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Chapter 1

Introduction

In many respect, Europe is more integrated nowadays than ever. For instance, the per-
capita wealth has converged significantly relative to early post-war levels and as of 2004,
intra-EU trade has risen to approximately two-thirds of total trade and one-third of
total EU GDP. The current economic and financial crisis has slowed down if not stopped
the convergence process highlighting imbalances within the Euro area which had been
undervalued/overlooked during the years of economic growth and stability. It was as if
the sovereign debt markets had underestimated the possibility that governments might
default.

The financial crisis was triggered by the US-subprime crisis and then by the Lehman
& Brothers default in September 2008. The main message that this event delivered to
markets was that no institution is risk-free, that policy makers and monetary authorities
are not always willing to prevent them from defaulting, and this holds true for governments
too. As consequence, countries with high debt levels began to face more stress on their
debt servicing capabilities and, hence, were penalized more.

With the rescue of Greece and Ireland in 2010, and of Portugal and Greece again in
2011, it became clear that the origin of the sovereign debt crisis in Europe was beyond
the imbalances in public finances. For instance the interconnection between the private
and public debt is important as, while the ratio of public debt in the euro area dropped
from 66% in 2003 to 63% in 2007, household debt increased from 41% to 56% of GDP
during the same period and financial institutions increased their debt levels from 126% of
GDP to around 200%. The main causes of the debt crises in Europe vary from country
to country. The origin of the debt crisis in Greece, Portugal and Italy was the structural
deficit in the government sector. Greece and Italy’s large fiscal deficit and huge public
debt are the cumulative result of chronic macroeconomic imbalances. However, the case
of Portugal illustrates the importance of foreign debt; Portugal’s debt-to-GDP ratio (63%
at the end of December 2010) was much lower than Belgium’s (123%), but whilst the



2 Introduction

latter is a net creditor towards the rest of the world, the markets are worried about
Portuguese high external debt, specifically, that of its private sector namely banks and
enterprises. In Ireland as well the crisis was mainly caused by imbalances in the private
sector, particularly a domestic housing boom which was financed by foreign borrowers
who did not require a risk premium related to the probability of default (Lane, 2011).
In Spain, since absorption exceeded production, the external debt grew and the real
exchange rate appreciated, implying a loss of competitiveness for the economy. Unlike
previous expansions, the resort to financing was not led by the public sector but by
private households and firms. The average value of the debt-to-GDP ratio during the
period 2007-2010 in Spain was over 80% in the public sector and was close to 90% in the
private. Government exposure to weakness in the financial sector may have also become
a factor in explaining sovereign spreads in the euro area. In this respect, some countries
have committed large resources to guarantee financial institutions, thereby establishing a
potentially important link between financial sector distress and public sector bailouts.

Concerns about the solvency of the national financial sectors have risen in almost
every Euro country, particularly in Austria, Finland, Greece, and Portugal while for some
other countries, such as Belgium, Ireland, and Italy, worries are more focused on domestic
fiscal sustainability.

Europe is under stress and integration among European countries seems more fragile
than during the first years of Euro-era. It is important to understand how dependent
countries belonging to a common monetary area are from each other. The strongest
measures of financial integration are those based on the law of one price. Insofar, as
government bonds are sufficiently homogeneous across the various Euro area markets,
one can directly test the law of one price by comparing the yields on local government
bonds across countries. If we assume that the degree of systematic risk is identical across
countries, then risk premia should also be identical in perfectly integrated markets, and
hence yields on government bonds with the same maturity should be identical as well. It
is important that the bonds from which these yields are calculated are as homogeneous
as possible: ideally, the bonds will all be on-the-run with the same maturity, liquidity,
coupon schedule, issuance date, and embedded options. Among the possible government
bonds, 10-year are usually considered as their markets are much more active than other
maturities.

In Figure 1.1, 10 years government yields of eleven countries belonging to the FEuro

are reported.
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Figure 1.1: 10-year yields

In Figure 1.1 we report benchmark 10-year government yields for Euro denominated bonds for the years
1991-2013.

