 0.0182 *** 0.0031 0.0154 -0.0117 *** -0.0134 ***

�2;19 (EA - Flash HICP) 0.0030 -0.0398 *** 0.0178 *** 0.0052 0.0045

�2;21 (EA - Industrial production) -0.0076 ** 0.0004 -0.0545 *** 0.0015 0.0266 ***

�2;22 (EA - Introductory Statement) 0.0078 ** -0.1282 *** -0.1326 *** -0.0668 *** -0.0961 ***

�2;23 (EA - M3) 0.0104 *** -0.0358 *** 0.0073 ** -0.0253 *** -0.0140 ***

�2;24 (EA - Monthly Bulletin) 0.0086 ** 0.0058 -0.0866 *** 0.0091 ** 0.0000

�2;25 (EA - PMI �ash) 0.0038 -0.0002 0.0038 -0.0186 *** -0.0891 ***

�2;26 (EA - PMI �nal) 0.0161 *** 0.0002 -0.0383 *** 0.0036 0.0010

�2;27 (EA - PPI) -0.0123 *** 0.0071 ** -0.0480 *** -0.0289 *** 0.0148 ***
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Table 2.8: Jumps: variance model

IT FR ES BE NL

�2;28 (EA - Retail sale ) -0.0048 0.0030 -0.0361 *** -0.0178 *** 0.0007

�2;29 (EA - Unemployment) 0.0129 *** -0.0026 0.0036 0.0026 0.0000

�2;30 (DE - CPI preliminary) 0.0055 -0.1306 *** -0.0087 ** -0.0178 *** 0.0000

�2;31 (DE - IFO: business con�dence) 0.0043 -0.0038 0.0094 *** -0.0178 *** 0.0044

�2;32 (DE - Industrial production) 0.0143 *** -0.0390 *** -0.0823 *** 0.0031 -0.0478 ***

�2;33 (DE - Unemployment) -0.0031 -0.0736 *** 0.0053 -0.0322 *** 0.0133 ***

�2;34 (DE - ZEW) -0.0064 * -0.0023 -0.1083 *** -0.0033 -0.0868 ***

�2;35 (IT - Business con�dence) 0.0126 *** -0.0006 0.0200 *** -0.0164 *** -0.0346 ***

�2;36 (IT - CPI preliminary) -0.0283 *** -0.0066 * -0.0834 *** 0.0035 0.0000

�2;37 (IT - CPI �nal) -0.0134 *** -0.0261 *** 0.0249 *** -0.0307 *** -0.0020

�2;38 (IT - GDP preliminary) -0.0115 *** 0.0099 *** 0.0021 0.0028 0.0049

�2;39 (IT - GDP �nal) 0.0211 *** 0.0016 0.0147 *** 0.0061 * 0.0109 ***

�2;40 (IT - Industrial production) 0.0019 0.0009 -0.0182 *** -0.0307 *** 0.0019

�2;42 (ES - CPI) -0.0047 -0.1374 *** -0.1202 *** -0.0631 *** -0.3038 ***

�2;43 (ES - GDP Preliminary) 0.0169 *** 0.0001 0.0066 * 0.0000 0.0000

�2;44 (ES - GDP Final) 0.0037 -0.0981 *** -0.0660 *** -0.0269 *** -0.0408 ***

�2;45 (ES - Industrial Production) -0.0049 -0.0315 *** -0.1322 *** -0.0249 *** -0.1096 ***

�2;46 (ES - Unemployment) 0.0190 *** 0.0010 0.0009 -0.0024 -0.0192 ***

�2;47 (PT - CPI) 0.0001 0.0016 0.0208 *** -0.0046 -0.0105 ***

�2;49 (PT - GDP �nal) 0.0051 0.0000 -0.0401 *** -0.0068 * -0.0703 ***

�2;50 (NL - CPI) 0.0105 *** 0.0105 -0.0162 *** 0.0000 0.0000

�2;51 (NL - Industrial production) 0.0149 *** -0.0052 -0.0724 *** -0.0109 *** -0.0458 ***

�2;52 (NL - Unemployment) -0.0098 *** -0.0138 *** -0.0849 *** -0.0547 *** -0.2027 ***

�2;53 (BE - Business con�dence) 0.0142 *** -0.0925 *** -0.1295 *** -0.0622 *** -0.0002

�2;54 (GR - CPI) 0.0171 *** 0.0000 -0.0093 *** -0.0086 ** -0.0164

�2;55 (GR - GDP preliminary) -0.0088 ** 0.0000 0.0271 *** 0.0011 0.0003

�2;56 (GR - GDP �nal) -0.0067 * -0.0010 0.0139 *** -0.0054 -0.0895 ***

�2;57 (GR - Unemployment) 0.0032 0.0015 0.0085 ** 0.0111 *** 0.0060 *

Auctions - post-release (bid-to-cover) - Asymmetric e¤ect

�2;58 (Austria) 0.0094 *** 0.0000 0.0003 0.0022 -0.0402 ***

�2;59 (Belgium) 0.0175 *** -0.0132 *** 0.0088 ** -0.0645 *** 0.0007

�2;61 (France) -0.0034 0.0007 -0.0124 *** -0.0675 *** 0.0029

�2;62 (Germany) 0.0075 ** -0.0310 *** -0.0173 *** 0.0019 0.0008

�2;64 (Italy) -0.0104 *** -0.0553 *** 0.0294 *** -0.015 *** -0.1558 ***

�2;66 (Portugal) 0.0248 *** -0.0012 -0.0273 *** -0.0426 *** 0.0279 ***

�2;67 (Spain) 0.0087 ** 0.0049 0.0270 *** -0.0094 ** -0.0390 ***

Auctions - post-release (average yield) - Asymmetric e¤ect

�2;68 (Austria) 0.0119 *** 0.0000 0.0181 *** 0.0004 0.0000

�2;69 (Belgium) -0.0229 *** -0.0744 *** 0.0180 -0.0404 *** -0.0769 ***

�2;71 (France) 0.0098 *** -0.0110 *** -0.0184 *** -0.0108 *** -0.0067 *

�2;72 (Germany) -0.0075 ** -0.2470 *** -0.1325 *** -0.0339 *** -0.1292 ***
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Table 2.8: Jumps: variance model

IT FR ES BE NL

�2;74 (Italy) -0.0066 * -0.0154 *** -0.1812 *** -0.0793 *** -0.0084 **

�2;75 (the Netherlands) -0.0126 *** -0.0979 *** 0.0161 *** -0.0353 *** 0.0000

�2;76 (Portugal) -0.0369 *** -0.0096 *** -0.1983 *** -0.0644 *** -0.2994

�2;77 (Spain) -0.0251 *** -0.0097 *** -0.0852 *** -0.0242 *** -0.0140 ***

Rating actions - Asymmetric e¤ect

�2;78 (S&P) -0.0004 0.0034 0.0028 0.0088 0.0070 *

Table 2.8 reports the estimates for the variance equation of the Tobit-GARCH model in (2.16). The dependent

variable is the absolute size of jumps identi�ed by applying the Lee and Mykland (2008) test corrected by the intraday

periodicity of the volatility as proposed by Boudt et al. (2010) and de�ned in (2.8). Macroannouncements and
auctions pre-release are dummy variables taking value equal to 1 for time intervals preceding the release up
to 1 hour before the release. Macroannouncements and auctions post-release e¤ect is captured by dummy
variables equal to 1 for large surprise. Large surprises are de�ned as: |Surprise| �0.5 SD(Surprise). For bond

auctions we de�ne surprise as the di¤erence in average yield and bid-to-cover with respect to the previous auction.

These "surprises" are available just for 10-year bond auctions. Surprises are evaluated up to 1 hour after the release.

Rating actions are dummy variables taking value 1 for time intervals following the action up to 2 hours after the
release, zero otherwise. Macroannouncements and auctions post-release - Asymmetric and Rating actions
- Asymmetric are de�ned as for Macroannouncements and auctions post-release. We report just variables which
are statistically signi�cant at 10% level for at least one country. ***, **, * denote 1%, 5% and 10% signi�cance

level, respectively.

The coe¢ cients !2;j , j = 1; :::; J account for a di¤erent level of unconditional volatility

in correspondence to the future macroannouncements or government bond auctions re-

leases with respect to time intervals not preceding any news. The coe¢ cients are positive

and statistically signi�cant, meaning that in the hour preceding one of the events in our

analysis, the level of volatility raises above the level !1. In particular, 22 macroannounce-

ments out of 55 are signi�cant with higher relevance of those concerning US, among which

non-farm payroll for France (coe¢ cient: 0.1141), Spain (-0.0091) and Belgium (0.0243),

retail sales for France (0.0264), Spain (0.0077) and Belgium (0.0099) and Chicago PMI

for France (-0.0391), Belgium (0.0043) and the Netherlands (-0.0184) and Euro area with

the PMI �ash for France (0.0229), Belgium (0.0107) and the Netherlands (0.0220). More-

over we found that the level of volatility raises in correspondence to Italian and Greek

releases. In particular, Italian GDP �nal and industrial production future releases impact

on France (coe¢ cients: 0.0629 and 0.0280) and Belgium (0.0216 and -0.0099) while Greek

GDP �nal and unemployment signi�cantly explain jump sizes for France (coe¢ cients: -

0.1160 and 0.0365) and Belgium (0.0152 and 0.0050) and Greek CPI determines jumps in

Belgium (0.0110) and the Netherlands (-0.0182). Turning now the attention to auctions,

we found little evidence of a raise in volatility in correspondence of prescheduled auctions

with limited impact of those which will be held in Greece and Spain both on Belgium and

the Netherlands.
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All variables used so far capture the pre-announcement e¤ect. Once information

is released, traders process information and adjust the price according. Parameters

�2;j , j = 1; :::; J + B account for persistency of announcement news while parameters

�2;j allow for the di¤erent leverage e¤ect in correspondence to negative surprise lead by

macroannouncements with respect to standard negative news.

As far as the persistency parameters are concerned, starting from macroannounce-

ments there is no particular pattern in the signi�cance as overall 19 parameters are posi-

tive while 14 are negative. This �nding implies that macroannouncements do not persist

di¤erently from other news. The same holds true for auctions. The only release deserv-

ing attention is the ECB Introductory Statement whose release increases persistency in

volatility in France (coe¢ cient: 0.1162), Spain (0.0296) and the Netherlands (0.0742). As

already reported earlier in the Chapter, the ECB Introductory Statement conveys a lot of

information which can take some time to be completely processed by the market. More-

over, the reading of the Introductory Statement per se together with the time devoted to

questions and answers may take some time to be carried out.

The asymmetric e¤ect is the most relevant part in the variance equation. In particular,

as far as both macroannouncements and auctions are concerned, quite a few coe¢ cients are

negative and statistically signi�cant implying that the leverage e¤ect associated to these

events is less pronounced than other news. We like to interpret this �nding as follows:

the availability of forecasts together with the scheduling of macroannouncement releases

decrease the uncertainty associated to these news. In contrast, other negative shocks

to the market, for instance political downturns or some banks failures, are completely

unforeseeable and thus have higher impact on government bond spreads. The evidence of

the lower leverage e¤ect associated to macroannouncements with respect to other kind of

news contrasts the �nding in de Goeij and Marquering (2006) where it is found evidence

of positive estimates for the leverage e¤ect associated to macroannouncements. In our

analysis, we are using 5-minute data while de Goeij and Marquering (2006) paper is

based on daily data, thus our results should be more precise in assessing the di¤erent

impact of macroannouncements with respect to standard news.

Turning now to the analysis of the leverage e¤ect associated to auctions, we still

observe a less pronounced e¤ect than other news; this result too can be supported by

better quality in terms of information content and by that auctions are prescheduled

events.

2.4.3 Results for the Cojump Model

In this �nal section, we report the results from model estimation for cojumps.

First, in order to get robust estimates, we remove all the dummy variables which had

less than 15 observations for all the possible combinations with dependent variable in
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a 2x2 contingency table; on the remaining variables we then estimate the logit model

and adjust the estimates according to prior correction. In Table 2.9, we report only

statistically signi�cant variables explaining cojumps.

Table 2.9: Cojumps: logit model
Constant -5.1789

Macroannouncements - pre-release

1;12 (US - Nonfarm payroll) 2.1708 ***


1;22 (EA - Introductory Statement) 1.1798 ***


1;25 (EA - PMI �ash) 1.1897 ***


1;26 (EA - PMI �nal) 1.5830 ***


1;27 (EA - PPl) 0.6163 *

Macroannouncements - post-release

2;7 (US - GDP advance) 3.0476 ***


2;12 (US - Nonfarm payroll) 0.6829 ***


2;15 (US - Retail sales) 0.5907 ***


2;26 (EA - PMI �nal) 0.2946 ***


2;24 (EA - Monthly Bulletin) -1.4181 *


2;45 (ES - Industrial production) 0.1866 **


2;56 (GR - GDP �nal) 0.7799 **

Auctions - pre-release

1;59 (Belgium) 0.3908 *


1;64 (Italy) 0.4389 **


1;66 (Portugal) -0.6717 **

Auctions - post-release (average yield)

2;61 (France) 4.1493 **


2;64 (Italy) 2.4961 ***

Test statistics
LogL -4,888.52

LR test 346.38 ***

Area under ROC curve 0.61

Table 2.9 reports the estimates for the logit model on cojumps. The dependent
variable is the contemporaneous cojump de�ned in (2.12) based on jumps identi�ed
according to Lee and Mykland (2008) test corrected by the intraday periodicity of the
volatility as proposed by Boudt et al. (2010) and de�ned in (2.8). The interecept of
the logit model is corrected by (2.18) as suggested by the prior correction approach.
Macroannouncements and auctions pre-release are dummy variables taking
value equal to 1 for time intervals preceding the release up to 1 hour before the
release. Macroannouncements and auctions post-release e¤ect is captured by
the absolute size of surprise associated to the speci�c release. For bond auctions
we de�ne surprise as the di¤erence in average yield and bid-to-cover with respect to
the previous auction. These "surprises" are available just for 10-year bond auctions.
Surprise e¤ects are taken into consideration up to 1 hour after the release. We report
just variables which are statistically signi�cant at 10% level. ROC curve: receiver
operating characteristic curve. ***, **, * denote signi�cance at 1%, 5% and 10%,
respectively.

Although the area under the ROC (receiver operating characteristic) curve indicates
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that we are not able to model in a satisfactory way cojump being equal to 0.61 (a com-

pletely random classi�er model has an area under the ROC curve equal to 0.5 while in

the case of a perfect discriminating model this value is equal to 1), the results we get are

robust enough to suggest interesting �ndings. The most important variables in explain-

ing cojumps are those related to the US real economy, among which a prominent role

is played as usual by non-farm payroll (0.6829) but even by GDP advance (3.0476) and

retail sales (0.5907), together with forward looking measures concerning Euro area such as

PMI �ash (1.1897) and PMI �nal (1.5830). Moreover, the importance of the Introductory

Statement is con�rmed with a statistically signi�cant coe¢ cient of 0.1866. The relevance

of US non-farm payroll and retail sales in explaining cojumps is also stated in Lahaye et

al. (2011), while as far as auctions are concerned, we can see that Italian auctions are

crucially entering the model with the change in average yield with a coe¢ cient of 2.4961

as well as with the pre-release e¤ect (0.4389). Even for this model, the impact of rating

actions is statistically insigni�cant.

2.5 Conclusions

In this Chapter, we jointly modelled the impact of macroannouncements, government

bond auctions and rating actions on the 10-year government bond spreads for the bench-

marks of Belgium, France, Italy, the Netherlands and Spain with respect to the German

Bund, over the period 2nd January 2009 - 31st May 2012. We measured the impact of

three drivers on both mean and variance speci�cations, disentangling the pre- from the

post-announcement e¤ect, via the identi�cation and mapping of jumps and cojumps. We

considered a wide range of macroannouncements covering US, Euro area and individ-

ual countries together with government bond auctions and rating actions about largest

European countries.

Our results show the high sensitivity of jumps and cojumps to US and Euro area

macroannouncements plus speci�c Spanish and German macroannouncements. With re-

spect to macroannouncements categories, very important is the role played by the vari-

ables concerning real economy, such as US non-farm payroll, retail sales and GDP, together

with the forward looking indicators among all consumer con�dence indicators and pur-

chase manager indexes playing a key role; monetary news are found to be irrelevant. More-

over, the ECB Introductory Statement turned out to be a signi�cant determinant of both

jumps and cojumps. Finally, macroannouncements are important drivers for both the

mean and variance of spreads entering signi�cantly at both pre and post-announcement

levels.

Government bond auctions hold in countries experiencing deep economic downturn,

such as Italy and Spain, signi�cantly explain jumps and cojumps. Finally, rating actions
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do not produce sizeable jumps in the markets.

To the best of our knowledge this is the �rst paper assessing in a comprehensive way

the drivers of jumps and cojumps associated to government bond spreads. Our framework

allows to consider simultaneously a relevant number of variables which is crucial in order

to properly measure the impact of these events; this is important also because macroan-

nouncements in the Euro area and government bond auctions take place at almost the

same time. Finally, the evaluation of the impact of auctions on spreads is relevant also

to practitioners who focus even on government bond auctions in setting their trading

strategies.

There are important policy implications from our analysis. We showed that move-

ments in government bond spreads are signi�cantly determined by macroannouncements

and government bond auctions, and thus in the current sovereign crisis intraday move-

ments were driven by changes in macroeconomic fundamentals and not, or at least not

only, by speculative actions. In addition, the fact that events taking place in some in-

dividual country, such as Germany and Spain for macroannouncements and Italy and

Spain for auctions, have a signi�cant impact in other countries, shows the great level of

interdependence between countries. This conclusion is supported also by that the higher

number of cojumps for all the government bond spreads in the analysis are signi�cantly

associated to macroannouncements and government bond auctions.

The �ndings in this Chapter suggest interesting additional developments. Our analysis

is very comprehensive about the possible determinants of jumps and cojumps, however

we envisage that at least two other possible drivers may play an important role in an

uncertain and volatile environment. In this Chapter, we analyzed the impact of the

downgrading actions once the decision of the rating agency becomes public: it will be

interesting to study whether warnings and outlook changes announced by rating agencies

could have some impacts on government bond spreads. The second issue deals with

the analysis of market�s reactions to political uncertainty. For instance, the inconclusive

results of Italian elections of the 25th February 2012 brought on the market a high level of

uncertainty which determined a substantial increase in Italian government bond spread of

51 bps in just one day and which a¤ected even Spanish spread with an increase of 30 bps.

Finally, following Beechey and Wright (2009) who look at announcement e¤ects in the

real and nominal US Treasury market using real yields, nominal yields, and the spread

between the two, we may also look at yields on the German Bund, yields on the other

bonds, and the spreads between them. This is part of an ongoing research agenda.
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2.A Appendix I - Realized Measures

Consider a scalar log-price Xt evolving in continuous time as:

dXt = �tdt+ �tdWt + dJt (2.19)

where �t drift, �t volatility, Wt Brownian motion, Jt pure Lévy process with increments

Jt � Js =
tP

�=s
k(�) with k(�) jump size.

The overall volatility of (2.19) is the Quadratic Variartion (QV) which is de�ned as:

QVt =

Z t

t�1
�2sds+

MtX
�=1

k(�)2 (2.20)

where Mt number of jumps in day t.

QV in (2.20) can be decomposed into two components, the Integrated Variance (IV):

IVt =

Z t

t�1
�2sds (2.21)

and the Jump Variance (JV):

JVt =

MtX
�=1

k(�)2 (2.22)

A consistent estimator of QV is the Realized Volatility (RV) by Barndor¤-Nielsen and

Shephard (2004):

RVt =

NX
�=1

r(�)2
p! QVt (2.23)

with N number of intraday transactions belonging to day t.

In absence of any jumps, the limiting distribution of the RV estimator is
p
N (RVt � IVt)!

N (0; 2IQt) with IQ the Integrated Quarticity de�ned as:

IQt =

Z t

t�1
�4sds (2.24)

A consistent estimator of the IV is the Bipower Variation (BV) by Barndor¤-Nielsen

and Shephard (2004) de�ned as:

BVt = ��21

�
N

N � 1

� NX
�=2

jr��1j jr� j =
�

2

�
N

N � 1

� NX
�=2

jr��1j jr� j (2.25)

The BV is robust to the presence of jumps in previous periods as it measures only the

integrated variance attributable to the di¤usive component.
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2.B Appendix II - Intraday Deterministic Component

2.B.1 Methodology

The combination of recurring cycles at the daily frequency and a slow decay in the aver-

age autocorrelations may be explained by the joint presence of the pronounced intraday

periodicity coupled with the strong daily conditional heteroskedasticity. Andersen and

Bollerslev (1998) formalize the relationship between intradaily and daily returns as fol-

lows:

rt;i � rt;i = �tst;izt;i t = 1; :::; T i = 1; :::; N (2.26)

where T number of days in the sample; N number of intraday intervals belonging at each

t; rt;i observed return on day t and interval i; rt;i expected return; �t daily conditional

volatility; st;i deterministic intraday periodic component; zt;i i:i:d: mean zero and unit

variance term. All the return components �t, st;i and zt;i are assumed to be independent.

In the absence of intraday periodicity (st;i = 1), the intradaily returns may be represented

in the form rt;i = �tzt;i. Thus, (2.26) extends the standard volatility model for daily

returns to an intraday setting with independent return innovations and deterministic

volatility pattern.

Without additional restrictions, the components of (2.26) are not separately identi�-

able. The estimation of (2.26) can be carried out by squaring and taking the logs so that

the deterministic intraday periodic component st;i can be isolated as the sole explanatory

variables:

2 log [jrt;i � rt;ij]� 2 log j�tj = 2 log
��st;i��+ 2 log ��zt;i�� (2.27)

and setting 2 log
���zt;i��� = ut;i + c with c = E

h
2 log zt;i

i
; (2.27) becomes:

2 log [jrt;i � rt;ij]� 2 log j�tj = 2 log
��st;i��+ c+ ut;i

Andersen and Bollerslev (1998) model the intraday periodicity using a parametric ap-

proach and by replacing 2 log
���st;i��� with f(�;xt;i) ending up with:

2 log [jrt;i � rt;ij]� 2 log jb�tj = f(�;xt;i) + c+ but;i (2.28)

where but;i i.i.d. distributed with zero mean and density function corresponding to that of
the centered absolute value of the log of a standard normal random variable as in (2.29):

g(z) =

r
2

�
exp [z + c� 0:5 exp (2 (z + c))] (2.29)

with c = �0:65318, that is the mean of the log of the absolute value of a standard normal
random variable.
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In modelling the intraday periodicity component, Andersen and Bollerslev (1998) as-

sume that the volatility process is driven by simultaneous interaction of numerous compo-

nents, some associated with economic news releases, some with predominantly predictable

calendar e¤ects, and some with persistent, unobserved (latent) factor.

The baseline assumption is that the log-volatility response, conditional on the type

of the macroannouncement, the time of the release and other relevant calendar informa-

tion, has a well-de�ned expected value, E [log st;i] : This average impact is then governed

by purely deterministic regressors. Of course, the innovations, log st;i � E [log st;i], will

typically be highly correlated for the immediate period following a new release. This

will induce serial correlation and heteroskedasticity in the error terms of the regression

proposed below. The term log j�jt is assumed to be strictly stationary and with �nite
unconditional mean, E [log j�tj] :

The presence of the intraday periodic component reduces the overall level of the in-

tradaily return autocorrelations without a¤ecting the autocorrelation pattern. The in-

traday periodic component st;i can be modeled using two alternative approaches, both

based on the approximation through polynomial terms and trigonometric functions which

are parametrizations particularly useful in case of regularly recurring patterns. The �rst

approach is based on the Fourier Flexible Functional (FFF) form proposed by Gallant

(1981) and popularized by Andersen and Bollerslev (1998). The second one was intro-

duced by Dacoronga (1993) relying on the sum of three polynomials corresponding to

the three distinct geographical locations of the markets; this approach does not apply to

our data as we are investigating just the Euro area market. We now present the FFF

approach as in Andersen and Bollerslev (1998).

In the �rst step, the mean process rt;i is modeled given a reasonable estimator forb�2t . In particular, the daily volatility �t can be estimated according to a GARCH process,
even on a longer data sample, in order to capture the daily volatility clustering. The

intradaily volatility estimate is obtained using the following transformation:

b�t;i = b�t=N1=2 (2.30)

where N is the number of observations for day t. At this point, the observable regressand

and regressors in (2.28) are provided.

In the second step, a parametric representation of the regressor E[log f(�; t; i)]
of the form f(�;xt;i) is imposed. In detail Andersen and Bollerslev (1998) propose the

following form:

f (�;xt;i) = �0 + �0;1
i

N1
+ �0;2

i2

N2
+

JX
j=1

�jS
j
t;i +

PX
p=1

�
�c;p cos

�
2�p

N
i

�
+ �s;p sin

�
2�p

N
i

��
+ "t;i (2.31)
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where N1 = (N + 1)=2 and N2 = (N + 1)(N + 2)=6 normalizing constants; Sjt;i surprise

e¤ect of macroannouncement j during interval i on day t; �j event speci�c loading coe¢ -

cient; P tuning parameter determining the order of the expansion of the sinusoids; � full

parameter vector to be estimated. The role of �j is to capture the response of returns

to macroeconomic announcements. The idea under study is that the event j impacts

volatility over Nj intervals. In Andersen and Bollerslev (1998) this is achieved imposing

a decay-structure on the volatility response pattern and estimating the degree to which

events load onto this pattern by:

�(j; i) = �j
(i) i = 0; 1; :::; Nj (2.32)

where 
(i) dictates the response at lag i = 0; 1; :::; Nj modeled by a third-order polynomial:


(i) = �
h
1� (i= (Nj + 1))

3
i
+ �

h
1� (i= (Nj + 1))

2
i
i+ � [1� (i= (Nj + 1))] i

2 (2.33)

Equation (2.33) is obtained starting from:

p (�) = c0 + c1� + :::+ cp�
p (2.34)

to which two bounds are imposed, p(0) = 0, so that the impact re�ects a gradual move-

ment away from the standard pattern, c0 = 0, and p(N) = 0 so that the macroannounce-

ment e¤ect slowly fades. The next step is to substitute � = N in (2.34), solving for cp
and inserting the resulting expression for cp back into (2.34). In this way, a restricted

polynomial with one less parameter is obtained:

p(�) = c0
�
1�

�
�=N

�p�
+ c1

h
1�

�
�=N

�p�1i
�1 + :::+ cp�1

�
1�

�
�=N

��
�p�1 (2.35)

The common response structure is �nally obtained:

pj(�) = �jp0(�) (2.36)

The cumulative response measure over the entire event window is expressed as a

multiplicative factor scaled in units of average volatility per interval over the period and

takes the following form:

M(j) =

NjX
i=0

"
exp

 b�j
(i)
2

!
� 1
#

(2.37)

Through translation of the resulting estimates for �j from (2.32), the immediate response

in the j absolute returns is then given by exp
� b�j
(0)=2� � 1, while the response at the

i�th lag equals exp
� b�j
(i)=2�� 1: At lag i = Nj the impact is forced to be 0.
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Once (2.32) is estimated, the intraday periodic component for interval i belonging to

day t is given by:

bst;i = T exp
�
f
�b�;xt;i� =2�PT

t=1

PN
i=1 exp

�
f
�b�;xt;i� =2� (2.38)

Although the two-step method is not fully e¢ cient as the error terms are not normally

distributed, given correct speci�cation of the �rst-step FFF regressor, the estimated para-

meters are consistent. The logarithmic transformation introduced in (2.27) is particular

useful for eliminating the extreme outliers in the 5-minute return series and let the re-

gression be more robust. Anyway, price jumps may cause a large bias in the periodicity

estimator proposed by Andersen and Bollerslev (1998). Therefore Boudt et al. (2010)

introduce a robust alternative to intraday periodicity estimation.

To introduce Boudt et al. (2010) estimation technique, we �rst have to introduce the

non-parametric estimation of the intraday periodicity factor. The non-parametric peri-

odicity estimator is based on a scale estimate of the returns standardized by an estimate

of volatility, er1;m: : : : ; ereT ;m m = 1; :::;M = N � 5, 5 being the days in a week, sharing
the same periodicity factor erm and M = N � 5 be the total number of local windows.
Assuming that the periodicity factor depends only on the time of the day and day of

the week m at which rt;i is observed, we have that er1;i: : : : ; ereT ;i are the eT (T=M) returns
observed on the same time of the day and day of the week m. The non-parametric peri-

odicity factor estimators are generally de�ned as the square root of the expected value of

the ratio between the spot variance and the mean variance over a local window:

s2m = E

24 �2m
1
M

R lM
(l�1)M �2mdm

35 (2.39)

The alternative non-parametric estimators di¤er for the the measure of the volatility used.

The denominator in (2.39) ensures that the standardization condition that the squared

periodicity factor has mean one over the local window is met:

1

M

MX
m=1

s2m = 1 (2.40)

The �rst non-parametric periodicity estimator was proposed by Taylor and Xu (1997)

and was based on the standard deviation of all standardized returns belonging to the same

local window. Anyway in presence of jumps, the SD estimator is strongly biased. There-

fore, Boudt et al. (2010) suggest to use a robust scale estimator, the Shortest Half Scale

proposed by Rousseeuw and Leroy (1998). To de�ne the Shortest Half (ShortH hence-

forth) scale estimator, we need to introduce the corresponding order statistics er(1);m: : : : ;er(eT);m where m = 1; :::;M such that er(1);m � er(2);m � ::: � er(eT);m. The shortest half
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scale is the smallest length of all halves consisting of hm =
h eT=2i + 1 contiguous order

statistics:

ShortHm = 0:741min
ner(hm);m � er(1);m; :::; er(eT );m � er(eT�hm+1);mo (2.41)

The ShortH estimator for the periodicity factor equals:

bsShortHm =
ShortHms

1eT
eTP

m=1
ShortH2

m

(2.42)

The ShortH is highly robust to jumps, but it has only a 37% e¢ ciency under normality

of the rt;ms (Rousseeuw and Leroy, 1988). A more e¢ cient estimator than the ShortH,

being robust to jumps as well, is obtained using the Weighted Standard Deviation (WSD

henceforth), where the weights depend on the value of the standardized returns divided

by the ShortH periodicity estimate:

bsWSD
m =

WSDms
1eT

eTP
t=1

WSD2
t;m

(2.43)

where:

WSDm =

vuut1:081PeT
t=1wt;mer2t;mPeT
t=1wt;m

(2.44)

The weights are given by wt;m = w
�ert;m=bsShortHm

�
where we use as a weight function

w(z) = 1 if z2 � 6:635 and 0 otherwise. The threshold 6.635 equals the 99% quantile of

the �2 distribution with one degree of freedom. If there are no price jumps, the WSD

gives a zero weight to on average 1% of the returns. If there are jumps, more observations

are downweighted. The WSD in (2.44) has a 69% e¢ ciency under normality of the rts, as

opposed to the 37% e¢ ciency of the ShortH (see Boudt et al. (2010) for further details).

The main drawback of non-parametric estimators for the intraday periodic component

is that they only use the subset of the data for which the returns have the same periodicity

factor. Andersen and Bollerslev (1998) show that more e¢ cient estimates can be obtained

if the whole time series dimension of the data is used for the estimation of the periodicity

process as it is done when parametric estimation is carried out. Anyway, we were stating

that OLS is not e¢ cient because of non-normality of the error term. Therefore, the

maximum likelihood estimator should be preferred. Denote �OLS(z) = z2 and, recalling

(2.29), let �ML(z) be the negative log likelihood function:

�ML(z) = �0:5 log(2=�)� z � c+ 0:5 exp(2(z + c)) (2.45)
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The OLS and ML estimators for (2.28) are given by:

b�OLS = argmin�
1eTM

eTX
t=1

MX
m=1

�OLS(u�;t;m) (2.46)

b�ML
= argmin�

1eTM
eTX
t=1

MX
m=1

�ML(u�;t;m) (2.47)

These �-functions are called loss functions. The non-robustness of the OLS and ML

estimators to jumps is due to the unbounded e¤ect an observation can have on their loss

function. Martens et al. (2002) mention that the e¤ect of jumps on the OLS estimator

is attenuated because the regression is based on the log of the standardized returns, but

solely a log-transformation is not su¢ cient to attain robustness to jumps.

As an alternative to the OLS and ML estimators, Boudt et al. (2010) propose to use

the Truncated Maximum Likelihood (TML) estimator introduced by Marazzi and Yohai

(2004). This estimator gives a zero weight to observations that are outliers according to

the value of the ML loss function. Therefore, in a �rst step residuals are computed using

the robust non-parametric estimator bfWSD in (2.43). Recalling again (2.28), let

uWSD
t;i = log

�
jrt;i � rt;ijb�t;i

�
� c� log bf(xt;i)WSD (2.48)

Observations for which �ML(uWSD
t;i ) is large have a low likelihood and are therefore

likely to be outliers. Denote q an extreme upper quantile of the distribution of ut;i. The

TML estimator is de�ned as:

b�TML
= argmin�

1PT
t=1

PN
i=1wt;i

TX
t=1

NX
i=1

wt;i�
ML(u�;t;i) (2.49)

with wt;i = 1 if �ML(uWSD
t;i ) � �ML(q) and 0 otherwise. Henceforth, we take q as the

99.5% quantile such that all observations with �ML(uWSD
t;i ) > 3:36 receive a zero weight

in the objective function of the TML estimator. Like for the WSD, the choice of these

thresholds implies that, if there are no price jumps, the TML gives a zero weight to on

average 1% of the returns. If there are jumps, more observations are downweighted.

Like for the non-parametric periodicity estimators, we impose that the squared period-

icity factor has mean one in the local window. The parametric estimate for the periodicity

factor thus equals:

bsTML
t;i =

exp f
�
�̂TML;xt;i

�
s

1
Ni

NiP
i=1

�
exp f

�
�̂TML;xt;i

��2 8t = 1; :::; T (2.50)

where xt;i set of covariates used to model the intraday periodicity as in (2.31).
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In a recent paper, Hecq et al. (2012) test for the presence of commonalities in the

intraday periodic components in a set of 30 US asset returns concluding that only three

factors are driving the intraday periodicity in volatility. The �rst one can be attributed to

the typical U-shaped pattern observed in return volatility over the trading day while the

other two capture more erratic �uctuations: the second factor shows a slowly decreasing

intraday trend while the third factor has a sinusoidal behaviour.

2.B.2 Empirical Results

Focusing on data used in this Chapter, we estimated both non-parametric, ShortH and

WSD, and parametric versions of the intraday periodicity. The parametric speci�cation is

in (2.10). As far as non-parametric estimation is concerned, we consider as local window

a day of the week so that we e¤ectively estimate the intraweekly periodicity. In Table

2.B.1 we report the estimates obtained through the parametric approach combined with

the Truncated Maximum Likelihood technique.

Table 2.B.1: Intraday periodicty estimates

IT FR ES BE NL

Constant 0.0000 0.0000 0.0000 0.0000 0.0000

AR(1) 0.1436 0.4944 0.1332 0.2513 0.5330

MA(1) -0.2728 -0.7641 -0.3039 -0.4431 -0.8121

�0 0.7755 0.0736 -0.8062 0.1983 -0.2417

�0;1 -1.8378 -0.1945 2.9184 -0.2654 0.7914

�0;2 0.6314 0.0792 -0.9748 0.1064 -0.2684

Macroannouncement Surprises

�1 - US - Business Inventories 0.0046 0.0010 0.0010 -0.0039 0.0030

�2 - US - Chicago PMI 0.0026 0.0017 0.0017 0.0006 -0.0001

�3 - US - Consumer Con�dence 0.0007 0.0019 0.0038 0.0023 0.0017

�4 - US - CPI 0.0018 0.0092 0.0046 0.0002 0.0084

�5 - US - Durable Goods -0.0009 -0.0010 -0.0022 -0.0025 -0.0030

�6 - US - Factory Orders 0.0058 0.0073 -0.0030 -0.0049 0.0049

�7 - US - GDP Advance -0.0033 -0.0010 -0.0057 -0.0106 -0.0063

�8 - US - GDP Preliminary -0.0020 -0.0003 -0.0049 -0.0049 0.0005

�9 - US - GDP Final 0.0017 0.0041 -0.0019 0.0048 -0.0064

�10 - US - Industrial Production -0.0008 -0.0013 -0.0022 -0.0011 0.0022

�11 - US - Initial Jobless Claim 1.7785 -0.3580 0.7952 1.2892 -2.5060

�12 - US - Nonfarm Payroll -0.0003 0.0014 0.0035 -0.0002 0.0012

�13 - US - Philadelphia FED 0.0012 -0.0014 0.0005 -0.0013 0.0021

�14 - US - PPI 0.0053 -0.0014 -0.0016 -0.0027 -0.0036

�15 - US - Retail Sales -0.0019 0.0009 0.0020 -0.0009 -0.0013

�16 - US - University Of Michigan -0.0028 0.0003 0.0026 -0.0102 -0.0040
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Table 2.B.1: Intraday periodicty estimates

IT FR ES BE NL

�17 - EA - Business Climate 0.0008 -0.0013 -0.0017 0.0004 -0.0019

�18 - EA - Consumer Con�dence 0.0013 0.0011 -0.0047 -0.0025 -0.0045

�19 - EA - Flash HICP 0.0023 0.0010 0.0003 0.0033 0.0078

�21 - EA - Industrial Production 0.0003 0.0009 0.0053 0.0065 -0.0027

�22 - EA - Introductory Statement 0.0063 0.0137 0.0113 0.0194 0.0241

�23 - EA - M3 -0.0018 -0.0019 -0.0019 0.0005 -0.0007

�24 - EA - Monthly Bulletin 0.0014 -0.0052 0.0116 0.0031 -0.0020

�25 - EA - PMI Flash -0.0010 0.0003 -0.0017 -0.0015 0.0013

�26 - EA - PMI Final 0.0036 0.0021 0.0041 0.0011 0.0027

�27 - EA - Purchase Price -0.0005 -0.0092 -0.0104 -0.0001 -0.0024

�28 - EA - Retail Sales 0.0062 -0.0003 0.0135 0.0089 0.0067

�29 - EA - Unemployment 0.0005 0.0002 -0.0009 -0.0006 -0.0038

�30 - DE - CPI 0.0000 -0.0042 0.0027 -0.0039 0.0014

�31 - DE - IFO:Business Con�dence 0.0012 0.0014 0.0026 0.0015 0.0021

�32 - DE - Industrial Production 0.0005 -0.0047 -0.0007 -0.0022 -0.0047

�33 - DE - Unemployment 0.0038 0.0043 0.0030 0.0013 -0.0007

�34 - DE - ZEW 0.0019 0.0023 0.0038 0.0035 0.0047

�35 - IT - Business Con�dence 0.0010 -0.0001 -0.0017 -0.0015 -0.0007

�36 - IT - CPI Preliminary -0.0003 0.0016 -0.0006 -0.0012 -0.0014

�37 - IT - CPI Final 0.0027 0.0000 0.0028 0.0011 0.0035

�38 - IT - GDP Preliminary -0.0037 -0.0005 -0.0033 -0.0016 0.0054

�39 - IT - GDP Final 0.0211 0.0094 0.0116 0.0251 0.0139

�40 - IT - Industrial Production 0.0022 0.0021 -0.0016 0.0020 0.0011

�41 - FR - Industrial Production -0.0033 -0.0046 -0.0032 -0.0020 -0.0050

�42 - SP - CPI 0.0049 0.0007 0.0032 0.0079 0.0110

�43 - SP - GDP Preliminary -0.0030 0.0050 -0.0029 0.0027 -0.0011

�44 - SP - GDP Final -0.0008 -0.0160 -0.0054 -0.0093 -0.0007

�45 - SP - Industrial Production -0.0021 -0.0009 0.0016 -0.0006 0.0029

�46 - SP - Unemployment -0.0024 -0.0087 -0.0013 -0.0017 -0.0074

�47 - PT - CPI 0.0015 -0.0034 -0.0001 -0.0006 0.0020

�48 - PT - GDP Preliminary 0.0004 -0.0001 0.0002 0.0005 -0.0006

�49 - PT - GDP Final 0.0045 0.0041 0.0129 0.0035 -0.0079

�50 - NL - CPI -0.0002 0.0016 0.0058 0.0083 -0.0036

�51 - NL - IndustrialProduction 0.0003 0.0005 -0.0017 0.0005 -0.0009

�52 - NL - Unemployment 0.0041 -0.0004 0.0057 0.0007 0.0010

�53 - BE - Business Con�dence -0.0057 -0.0042 -0.0037 -0.0060 -0.0020

�54 - GR - CPI -0.0014 -0.0011 -0.0012 -0.0003 0.0021

�55 - GR - GDP Preliminary 0.0034 0.0044 0.0105 0.0018 0.0171

�56 - GR - GDP Final -0.0029 -0.0003 -0.0015 -0.0020 -0.0047

�57 - GR - Unemployment -0.0034 -0.0003 -0.0002 -0.0019 -0.0011
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Table 2.B.1: Intraday periodicty estimates

IT FR ES BE NL

Bid-to-cover 10yrs Auctions

�58 - Austria 0.0034 -0.0004 0.0031 -0.0018 0.0026

�59 - Belgium -0.0084 -0.0047 -0.0095 -0.0014 -0.0028

�61 - France 0.0037 0.0061 0.0004 0.0036 -0.0004

�62 - Germany 0.0021 0.0189 0.0009 -0.0124 -0.0162

�64 - Italy 0.0112 0.0391 0.0186 0.0328 0.0391

�66 - Portugal -0.0039 0.0052 0.0013 0.0013 0.0035

�67 - Spain -0.0084 -0.0023 0.0050 -0.0128 0.0052

Rating

�1 - S&P 0.0028 -0.0001 0.0010 -0.0017 -0.0072

�2 - Moody�s -0.0053 -0.0055 -0.0004 0.0127 -0.0028

�3 - Fitch 0.0063 0.0020 0.0081 -0.0002 0.0034

Day of the Week

�1 - Tuesday 0.0101 0.0086 -0.0268 -0.0099 0.0015

�2 - Wednesday 0.0007 0.0081 -0.0170 -0.0004 0.0137

�3 - Thursday 0.0097 0.0092 -0.0239 -0.0060 0.0054

�4 - Friday 0.0376 0.0225 -0.0059 0.0249 0.0151

Periodic Component

�c;1 -0.2600 0.0555 0.6921 0.0242 0.2420

�c;2 -0.1312 -0.0303 0.1245 -0.0282 0.0094

�c;3 -0.0425 0.0041 0.0687 0.0057 0.0314

�c;4 -0.0302 -0.0075 0.0388 0.0063 0.0138

�c;5 -0.0156 0.0222 0.0389 0.0166 0.0444

�s;1 0.0365 0.0164 0.0599 0.0394 -0.0221

�s;2 0.0514 0.0459 0.0467 0.0359 0.0293

�s;3 0.0256 -0.0027 0.0096 0.0031 0.0052

�s;4 0.0245 0.0313 0.0096 0.0117 0.0156

�s;5 0.0071 0.0108 -0.0189 -0.0082 0.0046

Table 2.B.1 reports the estimates for the parametric intraday periodicity following

(2.10) and estimated by TML.

Figure 2.11 depicts a comparison among the three alternative estimates for the in-

traweekly periodicity: ShortH in grey, WSD in black and the parametric one in blue.
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Italy France

Spain Belgium

the Netherlands

Figure 2.11: Intraweekly Periodicity Estimates

In Figure 2.11 we represent the three intraday periodicity components estimated by ShortH (grey), WSD
(black) and parametric-TML (blue).
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Chapter 3

High- and Low- Frequency
Correlations in European
Government Bond Spreads and
Their Macroeconomic Drivers

Abstract

In this Chapter, we propose a high frequency DCC-MIDAS model for jointly esti-

mating the high and low frequency components for both volatilities and correlations of

European government bond spreads. We consider spreads of the 10-year benchmarks for

Belgium, France, Italy, Spain and the Netherlands with respect to Germany, over the

period 1st June 2007 - 31st May 2012. The high frequency component of volatilities and

correlations, re�ecting �nancial market conditions, is evaluated at 15 minutes while the

low frequency component, remaining �xed through a month, is expected to depend on

countries macroeconomic conditions.

We provide evidence of strong linkages between European government bond spreads

volatility and worsening macroeconomic fundamentals with respect to Germany. More-

over, our results show that as two countries get similar in terms of their macroeconomic

fundamentals, relative spreads tend to get more correlated, though the increasing corre-

lation in spreads during the worst phase of the sovereign crisis could not be completely

ascribed to macroeconomic factors. These results highlight the presence of increasing

�nancial integration and systemic risk during that period.

Keywords: High-Frequency MIDAS Models, Government Bond Spreads, Macroeco-
nomic Variables, Correlations, Volatilities.

J.E.L. Classi�cation Numbers: E44, G12, H63, C32, C58.
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Drivers

3.1 Introduction

According to the covered interest parity condition, two otherwise equivalent bonds issued

in two di¤erent currencies should have the same yield expressed in one currency. How-

ever, deviations from covered interest parity condition evaluated on sovereign bond yields

may occur because of di¤erent default risk of the issuer, di¤erent liquidity conditions

and characteristics of the bonds, and also because of imperfect market integration either

preventing or slowing down trading arbitrage to eliminate yield di¤erences. If we consider

European government bonds of a same maturity, and similar liquidity, any di¤erence be-

tween two or more countries should be ascribed to credit risk which itself depends on

country-speci�c macroeconomic and �nancial fundamentals. Therefore there should exist

a linkage between macroeconomic fundamentals and government bond spreads.

Investigating the existence and the nature of the relationship between market volatility

and macroeconomic fundamentals is crucial in understanding issues relevant to policy

makers and institutional investors. For instance, by analyzing the comovements during

the current sovereign debt crisis, we could assess market perception of sovereign debt

risk. In particular, one would expect countries with larger �scal de�cits or with worst

economic fundamentals to be characterized by higher volatility in their bond markets with

respect to more stable countries, with this di¤erential becoming more pronounced during

crisis periods. In addition, we may verify whether all countries experience a worsening in

government bond spreads because of a regime shift in the market pricing of government

credit risk during a turmoil period. These issues are relevant not only to macroeconomists

and policy makers studying systemic risk but are also of interest to �nancial institutions

working in derivatives pricing, portfolio selection and risk management since they help to

uncover linkages between price movements and underlying risk factors or business cycle

state variables.

There is a rich empirical literature investigating the impact of macroeconomic funda-

mentals on stock market volatility since the seminal paper by Schwert (1989). Focusing

on longer horizon bond returns, Attinasi et al. (2011) identify several important factors

as possible determinants of risk premia paid by governments relative to the benchmark

country, the most relevant being country�s creditworthiness as re�ected by its �scal and

macroeconomic position. Other factors a¤ecting government bond spreads are liquidity

risk, international risk aversion, macroannouncements and �scal policy events. Bikbov
and Chernov (2010) also �nd that the 10-year premium is more responsive to macroeco-

nomic conditions than the 1-year premium, while the term premia declines in response

to good economic conditions, captured by the increase in either real activity or in�ation.

Aizenman et al. (2013) estimate the pricing of sovereign risk for sixty countries based

on �scal space and other economic fundamentals showing that, although these variables
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signi�cantly determine market-based sovereign risk, the explanatory power of �scal stance

measures (e.g. debt-to-GDP) drops during the crisis period. In particular, risk pricing of

the peripheral countries such as Greece, Ireland, Italy, Portugal and Spain is not predicted

accurately with the periphery default risk being priced much higher than the risk with

respect to other European countries.

An alternative interpretation given by Aizenman et al. (2013) to the failure of macro-

economic fundamentals to explain volatilities is that market is not pricing on current

but on expected (future outlook of) fundamentals and therefore the inability of models

to capture such high spreads is due to the market expectation that peripheral countries

fundamentals will deteriorate. Thus, Aizenman et al. (2013) suggest to incorporate in the

model not only real economy measures but also forward looking indicators. Similarly, von

Hagen et al. (2011) show that bond yield spreads before and during the crisis are largely

explained by the impact of �scal imbalances becoming more relevant after the Lehman

& Brothers default in September 2008, identifying in the higher general risk aversion,

measured by corporate credit spreads, the main cause of the increase in the spread on

non-benchmark bonds. Mody (2009), investigating the drivers of European government

bond spreads, shows that before the start of the subprime crisis in July 2007, the weekly

changes in spreads were essentially random with no obvious determinants while, once

that the crisis burst and through to the rescue of Bear Stearns, the movements in spreads

re�ect global factors, in particular a �ight to quality and global �nancial sector instabil-

ity. Attinasi et al. (2011) analyze the impact of unemployment, industrial production

and in�ation measures on European spreads concluding that real activity is only weakly

correlated with yields while in�ation strongly contributes to explain spreads. This result

is in contrast with Ludvigson and Ng (2009) and Lustig et al. (2013) where the impor-

tance of industrial production in explaining returns for both bonds and foreign exchange

is assessed. The role of macroeconomic drivers is also important in modelling other asset

classes. Paye (2012) shows that macroeconomic variables (including commercial paper-

to-Treasury spread, default return, default spread and the investment-to-capital ratio)

signi�cantly explain S&P 500 market volatility, particularly pronounced during recession

periods. Christiansen et al. (2012) evaluate the dependence of volatility of a broad range

of asset classes (equity, bond, commodities and foreign exchange) on macroeconomic and

�nancial variables, providing evidence of the signi�cant role played by proxies for credit

risk, funding liquidity and time-varying risk premia, while in�ation and industrial pro-

duction turned out to be less informative. A similar result is reported in Baele et al.

(2010) where, using a dynamic factor model to study comovements between stock and

bond returns, the Authors report that macroeconomic factors (output gap, in�ation and

short rate) mildly contribute to explain stock and bond return correlations while other

factors, such as liquidity proxies, play an important role. Finally, relationship between
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volatile fundamentals and volatile stock markets in a cross-section of countries is also

reported in Diebold and Yilmaz (2010) and Hilscher and Nosbusch (2010).

Ang and Piazzesi (2003) are the �rst to analyze the sensitivity of the entire term

structure to macroeconomic fundamentals providing evidence that macro factors explain

the 85% of bond yields variance. Finally, in the analysis of the link between macroeco-

nomic fundamentals and government bond spreads, a great attention has been devoted to

countries �scal conditions. Barrios et al. (2009) present empirical evidence of the strong

positive relationship between current account de�cits, foreign debt and risk aversion with

sovereign risk premium, while Gros (2011) shows that foreign debt is more important

than public debt.

In this analysis, we assess whether and how the 10-year European government bond

spreads intraday movements were driven by macroeconomic fundamentals, both in terms

of volatility and correlations. The main issue we focus on is of relevance given the strong

increase in government bond spreads, especially of peripheral countries, experienced dur-

ing the recent European sovereign crisis; this has generated ample debate between econo-

mists about whether spreads re�ect worsening economic conditions or rather speculative

trading activity leading to an overshooting of spreads.

This Chapter also o¤ers a methodological contribution. In order to jointly model high-

and low-frequency multivariate time series, we adopt and extend the MIxed Data Sampling

(MIDAS) approach, proposed in the seminal papers by Ghysels, Santa-Clara and Valkanov

(2004, 2005, 2006) and Ghysels, Sinko, and Valkanov (2007). The MIDAS framework

allows linking �nancial market data, sampled at high-frequency, in general daily, and

data on macroeconomic fundamentals recorded at lower frequency, in general monthly or

quarterly. [See also recent developments in regression models as Andreou et al. (2010)

and VAR models as in Ghysels (2012), in modelling and testing for Granger causality as

in Ghysels et al. (2013), and predictive ability of �nancial variables as in Andreou et al.

(2013) and Galvao (2013)]. This Chapter makes two contributions to MIDAS literature.

First, the MIDAS approach is extended to the case when tick-by-tick �nancial market data

are available though resampled at an appropriate frequency; in particular we combine 15-

minute frequency data on spreads with monthly macroeconomic data. To the best of

our knowledge, there has been no previous attempt to apply MIDAS framework to high-

frequency data. Second, we extend the Colacito et al. (2011) DCC-MIDAS based upon

a pure time series approach by allowing the low-frequency (monthly) correlation to be

driven by country macroeconomic fundamentals. Finally, another important contribution

of the paper is that, by exploiting high- and low-frequency correlations, we evaluate

time-varying possible phenomenon of ongoing economic and �nancial markets integration

amongst European countries.

The remainder of the Chapter is organized as follows. In Section 3.2, we discuss
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the dataset and the macroeconomic variables. Section 3.3 presents the high frequency

MIDAS regression models and discusses some data preparation procedures. In Section

3.4, we report the results for both univariate and multivariate GARCH-MIDAS models.

Section 3.5 concludes.

3.2 Data Description

3.2.1 Spreads

We use data for the 10-year government bonds of Belgium, France, Germany, Italy, Spain

and the Netherlands over the period 1st June 2007 - 31st May 2012. We consider bid

data. The 10-year bonds are bond market benchmarks at the most active maturities.

Morningstar provided us with this unique tick-by-tick dataset that we resampled at the

microstructure noise robust 15-minute frequency using calendar time, excluding time in-

tervals with missing values for at least one country.

The trading period considered is 8 a.m. - 3:30 p.m. coordinated universal time (UTC).

We detect and remove holidays and outliers by applying a �lter which is a modi�cation

of the procedure to remove outliers proposed in Brownlees and Gallo (2006) that we

implement following the steps suggested by Barndor¤-Nielsen et al. (2011, p. 156), the

implementation can be summarized as follows.

Let pt;i be a tick-by-tick time series of log-prices, where t = 1; :::; T denotes day and

i = 1; :::; N the time interval of day t, then an observation is removed i¤:��pt;i � pt;i �kL��� > max f4MDt;i(k); n
g ^
��pt;i � pt;i �kR��� > max f4MDt;i(k); n
g

(3.1)

where k the bandwidth; pt;i
�
kL
�
and pt;i

�
kR
�
sample medians of the k=2 observations

respectively before (L for left) and after (R for right) (t; i); MDt;i(k) mean absolute

deviation from the median of the whole neighborhood of length k; ^ intersection operator;

 mean of the k absolute returns; n 
�multiplier.

The advantage of this rule lies in the separate comparison of the (t; i)-th trade against

the left and right neighbours while the measure of dispersion is calculated on the whole

bunch of k trades. This approach is speci�cally designed to avoid detecting jumps as false

outliers.

Finally, we also remove the �rst return of the day that occurs at 8 a.m. as it largely

re�ects the adjustment to information accumulated overnight and hence exhibits a spu-

rious excess variability compared to any other 15-minute intervals. The data selection

procedure is summarized in Table 3.2.1.
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Table 3.2.1: Government Bond Yields and Spreads: Data Selection and De-
scriptive Statistics

DE BE FR IT ES NL
No. ticks 3,077,442 841,854 1,096,247 978,261 978,357 657,249

Limiting trading time 2,928,107 831,094 1,027,268 917,455 969,129 645,773

No. trades per day: Mean (SD) 2,345 (1,889) 659 (481) 828 (596) 736 (526) 764 (512) 513 (378)

Trade duration: Mean (SD) [s] 14.2 (44.4) 47.0 (115.7) 38.0 (88.6) 42.9 (97.1) 38.1 (90.3) 60.4 (123.4)

15-minute intervals 39,649 39,649 39,649 39,649 39,649 39,649

Exclude 1st daily obs 38,370 38,370 38,370 38,370 38,370 38,370

Bid YTM
Mean (SD) [%] 3.18 (0.82) 4.01 (0.47) 3.61 (0.58) 4.66 (0.69) 4.58 (0.65) 3.48 (0.75)

Median (1st - 99th pct) [%] 3.20 (1.48 - 4.64) 4.08 (2.99 - 4.96) 3.56 (2.52 - 4.78) 4.57 (3.76 - 6.99) 4.41 (3.76 - 6.38) 3.54 (1.98 - 4.79)

Bid-Ask Spread of YTM
Mean (SD) [bps] 0.63 (0.05) 1.00 (0.06) 0.78 (0.08) 0.64 (0.05) 0.75 (0.05) 0.72 (0.05)

Median (1st - 99th pct) [bps] 0.62 (0.56 - 0.76) 1.00 (0.89 - 1.11) 0.79 (0.66 - 0.94) 0.64 (0.51 - 0.8) 0.75 (0.67 - 0.89) 0.72 (0.65 - 0.85)

Bid Spread
Mean (SD) [bps] - 83 (64) 42 (33) 150 (125) 141 (124) 30 (17)

Median (1st - 99th pct [bps]) - 65 (7 - 272) 34 (5 - 147) 117 (27 - 505) 82 (5 - 472) 26 (4 - 81)

Bid-Ask Spread of Spread
Mean (SD) [bps] - 0.34 (0.20) 0.16 (0.07) 0.01 (0.06) 0.12 (0.07) 0.09 (0.08)

Median (1st - 99th pct) [bps] - 0.39 (-0.62 - 0.48) 0.15 (-0.01 - 0.29) 0.03 (-0.12 - 0.13) 0.13 (0.00 - 0.24) 0.11 (-0.05 - 0.21)

Table 3.2.1 reports the data procedure selection on government bond yields and spreads together with some summary statistics. Limiting trading time
means removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described in (3.1) in the
text. Tick-by-tick data are resampled using calendar time (see details in the body of the chapter). The 1st observation of each day is removed as it presents
excess volatility. In square brackets is the unit of measurement. Pct stands for percentile.