From picks in excess of 300 basis points in the pre-EMU period, 10-year yield con-
verged significantly in correspondence to the monetary union creation: one year after the
introduction of the Euro the maximum spread was 30 basis points. Specifically, after the
introduction of the Euro in January 1999 and until the subprime crisis in global financial
markets in August 2007, spreads on bonds of Eurozone members moved in a narrow range
with only slight differentiations across countries. The stability and convergence of spreads
was considered a hallmark of successful financial integration inside the Euro area. The
subprime crisis in 2007 set a turning point and yield spreads of Euro area issues with
respect to Germany spiraled in parallel with the rise in global financial instability. In
2008 and 2009, interest rate differentials became sizeable but it was in 2010 and 2011 that
they went back to the levels (or even higher) than those of the pre-euro era: in only four
years the EMU bond markets went from a situation of stability and tranquility to their
current situation of turmoil.

As the crisis unfolded, several factors might have affected the valuation of sovereign
bonds. First, the global market price for risk went up, as investors sought higher com-
pensation for risk. Deleveraging and balance sheet-constrained investors developed a
systemically stronger preference for a few selected assets vis-a-vis riskier instruments, the

so called flight-to-quality. This behavior not only benefited sovereign securities as an asset
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class at the expense of corporate bonds and other riskier assets, but also introduced a
higher degree of differentiation within the sovereign spectrum itself. Second, as the crisis
spread to the public sector and policy authorities stepped in to support troubled financial
institutions, probabilities of distress went up across sovereigns.

Typically spreads between government bonds reflect three types of risks:

e Fxchange rate risk, which refers to the risk for investors of an adverse exchange
rate movement (which in turn could be linked to inflation differentials, credibility

of monetary policies, as well as sustainability of fiscal positions);

o Liquidity risk, which relates to the size and depth of the government’s bond market.
In particular this is the risk of selling less liquid assets at worse market conditions

(higher transaction costs, greater price impact) than more liquid ones;

e (Credit or default risk, which refers to the country’s creditworthiness as reflected by

its macroeconomic and fiscal position and to its sustainability.

In addition, other technical factors such as differences in taxation, or in the issuance
clearing and settlement procedures, may contribute to generate positive spreads together
with international risk aversion, i.e. investor sentiment towards this asset class for each
country. Finally, the effect of announcements, for example macroeconomic news/surprises
or fiscal policy events (e.g. government plans) might also play a role in the development
of sovereign bond spreads.

With the introduction of the single currency, the exchange rate risk obviously vanished
as well as the liquidity risk. Moreover, due to the centralization of the monetary policy,
credit risk was no longer perceived different for each European country and this lead to
reduce the financing costs for the less virtuous Member States. Anyway, at least from
a theoretical point of view, we would have expected bonds to be more accurately priced
due to higher financial integration as this represents a necessary condition for market
discipline: the more developed and integrated the financial markets are, the higher the
degree of market efficiency and the more accurate prices are. Market-imposed discipline
of this kind is especially relevant in large federal states, such as Canada or the US,
and in monetary unions, such as the European Economic and Monetary Union (EMU),
where governments of the member states can issue debt in their own right but are more
restricted in their ability to respond to financial difficulties since they do not control their
own monetary policies. Faced with a fiscal crisis, such governments are likely to turn to
other governments or the common central bank and ask for a bail-out.

The resulting remarkable compression of sovereign risk premium differentials, expe-
rienced in the first years of the Euro era, has raised doubts about financial markets’

ability to provide fiscal discipline across Euro area members, to discriminate between the



qualities of fiscal policies and to be coherent with economic rationality. Starting from
the sovereign debt crisis, this ability was by far regained by markets which became more
careful in monitoring the fiscal performance of member states and restarted to exert dis-
ciplinary pressure on their governments. Anyway, while before the main concern was that
government spreads were too low and too close, now the question is whether these high
spreads reflect the fundamentals of a country or whether they also reflect a regime shift in
the market pricing of government credit risk: during crisis periods, market penalization
of fiscal imbalances can be higher than during normal times.

Understanding what has prompted recent developments in sovereign risk is particularly
relevant for policymaking in particular for the macroeconomic consequences that their
movements can have. Persistently higher spreads could, in fact, have a major impact
on many euro area governments’ marginal funding costs, possibly undoing the beneficial
effects of declining risk-free interest rates. Most importantly, any loss of market confidence
is deemed to lead to increase in long-term real interest rates and debt-service costs, partly
offsetting the stimulus effects of measures taken to deal with the crisis both to consumption
and investment and further adding to financing pressures. Rollover risk can increase
too, as debt might have to be refinanced at unusually high cost or, in extreme cases,
cannot be rolled over at all. Apart from the importance that government spreads levels
have per se, comovements are probably even more important. This distress dependence
among sovereigns might be due to several factors. For instance, trade linkages might play
an important role in an environment of slowing global demand. Capital flow linkages
represent another possibility as financial institutions tend to engage in important cross-
border activities, and can therefore be another channel of contagion. In fact, several of
these sovereigns were required, almost simultaneously, to provide support to the banks
and other systemic financial institutions operating on their domestic markets.