For each time series, we report the overall number of ticks available from which we

remove holidays, weekends and trades occurred outside the trading period 8 a.m. - 3:30

p.m. UTC. Following the �ltering procedure in (3.1) we detect a percentage of outliers

ranging from 0.09% for Germany to the 0.16% for Belgium. In addition, we also report

some descriptive statistics to get useful insights about market liquidity. In particular, we

compute the mean number of trades per day and the time elapsed between two consecutive

trades, where both statistics indicate that the most liquid market is the German one with

a daily average number of trades of 2,345 and a trade duration of 14 seconds, followed

by France (828 trades, 38 seconds), Spain (764 trades, 38 seconds), Italy (736 trades, 43

seconds), Belgium (659 trades, 47 seconds) and the Netherlands (513 trades, 60 seconds).

After resampling at the 15-minute frequency and removing the 8 a.m. return for each

day, we end up with 38,370 returns, covering 1,279 days corresponding to 30 observations

per day. In Table 3.2.1,we also report descriptive statistics about yields and spreads with

respect to German Bund: Italy has the highest average yield (4.66%), while Germany has

the lowest equal to 3.18%; the average bid spread with respect to Germany is equal to

150 bps for Italy, 140 for Spain, 83 for Belgium, 42 for France and 30 for the Netherlands.

The information that the average indicator o¤ers is limited in the light that government

bond spreads vary a lot throughout our sample period as it is evidenced in Figure 3.1:
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Figure 3.1: 10-year Government Bond Spreads (bps)

The �gure reports the 10-year government bond spreads with respect to Germany for Belgium, France,
Italy, Spain and the Netherlands over the period 1st June 2007 - 31st May 2012. Spreads are computed
on bid yields at 15-minute sampling frequency.

Government bond spreads move very closely until May 2010, when markets start to

pay more attention to sovereign debt risk as a response to the burst of Greek crisis. In

May 2010, the Greek government de�cit was revised and estimated to be 13.6% of GDP

leading to reduction of con�dence in Greece�s ability to repay its debt. Despite the �rst

rescue package was then approved by European countries and the IMF, concerns about

Euro countries solvability began to raise together with spreads.

3.2.2 Macroeconomic Variables

We select two real economy variables, employment and industrial production, and a for-

ward looking indicator, the economic sentiment. Our choice is motivated by the existing

literature such as, amongst others, Mody (2009) and Aizenman et al. (2013). Macro-

economic data are available at monthly frequency and were obtained from the Eurostat

website, starting from January 2005 up to May 2012. The economic sentiment is also pro-

vided by Eurostat and it is composed of �ve sectoral con�dence indicators with di¤erent

weights: industrial, services, consumer, construction and retail trade.

Given that the dependent variable in our study is expressed in terms of di¤erence of the

10-year government bond yields of each country and Germany, also the macrovariables,

reported in Figures 3.2-3.4, are expressed in terms of di¤erence between each country and
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Germany macrovariables.

Figure 3.2: Employment - Level

The �gure reports the di¤erence in employment levels for Belgium, France, Italy, Spain and the Nether-
lands with respect to Germany over the period January 2005 - May 2012. Series are normalized by the
initial value.

Figure 3.3: Industrial Production - Level

The �gure reports the di¤erence in industrial production levels for Belgium, France, Italy, Spain and the
Netherlands with respect to Germany over the period January 2005 - May 2012. Series are normalized by
the initial value.
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Figure 3.4: Economic Sentiment - Level

The �gure reports the di¤erence in economic sentiment levels for Belgium, France, Italy, Spain and the
Netherlands with respect to Germany over the period January 2005 - May 2012. Series are normalized by
the initial value.

All the macroeconomic variables considered capture very well the worsening macro-

economic conditions starting from the last quarter of 2008, with the dramatic drop of

the level of employment for Spain and the strong contraction of industrial production,

especially evident for Spain, Italy and France. It is worth noticing that the literature on

the topic (see for instance Barrios et al. 2009, and Gros 2011), often consider as potential

macroeconomic drivers measures of �scal sustainability such as debt-to-GDP. First, there

is the case that Spain was experiencing a very high spread despite it had a debt-to-GDP

ratio (69.3% in 2011 and 84.2% in 2012, de�ned as consolidated general government gross

debt to GDP) below or approximately equal to the German one (80.4% and 81.9%); on

the contrary Belgium showed a low spread despite a debt-to-GDP (97.8% and 99.6%)

higher than the Spanish one (Note that it was 85.8% and 90.2% for France, 120.8% and

127.0% for Italy, 106.4% and 117.6% for Ireland, 65.5% and 71.2% for the Netherlands).

This suggests that debt-to-GDP may not be an appropriate economic indicator to in�u-

ence government bond spreads. In addition, the debt dynamics is determined by economic

growth perspectives which are better captured by the macroeconomic variables consid-

ered in our analysis. Finally, deb-to-GDP is available at quarterly frequency while all the

other macroeconomic indicators are available at monthly frequency. For all these reasons

we do not consider this indicator in our analysis.

In addition to the level of macroeconomic fundamentals, we are going to investigate

also the impact of their volatilities on government bond spreads: ceteris paribus, a country

with more volatile fundamentals is more likely to experience a severe weakening of its

macroeconomic conditions which may force it into default. Volatility of macroeconomic

fundamentals is estimated, following Schwert (1989), by �tting an autoregressive model
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for each macrovariable Y� augmented by some dummy variables D
j
� corresponding to the

aggregation period of interest U (e.g. months, quarters, years):

Y� =
UX
j=1

�jD
j
� +

UX
i=1

�iY��i + "� (3.2)

The squared residuals b"2� provide an estimate of macroeconomic volatility whose frequency
corresponds to the frequency at which macrovariables are sampled.

3.3 Modelling Mixed Frequency Times Series

The idea of combining two kind of models and two sampling frequencies with the aim

of incorporating in a same model macroeconomic e¤ects and time series dynamics has

already had some developments in literature. The underlying idea of these kind of models

is that the same news may have a di¤erent e¤ect on high frequency returns depending on

the state of the economy which is measured at a lower frequency.

One of the most promising approach to deal with two sampling frequencies is the

so-called MIxed Data Sampling (MIDAS) introduced by Ghysels, Santa-Clara and Valka-

nov (2004, 2005, 2006) and Ghysels, Sinko, and Valkanov (2007). MIDAS represents a

simple, parsimonious and �exible class of time series models that allow the left-hand and

right-hand variables of time series regressions to be sampled at di¤erent frequencies. The

MIDAS framework allows to use the raw data avoiding any apriori pre�ltering. The liter-

ature on MIDAS deals with the high-frequency component measured at daily frequency

while the data at low frequency are usually sampled monthly or quarterly.

To introduce MIDAS, let Yt be sampled at some �xed sampling frequency and call

this the interval of reference and X(m) be sampled m times faster. The MIDAS regression

can be written as Yt = �0 + �1
PJ

j=0B(j)X
(m)
t�j=m + "t where the dependent variable Yt is

projected onto a history of previous J lagged observations of X(m)
t=m: In order to keep the

number of parameters low, each lagged variable X(m) is not loaded by a speci�c coe¢ cient

rather by a weighting function B(j; �) of a few parameters summarized in vector � while

the overall impact of lagged X(m)
t on Yt is captured by �1: There exist alternative weight

function which can be adopted among which the exponential Almon lag as speci�ed in

(3.3):

B(j; �) =
e�1j+:::+�Qj

QPJ
j=1 e

�1j+:::+�QjQ
(3.3)

Note that the rate of weights decline determines how many lags are included in the

MIDAS regression so that the lag data selection is purely data driven. Ghysels et al.

(2005) use the function form in (3.3) with two parameters �1 and �2; in that case a

declining weight is guaranteed as long as �2 � 0:
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Alternatively, weights parametrization can be based on Beta function in (3.4):

B(j; �1; �2) =
f( jJ ; �1; �2)PJ
j=1 f(

j
J ; �1; �2)

(3.4)

where f( jJ ; �1; �2) is the Beta function which allows a greater �exibility with respect to the

exponential Almon. In particular, setting �1 = 1 and �2 > 1 implies weights to be slowly

declining while as �2 increases, weights decrease faster. Finally, when �1 > 1 weights

are allowed to assume a hump-shaped pattern. Both Almon polynomial and Beta lag

speci�cation provide some very useful features. First of all, as they give positive weights,

the estimated volatility is guaranteed to be positive; moreover weights sum up to unity

and the lag data selection is purely data driven.

Ghysels et al. (2004) show that the common practice of aggregating all the data to

the common least frequently sampled process will always be less e¢ cient than a MIDAS

regression that exploits the availability of the higher sampled time seriesX(m). Alternative

MIDAS speci�cations exist which can take into account nonlinearities, unequally spaced

observations and multiple equations. Some applications of MIDAS framework to GARCH

models have been recently proposed in the literature too by Engle and Rangel (2008) and

Engle et al. (2013).

The literature available up to now on MIDAS deals with data measured at daily fre-

quency together with data sampled at lower frequencies such as months and quarters. In

this Chapter, we propose to evaluate the impact of the slowly moving component measured

at monthly frequency on high frequency returns sampled using a 15-minute time window.

In particular, we extend the MIDAS approach and propose to evaluate the impact of the

slowly moving component measured at monthly frequency on high frequency returns sam-

pled using a 15-minute time window robust to both asynchronicity and microstructure

noise although su¢ ciently thick to provide a �avour of intraday movements. In particular,

we compare models estimated using a pure time series approach, where both high and low

frequency components are obtained from asset returns, with the case where the slowly

moving component, in both volatility and correlation, is driven by macroeconomic vari-

ables measured at monthly frequency. For this purpose, we extend the GARCH-MIDAS

model of Engle et al. (2013) and the DCC-MIDAS model proposed by Colacito et al.

(2011).

3.3.1 High Frequency MIDAS Regression Models

Let us consider an (M � 1) vector of returns for the i-th subinterval belonging to month
� r�;i =

h
r1�;i; :::; r

M
�;i

i0
distributed as a multivariate normal variable with mean vector �

(M � 1) and variance covariance matrix H�;i of order (M �M). Following the classical
DCC model of Engle (2002), the variance-covariance matrix H�;i can be decomposed
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as D�;iR�;iD�;i with D�;i diagonal matrix of volatilities and R�;i conditional correlation

matrix. By applying the GARCH-MIDAS by Engle et al. (2013), where the overall

volatility can be decomposed into two parts, one pertaining to short term �uctuations,

g�;i and the other to a long-run secular component,  � , the univariate volatilities can be

modeled as:

r�;i = �+
p
 �g�;i"�;i (3.5)

where "�;ij��;i�1 � N(0; 1) with ��;i�1 the information set available up to (� ; i� 1).
The volatility dynamics of the high frequency component g�;i is modeled as a GARCH(1,1)

process:

g�;i = (1� �� �) + �
"2�;i�1
 �

+ �g�;i�1 (3.6)

while the low frequency component can be modeled using a pure time series approach

with  � being a smooth average of the most recent U monthly realized volatilities RV�
computed on a �xed span window as described in (3.7) below:

log � = m+ #
UX
u=1

'u (!)RV��u (3.7)

with 'u (!) being the weighting scheme which can be based on beta or exponential func-

tion:

'u (!) =

8><>:
(u=U)!1�1(1�u=U)!2�1PU
j=1(j=U)

!1�1(1�j=U)!2�1 Beta

!u=
�PU

j=1 !
j
�

Exponential
(3.8)

In our empirical applications, in the light that the two weighting functions are equivalent

in terms of goodness of �t (see Engle et al. 2013), we use the beta exponential function

where the parameter !1 is set to 1 in order to assure that weights are slowly decaying.

We call this the Time Series GARCH-MIDAS (TS GARCH-MIDAS) model.

The second speci�cation for the low frequency component  � depends on macroeco-

nomic variables. In our empirical applications, we adopt the speci�cation as described in

(3.9) below:

log � = m+
SX
s=1

#s;l
UX
u=1

's;lu (!)X
s;l
��u +

SX
s=1

#s;v
UX
u=1

's;vu (!)Xs;v
��u (3.9)

where Xs;l
��u is de�ned as abs

�
Y s;l��u
Y s;l�0

� Y s;l;DE��u
Y s;l;DE�0

�
, Y s;l

� indicates the level (l) of the macro-

economic variable s at month � so that Y s;l
�0 is the �rst available value, Y

s;l;DE
� refers to the

same macrovariable s for Germany (DE) which serves as benchmark country. During the

time window analyzed both government bond spreads volatility and the absolute di¤erence

between macroeconomic fundamentals of each country and Germany increased substan-

tially and therefore it is mandatory to maintain the common trend between the two time
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series. Xs;v
��u is speci�ed as abs

�
Y s;v
��u � Y

s;v;DE
��u

�
where Y s;v

� volatility (v) of macrovariable

s de�ned as in (3.2). Y s;v;DE
� refers to the volatility of the same macrovariable s for Ger-

many. 'u (!) are beta weights as in (3.8) and U is the maximum lag for macrovariable s,

with s = 1; :::; S with S representing the total number of macroeconomic variables. We

refer to this model as the GARCH-MIDAS with Macroeconomic Variables (MV GARCH-

MIDAS) model.

Similarly to the TS GARCH-MIDAS in (3.7), the long run component is a smooth

average of the most recent U values of each macrovariable s, for which we consider both

level and volatility. Unlike Engle et al. (2013), we allow each macrovariable s, in both

level and volatility components, to enter the model with a speci�c coe¢ cient #s;l=v: In

this way, the model is more �exible and it also allows to measure the role played by each

macroeconomic variable in explaining the long run volatility.

Engle et al. (2013) propose a measure of the amount of volatility explained by the

long-term component on the overall volatility, the so-called variance ratio speci�ed as:

V ar (log ( � ))

V ar (log (g�;i � ))
(3.10)

Once univariate volatilities are estimated, the main focus is on the correlation dynam-

ics. Colacito et al. (2011) show that the high-frequency correlations obey a standard DCC

scheme but here the intercept is a slowly moving process that re�ects the fundamental or

long-run causes of time variation in correlations.

Based on the DCC framework by Engle (2002), the elements �kj�;i of the conditional

correlation matrix R�;i for month � and subinterval i, with k; j = 1; :::;M , are computed

as:

�kj�;i =
qkj�;iq

qkk�;i

q
qjj� ;i

(3.11)

whose elements qkj�;i are modeled by:

qkj�;i = �kj� (1� a� b) + a�k�;i�1�
j
� ;i�1 + bq

kj
�;i�1 (3.12)

where the intercept is time dependent and it is speci�ed as a smooth weighted average of

the most recent Ukj correlation matrices of standardized residuals ��;i = D�1
�;i (r�;i � �) as

in (3.13):

�kj� =
UkjX
u=1

'u

�
!kj
�
ckj�;i�u (3.13)

ckj�;i�u =

�;iP
l=�;i�Ukj

�kl �
j
ls

�;iP
l=�;i�Ukj

�
�kl
�2s �;iP

l=�;i�Ukj

�
�jl

�2 (3.14)
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where 'u
�
!kj
�
is the beta weighting function in (3.8).

The model proposed in Colacito et al. (2011) is a pure time series approach as the long

run correlation is allowed to be time dependent. In our analysis, we propose to link the

long run correlation �kj� to relevant macroeconomic indicators/variables. The intuition is

that the long-term correlation component should be interpreted as the predicted or the

expected correlation given a certain state of the economy, while deviations of the short-

run correlations from the long-run should be in�uenced by other factors related to trading

activity.

Thus, we propose the following speci�cation:


kj� = mkj +
SX
s=1

#s;l
UX
u=1

's;lu (!)
����Y k;s;l

��u ��Y
j;s;l
��u

���+
SX
s=1

#s;v
UX
u=1

's;vu (!)
����Y k;s;v

��u ��Y j;s;v
��u

��� (3.15)

Given that correlations follow stationary processes, we consider the rate of changes

of the macroeconomic variable levels (l) with respect to the previous period de�ned as

�Y k;s;l
� = 100�

h
ln
�
Y k;s;l
�

�
� ln

�
Y k;s;l
��1

�i
for the macroeconomic fundamental s of coun-

try k between months � and � � 1. Moreover, we expect that the correlation between
country k and country j increases when the absolute di¤erence in fundamentals of the two

countries vanishes and to decrease when the fundamentals diverge. Therefore, we enter the

model with a measure of the absolute di¤erence in the rate of change for macrovariable s

during the period (� ; � � 1) between two countries k and j de�ned as
����Y k;s;l

� ��Y j;s;l
�

��� :
For the volatility component, we compute the volatility of changes for macroeconomic

fundamental s occurred during the period (� ; � � 1) for country k de�ned as �Y k;s;v
� .

As for the level, we consider the absolute di¤erence between the volatility of changes for

macrovariable s for the two countries k and j which takes the form
����Y k;s;v

� ��Y j;s;v
�

��� :
Again the assumption is that as the absolute di¤erence of fundamentals volatility between

two countries tends to zero, countries should move in a more similar way and vice versa.

To guarantee that 
kj� lies between -1 and +1, following Christodoulakis and Satchell

(2002), we adopt the Fisher-z transformation (Fisher 1915) of the correlation matrix:

�kj� =
exp

�
2
kj�

�
� 1

exp
�
2
kj�

�
+ 1

(3.16)

and we apply the shrinkage technique as proposed in Kwan (2008) and implemented in

Golosnoy and Herwartz (2012), consisting in identifying the minimum � 2 [0; 1) such that
the matrix eR�;i, de�ned as: eR�;i = (1� �)R�;i + �I (3.17)
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is positive semide�nite, where I is (M �M) identity matrix and � determines the pro-

portion to which the eigenvalues of the matrix R�;i shrunk to unity.

The approach described here to model the correlation matrix allows to get consistent

estimates of the long run volatility obtained at the �rst step. Note that Chirac and Voev

(2011) propose to estimate the variance covariance matrix by decomposing correlation

matrix time series into Cholesky factors, guaranteeing the matrix to be positive semidef-

inite, and modelling them with a suitable time series model. Afterwards, the matrix is

reconstruct. In our case, this approach is not suitable as it implies the estimation of the

entire covariance matrix and this would imply a re-estimation of variances which have

already been modeled in the �rst step. Instead, in our framework, we estimate variances

in the �rst step and, in the second step, we just model the correlation matrix.

3.3.2 Data Preparation

For both model speci�cations, �rst we identify jumps for all the returns series so that

variance estimates obtained from GARCH models are not in�uenced by large jump devi-

ations. For the identi�ed jumps, we substitute the value of the threshold used to test for

the presence of jumps. For instance, we identify jumps using the robust Lee and Mykland

(2008) test �ltered for the intraday periodicity bst;i as proposed by Boudt et al. (2010):
FJt;i =

jrt;ijb�tbst;i (3.18)

where jrt;ij is the absolute value of log-return on day t and time-interval i and b�t is
the bipower volatility of day t. Having adopted the Lee and Mykland (2008) test, the

threshold is given by:

(ST�
� + CT )

�b�tbst;i� sgn(rt;i) (3.19)

where ST = 1= (2 log (T �N))1=2; (T �N) time series length; �� = � ln(� ln (1� �)); �
the signi�cance level of the test; CT = (2 log (T �N))1=2 � log � + (log (log (T �N))) =�

2 (2 log (T �N))1=2
�
; sgn the sign function.

As far as the periodicity component bst;i, following Chapter 2 we adopt a parametric
formulation which is estimated by the Truncated Maximum Likelihood (TML) approach

by Boudt et al. (2010) described respectively in (3.20) and (3.21):

bst;i = exp f
�
�̂TML;xt;i

�
s

1
N

NP
i=1

�
exp f

�
�̂TML;xt;i

��2 8t = 1; :::; T (3.20)
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f
�
�̂TML;xt;i

�
= �0 + �0;1

i

N1
+ �0;2

i2

N2
+

JX
j=1

�jS
j
t;i +

BX
b=1

�bR
b
t;i +

4X
j=1

#jWeekdaysj +

PX
p=1

�
�c;p cos

�
2�p

N
i

�
+ �s;p sin

�
2�p

N
i

��
+ "t;i (3.21)

where N the number of intraday intervals i belonging to day t; N1 = (N + 1)=2; N2 =

(N + 1)(N + 2)=6 normalizing constants; Sjt;i the surprise for macroannouncements and

government bond auctions (for the last ones, surprise is computed as the di¤erence in bid-

to-cover between current and previous 10-year auction); J the sum of macroannounce-

ments and auctions considered; Rbt;i dummy variable for rating actions undertaken by

rating agency b; B number of rating agencies; �j and �b event speci�c loading coef-

�cients; P tuning parameter determining the order of the expansion of the sinusoids;

�̂TML full parameter vector to be estimated. For a description of macroannouncements,

government bond auctions and rating actions we refer to Chapter 2, Tables 2.2-2.4.

Moreover, the loading coe¢ cients �j and �b are modeled applying the Andersen and

Bollerslev (1998) decay-structure which allows the speci�c event to impact over a time

window but with decaying weights. Macroannouncement surprises are allowed to impact

starting from 30 minutes before the release up to one hour and 30 minutes after, as in

Andersen and Bollerslev (1998). As far as government bond auctions are concerned, we

use a wider window, ranging from two hours before the auction ends up to one hour after

it as we want to take into account the uncertainty in the markets during the auction

period. Finally, as the timing of rating actions is not foreseeable, we set the start of the

window in correspondence of the rating action up to two hours after it. The estimates

of the intraday periodicity is reported in Appendix 3.A. while a skinny description of

detected jumps is shown in Table 3.3.1.

Table 3.3.1: Jumps description
IT FR ES BE NL

No 404 261 483 462 213

% 1.14 0.74 1.37 1.31 0.60

Mean abs size [%] 6.28 4.63 5.80 4.46 3.70

Table 3.3.1 reports the number of jumps and their absolute mean size
detected by the Lee and Mykland (2008) test corrected for the intraday
periodicity as described in (3.18)-(3.21).

We identify a variable percentage of jumps: 1.31% for Belgium, 0.74% for France,
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1.14% for Italy, 1.37% for Spain and 0.60% for the Netherlands. The mean absolute size

of jumps ranges from a minimum of 3.70% for the Netherlands to a maximum of 6.28%

for Italy.

Once jumps have been censored, returns are standardized by the intraday periodictybst;i in (3.20)-(3.21) in order to control for the U-shape. Finally, on the standardized and
jump-free returns, we �t an ARMA(1,1) model whose estimates are reported in Table

3.3.2.

Table 3.3.2: Parameter estimates for ARMA
IT FR ES BE NL

� 0.0000 *** 0.0000 *** 0.0002 *** 0.0000 0.0000 ***

� 0.7784 *** 0.0757 *** -0.4425 *** -0.1098 *** 0.2157 ***

� -0.7509 *** -0.2774 *** 0.4078 *** -0.0015 ** -0.5906 ***

Table 3.3.2 reports the ARMA parameters estimated on jump-free returns standardized by
the intraday periodicty as described in the text. ***,** and * denote statistically signi�cance
at 1%, 5% and 10% sign�cance level respectively.

3.4 Empirical Results

3.4.1 Univariate Models

The �rst model we estimate is the GARCH-MIDAS where the long run component is a

smooth weighted average of monthly realized volatilities (RV) computed on a �xed span

window as described in (3.7). In Table 3.4.1, we report estimates for the TS GARCH-

MIDAS. The monthly frequency is adopted as this is the shortest frequency at which the

macroeconomic variables are available. Following Engle et al. (2013), in estimating the

GARCH-MIDAS model we put special care in selecting the lag structure in each MIDAS

polynomial speci�cation for  � (U in our notation). To this purpose, we estimate three

alternative speci�cations corresponding to 3, 6 and 12 months and comparing the log-

likelihoods we choose the MIDAS lag equal to 6 months. As per the weight function,

we select the beta lag function in (3.8) setting !1 = 1 so that weights are monotonically

decreasing over the lags, with the shape of weights governed by !2. Moreover, following

Engle et al. (2013), in order to avoid numerical instability in the estimation procedure,

we set an upper bound equal to 300 for !2.
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Table 3.4.1: Parameter Estimates for the TS GARCH-MIDAS Models
BE FR IT ES NL

� 0.0534 *** 0.0590 *** 0.0417 *** 0.0558 *** 0.0714 ***

� 0.9370 *** 0.9274 *** 0.9507 *** 0.9302 *** 0.9139 ***

m -6.3869 *** -6.6277 *** -6.3461 *** -6.2041 *** -7.2470 ***

� 0.9080 *** 0.8685 *** 0.9042 *** 0.9749 *** 0.7047 ***

!2 5.5888 *** 6.8412 *** 3.3698 6.8412 *** 5.5588 ***

LogL 124,087 128,523 111,814 114,503 129,831

Variance ratio 0.70 0.65 0.74 0.85 0.37

Table 3.4.1 reports estimates for the TS GARCH-MIDAS model where the long run
component is a smooth weighted average of previous six monthly realized volatilities.
Realized volatilities are estimated on a �x monthly span while the high frequency
component is measured at 15-minute frequency. Weights are computed according to
the beta function where the �rst parameter !1 is set to 1. ***, **, * denote 1%, 5%
and 10% signi�cance level, respectively.

Almost all coe¢ cients in Table 3.4.1 are statistically signi�cant, both those related to

standard GARCH (� and �) and those related to the MIDAS model (m; �, and !2). As

expected, the sum of the parameters � and � is close to 1. Estimates of � indicate that

long run volatility at time (� ; i) depends positively on past realized volatilities. The beta

weight parameters !2 assume values greater than 1 ranging from 3.37 to 6.84, implying

that weights follow a decaying pattern with higher weights attributed to more recent RVs

and lower weights to the past RVs.

Another important result in Table 3.4.1 is the high values of the variance ratios mea-

suring the amount of the overall volatility explained by the long term component. There is

evidence that the long run variance contributes substantially to explain the overall volatil-

ity, ranging from a maximum of 0.85 for Spain to a minimum of 0.37 for the Netherlands.

In Figure 3.5, we report the estimated volatility, at high-frequency (blue line) and

at low-frequency (black line) components obtained from the estimates reported in Table

3.4.1.
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Figure 3.5: TS GARCH-MIDAS Models

The �gure reports the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained from the TS GARCH-MIDAS model where the long run component is a smooth
weighted average of previous six monthly realized volatilities. Estimates are reported in Table 3.4.1. The
blue line is the high-frequency (15-minute) component while the black line is the low-frequency (monthly)
component.
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There is evidence that the volatility of government bond spreads increased substan-

tially for all the countries, and this pattern is particularly pronounced for Italy and Spain

and to a less extent for France, Belgium and the Netherlands.

3.4.1.1 GARCH-MIDASModels with Macroeconomic Variables (MVGARCH-
MIDAS)

In the second GARCH-MIDAS speci�cation, the low-frequency component is driven by

macroeconomic variables (employment, industrial production and economic sentiment) as

described in (3.9). As macroeconomic variables are measured at monthly frequency, the

long run component of volatility remains constant through each month. Finally, in order

to be able to compare the results of this model with those reported in Table 3.4.1, we �x

the MIDAS lag equal to 6 months and in the beta lag function in (3.8) we set !1 = 1,

estimating the parameter !2 with an upper bound for !2 equal to 300. We report the

results of the estimated MV GARCH-MIDAS in Table 3.4.2.

Table 3.4.2: Parameter Estimates for the MV GARCH-MIDAS Models
BE FR IT ES NL

� 0.0447 *** 0.0611 *** 0.0398 *** 0.0582 *** 0.0921 ***

� 0.9536 *** 0.9234 *** 0.9534 *** 0.9209 *** 0.8658 ***

m -10.71 *** -12.56 *** -11.19 *** -11.40 *** -8.92 ***

�1;l (Employment) -19.14 -9.39 *** -36.76 * -5.09 24.64 ***

�2;l (Industrial production) 26.99 ** 20.21 *** 27.52 *** 13.56 *** -40.20 ***

�3;l (Economic sentiment) 12.49 *** -0.38 1.70 * 3.33 *** -3.59 ***

!2;1;l (Employment) 0.62 29.71 *** 29.40 * 29.22 *** 56.09

!2;2;l (Industrial production) 1.87 ** 0.96 *** 0.98 *** 1.36 0.99 ***

!2;3;l (Economic sentiment) 33.82 ** 39.75 ** 39.46 * 39.60 ** 3.23

�1;v (Employment) -7.49 ** -2.7 *** -3.27 *** -9.24 *** 31.5 ***

�2;v (Industrial production) -20.62 33.17 * -6.19 23.91 14.00

�3;v (Economic sentiment) 13.88 -1.44 *** -1.28 3.48 -5.69 ***

!2;1;v (Employment) 0.98 *** 1.08 *** 0.97 *** 1.02 *** 1.03 ***

!2;2;v (Industrial production) 5.28 *** 2.12 *** 0.78 1.55 0.96 ***

!2;3;v (Economic sentiment) 1.00 *** 0.69 *** 3.52 1.09 *** 1.40 ***

LogL 124,052 128,541 111,826 114,567 129,950

Variance ratio 0.42 0.63 0.80 0.87 0.67

Table 3.4.2 reports estimates for the MV GARCH-MIDAS where the long run volatility is a function
of the absolute di¤erence in macroeconomic variables (employment, industrial production and economic
sentiment) observed over the last six month for each country with respect to Germany as speci�ed in
(3.9). Both levels and volatilities of macroeconomic fundamentals concur in determining the long run
component of volatilities. The low-frequency component is updated monthly, in correspondence to new
macroeconomic data, while the high-frequency component is evaluated on a 15-minute time window. The
absolute di¤erence in volatilities were rescaled: employment volatility by 10e4 while industrial production
and economic sentiment volatility by 10e2. Weights are computed according to the beta function where
the �rst parameter !1 is set to 1. ***, **, and * denote 1%, 5% and 10% signi�cance level, respectively.
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Overall, the macroeconomic variables are statistically relevant in explaining the volatil-

ity of European sovereign spreads. In particular, the most important driver is the ab-

solute di¤erence between each country industrial production with respect to Germany:

an increase of that di¤erence determines a correspondent increase in volatility of Belgian,

French, Italian and Spanish spread and a decrease in Dutch spread. This �nding is sup-

ported also by Ludvigson and Ng (2009) and Lustig et al. (2013). As far as the economic

sentiment is concerned, an increase in the absolute di¤erence with respect to Germany

implies a higher spread volatility for Belgium, Italy and Spain while it is negative for

the Netherlands. In line with �ndings in Aizenman (2013) and Veronesi (1999), this re-

sult suggests that volatility has a forward looking nature re�ecting the uncertainty about

future macroeconomic conditions: the higher the uncertainty, the lower the economic

sentiment is and the higher the market volatility becomes. Finally, increasing absolute

di¤erence in employment level with respect to Germany determines an increase in spreads

just for the Netherlands while it has a negative e¤ect on all other countries. Considering

now the di¤erences between each country and German volatility fundamentals, we can

say that they are less important than the levels. Moreover, no clear pattern is identi�able

as, in case of employment, an increase in volatility di¤erence determines a lower volatility

in France, Italy and Spain and a higher one for the Netherlands. Higher volatility di¤er-

ence for industrial production generates higher volatility for France while an increase in

volatility di¤erence of economic sentiment implies a lower spread volatility for France and

the Netherlands. A �nal important result reported in Table 3.4.2 relates to the variance

ratios, which appear quite high for each country, ranging from a minimum of 0.42 for

Belgium to a maximum of 0.87 for Spain. This indicates that the long term component

modeled by macroeconomic variables explains a great amount of total volatility. In Figure

3.6, we depict the low and the high-frequency components of volatility obtained from the

estimates reported in Table 3.4.2.



94
High- and Low- Frequency Correlations in European Government Bond Spreads and Their Macroeconomic

Drivers

Italy France

Spain Belgium

the Netherlands

Figure 3.6: MV GARCH-MIDAS Models

Figure 3.6 plots the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained by the MV GARCH-MIDAS model where the long run component is a function
of the absolute di¤erence in macroeconomic fundamentals, namely employment, industrial production
and economic sentiment, observed over the last six months for each country with respect to Germany,
as speci�ed in (3.9). Both levels and volatilities of macroeconomic fundamentals concur in determining
the long run component of volatilities. Estimates are reported in Table 3.4.2. The blue line is the high-
frequency (15-minute) component while the black line is the low-frequency (monthly) component.
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3.4.1.2 Comparison Between the TS GARCH-MIDAS and MV GARCH-
MIDAS Speci�cations.

We now compare the two alternative GARCH-MIDAS speci�cations with a standard

GARCH whose estimates are reported in Table ??:
In Table 3.4.3, we report the results of the comparison between TS GARCH-MIDAS

and MV GARCH-MIDAS speci�cations as well as with standard GARCH models.

Table 3.4.3: GARCH MIDAS Models: A Comparison
IT FR ES BE NL

Log Likelihood

GARCH 111,739 128,403 114,335 123,992 129,751

TS GARCH-MIDAS 111,814 128,523 114,503 124,087 129,831

LR test (vs GARCH) 149.45 *** 239.25 *** 336.32 *** 190.74 *** 160.29 ***

MV GARCH-MIDAS 111,826 128,541 114,567 124,052 129,950

LR test (vs GARCH) 174.27 *** 275.56 *** 464.77 *** 120.02 *** 398.78 **

AIC

GARCH -6.333 -7.278 -6.480 -7.028 -7.354

TS GARCH-MIDAS -6.337 -7.284 -6.4901 -7.033 -7.358

MV GARCH-MIDAS -6.338 -7.285 -6.493 -7.030 -7.365

BIC

GARCH -6.333 -7.277 -6.480 -7.027 -7.354

TS GARCH-MIDAS -6.336 -7.283 -6.489 -7.032 -7.357

MV GARCH-MIDAS -6.334 -7.281 -6.489 -7.026 -7.361

Variance Ratio

TS GARCH-MIDAS 0.74 0.65 0.85 0.70 0.37

MV GARCH-MIDAS 0.80 0.63 0.87 0.42 0.67

Table 3.4.3 reports a comparison of alternative volatilites estimates. GARCH is the classical
GARCH(1,1) model by Bollerslev (1986). In the TS GARCH-MIDAS model, the low-frequency
component is a smooth weighted average of previous six monthly realized volatilities and reported
in Table 3.4.1. In the MV GARCH-MIDAS model, the low-frequency component is a function of
the absolute di¤erence in macroeconomic variables (employment, industrial production and eco-
nomic sentiment) for each country with respect to Germany and reported in Table 3.4.2. LR test is
provided only with respect to classical GARCH as the two GARCH-MIDAS speci�cations are not
nested. AIC and BIC are Akaike and Schwarz information criterion respectively, whose values are
divided by T=35,286. Variance ratio, de�ned in (3.10), indicates the overall amount of volatility
explained by the long run component. ***, **, and * denote 1%, 5% and 10% signi�cance level,
respectively.

Both TS and MV GARCH-MIDAS speci�cations provide a better �t in terms of log-

likelihood with respect to classical GARCH: the likelihood ratio tests (LR) reject the

null hypothesis of model equivalence for all the countries. This result indicates that the

assumption of constant long run volatility over time in GARCH models is restrictive, as

it can also be seen from a visual inspection of Figures 3.5-3.6 that report a strong break
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in the volatility pattern from 2010 onwards.

When comparing the two GARCH-MIDAS model, Akaike information criteria selects

the MV GARCH-MIDAS speci�cation for all the countries but Belgium while, when con-

sidering Schwarz information criteria, the best model is always the TS GARCH-MIDAS

exception made for the Netherlands. This result is justi�ed by the preference for lower

parametrized models accorded by Schwarz criteria and by the fact that in Table 3.4.2

some parameters which are not statistically signi�cant are left in the equations. This

fact determines a blow up of the number of parameters used for inference, raising up the

Schwarz criteria and penalizing the MV GARCH-MIDAS.

Focusing now on the variance ratio, providing an indication of the amount of to-

tal variability explained by the long run component, we �nd evidence supporting MV

GARCH-MIDAS on TS GARCH-MIDAS for Italy (0.80 vs. 0.74), Spain (0.87 vs. 0.85)

and the Netherlands (0.67 vs. 0.37). Instead the TS GARCH-MIDAS is selected for

France (0.65 vs. 0.63) and Belgium (0.70 vs. 0.42).

The existence of a countercyclicality relationship between macroeconomic environment

and market volatility was already assessed by Schwert (1989) where he showed that, as the

macroeconomic fundamentals deteriorate, market volatility increases and viceversa. Engle

et al. (2013) analyze this relationship more deeply carrying out a forecasting comparison

among the alternative GARCH-MIDAS speci�cations for volatility showing that, when the

long term component is driven by in�ation and industrial production growth, they obtain

the same out-of-sample predictability for horizons of one quarter while, at longer horizons,

this model outperforms the pure time series statistical models. Instead, according to

variance ratio TS GARCH-MIDAS outperforms MV GARCH-MIDAS.

The other only paper dealing with GARCH-MIDAS is Conrad et al. (2012) where

authors study the long and high volatility components of oil and stock. In particular, the

low frequency component is a function of some macroeconomic variables among which

the term spreads, housing starts, corporate pro�ts and unemployment rate are the most

relevant. In particular they show that, in general, survey-based ex-ante measures of

economic uncertainty are more informative with respect to standard economic measures.

In addition, Conrad et al. (2012) compare their model with a GARCH-MIDAS where the

long-run component is a smoothed average of past realized volatility showing that when

macroeconomic factors are used instead, the goodness of �t improves, which is the same

evidence we �nd. Baele et al. (2010) too show the relevance of macroeconomic variables

in explaining long-term bond volatility. In their paper they consider both stock and bond

volatility and they show that macroeconomic variables have actually a harder time in

�tting stock market volatility than they do with bond volatility, where the short term

interest rate is strongly relevant. Instead, non-macroeconomic variables, such as cash-�ow

growth or liquidity measures, signi�cantly explain stock market volatility while they do
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not impact on bond volatility.

Paye (2012) explores the relationship between S&P volatility and macroeconomic fun-

damentals taking into account a number of variables such as current and expected GDP

growth, the investement-capital ratio for US economy, volatility of growth in industrial

production, net payout, volatility of in�ation growth and the term spread. In a forecast-

ing exercise, the Author shows that variables capturing the level of future uncertainty

Granger cause volatility although the Giacomini and White test for superior predictive

ability rarely indicates a better performance of the model including macroeconomic vari-

ables. Finally, Paye (2012) provides evidence that macroeconomic variables become more

signi�cant during recession periods with a prominent role of the investment per capital

ratio.

Another paper dealing with this topic is Christiansen et al. (2012) where macro-

economic and �nancial variables impact on return volatility is assessed. In their paper

Authors take into account a broad range of asset classes, including stocks, bonds, foreign

exchange and commodities, and they model assets realized volatilities as autoregressive

processes augmented with some macroeconomic variables as well as with market and

funding liquidity measures and credit and counterparty risk. They show that the most

important drivers of stock volatility are associated with the e¤ects of leverage while money

market stress and funding liquidity measures are relevant for all the asset classes consid-

ered. The TED spread, de�ned as the di¤erence between the interest rates on interbank

loans and on US Treasury-bills, providing a measure of both funding market liquidity

and counterparty credit risk is found to have overall a strong impact. As per speci�c

bond volatility drivers, credit spread, term spread and the S&P 500 turnover, which is

commonly viewed as a proxy for di¤erence in opinion, turn out to be statistically signif-

icant. Finally, focusing on proper macroeconomic variables, Christiansen et al. (2012)

evaluate in�ation and industrial production but these variables were always found to be

statistically not signi�cant.

3.4.2 Multivariate Models

Correlation matrices are estimated using the following two approaches. In the �rst spec-

i�cation, the TS DCC-MIDAS model, univariate volatilities are obtained from the TS

GARCH-MIDAS, where the long run component is a weighted average of past RVs pre-

sented in Table 3.4.1, and the long-run component is a weighted average of correlation

matrices of past standardized residuals as in Colacito et al. (2011) model described

in (3.13) and (3.14). In the second speci�cation, the MV DCC-MIDAS, the univariate

volatilities are obtained from the MV GARCH-MIDAS, where the slowly varying compo-

nent is modeled through macroeconomic variables as presented in Table 3.4.2, while as per

correlation matrix, the long run component is inferred from macroeconomic fundamentals
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of the countries in analysis as described in (3.15).

3.4.2.1 The TS DCC-MIDAS Model

Starting from the TS DCC-MIDAS model, we estimate the long-run correlation matrix

using a �xed step rather than a rolling window and therefore the long run correlation

matrix is computed on the �rst day of each month on previous month standardized resid-

uals and then it is kept �xed through the current month. This choice is motivated to

assure the comparison between the TS DCC-MIDAS model with the MV DCC-MIDAS

as macroeconomic fundamentals are observed monthly and therefore the long run com-

ponent of correlation is �xed through the month. As already done for the univariate

GARCH-MIDAS, we impose a beta lag structure for weights loading the past correlation

matrices of standardized residuals in (3.13) and, as in Colacito et al. (2011), we set !1 to

1 in the beta function. In the multivariate framework, we deal with the MIDAS lag selec-

tion corresponding to Ukj in (3.13) and therefore we test some alternative speci�cations,

ranging from 2 to 12 months, and compare models in terms of log-likelihood. Results are

reported in Table 3.4.4.

Table 3.4.4: DCC-MIDAS lag selection
MIDAS Lag LogLikelihood
2 months 630,029

3 months 630,019

4 months 630,003

5 months 629,974

6 months 629,956

9 months 629,893

12 months 629,975

Table 3.4.4 reports the log-likelihood for alterna-
tive TS DCC-MIDAS models obtained by varying
the MIDAS lag Ukj in (3.13).

According to the log-likelihood, we should choose a MIDAS lag of 2 months which

presents the highest value but, when that MIDAS lag is selected, !2 in the beta weight

function takes value equal to 150 which could be sign of numerical instability. Therefore

we decide to set the MIDAS lag equal to 3 months in which case the loglikelihood is

630,019 against 630,029 when MIDAS lag is set to 2 months. Moreover, although we

could have selected alternatives Ukj for all the 10 covariances to be modeled, we set it

equal for all of them.

In Table 3.4.5, we report the estimates of the TS DCC-MIDAS model (3.13):
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Table 3.4.5: Parameters Estimates for the TS DCC-MIDAS Model
a b !2

0.0062 *** 0.9893 *** 3.1333 *

LogL 630,019

Table 3.4.5 reports estimates for the TS DCC-MIDAS model where
the long run component of correlation is a smooth weighted average of
previous three monthly correlation matrixes of standardized residuals.
The long run component is kept �xed throughout the month while the
high frequency component is evaluated on a 15-minute time window.
Weights are computed according to the beta function where the �rst
parameter !1 is set to 1. Univariate volatilities are obtained by the
TS GARCH-MIDAS model where the long run component is a smooth
weighted average of RVs reported in Table 3.4.1. ***, **, and * denote
1%, 5% and 10% signi�cance level, respectively.

The parameter governing the weight function is greater than 1 and, as !1 is set to 1,

this implies that weights are decaying with time: higher weights are attributed to most

recent correlation matrices of standardized residuals.

In Figures 3.7-3.8, we report the pattern of the high- and low-frequency correlations

estimated using the pure time series approach.
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Italy vs France Italy vs Spain

Italy vs Belgium Italy vs the Netherlands

France vs Spain France vs Belgium

Figure 3.7: TS DCC-MIDAS Model

The �gure reports the pairwise correlations estimates of 10-year government bond spreads with respect
to the German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007
- May 2012. Correlations are obtained from the TS DCC-MIDAS model where the long run component
is a smooth weighted average of previous three monthly correlation matrices of standardized residuals.
Univariate volatilities are obtained from the TS GARCH-MIDAS reported in Table 3.4.1. DCC-MIDAS
estimates are reported in Table 3.4.5. The black line is the low-frequency (monthly) component while the
blue line is the high-frequency (15-minute) component.
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France vs the Netherlands Spain vs Belgium

Spain vs the Netherlands Belgium vs the Netherlands

Figure 3.8: TS DCC-MIDAS Model

See notes to Figure 3.7.

A very interesting feature is the jump in the high-frequency correlations that emerge

for all the pairs of countries between December 2010 and July 2011, when a series of

important events occur including the second Greek bailout and the Portuguese bailout.

Note that at the beginning of December 2010, the ECB announces the purchasing of

government bonds in large scale and Ireland asked for �nancial help. All these events
determined a sensible increase in risk aversion, with the consequence that market move-

ments got heavily news-driven and traders started to operate in a synchronized way across

the di¤erent markets. In Chapter 4, we estimate correlations using alternative techniques

robust to both microstructure noise and asynchronous trading, e.g. inter alia Aït-Sahalia

et al. (2010) and Barndor¤-Nielsen et al. (2011), �nding the same pattern inferred here

during the period December 2010 - July 2011. In Chapter 4 we will argue that the pattern

of the estimated correlations over that period can be explained by a negative correlations
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between Germany and the other European countries, as the result of completely di¤er-

ent/opposite trading activity in German bond with respect to bonds of other countries.

3.4.2.2 The MV DCC-MIDAS Model

We now turn to the MV DCC-MIDAS speci�cation where the long run component is

modeled by macroeconomic fundamentals as described in (3.15). In particular, we assume

that the correlation between country A and country B depends just on countries A and B

fundamentals. As discussed in Section 3.3, macroeconomic variables enter the model via

a measure of the absolute distance between the rate of changes of macroeconomic drivers

of countries A and B. We expect that, as the fundamentals of the two countries get closer,

and therefore their absolute di¤erence goes to zero, the government bond spreads of the

two countries become more correlated and viceversa. As per the univariate analysis, we

take into consideration employment, industrial production and economic sentiment. In

order to keep comparability with results in Table 3.4.5, we �x the MIDAS lag equal to

3 months and adopt the beta lag speci�cation, always �xing !1 equal to 1. We report

estimates in Table 3.4.6.
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Overall, the macroeconomic variables turned out to be statistically signi�cant drivers

of correlations between each pair of countries. Starting from the level of macroeconomic

variables, an increase in the absolute di¤erences in the rate of change of employment de-

termines a statistically signi�cant decrease in correlations in 6 out of 10 pairs of countries

while a positive relationship is detected just for Belgium and France. Focusing on the

industrial production, as the rate of changes of two countries diverge, the government

bond spreads with respect to Germany get more dissimilar in 4 out of 10 cases while a

positive relationship is found just for the correlation between France and the Netherlands.

Finally, as far as the economic sentiment is concerned, for 7 out of 10 pairs of countries

we observe a negative sign indicating that as the two countries become more dissimilar in

terms of the forward looking measure, they move in a less correlated way. Therefore, there

is a con�rmation of our assumption about a negative dependence between the correlation

of two countries and the absolute di¤erence between their macroeconomic fundamentals:

as two countries get more similar in terms of their macroeconomic fundamentals, the

respective government bond spreads start to move more closely.

Focusing now on the absolute di¤erence in volatility of the rate of change of fundamen-

tals, our results support the empirical evidence highlighted for the level of macroeconomic

variables. A divergence in employment volatility determines a decrease in correlations in

4 out of 5 pairs of countries for which the estimates are statistically signi�cant, in 6 out

of 6 when taking into account industrial production and in 5 out of 6 when focusing

on economic sentiment volatility. Therefore, not only convergence in rates of change of

macroeconomic variables determines an increase in correlation but the volatility of the

rate of change too explains correlations in the same direction: as two countries get more

similar in terms of volatilities of their fundamentals, their government bond spreads get

even more correlated.

In Figures 3.9-3.10, we depict the pattern of correlations according to estimates re-

ported in Table 3.4.6:
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Italy vs France Italy vs Spain

Italy vs Belgium Italy vs the Netherlands

France vs Spain France vs Belgium

Figure 3.9: MV DCC-MIDAS Models

The Figure plots the pairwise correlations estimates of 10-year government bond spreads with respect to
the German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 -
May 2012. Correlations are obtained from the MV DCC-MIDAS model where the long run component
is a function of the absolute di¤erence in macroeconomic fundamentals, namely employment, industrial
production and economic sentiment, observed over the last three months for each pair of countries as
speci�ed in (3.15). Both levels and volatilities of macrovariables concur in determining the long run
component of correlations. Estimates are reported in Table 3.4.6. The black line is the low-frequency
(monthly) component while the blue one is the high-frequency (15-minute) component.
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France vs the Netherlands Spain vs Belgium

Spain vs the Netherlands Belgium vs the Netherlands

Figure 3.10: MV DCC-MIDAS Model

See notes to Figure 3.9.

From Figures 3.9-3.10, we evidence a failure of the model in describing the break in

correlations occurred during the period December 2010 - July 2011. This can be explained

by that macroeconomic variables used in this study are not able to capture what happened

at high-frequency level in the markets during that very distressed period.

In Table 3.4.8 we compare the two DCC-MIDAS reported in Table 3.4.5 and 3.4.6

together with the classical DCC model by Engle (2002) whose parameters are reported

in Table 3.4.7. Note that as the two DCC-MIDAS models are not nested, we apply the

likelihood ratio test just to compare the two DCC-MIDAS with the standard DCC.
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Table 3.4.7: DCC

a b

0.0045 *** 0.9953 ***

LogL 629,410

*** denotes signi�cance at 0.01. !1 is set to 1.

Table 3.4.8: DCC-MIDAS Models: A Comparison
LogL LR test vs DCC AIC BIC

DCC 629,410 -35.6747 -35.6742

TS DCC-MIDAS 630,019 1,218 *** -35.7091 -35.7084

MV DCC-MIDAS 630,054 1,288 *** -35.7038 -35.6721

Table 3.4.8 reports a comparison of alternative DCC models. DCC is the classical
DCC(1,1) model by Engle (2002) whose parameters are reported in Table 3.4.7. In
TS DCC-MIDAS model, the low frequency component is a smooth weighted average
of previous three correlation matrices of standardized residuals and reported in Table
3.4.5. In the TS DCC-MIDAS univariate volatilities are obtained by the TS GARCH-
MIDAS reported in Table 3.4.1. In the MV DCC-MIDAS model, the low frequency
component is a function of the absolute di¤erence in macroeconomic fundamentals,
namely employment, industrial production and economic sentiment, for each pairs of
countries and reported in Table 3.4.6. In this case univariate volatilities are obtained
by the TS GARCH-MIDAS reported in Table 3.4.2. LR test is provided just with
respect to classical DCC as the two DCC-MIDAS speci�cations are not nested. AIC
and BIC are Akaike and Schwarz information criterion respectively, whose values are
divided by T=35,286. ***, **, and * denote 1%, 5% and 10% signi�cance level,
respectively.

Both the likelihood ratio tests and the information criteria indicate that the two DCC-

MIDAS speci�cations outperform the classical DCC model by Engle (2002). This �nding

is relevant given that, as already discussed for the volatilities, the classical assumption

that the unconditional or long run correlation is �xed over time is rejected by the data. Al-

lowing the long run correlation to be time varying, independently of which DCC-MIDAS

speci�cation we adopt, improves substantially the explanatory power of the model. This

conclusion is also evident from a visual inspection of Figures 3.7-3.8 and 3.9-3.10, which

show a strong break in the pattern of correlations during the period December 2010 -

July 2011. In terms of which DCC-MIDAS speci�cation to use, the TS DCC-MIDAS

outperforms the alternative MV DCC-MIDAS model with Akaike criterion increasing

from -35.7091 to -35.7038 and Schwarz criterion from -35.7084 to -35.6721. This �nd-

ing con�rms what reported earlier in the Chapter in commenting Figures 3.9-3.10: the

macroeconomic variables are unable to explain what happened in the �nancial markets

during the recent distressed period. This result sheds light in identifying the possible

sources underlying the increasing systemic risk: the substantial break in correlations in

government bond spreads, despite no change in correlations between countries fundamen-
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tals, shows that the increase in risk originated from �nancial markets rather than from

shocks coming from the real economy. The sharp increase in correlations is most likely

due to a change in market sentiment, and markets during crisis periods becoming more

volatile and investment activities myopic. In particular, during the recent sovereign crisis,

markets penalized more peripheral European countries in favour of Germany considered

a "safe heaven".

Figures 3.9-3.10 highlight interesting linkages of our �ndings to the concept of conta-

gion (Forbes and Rigobon 2002, Bekaert et al. 2005, 2012), as increasing correlations not

entirely explained by macroeconomic fundamentals, and are also in line with the evidence

reported for other asset classes in terms of systemic risk. There are alternative views in

literature according to the causes behind change in systemic risk. Our results are in line

with Ang and Longsta¤ (2011) where a stronger linkage among CDS spreads of Eurozone

countries with respect to the US is assessed. This result provides evidence that systemic

risk is not directly caused by macroeconomic integration but it has its roots in �nancial

markets. A similar evidence is reported in other papers such as Kodres and Pritsker

(2002), Brunnermeier and Pedersen (2009) and Allen et al. (2009) where it is shown that

systemic risk is created through channels such as capital �ows, funding availability, risk

premia and liquidity shocks rather than macroeconomic shocks. Another study support-

ing our results is Baele et al. (2010) where the factors explaining the dynamics of the

correlation between stock and bond returns are investigated. Their main result is that

macroeconomic fundamentals, such as output gap and in�ation, do not explain signi�-

cantly stock and bond returns correlations while other variables, such as liquidity proxies

and risk aversion, have a prominent role. Karloyi and Stulz (1996) study whether there

exists a relationship between US macroeconomic announcements and covariances. They

come out with a negative answer providing evidence that instead, what determines higher

covariances are large contemporaneous return shocks in the national markets. Therefore

these �ndings may be used to support our results about the presence of large and si-

multaneous shocks in European government bond spreads behind the sharp increase in

correlations.

3.4.2.3 DCC-MIDAS MVRA, macroeconomic and risk aversion approach

In order to assess whether the change in the correlation structure evidenced in previous

Section re�ects an increasing risk adverse environment, we augment (3.15) with some

variables usually adopted to describe risk aversion such as TED, VIX and the price of

gold. The TED is de�ned as the di¤erence between the interest rates on interbank loans

and on short-term US government debt and it is a measure of credit risk; in practice it

is usually computed as the di¤erence between the 3 months LIBOR and the 3 months

yield-to-maturity of US T-bill. The VIX is a measure of the implied volatility of S&P
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500 index option and therefore it gives an idea of market perceived volatility. Finally

we consider even the price of gold as it usually works as the safe heaven investment;

therefore an increase in its price should re�ect a higher demand in consequence of raising

risk aversion. In Figure 3.11 we report the time series for the period of interest for the

three variables.

TED VIX

Gold price

Figure 3.11: Risk aversion variables

Figure 3.11 reports the pattern of TED, VIX and gold price during the period June 2007 - May 2012.

From a simple graphical analysis, we can see that neither VIX nor TED show an

increase during the period December 2010 - July 2011 corresponding to the break in

correlations for all the pairs of European government bond spreads observed in Figures

3.7-3.8 and 3.9-3.10. Anyway we try to add all the three variables in (3.15) and estimate

a model for the conditional correlations based on countries macroeconomic fundamentals

and risk aversion measures. Results are reported in Table 3.4.9.
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Results in Table 3.4.9 show that there exists a negative relationship between the risk

aversion measures and correlations for some of the countries analyzed contradicting our

initial hypothesis about the existence of a positive relationship. The log-likelihood of the

model improves, moving from 630,054 to 630,107 and the Likelihood ratio test is 106.18

with a p-value of 0.0002 which allows not to reject the hypothesis of a better �tting of the

model including the risk measures. Anyway, the increase in correlation during the period

December 2010 - July 2011 still remains unexplained (we do not report Figures here).

3.4.3 A Useful Eigensystem Decomposition of the Correlation Matrix

According to the analysis carried out up to now, we have obtained two correlation pat-

terns: the �rst, measured at 15-minute frequency, capturing �nancial markets behaviour;

the second one, inferenced from countries macroeconomic fundamentals, is assessed at

monthly frequency. In this �nal section, we evaluate the presence of time-varying (on-

going) integration between European countries. This is an interesting exercise for the

implications in terms of the presence of contagion and /or systemic risk during the sov-

ereign crisis.

Applying the classical de�nition of contagion by Forbes and Rigobon (2002), that is

a signi�cant increase in crossmarket linkages after a shock to one country or to a group

of countries, we can therefore conclude with strong evidence of contagion according to

high frequency data while this evidence does not seem so clear using macroeconomic

data. Anyway, in this context we feel that contagion analysis is not appropriate. In

fact, although Greece could be identi�ed as the source country from which contagion

propagated to the rest of Europe, we do not think that the bursting of European sovereign

crisis could be attributed entirely to Greece as for example occurred during the subprime

crisis where the crisis originated completely in the US. In fact, Greece is a very small

Economy in Europe and therefore its bailout could not be the unique reason for the

increase in European government bond spreads. From our point of view, Europe in itself

experienced and is experiencing an harder situation in which a number of countries among

which Ireland, Italy, Portugal and Spain saw their fundamentals to deteriorate and their

GDP to decline. We could even speak about contagion but in a broader sense in which

each country became more sensitive to each other countries, a phenomenon that we could

call European Systemic risk. Therefore we think it is more appropriate to analyze the

degree of integration of European countries rather than testing for contagion from Greece.