According to Schuknecht (2010), bond yield spreads can still largely be explained on
the basis of economic principles during the crisis. Once the crisis started and through to
the rescue of Bear Stearns, the movement in spreads reflected global factors, in particular
a flight to quality and global financial sector instability. After the Bear Stearns rescue,
the global factors became less relevant and the prospects of the domestic financial sector
acquired a more prominent role in explaining changes in sovereign spreads. The sensi-
tivity of countries to their domestic vulnerabilities appears to be conditioned by their
loss of competitiveness over the upswing of the previous economic cycle. The countries
with the largest decline in competitiveness display a particularly strong link between the
prospects of the financial sector and sovereign spreads with impacts on governments debt
levels as well. A relationship also exists for the other countries, but its economic strength
is more moderate. The inference is that as external competitiveness has weakened, do-

mestic vulnerabilities have acquired greater salience. In addition to that, Manganelli and
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Wolswijk (2007) show that spreads in Euro area countries are systematically related to

credit ratings.

1.1 This dissertation and why

The European Monetary Union (EMU) brought to life an integrated market for fixed
income government securities in the Euro-area. Common euro denomination made bonds
issued by Euro-area Member States close, but not perfect, substitutes. European sov-
ereign bonds achieved only partial integration even before the recent financial turbulence
implying that monetary unification is a necessary but not sufficient condition for finan-
cial integration in the Euro area. Additionally, sovereign bond spreads are found to
reflect macroeconomic expectations, as well as risk aversion, while the degree to which
the spreads are affected by either macroeconomic or risk perceptions varies both across
sovereigns and through time.

The overall aim of this dissertation is to assess the impact of macroeconomics on
government bond spreads, through both macroannouncements and proper macroeconomic
fundamentals.

In particular, in Chapter 2 we draw our attention to jumps in European government
bond markets trying to assess whether a relationship exists between jumps in the dif-
ferent countries analyzed and public releases such as macroannouncements, government
bond auctions and rating actions. The purpose is to evaluate whether jumps react to
country specific releases, meaning that countries risk is idiosyncratic, or whether there
exists some systemic pattern arising from releases. To provide a global view of countries
sensitivity to jumps, we will go further taking into account even cojumps, that are con-
temporaneous jumps in more than one market. The contribution made by Chapter 2 is
both empirical as well as methodological. In fact, not only we evaluate a great amount of
macroannouncements referring to US, Euro area and individual countries while literature
on this topic generally limit the attention to US ones, but we firstly propose to assess
the impact of government bond auctions too. To complete the picture, we consider even
rating actions. From a methodological point of view, we propose a unified framework for
jointly modelling the impact of all the public events taken into consideration allowing to
disentangle even between a pre from a post announcement effect.

In Chapter 3, we focus on comovements with the purpose of investigating the exis-
tence and the nature of the relationship between market volatility and correlation and
macroeconomic fundamentals. The idea is to estimate correlations using two different
time-scales, 15-minute and monthly data, in order to evaluate whether and how corre-
lations estimated using low frequency macroeconomic data impact on comovements at

the intraday level and therefore to assess whether a country’s credithowthiness has some
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impacts on trading activity. The answer to this point requires the involvement of data
measures at both high as well as low frequency, issue that we address by MIxed DAta
Sampling. Examination and research on different types of comovements and correlations
in time is of a great importance. In fact, in addition to the time dimension of the market
dynamics, there are different types of investors who influence such dynamics. Starting
with noise traders with an investment horizon of several minutes or hours, the spectrum
of investors ranges through technicians with the horizon of several days to fundamental-
ists with the horizon of several weeks or months to pension funds with the investment
horizon of several years. Thus, apart from the time domain, there is a frequency do-
main approach, which represents various investment horizons. Again the contribution to
the current literature of Chapter 3 is twofold; from the methodological point of view we
extend a previous work recognizing the existence of two time domains, high and low fre-
quency, but where both were modeled by a pure time series approach while we propose to
model the low frequency component of both volatilities and correlations by slowly-varying
macroeconomic fundamentals. In addition to that, to the best of our knowledge, this is
the first work combining two so different frequencies, namely 15-minute and monthly.
From an empirical point of view, we provide evidence of the role that macroeconomic
factors had in driving both volatilities and correlations of European government spreads
even during the sovereign crisis although financial markets resulted more integrated than
what we would have expected relying on pure macroeconomic fundamentals.