From a theoretic point of view, two markets are said to be integrated when two

identical assets traded on two alternative markets have identical prices at a time. Baele

et al. (2004) test for integration among government bond markets through a simple

regression:

�Rjt = �jt + �
j
t�R

k
t + "

j
t (3.22)
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where �Rjt change in the yield on an asset in country j at time t and �R
k
t yield change on

a comparable asset in benchmark country k. In the framework of (3.22) two markets are

said to be integrated when the intercept �jt converges to zero and �
j
t tends to 1 implying

that changes in the benchmark country k are perfectly re�ected in country j.

Recently, Muller et al. (2005) proposed a conceptually simple and yet powerful tool

for detecting and characterizing time dependent phase-shape correlations in multivariate

datasets based on the eigenvalue decomposition of the correlation matrix. This decom-

position was applied by Rak et al. (2006) with the purpose of assessing the evolution of

the components of the WIG20. Muller et al. (2005) showed that changes in the degree

of synchronization in all or a subset of signals are re�ected in coordinated changes in the

highest and lowest eigenvalues and that information on the channels involved and the

type of their interactions can be obtained from the corresponding eigenvectors. This kind

of analysis is part of the random matrix theory; random matrix theory is based on the

comparison of the results obtained for the eigenvalues of the correlation matrix of a real

system with eigenvalues of the correlation matrix of a pure random system. We just recall

some results drawn from that theory.

Proposition 1 Let L�N be a matrix with random numbers built on a Gaussian distri-

bution with mean zero and standard deviation � such that its limit Q = L=N for L!1
and N ! 1 remains �nite and greater than 1. The eigenvalues � of such a matrix will

have the following Marenko-Pastur probability density function:

� (�) =
Q

2��2

p
(�+ � �) (�� ��)

�
(3.23)

where

�� = �2
�
1 +

1

Q
� 2
r
1

Q

�
and �+ = �2

�
1 +

1

Q
+ 2

r
1

Q

�
(3.24)

Muller et al. (2005) show that in general the lower part of the spectrum of eigenvalues

and eigenvectors is not dominated by noise and/or random correlations, but also contains

essential information about the correlation dynamics of the system. In particular, they

present evidence supporting the concept that there exist situations for which the lower

part of the spectrum contains statistically more relevant information than the largest

eigenvalues and their corresponding eigenvectors. Muller et al. (2005) show how the

analysis of the largest and smallest eigenvalues and their corresponding eigenvectors can

be combined to extract details of changes in the correlation pattern.

Proposition 2 Let C be a correlation matrix of variables X; the sum of the eigenvalues

of C is time independent and equal to the dimension of the multivariate data set M .

Hence, the change of any of the eigenvalues has to be compensated by a corresponding

change of at least one of the others.
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Proposition 3 Let X be variables which are not correlated. The values of the nondiag-

onal elements of their correlation matrix C tend to zero if the time window �t tends to

in�nity (lim�t!1Cjk = 0 8j 6= k). In that case the spectrum of C is completely degener-

ate and �j = 1 8j. For any �nite value of �t, however, the values of Cjk, with j 6= k,

remain �nite, which leads to a lifting of the degeneracy. In this case the eigenvalues

are distributed around 1, re�ecting the presence of random correlations within the �nite

window �t.

In order to assess which components contribute the most to the time structure of

correlation matrices, Muller et al. (2005) introduce the participation ratio or number of

principal component. Let ajm be the expansion coe¢ cient of eigenvector vj , the number

of principal components contributing to the dynamic of the system is de�ned as:

Np
j =

1

M
PM

m=1 jajmj
4

(3.25)

In case all the basis states m contribute equally to the expansion of the eigenvector j, Np
j

will take values close to 1 while, when the eigenvector vj is driven by few components,

Np
j will take values close to 1=M .

Moreover, Muller et al. (2005) propose the symmetry parameter which allows to

discriminate between positive and negative correlations de�ned as:

Sj =

�����
MX
m=1

sgn (ajm) jajmj2
����� (3.26)

We now apply Muller et al. (2005) framework to the time varying correlation matrices,

at high and low frequency level, estimated by the MV DCC-MIDAS reported in Table

3.4.6. This procedure will allow us to assess integration in �nancial markets, at high

frequency level, and in countries fundamentals, measured at monthly frequency. Our

purpose is, in both cases, to evaluate whether the European countries analyzed, Belgium,

France, Italy, Spain and the Netherlands, experienced an increase in integration through

the time period analyzed. Moreover, by computing the participation ratio in (3.25), we

will be able even to understand whether a speci�c country played a more active role in

the changing integration pattern or whether all the countries contributed almost in the

same manner to that process.

Figure 3.12 reports the contribution of each eigenvector to the evolving structure of

high-frequency correlation matrix.
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Figure 3.12: Eigenvectors contribution to the time pattern of high frequency
correlation matrix

Figure 3.12 reports the contribution of the eigenvectors extracted from the high frequency correlation
matrix and its time dynamics.

The principal eigenvector explains on average a 50% of the total variability of the

correlation matrix con�rming the existence of a global risk factor through the period

considered. Moreover, as already seen when analyzing the pairwise correlations in Figures

3.9-3.10, we �nd evidence of a substantial increase in the variability explained by the

eigenvector associated to the largest eigenvalue during the deepest period of the crisis

corresponding to December 2010 - July 2011. The other four eigenvectors explain a similar

amount of variability of the evolution of correlation matrix with a drop in correspondence

of the period December 2010 - July 2011 due to an increasing importance of the leading

eigenvector. In Figure 3.13, we report the participation ratio as de�ned in (3.25).
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Figure 3.13: Participation Ratio Based on the High-Frequency Correlation Ma-
trix

The �gure reports the participation ratio for the 15-minute correlation matrix computed applying (3.25).

From Figure 3.13 it is interesting to see that, although the participation ratio takes

very high values throughout the entire period of our analysis, it is persistently close to

1 during the crisis period between December 2010 and July 2011, meaning that all the

countries in that period contributed equally to the expansion of the maximum eigenstate.

This result supports the evidence that there was no leading country during the crisis

period, no country determined contagion, but all European countries play a similar role

in the development of the sovereign crisis. This suggests the presence of a dominant global

market factor resulting from the interactions of all other/local markets (see also Belvisi

et al. 2013). The component of the eigenvectors are all positive making the computation

of the symmetry parameter in (3.26) meaningless.

The analysis carried out so far is based on the high-frequency correlations providing

an indication of time-varying integration between European �nancial markets. We turn

now to the analysis of the low-frequency correlations driven by macroeconomic variables to

assess whether a similar pattern is present in the integration in the economies of European

countries. Figure 3.14 reports the percentage of variability of the low-frequency correlation

matrix explained by its eigenvectors.
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Figure 3.14: Eigenvectors contribution to the time pattern of Low Frequency
Correlation Matrix

Figure 3.14 reports the contribution of the eigenvectors extracted from the low frequency correlation
matrix and its time dynamics.

Figure 3.14 shows that Belgium, France, Italy, Spain and the Netherlands correla-

tions estimated via macroeconomic factors were mainly driven by a leading eigenvector

explaining a percentage of variability between 30% and 60%. In addition, the amount of

variability explained by the leading eigenvector shows a noticeable drop starting from the

end of 2008 and lasting up to the end of 2009 in correspondence of the subprime crisis;

we also note the existence of another drop starting from the beginning of 2012. On the

contrary, no systematic pattern is found over the period December 2010 - July 2011. In

Figure 3.15, we report the participation ratio computed on the time varying long-term

correlation matrix.
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Figure 3.15: Participation Ratio Based on the Low-Frequency Correlation Ma-
trix

The �gure reports the participation ratio for the monthly correlation matrix computed by (3.25).

The �gure shows a sharp drop during the period September 2008 - April 2009, cor-

responding to the burst of the subprime crisis with the default of Lehman & Brothers,

followed by another drop around October 2009. These results can be interpreted jointly

with what reported in Figures 3.2-3.4: a sharp increase in the Spanish level of unem-

ployment starting in the mid of 2008, when also the industrial production di¤erential for

Belgium and the Netherlands vs Germany decreases much less than for France, Italy and

Spain; �nally, no evidence of increase in participation ratio is found during the period

December 2010 - July 2011.

To summarize, when considering 15-minute (high-) frequency component of correla-

tions, re�ecting �nancial market conditions, we note a sharp rising in integration during

the period December 2010 - July 2011 shown by both an increase in the overall amount

of variability of the correlation matrix explained by the leading eigenvector and by the

participation ratio being very close to one, with little or no variability indicating that all

countries have a similar role in explaining the increase in integration. When we focus

on macroeconomic factors, although there is evidence that European countries are very

integrated, we do not �nd evidence of a change in the level of integration during the

period December 2010 - July 2011. On the contrary, we �nd a low degree of integra-

tion in correspondence of the burst of the subprime crisis of 2008-2009. Thus, there is

strong evidence of increasing systemic risk in European bond markets during the pick of

the sovereign debt crisis mainly determined by sentiment driven trading activities across

European �nancial markets which appear highly integrated.

Some research on market integration has already been carried out. See for instance



118
High- and Low- Frequency Correlations in European Government Bond Spreads and Their Macroeconomic

Drivers

Matheson (2013) who, by investigating the growth-pattern of 185 countries, shows that

the crisis led to a widespread synchronization/integration across countries, though in the

early part of the recovery, the integration decreased because of di¤erences in countries

macroeconomic conditions and in �scal and monetary policy responses to the crisis itself.

Moreover, while during the crisis period a global factor seems to have driven country�s

growth, during the post-crisis period the global factor looses its explanatory power, in-

dicating that the country speci�c characteristics explain the di¤erent growth patterns.

In addition to that, Schulz and Wol¤ (2008) show that the homogenization of trading

platforms, through technical innovations promoting price transparency and competition,

increases integration in the ultra-high frequency European sovereign bond yields. These

�ndings are also supported by von Hagen et al. (2011).
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3.5 Conclusions

Since the introduction in 1999 of the Euro with the single monetary policy under the

authority of the ECB, the 10-year yields converged signi�cantly from highs in excess of

300 basis points to a maximum of 30 basis points one year after the birth of the common

currency. The resulting remarkable compression of sovereign risk premium di¤erentials

was considered a hallmark of successful �nancial integration in the Euro area but it also

raised doubts about the ability of �nancial markets to impose �scal discipline across union

members and to discriminate between the qualities of �scal policies coherently based on

economic rationality. With the explosion of the sovereign debt crisis in 2011, �nancial

markets became more careful in monitoring the �scal performance of member states and

restarted to exert disciplinary pressure on governments. The main question was whether

the high spreads re�ected the fundamentals of a country or rather they were determined

by a regime shift in the market pricing of government credit risk as, during crisis periods,

market penalization of �scal imbalances can be higher than during normal times.

In this Chapter, we propose a DCC-MIDAS model for jointly estimating the high- and

low-frequency components for both volatilities and correlations of European government

bond spreads. We consider 10-year benchmarks for Belgium, France, Italy, Spain and

the Netherlands with respect to Germany, over the period 1st June 2007 - 31st May

2012. The high-frequency component of volatilities and correlations, supposed to re�ect

�nancial markets conditions, is evaluated at 15-minute sampling while the low-frequency

component, remaining �xed through a month, is expected to depend on country speci�c

macroeconomic conditions.

We provide evidence of the strong linkage between increasing volatility of European

government bond spreads and deteriorating countries macroeconomic fundamentals with

respect to German ones. In particular, we show that the model augmented by macro-

economic fundamentals provides a better �t than the pure time series model, stressing

the role of macroeconomic variables in driving government bond spreads even during the

sovereign crisis. In addition, by estimating a DCC-MIDAS model where the long run

component is driven by macroeconomic fundamentals, we show that as two countries get

more similar in terms of their macroeconomic fundamentals, their bond spreads tend to

move together. Moreover, unlike for volatilities, the pure time series model for correla-

tions outperforms the speci�cation including macroeconomic fundamentals. The di¤erent

performance of the two DCC-MIDAS is particularly evident during the period December

2010 - July 2011, when a severe uprise in all the pairwise correlation patterns is identi�-

able. This �nding supports the idea of increasing risk-aversion of investors who favoured

the German bonds serving as a safe heaven. Finally, we analyze the time-varying degree

of integration of European countries and we show that the increasing integration in �nan-
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cial markets during the period December 2010 - July 2011 is not supported by a similar

increasing integration of countries in terms of their macroeconomic fundamentals.

The �ndings in this Chapter suggest further developments. We showed that among the

factors which contribute the most to explain the pattern in European government bond

spreads are country speci�c macro fundamentals together with the expectation about

future economic outlook as captured by the economic sentiment. During the recent crisis,

future expectations played a prominent role. In particular, government�s ability to set

up proper measures to face the crisis together with political uncertainty were priced in

government bonds. In this respect, the case of Italy is very exemplary as the country

experienced an abnormal increase in its government bond spread both in November 2011,

in correspondence of Berlusconi�s government downturn, and in recent days (September

2013) when the Italian bond spread was above the Spanish one despite the better Italian

macroeconomic fundamentals because of new political uncertainty. On the other side,

the Irish case, with the spread moving from highs of 800 bps in June 2011 to the actual

220 bps, shows as government�s ability to undertake proper reforms can lead investors to

revise their judgment on a country creditworthiness.

For policymakers it is important to identify the factors driving markets as this step

helps to estimate the probability that risk materializes and thus to take appropriate

policy actions which become particularly important in the presence of a highly integrated

�nancial system, rising the risk that shocks propagate across markets. Thus, it is also

important to analyze whether other factors besides macroeconomic shocks, such as for

instance political uncertainty and procyclical behaviour of policy authorities and major

institutional investors, impact on government bond spreads. This is part of an ongoing

research agenda.
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3.A Appendix I - Intraday Periodicity

Table 3.A.1: Intraday periodicity estimates

IT FR ES BE NL
Constant 0.0000 0.0000 0.0002 0.0001 0.0000
AR(1) 0.6350 0.1246 -0.4570 -0.0756 0.2171
MA(1) -0.6068 -0.2990 0.4327 -0.0023 -0.5625

�0 4.6638 3.0354 4.9300 7.0209 5.1410
�0;1 -13.3151 -9.0558 -14.0015 -20.1177 -15.5761
�0;2 4.6828 3.2026 4.8788 6.9948 5.5255

Macroannouncement Surprises
�1 - US - Factory Orders -0.0035 0.0016 0.0011 -0.0006 0.0056
�2 - US - Durable Goods 0.0000 0.0016 0.0016 0.0012 0.0009

�3 - US - CCI -0.0036 0.0002 0.0012 0.0000 -0.0018
�4 - US - Chicago PMI -0.0049 -0.0006 -0.0035 -0.0010 -0.0051

�5 - US - CPI -0.0002 0.0025 0.0084 0.0050 -0.0003
�6 - US - GDP Advance -0.0024 0.0003 0.0021 0.0013 -0.0031

�7 - US - GDP Preliminary -0.0065 -0.0066 -0.0085 -0.0057 0.0055
�8 - US - GDP Final 0.0062 0.0004 0.0023 0.0037 -0.0065

�9 - US - Business Inventories -0.0001 0.0025 -0.0036 -0.0047 0.0038
�10 - US - NonFarm Payroll -0.0037 0.0021 0.0028 -0.0019 -0.0011

�11 - US - Initial Jobless Claim -0.0018 0.0011 -0.0023 -0.0009 0.0009
�12 - US - University Of Michigan 0.0010 0.0047 -0.0103 -0.0013 0.0177

�13 - US - Retail Sales -0.0040 -0.0024 0.0058 -0.0011 0.0018
�14 - US - Philadelphia FED Index 0.0002 0.0011 0.0004 -0.0029 0.0024

�15 - US - PPI 0.0039 -0.0016 -0.0023 -0.0069 -0.0033
�16 - US - Production Index 0.0019 -0.0012 -0.0003 -0.0068 0.0032

�17 - EA - HICP Flash Estimate -0.0029 -0.0092 -0.0070 -0.0106 0.0024
�18 - EA - Business Con�dence Indicator 0.0007 -0.0001 0.0007 -0.0011 0.0006
�19 - EA - Consumer Con�dence Indicator -0.0021 0.0039 0.0006 -0.0001 -0.0011

�20 - EA - Industrial Production -0.0037 0.0060 0.0053 -0.0017 -0.0011
�21 - EA - M3 -0.0057 -0.0014 -0.0004 0.0005 0.0002

�22 - EA - Retail Sales 0.0069 0.0001 0.0188 0.0081 0.0054
�23 - EA - Unemployment 0.0060 0.0023 0.0001 0.0012 -0.0045

�24 - EA - PPI -0.0116 -0.0144 -0.0049 0.0006 -0.0049
�25 - EA - PMI Flash 0.0032 0.0002 -0.0035 -0.0053 -0.0018
�26 - EA - PMI Final 0.0042 0.0025 0.0080 0.0027 -0.0028

�27 - EA - Introductory Statement 0.0020 0.0054 0.0042 0.0107 0.0147
�28 - EA - Monthly Bulletin 0.0012 -0.0070 0.0047 -0.0126 -0.0064

�29 - DE - ZEW 0.0007 0.0019 0.0010 0.0039 0.0025
�30 - DE - Business Con�dence 0.0048 -0.0011 0.0034 0.0004 0.0030

�31 - DE - CPI Preliminary 0.0077 -0.0136 0.0043 -0.0033 0.0003
�32 - DE - Unemployment 0.0000 0.0000 0.0000 0.0000 0.0000

�33 - DE - Industrial Production -0.0051 -0.0050 -0.0002 -0.0031 -0.0029
�34 - IT - GDP Preliminary -0.0010 -0.0011 -0.0006 -0.0027 0.0010
�35 - IT - GDP De�nitive 0.0229 0.0037 0.0135 0.0124 0.0073

�36 - IT - Business Con�dence 0.0028 0.0005 0.0003 0.0022 -0.0007
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Table 3.A.1: Intraday periodicity estimates

IT FR ES BE NL
�37 - IT - CPI Preliminary -0.0041 -0.0021 0.0002 -0.0031 -0.0018

�38 - IT - CPI Final 0.0002 0.0003 0.0013 -0.0007 0.0008
�39 - IT - Industrial Production 0.0055 0.0037 -0.0055 -0.0006 0.0006
�40 - FR - Business Con�dence 0.0000 0.0000 0.0000 0.0000 0.0000
�41 - FR - Industrial Production 0.0003 -0.0010 0.0010 0.0010 -0.0005

�42 - PT - CPI 0.0029 -0.0015 -0.0012 0.0005 0.0015
�43 - PT - GDP Preliminary 0.0012 -0.0002 -0.0002 -0.0010 0.0000

�44 - PT - GDP Final 0.0006 -0.0024 -0.0031 0.0013 -0.0042
�45 - BE - Business Con�dence -0.0021 -0.0018 -0.0011 -0.0027 0.0007

�46 - GR - GDP Final -0.0027 -0.0043 -0.0013 -0.0028 -0.0027
�47 - GR - GDP Preliminary -0.0016 0.0139 0.0297 -0.0094 0.0083

�48 - GR - CPI -0.0023 -0.0003 -0.0039 -0.0005 0.0029
�49 - GR - Unemployment -0.0035 -0.0001 0.0013 -0.0016 0.0038
�50 - NL - Unemployment -0.0017 0.0002 -0.0002 0.0030 0.0013

�51 - NL - CPI 0.0074 0.0028 0.0145 0.0074 -0.0018
�52 - NL - IndustrialProduction 0.0005 0.0005 -0.0008 -0.0006 -0.0003

Bid-to-cover 10yrs Auctions

1 - Austria 0.0079 0.0025 -0.0041 0.0021 -0.0005

2 - Belgium -0.0112 -0.0031 -0.0128 0.0054 -0.0028

3 - France -0.0052 0.0026 0.0007 -0.0038 -0.0017


4 - Germany 0.0019 -0.0126 -0.0006 -0.0071 -0.0183

5 - Greece -0.0389 0.0484 0.0073 0.0463 -0.0354

6 - Italy -0.0517 0.0229 -0.0430 0.0101 0.0462


7 - Portugal -0.0204 -0.0043 0.0067 -0.0077 0.0018

8 - Spain 0.0619 0.0310 -0.0092 0.0164 0.0086

Rating
�1 - S&P 0.3409 0.1578 0.2421 0.0417 -0.0275

�2 - Moody�s -0.4756 0.0130 0.1431 0.1366 0.0390
�3 - Fitch 0.1720 -0.0674 0.1768 0.1043 -0.0213

Day of the week
�1 - Tuesday -0.1005 -0.0051 -0.0557 -0.1004 -0.0185

�2 - Wednesday -0.1373 -0.0268 -0.0134 -0.1040 -0.0486
�3 - Thursday -0.0729 0.0143 -0.0039 -0.0582 -0.0331
�4 - Friday -0.0939 -0.0170 -0.0330 -0.0805 -0.0502

Periodic Component
�c;1 -2.3539 -1.5858 -2.4144 -3.6652 -2.8998
�c;2 -0.5068 -0.3516 -0.5133 -0.8455 -0.6802
�c;3 -0.1871 -0.0966 -0.1485 -0.3263 -0.2563
�c;4 -0.0217 -0.0006 -0.0163 -0.1293 -0.0880
�c;5 -0.0243 0.0151 -0.0068 -0.0530 -0.0441
�s;1 -0.1065 -0.0673 -0.1849 -0.2861 -0.0712
�s;2 -0.0180 0.0147 -0.0655 -0.1128 0.0220
�s;3 0.0168 0.0078 -0.0476 -0.0756 0.0049
�s;4 0.0006 0.0287 -0.0249 -0.0349 0.0037
�s;5 0.0236 0.0150 -0.0258 -0.0156 0.0207
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3.B Appendix II - Daily Data

In this Appendix we report a similar exercise to the one presented in Section 3.4 where

the high frequency component is evaluated at daily frequency rather than at 15-minute.

Table 3.B.1: Parameter Estimates for the TS GARCH-MIDAS Models - Daily
Data

IT FR ES BE NL

� 0.2247 *** 0.2007 *** 0.2563 *** 0.1757 *** 0.2261 ***

� 0.6497 *** 0.5884 *** 0.6623 *** 0.7512 *** 0.6817 ***

m -3.0419 *** -3.5617 *** -2.7556 *** -2.6074 *** -4.0034 ***

� 0.8203 *** 0.8166 *** 0.8584 *** 0.8741 *** 0.6594 ***

!2 4.49 ** 28.48 3.83 ** 0.97 *** 3.30 ***

LogL 1,995 2,929 2,001 2,410 3,082

Variance ratio 0.77 0.83 0.78 0.69 0.37

Table 3.B.1 reports estimates for the TS GARCH-MIDAS model where the long run com-
ponent is a smooth weighted average of previous six monthly realized volatilities. Realized
volatilities are estimated on a �x monthly span while the high frequency component is mea-
sured at daily frequency. Weights are computed according to the beta function where the �rst
parameter !1 is set to 1. ***, **, * denote 1%, 5% and 10% signi�cance level, respectively.
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Table 3.B.2: Parameter estimates for the MV-GARCH-MIDAS models - Daily
Data

IT FR ES BE NL

� 0.2176 *** 0.1489 ** 0.2509 *** 0.1677 *** 0.1607 ***

� 0.5852 ** 0.6725 *** 0.6003 *** 0.7309 *** 0.7764 ***

m -8.68 -11.49 *** -8.71 *** -9.15 *** -7.38 ***

�1;l (Employment) -15.24 43.23 *** 3.3 21.96 3.95

�2;l (Industrial Production) 29.06 22.8 *** 10.91 ** -7.69 -14.28 ***

�3;l (Economic Sentiment) -3.07 -5.78 * 9.25 *** 28.28 6.86 *

!2;1;l (Employment) 152.5 0.88 *** 28.27 0.97 *** 151.02

!2;2;l (Industrial Production) 1.32 1.38 *** 4.04 155.36 108.75

!2;3;l (Economic Sentiment) 0.6 98.08 131.94 1 *** 137.02

�1;v (Unemployment) 31.96 23.06 -6.79 -8.14 *** -67.66 **

�2;v (Industrial Production) -280.05 -49.18 ** 188.62 ** 41.92 104.99 ***

�2;v (Economic Sentiment) -52.8 -58.62 *** -235.5 *** 26.53 * 9.56

!2;1;v (Employment) 0.98 *** 1.07 *** 0.95 *** 145.83 0.98 ***

!2;2;v (Industrial Production) 2.05 * 248.29 1 *** 8.36 ** 1.86 ***

!2;3;v (Economic Sentiment) 5.4 109.96 1.36 *** 149.18 13.06

LogL 2,016 2,952 2,017 2,423 3,101

Variance ratio 0.89 0.89 0.86 0.86 0.55

Table 3.B.2 reports estimates for the MV-GARCH-MIDAS model where the long run component is a
function of the absolute di¤erence in macroeconomic fundamentals (employment, industrial production and
economic sentiment) observed over the last six month for each country with respect to Germany as speci�ed
in (3.9). Both levels and volatilities of macrovariables are considered. The low frequency component is
updated monthly, in correspondence to new macroeconomic data, while the high frequency component is
evaluated on a daily basis. The absolute di¤erence in volatilities were rescaled: employment volatility by
1e4 while industrial production and economic sentiment volatility by 1e2. Weights are computed according
to the beta function where the �rst parameter !1 is set to 1. ***, **, * denote 1%, 5% and 10% signi�cance
level, respectively.
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Table 3.B.3: GARCH MIDAS Models: A Comparison - Daily Data
IT FR ES BE NL

Log Likelihood

GARCH 1,973 2,908 1,975 2,376 3,072

TS GARCH-MIDAS 1,995 2,929 2,001 2,410 3,082

LR test (vs GARCH) 43.84 *** 42.98 *** 52.94 *** 70.44 *** 20.37 ***

MV GARCH-MIDAS 2,016 2,952 2,017 2,423 3,101

LR test (vs GARCH) 85.67 *** 88.93 *** 84.73 *** 96.34 *** 59.23 **

AIC

GARCH -3.0842 -4.5473 -3.0871 -3.7138 -4.8038

TS GARCH-MIDAS -3.1139 -4.5762 -3.1238 -3.7642 -4.8150

MV GARCH-MIDAS -3.1309 -4.5965 -3.1330 -3.7688 -4.8298

BIC

GARCH -3.0762 -4.5392 -3.0790 -3.7057 -4.7957

TS GARCH-MIDAS -3.0937 -4.5561 -3.1036 -3.7440 -4.7949

MV GARCH-MIDAS -3.0705 -4.5360 -3.0725 -3.7083 -4.7693

Variance Ratio

TS GARCH-MIDAS 0.77 0.83 0.78 0.69 0.37

MV GARCH-MIDAS 0.89 0.89 0.87 0.86 0.55

Table 3.B.3 reports a comparison of alternative volatilites estimates. GARCH is the classi-
cal GARCH(1,1) model by Bollerslev (1986) (estimates are not reported here). In the TS
GARCH-MIDAS, the low frequency component is a smooth weighted average of previous six
monthly realized volatilities and reported in Table 3.B.1. In the MV GARCH-MIDAS the low
frequency component is a function of the absolute di¤erence in macroeconomic fundamen-
tals, namely employment, industrial production and economic sentiment, for each country
with respect to Germany and reported in Table 3.B.2. LR test is provided just with respect
to classical GARCH as the two GARCH-MIDAS speci�cations are not nested. AIC and
BIC are Akaike and Schwarz information respectively, whose values are divided by T=1,279.
Variance ratio, de�ned in (3.10), indicates the overall amount volatility explained by the
long run component. ***, **, * denote 1%, 5% and 10% signi�cance level, respectively.
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Italy France

Spain Belgium

the Netherlands

Figure 3.B.1: MV GARCH-MIDAS Models - Daily Data

Figure 3.B.1 plots the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained by the GARCH-MIDAS model where the long run component is a function of
the absolute di¤erence in macroeconomic fundamentals, namely employment, industrial production and
economic sentiment, observed over the last six months for each country with respect to Germany, as
speci�ed in (3.9). Both levels and volatilities of macrovariables are considered. Estimates are reported
in Table 3.B.2. The black line is the low frequency (monthly) component while the blue one is the daily
component.
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Table 3.B.4: Parameter estimates for the TS DCC-MIDAS Model - Daily Data

a b !2

0.0048 *** 0.9942 *** 1.3009

LogL 14,120

Table 3.B.4 reports estimates for the TS DCC-MIDAS model where
the long run component of correlation is a smooth weighted average of
previous three monthly correlation matrices of standardized residuals.
The long run component is kept �xed throughout the month while the
high frequency component is evaluated on a daily basis. Weights are
computed according to the beta function where the �rst parameter !1
is set to 1. Univariate volatilities are obtained by the TS GARCH-
MIDAS model where the long run component is a smooth weighted
average of RVs reported in Table 3.B.1. ***, **, * denote 1%, 5% and
10% signi�cance level, respectively.
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Table 3.B.6: DCC-MIDAS Models: A Comparison - Daily Data
LogL LR test vs DCC AIC BIC

DCC 14,069 -22.00 -21.99

TS DCC-MIDAS 14,120 101.82 *** -22.07 -22.05

MV DCC-MIDAS 14,367 596.47 *** -22.25 -21.73

Table 3.B.6 reports a comparison of alternative DCC models. DCC is the classical
DCC(1,1) model by Engle (2002) whose parameters are not reported here. The TS
DCC-MIDAS estimates are reported in Table 3.B.4 and MV DCC-MIDAS in Table
3.B.5. LR test is provided just with respect to classical DCC as the two DCC-MIDAS
speci�cations are not nested. AIC and BIC are Akaike and Schwarz information
respectively, whose values are divided by T=1,279. ***, **, * denote 1%, 5% and
10% signi�cance level, respectively.
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Figure 3.B.2: MV DCC-MIDAS Model - Daily Data

Figure 3.B.2 plots the correlation estimates of 10-year government bond spreads with respect to the
German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 -
May 2012. Correlations are obtained from the MV DCC-MIDAS model where the long run component
is a function of the absolute di¤erence in macroeconomic fundamentals, namely employment, industrial
production and economic sentiment, observed over the last three months for each pair of countries as
speci�ed in (3.9). Both levels and volatilities of macrovariables concur in determining the long run
component of correlations. Estimates are reported in Table 3.B.5. The black line is the low frequency
(monthly) component while the blue one is the high frequency (15-minute) component.
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France vs the Netherlands Spain vs Belgium

Belgium vs the Netherlands Belgium vs the Netherlands

Figure 3.B.3: DCC-MIDAS MV Model - Daily Data

See notes to Figure 3.B.2
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Chapter 4

Comparing alternative integrated
covariance estimators

Abstract

In this Chapter, we carry out a comprehensive Monte Carlo simulation exercise aimed

at comparing the alternative integrated covariance estimators and synchronization meth-

ods that have been recently proposed in the literature. The Monte Carlo comparison

evidences as the two best estimators are those introduced by Aït-Sahalia, Fan and Xiu

(2010) and by Shephard and Xiu (2012). The best performance of Aït-Sahalia, Fan and

Xiu (2010) estimator is achieved in combination with the refresh time synchronization

procedure while the Shephard and Xiu (2012), directly applied on non-synchronized data,

su¤ers from upward bias which is anyway averaged out when evaluating correlations. We

even propose a backtesting risk management exercise based on a portfolio of European

government bonds con�rming Monte Carlo results.