Finally, Chapter 4 is more on the technical side as it is aimed at evaluating alternative
correlation matrix estimators relying on high frequency data recently proposed in litera-
ture. There is even an empirical motivation behind that analysis. In fact, as in Chapter
3 we identify peculiar patterns in correlations, we decide to adopt alternative estimators
to assess whether that pattern was model specific rather than a true characteristic of
our data. Estimating correlations using high frequency data require to deal with two
important features, such the asynchronicity of trading activity and microstructure noise
preventing from observing the true efficient market prices. To deal with these two issues,
a number of synchronization methods and integrated covariance estimators were intro-
duced, although there is no clear picture about which one provides the best estimates
of the true integrated covariance matrix. Therefore we propose a comprehensive Monte
Carlo simulation exercise aimed at comparing the alternative integrated covariance esti-
mators combined with the possible synchronization schemes together with an empirical
risk management exercise based on backtesting both Value-at-Risk and tail risk measures
of a portfolio obtained combining the benchmark government bonds. Both applications
concur in identifying a couple of estimators and a synchronization method which work
particularly well in all the cases evaluated.

A final point is about that this dissertation focused on spreads based on yields reported
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in the secondary market trades of government bonds rather than on credit default swaps
(CDS), as CDS are an insurance premium on a notional outstanding amount and therefore
they offer another prospective on the market’s perception of default risk. Moreover, CDS

markets are thinner than conventional government bonds ones.
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Chapter 2

Macroannouncements, Bond
Auctions and Rating Actions in
the European Government Bond

Spreads

Abstract

This Chapter investigates the impact of macroannouncements, government bond auc-
tions and rating actions on the 10-year government bond spreads for Belgium, France,
Italy, the Netherlands, Spain with respect to Germany. Using a unique tick-by-tick dataset
over 1/02/2009-05/31/2012, we identify the impact of the three drivers via jump and co-
jump detection procedures. Disentangling the pre- from the post-announcement effects,
real economy and forward looking news releases from US and Euro area, country specific
Spanish and German macroannouncements, and auctions hold in distressed countries such
as [taly and Spain have a statistically and economically significant effect. No role is played
by rating actions.

Keywords: Jumps, Cojumps, Government Bond Spreads, Macroannouncements,
Government Bond Auctions, Rating Actions.
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12 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

2.1 Introduction

Europe is under stress and integration among European countries seems more fragile
than ever. Starting from the subprime crisis in 2007, markets are more aware of the
differences between European countries, and this sentiment is reflected, amongst others,
in increasing differentials of government bond yields. In 2008 and 2009, government
bond spreads become sizeable but it was in 2010 and 2011 that spreads substantially
increase, getting higher than the levels experienced in the pre-Euro era. In only four
years, the European bond markets went from a situation of stability and tranquility to
the current turmoil. The most recent European sovereign debt crisis involving Cyprus
is just the last of a series of systemic events whose market depth and persistence have
questioned the much celebrated markets’ self-regulatory power as well as the ability of
policy makers and regulators to adopt overall stability measures and stimulate economic
growth. Thus, understanding which factors drive sovereign risk is particularly timely also
for the macroeconomic consequences of the comovements associated to these factors. For
instance, higher spreads deteriorate borrowing capabilities and market confidence which
simultaneously impact on consumption and investment. The way to ameliorate the effects
of the crisis on the real economy is a current political debate but the recipes to put in
place still to be fully understood.

In this Chapter-, we identify the role that market movers like macroeconomic an-
nouncements, government bond auctions and rating actions have in driving government
bond markets, and whether the occurrence of specific events in a country affects other
European countries. To this aim, we make use of a unique dataset of high frequency
data on 10-year European government bond spreads. Moreover, we analyze the impact of
the three drivers on both conditional mean and variance specifications, disentangling the
pre- from the post-announcement effect. The econometric analysis is conducted using re-
cent developments in the financial econometrics literature on jump and cojump detection
procedures.

In the literature, the relationship between macroannouncements and returns is widely
studied while the sensitivity of jumps is analyzed in a handful of papers such as Dungey
et al. (2008), Lahaye et al. (2011) and Jiang et al. (2011). In particular, Lahaye et al.
(2011) estimate jumps and cojumps at intradaily frequency mapping jumps and cojumps
to macro news to find that bond markets are the most sensitive to news releases and that
macroannouncement surprises are associated with cojumps even more consistently than
jumps. Lahaye et al. (2011) point out the advantage of using very high frequency data
to study the impact of such events. On the other hand, Jiang et al. (2011) conclude
that although a majority of jumps occurs at prescheduled news announcement times,

surprises related to macroannouncements have limited power in explaining bond price
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jumps. Moreover, authors show that liquidity shocks play a key role in explaining jumps
and that usually, during the preannouncement period, it is possible to observe a drop in
market depth. Jiang et al. (2011) explain this result as that, as also discussed in Fleming
and Piazzesi (2006), dealers tend to withdraw orders and place them further out to avoid
being picked off in the upcoming information event. Thus, Authors conclude that jumps
observed in correspondence to macroannouncement releases are not only determined by
news, but also by the drop in liquidity that is a market mover per se.

As far as government bond auctions are concerned, we refer to Fleming and Remolona
(1997) where the impact of US treasury auctions on returns is assessed. Fleming and
Remolona (1997) compute the "surprise" effect as the difference between the yield in the
when-issued market with the actual ex-post yield without relevant findings.

Finally, although rating actions are expected to be an important determinant of
spreads, as the creditworthiness represents the long-term sustainability of countries’ debt,
the role and reliability of credit rating agencies (CRA) has been under investigation. In ad-
dition to concerns on CRAs effective capability to give accurate risk assessments, there is
a sustained debate about the timing of recent downgrades of European sovereigns claimed
to promote uncertainty in financial markets: see for instance Akdemir and Karsli (2012),
Alsakka and Gwilym (2012, 2013), He et al. (2012) and Opp et al. (2013). In terms of
the impact of rating actions, Afonso et al. (2012) reports that ratings are systematically
related to daily movements in sovereign bond spreads, to budgetary developments, and
that rating actions are not anticipated at 1-2 months horizon; in addition, Authors show
the existence of spillover effects, especially from lower rated countries to higher rated
countries, as well as of persistent effects for recently downgraded countries. In our analy-
sis, we consider S&P, Moody’s and Fitch separately to measure the distinct impact of
the three rating agencies motivated by the results reported in Hill and Faff (2010) where
it is shown that S&P is more active and provides higher flow of news information than
Moody’s and Fitch during crisis periods.

This Chapter makes an important contribution to the literature on the empirical de-
terminants of government bonds spreads. Using a unique tick-by-tick 10-year government
bonds spreads resampled at 5-minute frequency, we map jumps and cojumps to the three
main drivers of spreads. We show that jumps and cojumps are very sensitive to macroan-
nouncements from US and Euro area but also to individual countries releases in particular
to those related to Germany and Spain. As per the category of macroannouncements, a
very relevant role is played by real economy indicators, in particular US non-farm pay-
roll, and forward looking indicators, such as consumer confidence and purchase manager
index. In addition, significant is the role of the ECB Introductory Statement, bringing to
the market the key information concerning decisions on ECB rates. We show the impor-

tance of taking into account the pre-announcement effect which explain a great amount of
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jumps. Pre- and post-announcements convey different kind of information, where the pre-
announcements provide an indication about traders’ perception of future news relevance
and the post-announcements, captured by surprises, are able to lead traders to revise
their positions according to the actual releases. As far as government bond auctions are
concerned, they explain a great deal of jumps and cojumps, especially for auctions hold in
Italy and Spain. On the contrary, rating actions play no role as determinants of spreads’
movements. Finally, we observe an increasing number of jumps and cojumps during the
preannouncement periods for both macroannouncements and auctions.

The remainder of the Chapter- is organized as follows. In Section 2.2, we describe
the dataset while in Section 2.3 we introduce the testing procedures adopted to detect
jumps and cojumps and the summary statistics of identified jumps and cojumps events
and related market activities (Section 2.3.1), we map jumps to macroannouncements,
auctions and rating actions and we introduce the mean and variance models we propose
(Section 2.3.2). The empirical results are reported and discussed in Section 2.4. Section

2.5 concludes.