Keywords: Integrated Covariance, Asynchronicity, Microstructure Noise, Monte

Carlo, Risk management, Backtesting.

J.E.L. Classi�cation Numbers: C01, C14, C58, D53, D81.
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4.1 Introduction

The proper estimation of correlation matrix is fundamental in a lot of �nance �elds such as

portfolio optimization and risk management (e.g. Schafer et al. (2009)). The availability

of high frequency data has opened the route to the development of a new set of covariance

matrix estimators based on such data, the integrated covariance estimators.

The �rst estimator of integrated covariance relying on high frequency data was origi-

nally introduced by Barndor¤-Nielsen and Shephard (2004). This estimator was succes-

sively shown to be strongly biased when applied to tick-by-tick data given that it does

not take into account neither market microstructure noise nor non-synchronous trading.

Asynchronicity deals with the fact that transaction data are recorded at random times

so that prices are available at irregularly spaced times. Unfortunately, classical economet-

rics techniques cannot be applied to asynchronous data as a general underlying assumption

is that data are recorded at the same time. Therefore, in order to be able to deal with

asynchronous data, speci�c synchronization tools were developed, so that classical econo-

metrics can still be applied even to non-synchronous recorded data, together with new

estimators explicitly designed to deal with such kind of data.

The simplest procedure to synchronize data is carried out by selecting a common in-

terval length h and interpolating the missing observations in some way. This procedure

presents two main pitfalls: �rstly it is heavily dependent on the choice of h; in a sec-

ond place interpolation could be another bias source (see for instance Barucci and Renò

(2002)). Moreover, Münnix et al. (2010) show that each term of the Pearson correlation

coe¢ cient can be divided into two parts, one contributing to the correlation, deriving

from the overlapping of returns, and the other which is uncorrelated, not overlapping,

just causing the correlation coe¢ cient to decrease and being the origin of the so called

Epps e¤ect.

The Epps e¤ect has a long history and di¤erent are the reasons ascribed to it. A

�rst empirical assessment of the existence of a negative relationship between sampling

frequency and correlation can be found in Niederho¤er and Osborne (1966). In their

paper they argue that the negative correlation in tick-by-tick price changes is due to the

presence of queues of limit orders acting as temporary barriers between which market

price moves back and forth as each order in a �ow of randomly arranged market orders

to buy or sell (at the best available price) transacts with one of the limit orders. Epps

(1979) explains the existence of a negative relationship between successive price changes

in the same stock with the persistence for short periods of a similar e¤ect that exists

among changes in price from one transaction to the next. A successive work by Lundin et

al. (1990) provides evidence of a signi�cant inverse relationship between correlation and

activity: the more an asset is traded, the less evident the Epps e¤ect is. In addition to
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that, they claim that the reason why we do not recover the same correlation at di¤erent

time scales is that di¤erent actors play di¤erent roles at di¤erent frequencies. Renò

(2003) shows, through an extensive Monte Carlo simulation, that when two assets are

traded synchronously, and if there is no lead-lag relationship, no frequency e¤ects should

be observed in the correlation measurements. This �nding would suggest that the most

relevant determinant of the Epps e¤ect is asynchronicity. Finally Münnix et al. (2010)

identify another cause of the Epps e¤ect in the discretization of the price process. A more

intuitive reason justifying the Epps e¤ect is that, as the sampling frequency increases,

there are more and more zero-returns in the presence of non-synchronous trading causing

the estimated correlation being biased towards zero.

Together with synchronicity, a general assumption underlying classical �nancial econo-

metrics techniques is that observed prices are the true e¢ cient prices. Anyway, especially

when moving to very high frequencies, we hardly observe the true prices due to the

presence of the microstructure noise. Microstructure noise is commonly claimed to be

determined by discreteness and bid-ask spread bounce and its main detrimental e¤ect is

inducing autocorrelation in high frequency returns. Moreover noise is often pointed out

to be one of the causes of the Epps e¤ect as, while the magnitude of the noise relative

to the price signal increases, so does the realized variance estimator (Gri¢ n and Oomen

(2008)).

Starting from Barndor¤-Nielsen and Shephard (2004), numerous researchers tried to

identify a good integrated covariance estimator robust to both asynchronicity and mi-

crostructure noise, but there is no clear view about which one is the best. For instance

the Cumulative Covariance by Hayashi and Yoshida (2005) does not deal with microstruc-

ture noise; the Multivariate Realized Kernel by Barndor¤-Nielsen et al. (2011) and the

Modulated Realized Covariance by Christensen et al. (2010) do not converge at the op-

timal rate while the Two Scale Realized Covariance by Zhang (2011) and the QMLE by

Aït-Sahalia et al. (2010) are not guaranteed to be positive semide�nite.

In order to shed some light on this stream of literature, we carry out an extensive Monte

Carlo simulation evaluating the alternative integrated covariance estimators behavior in

presence of alternative degrees of microstructure noise and liquidity; the estimators are

even compared with respect to alternative synchronization schemes. Moreover, we ac-

company the Monte Carlo simulation with an empirical risk management exercise where

the alternative estimators are evaluated in a comprehensive backtesting appraisal with

respect to a number of possible tests involving both Value-at-Risk as well as Tail risk

measures.

The remainder of the Chapter is organized as follows. In Section 4.2 we review the

alternative estimators proposed together with the possible synchronization schemes; in

Section 4.3 we describe our Monte Carlo experiment while the risk management empirical
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exercise is reported in Section 4.4. Section 4.5 concludes.

4.2 Synchronization and Integrated Covariance Estimators

Consider a matrix ((T �N)�M) of log-prices X = (X(t;i))(t;i)�0 de�ned on a probability

space (
0;z0; P 0) with an information �ltration
�
F 0(t;i)

�
(t;i)�0

, T being the number of

days included in the sample, N the number of tick data recorded for each day and M

the number of assets under consideration. E¢ cient prices are supposed to be Brownian

semimartingales:

X(t;i) = X(t;0) +

tZ
0

audu+

tZ
0

�udWu (t; i) � 0 (4.1)

with a = (a(t;i))(t;i)�0 M -dimensional predictable locally bounded drift vector, � =

(�(t;i))(t;i)�0 adapted càdlàg M � M covolatility matrix and W = (W(t;i))(t;i)�0 M -

dimensional Brownian motion.

The quadratic covariation process of X for day t is de�ned as:

[Xt] = lim
N!1

NX
i=1

�
X(t;i) �X(t;i�1)

� �
X(t;i) �X(t;i�1)

�0
=

Z 1

0
�(u)du � = ��

0
(4.2)

for any sequence of deterministic partitions 0 = (t; 0) < (t; 1) < ::: < (t;N) = 1 with

supi f(t; i)� (t; i� 1)g ! 0 for N !1.
Anyway, due to microstructure noise, we hardly observe the e¢ cient price X rather

we usually deal with its noisy version Y = (Y(t;i))(t;i)�0, recorded at discrete time points:

Y = X + " (4.3)

where " = ("(t;i))(t;i)�0 i.i.d. process accounting for the microstructure noise and indepen-

dent from X.

In the remainder of this Section we will �rst discuss how to synchronize data to move

afterwards to the alternative integrated covariance estimators proposed in the literature.

4.2.1 Synchronization

Synchronization is the process of transforming two or more time series recorded at di¤er-

ent frequencies in two or more processes with concurrently trading times, which can be

regularly or irregularly spaced.

The general idea about synchronization is to resample original tick-by-tick data with

respect to a pre-speci�ed grid with the alternative methods di¤erentiating in the way the

initial grid is set. To simplify the exposure we will consider just one trading day t. Let
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eN be the number of sampling points constituting the resampling grid V eN : [0; 1]. Each

element of V eN can be indicated as v(t;z) with z = 0; :::; eN where v(t;0) = 0 and v(t; eN) = 1:
The simplest case is to consider V eN a regular grid where the sampling points are equally

spaced so that v(t;z) � v(t;z�1) = � for 8z = 1; :::; eN . An alternative is to let the v(t;z)�s
depend on the observation times (e.g. refresh time) so that the resampling time points

belonging to the grid won�t be equally spaced: v(t;z) � v(t;z�1) = �(t;z) for z = 1; :::; eN
with �(t;z) denoting the time length between sampling points v(t;z�1) and v(t;z).

Unfortunately synchronization does not come at any costs. In fact, as new informa-

tion gets built into prices at varying intensities according to their di¤erent trading times,

synchronization causes spurious cross-autocorrelation among assets. Moreover, any syn-

chronization method implies a discard of a number of prices with consequences on the

e¢ ciency of the estimators.

In the remainder of this Section we will discuss the alternative synchronization meth-

ods proposed in the literature.

4.2.1.1 Previous Tick

The �rst synchronization tool we introduce, the Previous Tick (PT henceforth), is may

be even the simplest one as it is based on an equally-spaced grid. To each grid time

point, the price immediately preceding the pre-speci�ed sampling point is imputed. To

formalize, let Y 1 be recorded on LT 1 time scale and Y
2 on ST 2 , the previous ticks l(t;z)

and s(t;z) are identi�ed as follows:

l(t;z) = max
�
� 2 LT 1 : � � v(t;z)

	
(4.4)

s(t;z) = max
�
� 2 ST 2 : � � v(t;z)

	
where v(t;z) elements belonging to V eN : 0 = v(t;0) < v(t;1) < ::: < v(t; eN) = 1 and � =

1= eN resampling frequency. We will indicate the resampled times for day t with z =

1; :::; eN:
A speci�c drawback of Previous Tick synchronization scheme is that it is highly de-

pendent on the regular sampling frequency � selected.

4.2.1.2 Refresh time

A more advanced synchronization scheme not based on an equally spaced grid is the

Refresh Time (RT henceforth) proposed by Barndor¤-Nielsen et al. (2011).

Let Y =
�
Y 1; Y 2; :::; YM

�0
be a M -dimensional log-price process where prices are

observed irregularly and non-synchronously over the interval [0; 1]. Observation times

for the m-th asset are indicated as (t; 1)m ; (t; 2)m ; :::; (t;Nm)m where Nm is the overall

number of tick-by-tick data recorded for the m-th asset.
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De�nition 4 The �rst refresh time on [0; 1] is de�ned as (t; z(1)) = max
�
(t; 1)1; :::; (t; 1)M

�
while the subsequent z-th refresh times are identi�ed as (t; z + 1) = max

��
t;N1

t;z + 1
�1
; :::;

�
t;NM

t;z + 1
�M�

:

Refresh time can be interpreted as the (z + 1)-th time that all the prices have been

refreshed. In particular (t; z(1)) is the time that it has taken for all the M assets to

trade for the �rst time. The refresh times�sample size eN is determined by the degree

of non-synchronicity and by the sample size of the M -assets T 1; T 2; :::; TM . The main

drawback of the Refresh Time is that it is highly dependent on the relatively illiquid

assets. This could lead some bias in the estimation as refresh time points are determined

by the occurrence of the relatively more illiquid assets letting the selected observations of

the other assets always ahead of the corresponding illiquid asset.

4.2.1.3 Generalized synchronization scheme

The Generalized Synchronization scheme was proposed by Aït-Sahalia et al. (2010); this

is a class of synchronization methods which subsumes both previous tick and refresh time

schemes.

De�nition 5 A sequence of time points
n
(t; 0) ; (t; 1) ; :::;

�
t; eN�o is said to be the Gen-

eralized Sampling Time for a collection of M assets if:

1. 0 = (t; 0) < (t; 1) < ::: <
�
t; eN� = 1;

2. there exists at least one observation for each asset between consecutive (t; z)�s;

3. the time intervals
n
�z = (t; z)� (t; z � 1) ; z = 1; :::; eNo, satisfy supz�z p! 0:

The Generalized Synchronization scheme consists in choosing an arbitrary observa-

tion Y m
t;i for the m�th asset between the time interval ((t; z � 1) ; (t; z)]. The synchro-

nized data sets can be indicated as
n
Y m
(t;z)

with z = 1; :::; eN and m = 1; :::;M
o
. In

particular, to overcome the limit of Refresh Time arising when assets with di¤erent

degree of liquidity are taken into consideration, Aït-Sahalia et al. (2010) propose to

design a synchronization scheme requiring each asset to lead in turn: for example, re-

quiring the �rst asset to lead, they set (t; z(1)) =
�
t;N2((t; 1)1) + 1

�2
and for z � 2

(t; z) =
�
t;N2

��
t;N1 (t; z � 1) + 1

�1�
+ 1
�2
. In both Monte Carlo simulation and em-

pirical application, we are going to adopt this scheme; we will refer to it as Modi�ed

Refresh Time (MRT henceforth).

As the Generalized Synchronization scheme has no requirements on tick selection, the

estimator of integrated covariance based on it is robust to data misplacement error, as

long as these misplaced data points are within the same sampling intervals.
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The Previous Tick approach is recalled requiring (t; z) to be equally spaced on [0; 1] and

by selecting for each grid time point the price immediately preceding the grid point while

the Refresh Time is obtained choosing (t; z) recursively as (t; z + 1) = max1�m�M
��
t;Nm

t;z+1

�m	
where (t; z(1)) = max

n
(t; 1)1 ; (t; 1)2 ; :::; (t; 1)M

o
with Nm(:) being the number of obser-

vations for asset m before time t and selecting those ticks that occur right before or at

(t; z)�s.

4.2.1.4 Hayashi and Yoshida (2005)

To deal with asynchronicity, Hayashi and Yoshida (2005) suggest working on common

trading intervals of two assets. We will refer to this approach as Intersection. The greatest

advantage of this method is that it makes use of all the possible data. Anyway Aït-Sahalia

et al. (2010) state that the synchronization approach embedded in Hayashi and Yoshida

(2005) method e¤ectively deletes some data. For example, if three consecutive ticks of the

�rst asset form two intervals which share the same corresponding interval of the second

asset, then the middle observation of the �rst asset will not be used either.

To illustrate the idea about common trading interval, consider again two assets Y 1

and Y 2 respectively recorded on LN1 and SN2 time scales both partitioning the interval

of interest [0; 1]. Hayashi and Yoshida (2005) estimator, called Cumulative Covariance, is

de�ned as:

HY =

LN1X
l=0

SN2X
s=0

y1l (LN1) y2s (SN2)fLN1\SN2 6=?g (4.5)

Hayashi and Yoshida (2005) show that (4.5) is a consistent estimator of integrated covari-

ance matrix. The most serious drawback of (4.5) is that it does not deal with noise. In

successive works, Voev and Lunde (2007) provide a bias correction to the original Hayashi

and Yoshida (2005) estimator, although this new estimator does not achieve consistency.

Even Christensen et al. (2010) work on a microstructure noise robust version of (4.5)

based on pre-averaging.

From (4.5) it is clear that the embedded synchronization method consists in taking

into consideration just prices belonging to overlapping intervals of LN1 and SN2 so that

even information concerning transaction times in the form of the indicator function enter

the estimation of covariance matrix.

4.2.2 Robust estimators

4.2.2.1 Realized Covariance

Barndor¤-Nielsen and Shephard (2004) introduce the �rst generation of estimators of

integrated covariance, namely the Realized Covariance (RC henceforth).
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Barndor¤-Nielsen and Shephard (2004) state that empirical covariance matrix does

not apply to high frequency data as, while the number of observations eN on which it is

computed goes to in�nity, the covariance matrix converges in probability to a matrix of

zeros. In a more formal way, under the assumption of synchronized data:

1eN
eNX

z=0

yt;zy
0
t;z �

0@ 1eN
eNX

z=0

yt;z

1A0@ 1eN
eNX

z=0

yt;z

1A0

=
1eN

eNX
z=0

yt;zy
0
t;z �

1eN2
yt;zy

0
t;z (4.6)

where yt;z (M � eN � 1) matrix of observed log-returns.
Therefore Barndor¤-Nielsen and Shephard (2004) introduce the realized covariance

which is a generalization of the idea underlying realized variance to the multivariate case

as it is based on the aggregation of eN ! 1 synchronized and equally spaced prices

belonging to a non-stochastic time window [0; 1]. Realized covariance is de�ned as:

RC =

eNX
z=0

yt;zy
0
t;z (4.7)

Andersen et al. (2003) show that, as long as returns are linearly independent, the

realized covariance matrix in (4.7) will be positive de�nite. The choice of the resampling

frequency in�uences the properties of the realized covariance estimator as it both a¤ects

the number of returns on which (4.7) is computed as well as the level of noise. In addition

to that, Hayashi and Yoshida (2005) state that realized covariance estimators can be

severally biased when the regular resampling frequency h is small relative to the frequency

of actual trades.

As stated in the introduction, the two main problems a¤ecting realized covariance are

asynchronicity and microstructure noise. Martens (2004) proposes to solve the problem

of non-synchronicity by adding lead and lag terms in (4.7) along the lines of the Scholes

and Williams (1977) beta correction technique. This is obtained as:

SWq;(t;i) = RCt;i +

qX
z=1

N�zX
w=1

�
yt;i+(w+z)y

0
t;i+w + y

0
t;i+wyt;i+(w+z)

�
(4.8)

A drawback of the estimator in (4.8) is that it is not guaranteed to be positive de�nite.

Hayashi and Yoshida (2005) state that the downward bias of the realized covariance

matrix estimator derives from the fact that covariance increases just when and only when

both prices jump together during the interval of length h while all other cases, when

just one series jumps alone, are ignored. Such occasions of zero increments will become

dominant if h becomes �ner while, when h gets too large, too many data are discarded

with the consequence that rapid movements of the return process are ignored.
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4.2.2.2 Two Scales Realized Covariance

The �rst estimator of integrated covariance robust to both asynchronous data and mi-

crostructure noise is the Two Scales Realized Covariance (TSCV henceforth) which was

proposed by Zhang (2011).

Having de�ned the average lag S covariance for two time series of synchronized log-

prices Y 1 and Y 2 as:

[Y 1; Y 2]SeN = 1

S

eNX
z=S

�
Y 1t;z � Y 1t;z�s

� �
Y 2t;z � Y 2t;z�s

�
(4.9)

the TSCV estimator is given by:

TSCV [Y 1; Y 2] = c eN
�
[Y 1; Y 2]KeN � nk

nj
[Y 1; Y 2]JeN

�
(4.10)

where 1 � J << K = O
� eN2=3

�
with J which can be �xed or go to in�nity witheN (in the classical two scales setting J = 1); ns =

� eN � S + 1
�
=S with S = K;J ;

c eN = 1 + op
� eN�1=6

�
constant taking into account small sample precision.

The TSCV estimator presents two important limits. The �rst one is that, as it is

de�ned just for the bivariate case, when dealing with a number of assets greater than

two it is not guaranteed to be positive de�nite. In fact, when three or more assets are

considered, it is necessary to estimate the covariance for each pair of assets independently

and, relying on these results, build up the overall matrix. The second limit is that the

estimator is not e¢ cient.

4.2.2.3 Modulated Realized Covariance

Christensen, Kinnerbrock and Podolskij (2010) introduce the so called Modulated Re-

alized Covariance (MRC henceforth) which basically consists in revisiting the realized

covariance estimator in (4.7) exploiting pre-averaging to deal with microstructure noise.

Pre-averaging, introduced by Podolskij and Vetter (2009) and Jacod et al. (2009) �nds

a number of possible applications in �nance, and it depends on a bandwidth parameter

that grows with the sample and dictates the amount of averaging to be carried out. The

choice of this tuning parameter controls the in�uence of microstructure noise. The MRC

for synchronized observed prices Y is given by (4.11):

MRC[Y ] eN = eNeN � k eN + 2
1

 2k eN
eN�k eN+1X
z=0

�Y
eN
t;z

�
�Y
eN
t;z

�0
(4.11)

where �Y eN
t;z =

1
keN
�Pk eN�1

s=k eN=2 Y t;z+seN �
PkeN=2�1

s=0 Y t;z+seN
�
the pre-averaged returns; k eN pre-

averaging window s.t.
k eNp eN = � + o

� eN�1=4
�
depending on the tuning parameter �;  2
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parameter depending on the weight function chosen for computing pre-averaged values

that, in this case, corresponds to g(x) = min(x; 1 � x) and consequently  2 = 1=12: See

Christensen et al. (2010) for further details.

There is no general rule for selecting � and therefore in the following Monte Carlo and

empirical exercise we follow Christensen et al. (2010 - 2010b) and set � = 1. The reason

for that choice is that in general it is preferable to choose a high value for k eN as it helps

to reduce the e¤ect of price discreteness.

Unfortunately MRC is a biased estimator of the integrated covariance as it can be

seen in (4.12):

MRC[Y ] eN p!
Z 1

0
�sds+

 1
�2 2

 (4.12)

and therefore (4.11) needs to be corrected for the bias. The bias term depends from  1

and  2, equal to 1 and 1=12 respectively given the choice for g(x), while  is unknown

but can be approximated as:

b eN = 1

2 eN
eNX

z=0

�
eN
t;zY

�
�
eN
t;zY

�0
(4.13)

where � eN
t;z time elapsed between two consecutive resampled prices.

Anyway, when accounting for bias, we loose the property of positive de�niteness es-

pecially when working with small samples. Therefore, a positive-de�nite version of MRC

(MRC-Psd henceforth) is proposed which basically relies on increasing the bandwidth

parameter k eN in (4.11) as per:

k eNeN1=2+�
= � + o

� eN�1=4+�=2
�

(4.14)

The MRC-Psd estimator is robust to bias without need of any correction; anyway

MRC-Psd converges at a lower rate to the true integrated covariance with respect to

(4.11), with the rate of convergence depending on �. The optimal choice for � is shown

to be 0:1 resulting in a rate of convergence of eN�1=5:

4.2.2.4 Multivariate Realized Kernel

Barndor¤-Nielsen et al. (2011) introduce an estimator for the integrated covariance based

on synchronized data obtained applying the refresh time scheme described in Section 4.2.1.

This estimator is called the Multivariate Realized Kernel (MRK henceforth). In addition

to synchronization, they propose to apply jittering-end conditions consisting in averaging

! prices at the beginning and at the end of the day. This procedure is needed in order to

assure consistency. Jittering-end conditions can be de�ned as follows.
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De�nition 6 Let  ; ! 2 N such that  � 1 + 2! = eN and set the vector of observations

Y0 ; Y1 ; :::; Y as Yt;z = Yt;z+! with z = 1; 2; :::;  � 1 with Y0 = 1
!

P!
z=1 Yt;z and Y =

1
!

P!
i=1 Y�; eN�!+i, (t; z) being refresh times.
In De�nition 6, ! should be quite large although if small with respect to eN in order

to average out the error.

Having de�ned the vector of synchronized high frequency log-returns as y�;z = Y�;z �
Y�;z�1 with z = 1; 2; :::; eN , the class of positive semi-de�nite multivariate realized kernels
is de�ned as:

K(Y ) =

eNX
h=� eN

k

�
h

H + 1

�
�h (4.15)

where �h =
P eN

z=h+1 yt;zy
0
t;z�h with h � 0, the h-th realized autocovariance such that

�h = �
0
�h for h < 0; k a non-stochastic weight (kernel) function; H the bandwidth

parameter controlling for the number of leads and lags used for all the series which needs

to increase with eN quite quickly to remove the in�uence on the estimator of the noise.

Barndor¤-Nielsen et al. (2011) de�ne the bandwidth as H = c0 eN3=5. In the univariate

context, the minimum mean square error of the H = c0 eN3=5 estimator is achieved by

setting for the m-th component c0 = c��
4=5
m
eN3=5 with c� and � be de�ned as:

c� =

(
k
00
(0)2

k0;0

)1=5
�2m =


mmp
IQmm

(4.16)

where k0;0 =
R1
0 k(x)2dx; 
 long run variance estimated by one of the possible high

frequency estimator (e.g. realized variance); IQ integrated quarticity de�ned in a mul-

tivariate context as
R 1
0 f�(u)�(u)g

{2(u)
{1(u)dx and usually approximated by

R 1
0 �(u)du and

estimated by a low frequency estimator (in their paper Barndor¤-Nielsen et al. (2011)

use the debiased version of realized volatility by Bandi and Russel (2008) corrected by

the noise estimate as per Barndor¤-Nielsen et al. (2008)).

As per the selection of the weighting function k(:), many kernels can be chosen such

as the Quadratic Spectral, the Parzen and the Fejér. In order to apply the most e¢ cient

realized kernel, Barndor¤-Nielsen et al. (2011) compare them in terms of the constant���k00(0)(k0;0)2���1=5; that analysis suggests to use the Parzen kernel which is de�ned as fol-
lows:

k(x) =

8>>><>>>:
1� 6x2 + 6x3

2 (1� x)3

0

0 � x � 1=2

1=2 < x � 1

x < 0 or x > 1

(4.17)

In case of Parzen kernel
���k00(0)��� is equal to 12 and k0;0 to 0.269 so that c� is 3.51.
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Turning now to the M�multivariate speci�cation, Barndor¤-Nielsen et al. (2011)
de�ne the global bandwidth H starting from the bandwidth for the m-th asset Hm

and then using some possible alternatives such as Hmin = min(H1; :::;HM ), Hmax =

max(H1; :::;HM ) or H = 1
M

PM
m=1H

m. In their paper, Barndor¤-Nielsen et al. (2011)

use H and therefore in both Monte Carlo and empirical application we proceed in the

same way.

The MRK is positive de�nite, consistent and robust to endogeneity, serial dependence

and semi-staleness of prices. The main drawback of that estimator is that it converges at a

relatively low rate eN3=5; moreover the bandwidth H selection is not that straightforward

in empirical applications.

4.2.2.5 QMLE Covariance

Aït-Sahalia et al. (2010) propose a consistent and e¢ cient estimator for the integrated

covariance which is robust to market microstructure noise although still relying on syn-

chronized data.