2.2 Data and Methodology

2.2.1 Data Description

2.2.1.1 Spreads

We use data for the benchmark 10-year government bonds of Belgium, France, Germany,
Italy, the Netherlands and Spain over the period 2nd January 2009 - 31st May 2012. We
consider bid, rather than mid, data as more representative of the spreads during crisis
periods because of very large bid-ask spreads. The 10-year bond benchmarks are iden-
tified according to maturity and liquidity criteria. Morningstar provided us with this
unique tick-by-tick data sample that we resampled at 5-minute frequency using calendar
time, excluding time intervals with missing values for at least one country. The 5-minute
frequency is robust to microstructure noise and offers sufficiently high frequency to prop-
erly evaluate the impact of specific events. Moreover, this frequency is consistent with
previous seminal contributions such as Fleming and Remolona (1997) and Balduzzi et al.
(2001).

The trading period considered is 8 a.m. - 3:30 p.m. coordinated universal time (UTC).
We detect and remove holidays and outliers applying a filter which is a modification
of the procedure to remove outliers proposed in Brownlees and Gallo (2006) that we
implement following the steps suggested by Barndorff-Nielsen et al. (2011, p. 156), that
we summarize below.

Let p;; be a tick-by-tick time series of prices, where ¢ denotes day and ¢ the time



Data and Methodology 15

interval of day ¢, then an observation is removed if:

|pti — Dri (kL)‘ > max {4M D, ;(k),nvy} A ‘pt,i — D (kR)‘ > max {4M Dy ;(k),nv}
(2.1)
where k the bandwidth; p, ; (kL) and p; ; (kR) sample medians of the k/2 observations
respectively before (L for left) and after (R for right) (¢,4); M D, ;(k) mean absolute
deviation from the median of the whole neighborhood of length k; A the intersection
operator; v mean of the k£ absolute returns; n is y—multiplier.

The advantage of this rule lies in the separate comparison of the (¢, ) —th trade against
the left and right neighbours while the measure of dispersion is calculated on the whole
bunch of k trades. This approach is specifically designed to avoid detecting jumps as false
outliers.

Finally, we also remove the first return of the day that occurs at 8 a.m. as it largely re-
flects the adjustment to information accumulated overnight and hence exhibits a spurious
excess variability compared to any other five-minute intervals. Data selecting procedure

is summarized in Table 2.1.
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Table 2.1: Government bond yields and

spreads: data selection and summary

statistics
DE IT FR ES BE NL
PANEL A
No. ticks 2,980,063 917,630 1,035,631 903,233 799,610 605,155
Limiting trading time 2,294,951 704,701 794,602 796,529 682,408 512,789
Outliers: No. (%) 2,528 (0.11) 1,247 (0.18) 1,468 (0.18) 1,372 (0.17) 1,313 (0.19) 772 (0.15)
No. trades per day: Mean (SD) 2,629 (1,197) 805 (316) 908 (358) 910 (356) 780 (326) 586 (290)
Trade duration: Mean (SD) [s]  10.17 (27.01) 33.09 (62.97) 29.38 (58.16) 28.49 (57.85) 34.15 (69.05) 45.42 (82.33)
5-minute intervals 79,534 79,534 79,5634 79,5634 79,534 79,534
Exclude 1st daily obs 78,660 78,660 78,660 78,660 78,660 78,660
Bid YTM
Mean (SD) [%)] 2.76 (0.58) 4.67 (0.80) 3.29 (0.37) 4.67 (0.75) 3.82 (0.42) 3.11 (0.57)

Median (1st - 99th pct) [%)]
Bid-Ask Spread of YTM

Mean (SD) [bps]

Median (1st - 99th pct) [bps]

3.00 (1.44 - 3.57)

0.63 (0.05)
0.60 (0.55 - 0.76)

4.49 (3.75 - 7.05)

0.65 (0.05)
0.64 (0.59 - 0.81)

3.39 (2.49 - 3.97)

0.80 (0.07)
0.82 (0.68 - 0.94)

4.39 (3.75 - 6.49)

0.76 (0.05)
0.76 (0.70 - 0.90)

3.82 (2.94 - 4.87)