To introduce their estimator, we recall the QMLE for univariate volatility proposed

in Xiu (2010). Let�s move from (4.3) and assume that the microstructure noise "t has

mean 0 and variance a2 and that the volatility �u of the true price X in (4.1) is time

invariant. Under these two assumptions, log-returns of synchronized log-prices yt;z =

Yt;z�Yt;z�1 with z = 1; 2; :::; eN follow a MA(1) process so that the log-likelihood function

takes the form:

logL
�
yja2; �2

�
= �1

2
log det (
)�

eN
2
log (2�)� 1

2
y
0

�1y (4.18)

with 
 =

0BBBBBBBBB@

�2�+ 2a2 �a2 0 ::: 0

�a2 �2�+ 2a2 �a2 ::: :::

0 �a2 �2�+ 2a2 ::: 0

::: ::: ::: ::: �a2

0 ::: 0 �a2 �2�+ 2a2

1CCCCCCCCCA
According to Xiu (2010), the QMLE of a2 and �2 are consistent even when volatility

is stochastic, so that the assumption about its time-invariance is not too strict, and they

converge at optimal rate.

Under this setup, Aït-Sahalia et al. (2010) develop a covariance estimator which is

limited to the bivariate case. Starting from (4.3), they assume that E
�
dW 1

t dW
2
t

�
= �tdt

and that the noise "t in (4.3) is an i.i.d. 2-dimension vector with mean 0, diagonal

variance-covariance matrix and �nite fourth moment. The variance covariance estimator
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is then given by:

Cov
�
Y 1; Y 2

�
=
1

4

�
V ar

�
Y 1 + Y 2

�
� V ar

�
Y 1 � Y 2

��
(4.19)

where V ar (:) denotes the QMLE of the quadratic variation that is obtained from (4.18).

The QMLE converges at a higher rate in comparison to both TSCV and MRK and it

has the advantage of not requiring to set any tuning parameters as it happens for both the

MRC and the MRK estimators. The main drawback of the QMLE estimator is that it is

not guaranteed to be positive de�nite. To enforce it, it is possible to project the resulting

symmetric matrix onto the space of positive semi-de�nite matrices, as already suggested

by Hayashi and Yoshida (2005), for instance applying the transformation '(�) = (�^1)_
(�1). In Hayashi and Yoshida (2005) it is stated that although this transformation can
induce an extra bias, due to the continuing mapping theorem, the transformed correlation

matrix is expected to properly estimate the true one on quite large samples.

4.2.2.6 Shephard and Xiu (2012)

Shephard and Xiu (2012) (SX henceforth) introduce an estimator for the covariance matrix

which is positive de�nite and deals explicitly with both market microstructure noise and

non-synchronicity. This estimator distinguishes itself from the previous ones as it does

not require any data pre-synchronization. We will refer to it as SX.

To introduce Shephard and Xiu (2012) estimator, let�s �rstly de�ne the ordered union

of the all distinct times of trades as (t; i) with i = 0; 1; :::; N and a Z(t;i) matrix of

dimension M(t;i)�M , 0 �M(t;i) �M , associated with each time (t; i) accounting for the

M assets traded at time (t; i). Moreover, the error term "(t;i) in (4.3) is assumed to follow

a normal distribution with zero mean and diagonal covariance matrix �.

Under this framework, Shephard and Xiu (2012) develop an estimator for the in-

tegrated covariance based on the maximization of a quasi-likelihood computed using a

Kalman �lter and a disturbance smoother. The optimization is carried out by iterating

the EM algorithm until convergence.

Starting from (4.3) and indicating with X(t;0):(t;N) =
�
X(t;0); :::; X(t;N)

�0 the vector of
true e¢ cient prices not contaminated by microstructure noise, the complete log-likelihood

is de�ned as follows:

log f
�
Y(t;0):(t;N)jX(t;0):(t;N); �t

�
+ log f

�
X(t;0):(t;N); �t

�
=

c� 1
2

NX
i=0

log
���Z(t;i)�tZ 0

(t;i)

���� 1
2

NX
i=0

"
0
(t;i)

�
Z(t;i)�tZ(t;i)

�
�1
2
(N � 1) log j�tj �

1

2

NX
i=1

1

�N
(t;i)

Y
0
(t;i)�

�1
t Y(t;i) (4.20)
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where �N
(t;i) distance between two consecutive time ticks.

From the log-likelihood function (4.20), the two EM updates for the covariance matrix

of prices � and noises � are obtained as:

c�t = 1

N � 1

NX
i=0

1

�N
(t;i)

nbu(t;i)j(t;N)bu0(t;i)j(t;N) + U(t;i)j(t;N)o (4.21)

diag
�c�t� =  NX

i=0

Z
0
(t;i)Z(t;i)

!�1
diag

 
TX
i=0

Z
0
(t;i)

nb"(t;i)j(t;N)b"0(t;i)j(t;N) +D(t;i)j(t;N)oZ(t;i)
!

(4.22)

where quantities by(t;i)j(t;N), U(t;i)j(t;N), b"(t;i)j(t;N) and D(t;i)j(t;N) are obtained from the

Kalman �lter and the disturbance smoother that we brie�y summarize. In the �rst step

the Kalman �lter is run forward in time taking the form:

"(t;i) = y(t;i) � Z(t;i)bx(t;i)
F(t;i) = Z(t;i)

�
P(t;i) + �t

�
Z
0
(t;i)

K(t;i) = P(t;i)Z
0
(t;i)F

�1
(t;i)

L(t;i) = I �K(t;i)Z(t;i)bx(t;i+1) = bx(t;i) +K(t;i)"(t;i)

P(t;i+1) = P(t;i)L
0
(t;i) +�

T
(t;i+1)�t

The disturbance smoother (Durbin and Koopman (2001)) is then run backward through

the data and it is speci�ed as follows:

H(t;i) = Z(t;i)�tZ
0
(t;i)b"(t;i)j(t;N) = H(t;i)

�
F�1(t;i)"(t;i) �K

0
(t;i)r(t;i)

�
D(t;i)j(t;N) = H(t;i) �H(t;i)

�
F�1(t;i) +K

0
(t;i)R(t;i)K(t;i)

�
H(t;i)bu(t;i)j(t;N) = �N

(t;i)�tr(t;i�1)

U(t;i)j(t;N) = �N
(t;i)�t �

�
�N
(t;i)

�2
�tR(t;i�1)�t

r(t;i�1) = Z
0
(t;i)F

�1
(t;i)v(t;i) + L

0
(t;i)r(t;i)

R(t;i�1) = Z
0
(t;i)F

�1
(t;i)Z(t;i) + L

0
(t;i)R(t;i)L(t;i)

Shephard and Xiu (2012) show that according to their methodology, synchronization is

not needed as the distortion due to non-synchronicity is less important than the presence

of noise, a result which is stated even in the univariate work by Aït-Sahalia et al. (2005)

and Aït-Sahalia and Mykland (2003). Moreover, in their Monte Carlo experiment they

show that besides being robust to microstructure noise and asynchronicity, their estimator

works well in presence of assets with di¤erent degrees of liquidity.
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4.3 Monte Carlo simulation

4.3.1 Simulation design

Following Barndor¤-Nielsen et al. (2011) and Christensen et al. (2010), we consider the

following bivariate factor stochastic volatility model:

dXm
(t;i) = �md (t; i) + �m�m(t;i)dB

m
(t;i) +

q
1� (�m)2�m(t;i)dW(t;i) m = 1; 2 (4.23)

where E
�
dW(t;i)dB

m
(t;i)

�
= 0; �m�m(t;i)dB

m
(t;i) the idiosyncratic component;

q
1� (�m)2�m(t;i)dW(t;i)

the common factor whose strength is determined by �m. The spot volatility is modeled

as �m(t;i) = exp
�
�m0 + �

m
1 %

m
(t;i)

�
with d%m(t;i) = �m%m(t;i)d (t; i) + dBm

(t;i) being an Ornstein-

Uhlenbeck process. This implies that there is perfect correlation between the innovations

�m�m(t;i)dB
m
(t;i) and �

m
(t;i)while the correlation between dX

m
(t;i) and d%

m
(t;i) is given by �

m.

The magnitude of correlation between the two underlying process X1
(t;i) and X2

(t;i) isq
1� [�1]2

q
1� [�2]2.

The simulations are based on the following parameters �m = 0:03; �m0 = �5=16; �m1 =
1=8; �m = �1=40; �m = �0:3 for m = 1; 2 and are the same as in Barndor¤-Nielsen et

al. (2011) and Christensen et al. (2010). According to these parameters it follows that

E
�R 1
0 [�

m
s ]
2 ds

�
= 1.

We generate 1,000 possible daily paths for Xm
(t;i), m = 1; 2, using a standard Euler

scheme, each simulation being started at %m0 � N(0; (�2�m)�1). Moreover, in order

to avoid discretization errors, we employed the exact discretization for the Ornstein-

Uhlenbeck (see for instance Glasserman 2004 p. 110). For simulation purposes, we con-

sider a trading day of 7.5 hours, in line with the dataset used in the empirical exercise,

and simulate prices at second frequency leading to 27,000 observations per day.

Once e¢ cient prices were generated, we add microstructure noise simulated as:

Um(t;i)

�
�m(t;i); X

m
(t;i)

�
� N(0; !2) with !2 = �2

vuutN�1
NX
i=0

�4(t;i)(i=N) m = 1; 2 (4.24)

where � the signal-to-noise ratio accounting for the amount of microstructure noise. Eq.

(4.24) implies that the variance of the noise process increases with the level of volatility

of Xm
(t;i) as documented in Bandi and Russel (2006).

The time series of synchronized prices generated up to now can be a¤ected by noise

simply adding Um(t;i) in (4.24) to X
m
(t;i) in (4.23). Finally, to introduce asynchronicity,

we rely on two independent Poisson process sampling schemes with intensity �1 and �2,

determining the average time elapsed between two consecutive prices.
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4.3.2 Results

In our Monte Carlo experiment we are interested in comparing the performance of the al-

ternative estimators presented in Section 4.2.2 combined with the synchronization schemes

described in Section 4.2.1. Moreover we want to carry out this comparison we respect to

alternative data generation assumptions, considering pairs of assets a¤ected by a di¤erent

degree of microstructure noise and with di¤erent degrees of liquidity.

With this purpose, our Monte Carlo exercise is organized as follows. We evaluate the

behavior of the alternative integrated covariance estimators considering three di¤erent

levels of microstructure noise: no noise, low noise and high noise obtained by setting �2

in (4.24) to 0, 0:001 and 0:01 respectively . For all of these levels of signal-to-noise ratio,

we carry out a full Monte Carlo comparison respectively reported in Tables 4.3.1 (�2 = 0,

no noise), 4.3.2 (�2 = 0:001, low noise) and 4.3.3 (�2 = 0:1, high noise). We evaluate

the estimates obtained for the variance of X1 and X2, �211 and �222, their covariance,

�12, and their correlation, �12, under the assumption of di¤erent degrees of liquidity

which are obtained by varying the values for the parameters �1 and �2 of the Poisson

process sampling schemes. In particular we �rstly evaluate the case of two assets with

the same degree of liquidity by setting both �1 and �2 to 120, 10 and 3 implying one

transaction every 120, 10 and 3 seconds respectively. In addition to that, we compare

the behavior of the alternative estimators in presence of assets with di¤erent degrees of

liquidity considering all the possible combinations of �1 and �2 obtaining (120,10), (120,3)

and (10,3). For all the quantities of interest, �211, �
2
22, �12 and �12 and all the possible

degrees of liquidity, we consider the synchronization schemes discussed in Section 4.2.1,

namely Previous Tick, Refresh Time, Modi�ed Refresh Time and Intersection, combined

with the integrated covariance estimators presented in Section 4.2.2, namely RC, TSCV,

MRC, MRK and QMLE. Apart we evaluate the SX estimator as it does not require data

to be pre-synchronized. We avoid reporting the MRC-Psd as it roughly behaves like MRC.

In all the Tables, the estimator with the lowest RMSE is highlighted in grey.
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Starting from Table 4.3.1, we provide evidence that, in absence of microstructure

noise, the best estimator for the two variances �211 and �222 is the RC by Barndor¤-

Nielsen and Shephard (2004) combined with the Modi�ed Refresh Time synchronization

scheme for all the alternative degrees of liquidity taken into consideration. When moving

to the covariance �12, the RC is no longer the best estimator as the QMLE presents now

the lowest RMSE for almost all the alternative degrees of liquidity evaluated, exception

made for the case of (�1 = 120, �2 = 3) and (�1 = 10; �2 = 3) when the RC and the

SX estimator are the best ones respectively. Even for the case of covariance, the best

synchronization schemes are the two versions of Refresh Time. Finally, focusing on the

correlation coe¢ cient �12, the SX estimator is the one with the lowest RMSE for all

the possible values of �1 and �2 exception made for the case of two assets with the same

average elapsed time between two transactions equal to 3 seconds. It is interesting to note

that, when considering the two variances, the SX estimator has a relative large RMSE

due to a negative bias while, when evaluating the correlation coe¢ cient, this estimator

becomes the preferred one as the bias is averaged out. In addition to that, we want to

highlight the fact that neither the Previous Tick nor the Intersection resampling schemes

are ever selected by the RMSE criteria.

Moving now to Table 4.3.2, we evaluate the behavior of the alternative estimators and

resampling schemes when some degree of noise is introduced by setting �2 to 0:001. The

�rst result to be highlighted is that when some noise is added, the RC is no longer the

best estimator, neither for the two variances. This result was almost expected as we know

that RC is not robust to microstructure noise. Instead, the two best estimators turned

out to be the QMLE and the SX. In particular, focusing on variances �211 and �
2
22, we see

that the SX estimator performs particularly well in presence of two assets with the same

high degree of liquidity (�1 = 3, �2 = 3) and when two assets have a di¤erent degree of

liquidity equal to (�1 = 120, �2 = 10). In all the other cases the QMLE presents the

smallest RMSE. Similarly to Table 4.3.1, we can see that the main drawback of the SX

estimator is that it is downward bias in most cases while the bias becomes positive for

(�1 = 120, �2 = 10) and (�1 = 10, �2 = 3). Moving to the covariance �12, we identify

a clearer pattern in favour of the SX estimator as more data become available, although

it remains biased; in fact this estimator presents the lowest RMSE for (�1 = 3, �2 = 3),

(�1 = 120, �2 = 10) and (�1 = 10, �2 = 3) while for (�1 = 120, �2 = 120) and (�1 = 10,

�2 = 10) the best estimator turned out to be the QMLE one and for (�1 = 120, �2 = 3)

the MRK. Finally, when considering the correlation coe¢ cient �12; the SX estimator is

always the best one regardless from the degree of liquidity of the assets. Note that here

the bias becomes extremely low con�rming the idea that when computing �12 the bias

a¤ecting variances and covariance is averaged out. As per the synchronization schemes,

even in Table 4.3.2 we never �nd support to the Previous Tick nor to the Intersection
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scheme.

Finally, in Table 4.3.3 we analyze the case of high noise obtained by setting �2 = 0:1.

The Monte Carlo simulations show results which are very close to those already discussed

in Table 4.3.2. In fact, the two estimators presenting the lowest RMSE are still the

QMLE and the SX. In particular, the two estimators are almost equivalent when focusing

on variances as, for the six alternative degrees of liquidity, they alternate themselves as

the best estimator with the SX still showing some bias problems. Anyway, when moving

to covariance, the SX dominates the QMLE when the two assets are either very liquid

(�1 = 3; �2 = 3) or when they show a high degree of asynchronicity (�1 = 120; �2 =

10); (�1 = 120; �2 = 3) and (�1 = 10; �2 = 3): Finally, as already seen in the case of no

and low noise, when turning to the correlation coe¢ cient the SX estimator is by far the

best one. Again, neither the Previous Tick nor the Intersection synchronization schemes

are ever selected.

The overall Monte Carlo exercise gives us some very useful insights about the alter-

native synchronization schemes and integrated covariance estimators. Firstly, Refresh

Time schemes dominate by far both the Previous Tick as well as the Intersection schemes

indicating that when adopting one of the integrated covariance estimator requiring syn-

chronized data, the Refresh Time schemes should be adopted. In addition to that, we

provide evidence that regardless from the degree of microstructure noise a¤ecting asset

prices and the di¤erent degrees of liquidity, the SX estimator is the one providing the best

estimate for the correlation coe¢ cient. Anyway, when focusing on variances and covari-

ances, the SX estimator is found to be biased, result which was shown even in Shephard

and Xiu (2012) where it is claimed that a more sophisticated model of market microstruc-

ture noise is needed. In the cases when the SX fails, two other estimators turned out to

be the best ones in terms of the lowest RMSE that are the Realized Covariance, in the

case of absence of noise, and the QMLE in case of low and high noise. The other three

integrated covariance estimators, namely the MRC, the TSCV and the MRK are clearly

dominated by the RC, the QMLE and the SX, each one in the cases just described.

4.4 Empirical application

In order to compare the alternative integrated covariance estimators, we now propose an

application aimed at assessing their performance in a comprehensive risk management

exercise.

With this purpose, the �rst step is to compute the pro�t and loss distribution. Given

that we are evaluating 10-year benchmark government bonds rather than speci�c bonds

for each country, we cannot use the price time series as we would face the issues connected

to the change in the benchmark bond during the time-span analyzed. Therefore we use
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a �zero-coupon bond approximation�consisting in treating the set of coupon bonds as if

they were zero-coupon bonds and get prices through the standard yield-to-price formula:

100 = Y m
t (1 + Y TMm

t )
10 (4.25)

where Y TMt is the closing yield to (constant) maturity at day t for country m.

Given the time series of daily price Yt, we consider a portfolio constituted by one bond

for each country so that the portfolio value at each time t is given by:

Y �t =
MX
m=1

Y m
t (4.26)

and the pro�t and loss distribution can be obtained as the simple di¤erence between the

daily values of the portfolio.

To compute the Value at Risk (VaR) of Y �t , we have to compute the VaR of each bond

position m that is given by:

V aRmt (�) = Y m
t MDm

t �
m
t �

�1(1� �) (4.27)

where MDm
t is the modi�ed duration of the benchmark bond in country m at day t;

�mt is the standard deviation obtained from one of the possible integrated covariance

estimator taken into consideration; ��1(1 � �) denotes the (1� �)-th percentile of the
normal distribution. Given the value-at-risk for the position in the m-th bond, V aRm,

the V aR� portfolio can be computed as

V aR�t (�) = V aRt (�) �tV aR
0
t (�) (4.28)

where �t is the correlation matrix obtained from one of the possible integrated correlation

estimators.

4.4.1 Backtesting procedures

4.4.1.1 Unilevel VaR tests

We start by recalling the most famous backtesting procedures for the Value-at-Risk,

namely the unconditional coverage (uc), the independence (ind), the conditional coverage

(cc) and the Weibull duration tests introduced by Christo¤ersen (1998) and Christo¤ersen

and Pelletier (2004).

The uc, ind, and cc tests. Given the vector of log-returns yt = Yt � Yt�1, the hit

sequence of VaR violations de�ned as

It =

8<: 1 if yt < �V aRt(�)

0 otherwise
(4.29)
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In the uc test, the null hypothesis under investigation is that the sequence It is i.i.d.

Bernoulli with parameter (1 � �) against the alternative that Bernoulli parameter isb�1; where b�1 is the empirical ratio of violations T1=T where T1 number of days with

violations. If the VaR method is correct, then the empirical failure rate b� must be equal
to (1� �). As the likelihood function of a Bernoulli variable z with parameter p is given
by:

L(z; p) = (1� p)T�T1pT1 (4.30)

the likelihood ratio test of the uc test is then de�ned as:

LRuc = 2 (lnL(z; b�1)� lnL(z; p)) � �21. (4.31)

The ind test explicitly evaluates the assumption of independence of the hit sequence

It:

H0;ind : �01 = �11 (4.32)

where �rs is the probability of a r at day t� 1 being followed by a s at day t.
The alternative hypothesis here is that the hit sequence It follows a �rst-order Markov

sequence with switching probability matrix:

� =

241� �01 �01

1� �11 �11

35 :
The test statistic is then de�ned as:

LRind = 2 (lnL(z; b�01; b�11)� lnL(z; b�1)) � �21 (4.33)

where

L(z;�01; �11) = (1� �01)T0�T01�T0101 (1� �11)T1�T11�T1111 (4.34)

with Trs number of observations with a r followed by a s; b�01 = T01=T0; b�11 = T11=T1:

Neither the uc test nor the ind tests are complete on their own, the �rst one evaluating

whether on average the coverage rate � of the VaR model is correct, while the second

focusing just on the clustering e¤ect on the failures sequence. The cc test combines both

assumptions testing the null hypothesis:

H0;cc : �01 = �11 = �: (4.35)

The likelihood ratio test for the conditional coverage test is given by

LRcc = 2 (lnL(z; b�01; b�11)� lnL(z; p)) � �22 (4.36)

Christo¤ersen and Pelletier (2004) propose a generalization of the ind test considering

a broader alternative with respect to the Markov �rst-order. Therefore, to apply this test
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we should �rstly de�ne the duration between two VaR violations (i.e., the no-hit duration)

as:

Ds = t(Is)� t(Is�1) (4.37)

where t(Is) denotes the time interval of the s-th violation.

Under the null hypothesis that the risk model is correctly speci�ed, the no-hit duration

should have no memory and a mean duration of 1=p time intervals; the distribution

satisfying the memoryless property is the exponential distribution:

fexp(D; p) = p exp(�pD) (4.38)

while the Weibull distribution is selected as alternative distribution as it both allows for

duration dependence as well as being a generalization of the exponential:

fWeibull(D; p) = abbDb�1 exp
�
�(aD)b

�
: (4.39)

We will refer to this test as the DurW . The hypothesis we want to test is therefore:

H0;DurW : b = 1 (4.40)

While the large-sample distribution of the LR tests described above is the chi-squared,

the dearth of violations of 1% VaR make the e¤ective sample size rather small, even

when the nominal size is large. To overcome this problem and to obtain p-values robust

to �nite sample scenarios, we employed the Monte Carlo tests of Dufour (2006) as in

Christo¤ersen and Pelletier (2004). This procedure consists in generating S independent

realizations, 1,000 in our case, for each one of the four test statistics: LRs;type; s = 1; :::; S;

type = uc; ind; cc;DurW: The cases LR0;type corresponds to the calculated test statistic.

The Monte Carlo p-value bpS(LR0) is given by:
bpS(LR0) = bGS(LR0) + 1

S + 1
(4.41)

where

bGS(LR0) = S �
SX
s=1

I(LRs < LR0) +
SX
s=1

I(LRs = LR0)I(Us � U0) (4.42)

where I(�) indicator function and Us; s = 0; :::; S are independent realizations of a Uniform
distribution on the [0,1] interval.

4.4.1.2 Expected shortfall and Tail Risk tests

Berkowitz and O�Brien (2002) test for Expected Shortfall (ES). To introduce
this test, let �rst de�ne the following truncated distribution:

y�t =

8<: V aRt(�)

yt

if It = 1

if It = 0
(4.43)
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Log-returns are assumed to be normally distributed with parameters � and �2. Therefore

the MLE estimators of � and �2 can be obtained maximizing the log-likelihood of y�t
which, being a truncated normal distribution, can be written as:

L (�; �jy�t ) =
X

y�t<V aRt(�)

�
�1
2
ln
�
2��2

�
� 1

2�2
(y�t � �)

2

�
+

X
y�t=V aRt(�)

ln

�
1� �

�
V aRt(�)� �

�

��
(4.44)

This likelihood function can be used to construct a LR test for the null hypothesis

that � = 0 and �2 = 1:

LRtail = 2
�
L
�
�̂; �̂2

�
� L (0; 1)

�
� �22 (4.45)

Wong (2010) test for Tail Risk (TR). The tail risk (TR) statistic is de�ned as
the sum of the sizes of all exceptions in excess of VaR divided by the sample size. The

TR measure at �-level is de�ned as:

dTR� = � 1
T

TX
i=1

(yt � V aRt(�)) I (yt � V aRt(�)) (4.46)

The reason why we use TR in addition to ES is that the latter assumes the expected

loss as being in the tail interval, whereas the former measures the unconditional expected

loss. The implication for backtesting is that a risk model that passes the ES test can

be rejected by TR because of inaccurate T1. Although T1=T is approximately (1 � �)

for large T , under the null hypothesis T1 can be too small or too large when the VaR

forecasts are inaccurate. For further details see Wong (2010). The test is based on the

saddlepoint technique which is adopted to approximate the distribution of the sample

mean of yt; the null hypothesis is:

H0 : TR = TR0 vs H1 : TR > TR0 (4.47)

4.4.1.3 Multilevel VaR tests

The tests discussed up to now are de�ned unilevel as they are based on a single coverage

probability �. Berkowitz et al. (2011) show that these tests have small power which can

be overcome by multilevel procedures.

Given a coverage probability �, the V aR (�) for day t+ 1; given the information set

up to time t, satis�es:

P
�
yt � �V aRt+1jt(�)jzt

�
= �
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Consider K di¤erent critical levels �1 > �2 > ::: > �K with associated VaRs in opposite

monotonic order:

V aRt+1jt(�1) < V aRt+1jt(�2) < ::: < V aRt+1jt(�K):

For each VaR measure, an indicator variable is constructed as follows:

Jt+1

8<: 1 if �V aRt+1jt (�k+1) < yt+1 � �V aRt+1jt(�k)

0 otherwise
(4.48)

where fJk;t+1gKk=1 are Bernoulli distributed with probability �k = �k � �k+1 under the

null hypothesis that the VaR model is unconditionally accurate. J can be expressed as:

Jk;t+1 = Ik;t+1 � Ik+1;t+1 k = 1; :::;K

where Ik;t indicator function taking value 1 when there was a violation of coverage rate

k at time t and 0 otherwise, as already de�ned in (4.29).

Perignon and Smith test. The Perignon and Smith test (2008) is basically a

multivariate version of the unconditional coverage test for the null hypothesis that the

empirical failure rates � = (�0; �1; :::; �K) signi�cantly deviate from the theoric � =

(�0; �1; :::; �K) : The test statistic is:

PSLRuc = 2

 
KX
k=0

ln

�b�k
�k

�Tk!
� �2K (4.49)

with b�k = Tk
T maximum likelihood estimator of the k�th component of �:

Hurlin and Tokpavi test. Hurlin and Tokpavi (2006) jointly test the absence of
autocorrelation and cross-correlation in the vector of hit sequences for K various coverage

rates. Their null hypothesis is:

H0 : E [(Ir;t � �h) (Is;t�z � �k)] = 0 8z = 1; :::;m 8r; s = 1; :::;K

The Authors propose using the multivariate portmanteau statistic of Li and McLeod

(1981), which is a multivariate extension of the Box and Pierce test. The elements of the

hits covariance matrix at the lag z can be estimated by

b
r;sz =
1

T � z

TX
t=z+1

(Ir;t � �r) (Is;t�z � �s) (4.50)

The test statistic is:

Qk(m) = T (T + 2)

mX
z=1

1

T � z vec (Rz)
0 �
R�10 
R�10

�
vec (Rz)
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where Rz is the cross-correlation matrix whose element at position (r; s) is de�ned as:

Rr;sz =
b
r;szpb
r;r0 b
s;s0 for r; s = 1; :::;K

Markov tests. In Leccadito et al. (2013) two Markov tests are proposed, one

being a generalization of the independence test to the multilevel case the other being

a generalization of the unilevel coverage test. Both the two Markov tests specify the

transition matrix as:

� = [�r;s]r;s=0;:::;K (4.51)

where �r;s = P (Jr;t+1 = 1jJs;t+1 = 1).
The null hypothesis for the conditional coverage test can be formulated as:

H0;cc : �0;s = �1;s = ::: = �K;s = �s for s = 0; :::;K � 1:

where �k = (�0; :::; �K). The test statistic is a likelihood ratio test taking the following

form:

MLRcc = 2

 
KX
r=0

KX
s=0

Tr;s ln (b�r;s)� KX
k=0

Tk ln (�k)

!
� �2K2 (4.52)

where Tr;s number of observations in the sample of T with s following an r; b�r;s = Tr;s
Tr

maximum likelihood estimator of the (r; s)-th element of matrix �.

Pearson�s �2 tests. The Markov test just described is powerful only against the

�rst-order Markov alternative. Therefore in Leccadito et al. (2013) the Pearson�s �2 test

is introduced. Consider the bivariate distribution:

pNt;Nt�z(x; y) = P (Nt = x;Nt�z = y)

where Nt+1 =
KP
k=1

Ik;t+1. Under the null of the conditional coverage test, it holds that:

pNt;Nt�z(x; y) = P (Nt = x)P (Nt�z = y) = �x�y 8x; y

The test statistic for a sample of T observations can be de�ned as:

Xm =

mX
z=1

Xz (4.53)

where Xz =
P

x;y

�
T
(z)
x;y�(T�z)�x�y

�2
(T�z)�x�y . The distribution of (4.53) is not standard and there-

fore critical values are computed via simulation.
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4.4.2 Data description

We use data for the 10-year government bonds of Belgium, France, Germany, Italy, Spain

and the Netherlands over the period 1st June 2007 - 31st May 2012. We consider bid

data. The 10-year bonds are bond market benchmarks at the most active maturities.

Morningstar provided us with this unique tick-by-tick dataset. The trading period con-

sidered is 8 a.m. - 3:30 p.m. coordinated universal time (UTC). We detect and remove

outliers by applying a �lter which is a modi�cation of the procedure to remove outliers

proposed in Brownlees and Gallo (2006) that we implement following the steps suggested

by Barndor¤-Nielsen et al. (2011, p. 156), that we summarize below.

Let p(t;i) be a tick-by-tick time series of prices, where t denotes day and i the time

interval of day t, then an observation is removed if:���p(t;i) � p(t;i) �kL���� > max�4MD(t;i)(k); n

	
^
���p(t;i) � p(t;i) �kR���� > max�4MD(t;i)(k); n


	
(4.54)

where k the bandwidth; p(t;i)
�
kL
�
and p(t;i)

�
kR
�
sample medians of the k=2 observations

respectively before (L for left) and after (R for right) (t; i); MAD(t;i)(k) mean absolute

deviation from the median of the whole neighborhood; ^ intersection operator; 
 mean
of the k absolute returns; n 
�multiplier. The advantage of this rule lies in the separate
comparison of the (t; i)�th trade against the left and right neighbors while the measure
of dispersion is calculated on the whole bunch of k trades. This approach is speci�cally

designed to avoid detecting jumps as false outliers.

Data selecting procedure is summarized in Table 4.4.1:

Table 4.4.1: Data selection and descriptive statistics on government bond yields
DE IT FR ES BE NL

No. ticks 3,077,442 978,261 1,096,247 978,357 841,854 657,249

Limiting trading time 2,928,107 917,455 1,027,268 969,129 831,094 645,773

No. trades per day: Mean (SD) 2,345 (1,889) 736 (526) 828 (596) 764 (512) 659 (481) 513 (378)

Trade duration: Mean (SD) [s] 14.2 (44.4) 42.9 (97.1) 38.0 (88.6) 38.1 (90.3) 47 (115.7) 60.4 (123.4)

Bid YTM

Mean (SD) [%] 3.2 (0.8) 4.7 (0.7) 3.6 (0.6) 4.6 (0.7) 4.0 (0.5) 3.5 (0.8)

Median (1st - 99th pct) [%] 3.2 (1.5 - 4.6) 4.6 (3.8 - 7.0) 3.6 (2.5 - 4.8) 4.4 (3.8 - 6.4) 4.1 (3.0 - 5.0) 3.5 (2.0 - 4.8)

Bid-Ask Spread of YTM

Mean (SD) [bps] 0.6 (0.1) 0.6 (0.1) 0.8 (0.1) 0.8 (0.1) 1.0 (0.1) 0.7 (0.1)

Median (1st - 99th pct) [bps] 0.6 (0.6 - 0.8) 0.6 (0.5 - 0.8) 0.8 (0.7 - 0.9) 0.8 (0.7 - 0.9) 1.0 (0.9 - 1.1) 0.7 (0.7 - 0.9)

Table 4.4.1 reports the data procedure selection on government bond yields together with some descriptive statistics. Limiting trading time
means removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described
in (4.54) in the text. In square brackets is the unit of measurement. Pct stands for percentile.

For each time series, we report the overall number of ticks available from which we

remove holidays, weekends and trades occurred outside the trading period 8 a.m. - 3:30

p.m. UTC. We remove outliers following the description in (4.54) which lead us to detect

percentage of outliers ranging from 0.09% for Germany to the 0.16% for Belgium. In
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addition, we also report some descriptive statistics to get useful insights about market

liquidity. In particular, we compute the mean number of trades per day and the time

elapsed between two consecutive trades; both statistics indicate that the most liquid

market is the German one with a daily average number of trades of 2,345 and a trade

duration of 14.2 seconds, followed by France (828 trades, 38 seconds), Spain (764 trades,

38 seconds), Italy (736 trades, 43 seconds), Belgium (659 trades, 47 seconds) and the

Netherlands (513 trades, 60 seconds). In Table 4.4.1, we also report descriptive statistics

about yields: Italy has the highest average yield equal to 4.7%, while Germany has the

lowest equal to 3.2%. Of course, the information that the average indicator o¤ers is limited

in the light that government bond yields vary a lot throughout our sample period as can

be seen from Figure 4.4.1.

Figure 4.4.1: 10-year government bond yields

Figure 4.4.1 reports the benchmark 10-year government bond yields for Italy, France, Spain, Belgium, the
Netherlands and Germany over the period 1st July 2007 - 31st May 2012.

Government bond yields move very closely until May 2010, when markets start to pay

more attention to sovereign debt risk in correspondence with the burst of Greek crisis.

In May 2010, Greek government de�cit was revised and estimated to be 13.6% of GDP

with a correspondent decrease in international con�dence in Greece�s ability to repay its

sovereign debt. As consequence, despite the �rst rescue package approved by Eurozone

countries and the IMF, concerns about Euro countries solvability began to raise together

with the di¤erence in yields of the most distressed countries, as Italy, Spain and Belgium,

with respect to the safest ones as France, the Netherlands and Germany.
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4.4.3 Results

4.4.3.1 Preliminary insights

In Figure 4.4.2 we compare the alternative synchronization schemes. With this purpose,

we selected a couple of countries, Italy and France, and report their pairwise daily corre-

lation for all the alternative integrated covariance estimators namely MRC, QMLE, RC,

MRC, MRC-Psd and TSCV, computed on synchronized data obtained under the four syn-

chronization schemes presented in Section 4.2.1, namely Previous Tick (black diamond),

Refresh Time (grey square), the Modi�ed Refresh Time (blue cross) and the Intersection

approach (pale blue diamond).
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MRK QMLE

RC MRC

MRCPsd TSCV

Figure 4.4.2: IT-FR synchronization schemes

Figure 4.4.2 plots Italy-France correlations for the alternative integrated covariance estimators computed
on synchronized data obtained under Previous Tick (black diamond), Refresh Time (grey square), Modi�ed
Refresh Time (blue cross) and Intersection approach (pale blue diamond) synchronization schemes.



170 Comparing alternative integrated covariance estimators

From Figure 4.4.2 we can get some preliminary insights about the alternative syn-

chronization schemes and integrated correlation estimators. Firstly, the synchronization

scheme which deviates the most from the others is the previous tick one. This evidence

is particular relevant when the QMLE and the RC estimators are taken into considera-

tion and it can be justi�ed by the fact that previous tick is notoriously known to discard

a higher number of observations with respect to the other synchronization schemes. In

addition to that, the two versions of the refresh time scheme do not deliver very di¤erent

results, regardless from the integrated correlation estimator used, while the intersection

scheme deviates quite noticeably from refresh time and this is quite evident for the QMLE

estimator. Turning now to the estimators, we can see that the identi�ed pattern is sim-

ilar for all the six estimators evaluated as in all the cases the correlation between Italy

and France is decreasing through the time span considered. Anyway, it is interesting to

note that in case of RC, the evolution of correlation seems to remain quite �at while for

the positive de�nite version of the MRC and for the TSCV, the correlations are more

widespread.

To get some more clear ideas about the behavior of the alternative integrated covari-

ance estimators, we selected a synchronization scheme, the modi�ed refresh time, and

report in Figure 4.4.3 the correlation patterns for the same couple of countries, Italy and

France.
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MRK QMLE

RC MRK

MRCPsd TSCV

Figure 4.4.3: IT-FR integrated covariance estimators

Figure 4.4.3 plots Italy-France correlations for the alternative integrated covariance estimators computed
on synchronized data obtained under the Modi�ed Refresh Time.
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From Figure 4.4.3 we can almost draw the same conclusions as from Figure 4.4.2. In

fact, the correlation between Italy and France started to decrease in correspondence to

the beginning of the sovereign crisis which is a result somehow deviating from classical

contagion literature in which it is stated that during turmoil periods, assets tend to

behave in a more similar manner (see for instance Bekaert et al. (2005)) with respect to

stable periods. This result is anyway supported from the fact that during the burst of

the sovereign crisis, local investors decided to buy their own country�s debt in order to

support their country; this behavior determined correlations among European countries

to decrease. In addition to that, sovereign crisis is a systemic event which involved,

although if at di¤erent extents, all the European countries decreasing the bene�ts of

portfolio diversi�cation. This fact prevented investors to diversify their portfolio leading

in turn to decrease bond correlations.

In order to get an insight about the correlation patterns between all the pairs of

countries taken into consideration, we depict in Figures 4.4.4-4.4.6 the pairwise corre-

lations obtained applying the Shephard and Xiu (2012) estimator that we remind is

synchronization-free and which resulted to provide the most precise estimates for cor-

relation in our Monte Carlo analysis.
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Italy vs France Italy vs Spain

Italy vs Belgium Italy vs the Netherlands

Italy vs Germany France vs Spain

Figure 4.4.4: Countries pairwise correlations

Figure 4.4.4 plots pairwise correlations obtained by the Shephard and Xiu (2012) estimator.
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France vs Belgium France vs the Netherlands

France vs Germany Spain vs Belgium

Spain vs the Netherlands Spain vs Germany

Figure 4.4.5: Countries pairwise correlations

Figure 4.4.5 plots pairwise correlations obtained by the Shephard and Xiu (2012) estimator.
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Belgium vs the Netherlands Belgium vs Germany

the Netherlands vs Germany

Figure 4.4.6: Countries pairwise correlations

Figure 4.4.6 plots pairwise correlations obtained by the Shephard and Xiu (2012) estimator.

Figures 4.4.4-4.4.6 support results already discussed when focusing on Italy and France

as all the possible pairs of countries almost experienced a decrease in pairwise correlations

during the sovereign crisis. In addition to that, we identify a sharp drop in correlations

for all the countries analyzed with Germany during the period December 2010 - July

2011, corresponding to the worst period of the sovereign crisis. Firstly we would like to

point out that this evidence is exactly specular to the increase in spreads correlations

identi�ed in Chapter 3. Anyway, Figures 4.4.4-4.4.6 are more informative as they allow

us to understand what was behind the change in correlations. In fact we guess that

the sharp drop in correlations among all the countries and Germany is dictated by the

safe heaven status gained by Germany during the sovereign crisis which lead investors

to undertake di¤erent positions on German and ex-German bonds. The trading activity

during that period was very much sentiment driven and for instance, in correspondence
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to negative macroeconomic releases such as those discussed in Chapter 2, investors sold

ex-German bonds and bought German bonds. This trading behavior was very likely the

reason behind the sharp drop in correlations between Italy, France, Spain, Belgium and

the Netherlands with respect to Germany. An additional analysis, not reported here,

shows that this change in the correlation patterns between all countries and Germany is

not present when using daily data indicating that the movements in government bond

yields at high frequency scale were very much dictated by a sentiment driven trading

activity.

4.4.3.2 Risk management results

After having described the correlation patterns which characterized European government

bonds, we now turn to the proper risk management exercise aimed at identifying empir-

ically the best integrated covariance estimator. In Table 4.4.2 we report the unilevel

backtesting procedures described in Section 4.4.1.1 for the alternative estimators pre-

sented in Section 4.2.2 combined with the synchronization schemes described in Section

4.2.1 following the Monte Carlo exercise. In grey are highlighted all the cases when the

tests allow not to reject the null hypothesis that the model is correctly speci�ed. Starting

from the unconditional coverage test, we see that the MRK, the QMLE and the SX es-

timator provide the best performance. In particular, coherently with the �ndings about

the upward bias of the SX estimator in the Monte Carlo simulation, we show that this

estimator succeeds just at the 99% con�dence level. A similar pattern is evident for the

most important unilevel test, the conditional coverage, while for the independence test

we see that all the estimators perform quite well. Finally, as per the Duration test based

on the Weibull distribution (DurW ), we detect a dominance of the MRK and the QMLE

associated with one of the refresh time resampling schemes.

In all the unilevel tests, the RC estimator does not allow not to reject the null hy-

pothesis that the model is correctly speci�ed as, as it is expected, our data are a¤ected

by some microstructure noise. In addition to that, we can see that the MRK based on

synchronized data obtained by both previous tick and the intersection approach perform

quite well while, in Monte Carlo comparison, we never �nd evidence in favour of previous

tick nor intersection.

A clearer pattern is evident when the tail risk measures are analyzed in Table 4.4.3.

In fact the SX estimator is the only one allowing not to reject the null hypothesis that the

model is correctly speci�ed for both tail risk and Berkowitz test, at both 95% and 99%

con�dence level. This �nding is particularly relevant and coherent with results obtained

for the unilevel test procedures as it denotes the ability of SX estimator to capture extreme

events.

Finally, in Table 4.4.4 we report the backtesting exercise involving multilevel proce-
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dures. Starting from the most comprehensive one, the Pearson �2 test, we �nd that the

best estimators are the MRK and the QMLE based on synchronized data obtained from

refresh time resampling schemes. The dominance of these two estimators is supported

even by the Perignon and Smith test and by the Markov test while when focusing on

the Hurlin and Topkavi test, a less clear �gure emerges. In fact, according to this last

test, almost all the estimators perform equally well exception made for the TSCV and

the SX which do not allow not to reject the null hypothesis that the models are correctly

speci�ed. Note that the SX estimator never succeeds as the multilevel tests are based

on two con�dence levels, 95% and 99%, and in Table 4.4.2 we show that this estimator

performs well at the 99% con�dence level but not at the 95%.
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Overall, results shown in Tables 4.4.2-4.4.4 allow us to draw a very clear picture

indicating that the best integrated covariance estimators are the MRK and the QMLE

based on synchronized data obtained from the refresh time schemes. By the way, when

focusing on tail risk or on just extreme percentiles, the SX estimator dominate all the other

competitors. This result is coherent with the �nding from the Monte Carlo comparison

about the upward bias a¤ecting the SX (in presence of high noise) estimator and indicates

that although it is very promising, it still needs some improvements.

4.5 Conclusions

In this Chapter we carried out a very comprehensive comparison among the integrated

covariance estimators and the synchronization schemes proposed in the literature. Both

the Monte Carlo exercise and the empirical application allow us to draw a clear picture

about the topic of properly estimating the integrated covariance matrix in a framework

characterized by two very big issues that are microstructure noise and asynchronicity. In

fact we provide evidence that both the Two Scales Realized Covariance by Zhang (2011)

and the Modulated Realized Covariance by Christensen et al. (2010) lead behind other

estimators. Instead, the QMLE by Aït-Sahalia et al. (2010) shows a good performance in

both Monte Carlo and empirical exercise. In addition, the most promising estimator, the

Shephard and Xiu (2012), by far dominates all the other ones when focusing on correlation

estimates and in the backtesting exercises involving extreme events, namely VaR at 99%

con�dence level and tail risk measures. Anyway it su¤ers from some upward bias resulting

in a non optimal estimation of variances and covariances in the Monte Carlo exercise and

in VaR estimation at the standard 95% con�dence level. The estimator proposed by

Shephard and Xiu (2012) is the most appealing one even from a theoretical point of view

as it does not su¤er from any drawbacks such as non-positive de�niteness, as the QMLE

by Aït-Sahalia et al. (2010) does, nor by non-optimal convergence, as it is the case for

the MRK by Barndor¤-Nielsen at al. (2011). Therefore we think that, as suggested in

a �nal part of their paper, some job should be carried out aimed at generalizing the

noise model underlying their framework in order to deal with the bias. Finally, although

the Multivariate Realized Kernel by Barndor¤-Nielsen at al. (2011) does not perform

particularly well in the Monte Carlo exercise, the same cannot be said in the empirical

application where it shows a similar performance with respect to the QMLE. In addition

to that, as per the synchronization schemes, we show that the previous tick as well as the

intersection approach embedded in the Hayashi and Yoshida (2005) are clearly dominated

by the refresh time resampling schemes.
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Chapter 5

Conclusions and further works

The recent sovereign crisis led to a sharp increase in European government bond yields

determined by a renewed ability of markets to exercise a discipline through the price of

risk embedded in alternative assets. The question is whether the price of risk is accurate

in terms of properly re�ecting countries fundamentals or whether, especially for peripheral

bonds, high yields are the sign of an increasing risk aversion. In addition to that, during

sovereign crisis concerns about evidences of contagion and increasing systemic risk, espe-

cially in the Euro area, have risen. In fact, in a very integrated market as the European

one is, shocks to one country are very likely going to a¤ect other countries.

To this purpose, we evaluated the impact of macroannouncements and time varying

macroeconomic fundamentals on European government spreads of Italy, France, Spain,

Belgium and the Netherlands with respect to Germany. The overall �ndings con�rm

the high sensitivity of government bond markets to macroeconomics, both in terms of

macroannouncements as well as countries fundamentals. In particular, in Chapter 2, we

provided evidence of the high sensitivity of spreads to US and European macroannounce-

ments releases, with strong relevance of those concerning real economy, together with the

ECB Introductory Statement and with news regarding Germany and Spain. In addition

to that, we evaluated the impact of government bond auctions and rating actions too,

reporting evidences supporting the high sensitivity of spreads to auctions held in two of

the most distressed and biggest countries in our sample, Italy and Spain, while we did

not �nd any evidence for rating actions. We interpret that result in light of the loss in

reliability that rating agencies su¤ered after the subprime crisis together with the high

predictability of their actions which therefore did not bring to markets any surprise.

As per macroeconomic fundamentals, we showed the existence of a strong linkage be-

tween spreads volatility and the di¤erence of industrial production with respect to the

German one, as well as with economic sentiment and unemployment. Anyway, when

considering correlations, there is evidence of a sharp increase in all pairwise spread corre-
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lations during the period December 2010-July 2011 as a signal of the increasing systemic

risk inside Europe rather than linked to macroeconomic fundamentals.

In order to estimate consistently correlations, we made advantage of recent develop-

ments in �nancial econometrics, in particular to the techniques introduced alternative

estimators robust to both microstructure noise and asynchronous trading. In Chapter

4, we carried out an extensive Monte Carlo simulation exercise to compare the perfor-

mance of the available estimators jointly with the alternative synchronization methods.

The numerical analysis undertaken in Chapter 4 allowed us to identify two estimators,

the Shephard and Xiu (2012) and the Aït-Sahalia et al. (2010) combined with refresh

time synchronization method, as the optimal for correct inference. In addition, we also

report a variety of risk-management applications implementing the alternative estimators

on European yields. Very importantly, the empirical application helped us to identify the

reason underlying the sharp increase in correlations of government bond spreads identi�ed

in Chapter 3. Estimating correlations on yields, we identi�ed a similar but reverse pattern

in pairwise correlations between all the countries and Germany and this evidence can be

interpreted as result of nervousness in the markets during the burst of the sovereign crisis

which led Germany to gain the safe heaven status and traders to undertake completely

opposite positions on German and ex-German bonds.

There are a number of interesting developments that the �ndings in this disserta-

tion open the route to. First, it will be important to understand why spreads of some

countries are higher with respect to other countries, despite better fundamentals of the

former country. A possible explanation may be related to the political stability together

with government ability to set up proper and credible measures to introduce reforms and

stimulate economic growth. This is for instance the case of Italy characterized by per-

sistent political instability. On the other hand, this is the case of Portugal and Spain

for instance, there are some countries whose private debt has sharply grown during re-

cent years, probably contributing in boosting government bond spreads. Second, from

a trading mechanisms and policy point of view, it would be interesting to understand

what kind of measures governments and monetary authorities could undertake to prevent

that trading mechanisms that could led government bond yields to increase so sharply

with the e¤ect of contributing to put countries, already experiencing �nancial di¢ culties,

in an even more dangerous and unstable situation. In fact, increasing government bond

yields directly impact on public debt, rising the amount of interests payment a country

has to face; in addition, when yields are rising, coupons of newly issued bonds will rise

too implying that a current pressure on bonds will last for a long span in the future. The

main issue the European union has to face in this sense is, as already broadly discussed,

a �scal union besides a monetary union.

Though this dissertation mainly focused on insightful empirical issues on the European
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government bond market, it also o¤ers some methodological contributions. In particular,

in Chapter 3, we extended the MIDAS approach to the case of high-frequency data by

introduced a model able to estimate correlations in presence of data sampled at di¤erent

frequencies, where the low frequency component captures the macroeconomic fundamen-

tals of countries. Further, Chapter 4 is devoted to evaluate and sort existing estimators

for integrated covariance matrix. Follow up of these two methodological developments

have already been explored and the main �ndings are summarized in the following three

papers.

5.1 A Frequency-Speci�c Factorization to Identify Com-
monalities with an Application to the European Bond
Markets

This paper, joint with Jan Novotný and Giovanni Urga, introduces a new framework for

modelling mixed-frequency multivariate time series with respect to the MIDAS approach

described in Chapter 3. The proposed methodology is speci�cally built to treat com-

monality of rare events identi�ed at high-frequency, namely price jump arrivals, across a

large portfolio of time series and link them to macroeconomic fundamentals measured at

a lower frequency. In particular, the link between cojumps in �nancial markets and the

real economy is established through the evaluation of the dependence of co-arrival and

cojump based measures on the real economy indicators, namely unemployment, industrial

production and economic sentiment, observed at monthly frequency, and the aggregate

monthly surprise carried by macro-announcements and government bond auctions. The

notions of co-arrivals and cojumps are based on the cofeatures introduced by Engle and

Granger (1987) and Engle and Kozicki (1993). Full details can be found in Novotný and

Urga (2013).

The dataset is the same used throughout the previous chapters although here we focus

our attention on 10-year government bond yields, rather than spreads, of Belgium, France,

Germany, Italy, the Netherlands and Spain from 1st June 2007 to 31st May 2012 sampled

at 5-minute frequency. As per macroannouncements and government bond auctions, we

analyzed the same indicators as in Chapter 2 while the macroeconomic indicators are

those adopted in Chapter 3.

The most relevant result is the assessment of statistically signi�cant di¤erence between

idiosyncratic and common jump arrivals, with idiosyncratic arrivals being more sensitive

to �nancial distress. In particular, we provide evidence of strong statistical evidence that

the commonality feature of the jump arrivals are explained by news announcements from

the US, the European Monthly Bulletin, the Spanish GDP and unemployment, and the
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Greek unemployment. In both the subprime crisis of 2008/2009 and the European debt

crisis in 2011, 10-year European yields show a low level of commonality as well as a low

level of correlation in jump arrivals. This �nding contrasts the evidence from asset returns

(see, e.g., Bekaert (2005)), of a persistently higher correlation during distressed periods

with respect to the tranquil ones. In particular, the measure of commonality, bounded

between 0 and 1, during the �nancial crisis of 2008/2009 is about 0.3 while jumped to

0.6 in the aftermath of the crisis. This means that the probability to observe a common

jump during the crisis was half the probability immediately afterwards. Another measure

introduced in the paper indicated that during the 2008 crisis if jump occurred then up

to two countries were a¤ected by the same jump, while in the aftermath of the 2008

crisis, if jump occurred more than three countries were a¤ected. In correspondence to the

European debt crisis, both measures decreases to the levels around the 2008/2009 crisis.

During the subprime crisis of 2008, the overall number of jump arrivals increased which

was not observed during the European debt crisis. Further, for the European debt crisis,

we observed a signi�cant change in the structure of common jumps in yields providing

clear evidence that Euro area was hit by country speci�c risks. Finally, from October

2010 to July 2011, the behaviour of German yields showed a completely di¤erent pattern

compared to the rest of the countries. In this period, we observed a signi�cant change in

correlation between German yields and yields from any other country in the sample. We

like to interpret this �nding as a supportive evidence for the increase of the risk-awareness

of investors, who favoured the German bonds serving as a safe heaven.

The paper has been submitted for possible publication.

5.2 Co-arrivals and Information Flow in the European Debt
Market

This paper, joint with Jan Novotný and Giovanni Urga, extends the univariate frame-

work of Lee (2012) to a multivariate setup. In Lee (2012), the dynamics and predictability

of jumps is investigated by introducing a two-stage semi-parametric jump predictor test

aimed at identifying covariates that determine jump occurrences. In the �rst stage, jumps

are detected by applying the Lee and Mykland (2010) test while in the second step, the

estimation based on the maximum partial likelihood inference is carried out. The sec-

ond step allows to identify the covariates that impact more on jump arrivals through a

logit parametrization. In our paper, we generalize the parametrization in Lee (2012) by

proposing a Probit speci�cation, which allows for more versatile multivariate approach.

This new framework is empirically illustrated using the 10-year European government

bond benchmarks in order to identify the most relevant drivers of jumps and cojumps.

In particular, we estimate a number of alternative speci�cations, considering �rst all the
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available jumps to focus later on pure idiosyncratic jumps and on common jumps (co-

jumps). Finally, we also propose several empirically relevant extensions of the theoretical

likelihood framework, which aims to estimate the �nancial phenomena like market pres-

sure and systemic drops.

The paper has been submitted for possible publication.

5.3 Evaluating the Accuracy of Value-at-Risk Forecasts: New
Multilevel Tests

The paper, joint with Arturo Leccadito and Giovanni Urga, proposes independence and

conditional coverage tests aimed at evaluating the accuracy of Value-at-Risk (VaR) fore-

casts from the same model at di¤erent con�dence levels. The proposed procedures are

therefore named multilevel tests and were used in the empirical section of Chapter 4

to compare alternative estimator of the correlation matrix for a portfolio of government

bonds. The multilevel setup presents two big advantages with respect to standard unilevel

testing procedures. First it is able to overcome the reduced power of the unilevel tests

in presence of small samples; second they make the best use of the limited amount of

information regarding the return distribution made available by banks or �nancial insti-

tutions in general to assess their risk exposure. In addition to that, as econometricians

usually estimate quantiles for two or more di¤erent probability levels, multilevel tests are

intuitively more e¢ cient, and statistically more powerful, than to use separate unilevel

tests.

The �rst test introduced in this paper, the Markov test, is a generalization of the

Christo¤ersen (1998) independence and conditional coverage test to the multilevel case

which anyway is powerful only against the �rst-order Markov independence alternative

hypothesis. Therefore a more general test is introduced, the Pearson�s �2 test, which is

designed to detect whether the average number of violations at di¤erent con�dence levels

is correct and to check for independence in number of violations at di¤erent con�dence

levels with respect to its lags up to a speci�c lag m.

In a comprehensive Monte Carlo exercise, where returns were generated under alter-

native GARCH models with skewed and leptokurtic innovations, and where VaR were

estimated using models commonly used in practice (i.e. Normal, HS, Hybrid HS and

RM), the new multilevel tests showed higher power than both the multilevel uncondi-

tional test of Perignon and Smith (2008) and the multilevel conditional tests of Hurlin

and Tokpavi (2006). The superiority of the new introduced tests is particularly strong

when small samples, that are even the most common in practice, are considered. Via an

empirical application using daily returns on 15 MSCI world indices, we implemented the

available multilevel tests and we showed that in some cases di¤erent tests deliver di¤erent
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conclusions.

The paper is forthcoming in the International Journal of Forecasting.



Bibliography

[1] Bekaert G., Harvey C. R. and Ng A. (2005). Market integration and contagion. The Journal

of Business 78, 39-69.

[2] Christo¤ersen P. (1998). Evaluating Interval Forecasts. International Economic Review 39,

841-862.

[3] Engle R.F. and Granger C. (1987). Co-integration and error correction: representation, esti-

mation, and testing. Econometrica 55, 251-276.

[4] Engle R.F. and Kozicki S. (1993). Testing for common features. Journal of Business & Eco-

nomic Statistics 11, 369-380.

[5] Hurlin C. and Tokpavi S. (2006). Backtesting value-at-risk accuracy: a simple new test. Journal

of Risk 9, 19-37.

[6] Lee S. (2012). Jumps and information �ow in �nancial markets. Review of Financial Studies

25,439-479.

[7] Novotny J. and Urga G., (2013). Co-features in �nance: Co-arrivals and co-jumps. CEA

Working Paper.

[8] Perignon C. and Smith D. (2008). A new approach to comparing VaR estimation methods.

Journal of Derivatives 16, 54-66.

193





CURRICULUM VITAE

Simona Bo¤elli is a Ph.D. candidate in Economics, Applied Mathematics and Op-

erational Research at Bergamo University. Her main research interests are in the �eld

of high-frequency �nancial econometrics with particular focus on estimating and testing

jumps, cojumps, risk and more generally �nancial markets comovements.

She has both the Bachelor and the Master degree in Applied Quantitative Finance at

Bergamo University and, during her Ph.D., she has been visiting on a regular basis the

Centre for Econometric Analysis of Cass Business School, London.

At present, Simona is working as economic and market research analyst at Pioneer

Investment Global Asset Management in Milan. Previously, she worked as data analyst

at Mario Negri Research Institute (Bergamo), as retail market analyst at UBI Banca

(Bergamo) and as consultant in �nancial analytics at SoftSolutions! (Bergamo). She is

teaching assistant in econometrics and applied econometrics at Bergamo University since

2010.