0.97 (0.04)
0.97 (0.89 - 1.08)

3.29 (1.93 - 4.04)

0.70 (0.03)
0.70 (0.64 - 0.77)

Bid Spread
Mean (SD) [bps]
Median (1st - 99th pct) [bps]
Bid-Ask Spread of Spread
Mean (SD) [bps]
Median (1st - 99th pct) [bps]

191 (124)
148 (60 - 513)

0.03 (0.05)
0.03 (-0.08 - 0.14)

54 (34)
38 (20 - 154)

0.18 (0.06)
0.17 (0.10 - 0.30)

192 (117)
184 (50 - 481)

0.13 (0.07)
0.13 (0.00 - 0.24)

106 (63)
90 (34 - 295)

0.35 (0.07)
0.35 (0.19 - 0.48)

35 (16)
30 (15 - 81)

0.07 (0.06)
0.10 (-0.04 - 0.19)

PANEL B
Around macroannouncements
No. trades per hour: Mean (SD)
Trade duration: Mean (SD) [s]
Other
No. trades per hour: Mean (SD)
Trade duration: Mean (SD) [s]

298 (211)
9.56 (25.05)

314 (178)
10.65 (23.40)

86 (54)
33.10 (63.87)

100 (46)
32.96 (59.28)

96 (61)
29.65 (60.45)

114 (53)
29.09 (51.98)

96 (62)
28.61 (58.68)

110 (54)
28.31 (51.78)

83 (54)
34.34 (71.29)

98 (48)
33.83 (63.00)

63 (44)
44.91 (82.37)

73 (41)
45.49 (77.65)

Around auctions
No. trades per hour: Mean (SD)
Trade duration: Mean (SD) [s]
Other
No. trades per hour: Mean (SD)
Trade duration: Mean (SD) [s]

257 (199)
10.26 (30.86)

334 (190)
10.12 (21.62)

80 (53)
33.81 (72.50)

103 (47)
32.69 (58.43)

89 (60)
30.03 (64.25)

116 (54)
28.99 (52.21)

92 (62)
28.86 (63.25)

110 (56)
28.20 (51.43)

75 (52)
35.74 (77.55)

100 (49)
33.37 (63.17)

56 (43)
47.45 (92.91)

75 (42)
44.40 (76.38)

Around rating actions
No. trades per hour: Mean (SD)
Trade duration: Mean (SD) [s]
Other
No. trades per hour: Mean (SD)
Trade duration: Mean (SD) [s]

263 (205)
8.87 (24.40)

355 (184)
10.17 (22.22)

74 (52)
31.65 (51.31)

109 (44)
33.06 (60.62)

82 (58)
28.66 (49.94)

123 (50)
29.31 (53.97)

83 (59)
27.36 (50.68)

119 (53)
28.44 (53.36)

70 (51)
33.30 (58.21)

105 (46)
34.07 (65.63)

59 (44)
39.47 (59.91)

79 (41)
45.44 (79.33)

PANEL A of Table 2.1 reports the data procedure selection on government bond yields and spreads together with some summary statistics. Limiting
trading time means removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described
in (2.1) in the text. Tick-by-tick data are resampled using calendar time (see details in the body of the chapter). The 1st observation of each day is
removed as it presents excess volatility. In square brackets is the unit of measurement. PANEL B of Table 2.1 offers an analysis of trading activity
around the three categories of events analyzed: macroannouncements, government bond auctions and rating actions. The window around the event ranges
from 1 hour before the release up to 1 hour after.

In Panel A, for each time series, we report the overall number of ticks available from

which we remove holidays, weekends and trades occurred outside the trading period 8

a.m. - 3:30 p.m. UTC. We also remove outliers following the description in (2.1) which

lead us to detect percentage of outliers ranging from 0.11% for Germany to the 0.19% for

Belgium. In addition, we also report some descriptive statistics to get useful insights about

market liquidity. In particular, we compute the mean number of trades per day and the

time elapsed between two consecutive trades; both statistics indicate that the most liquid

market is the German one with a daily average number of trades of 2,629 and a trade
duration of 10.2 seconds, followed by Spain (910 trades, 28.5 seconds), France (908 trades,
29.4 seconds), Italy (805 trades, 33.1 seconds), Belgium (780 trades, 34.1 seconds) and the
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Netherlands (586 trades, 45.4 seconds). After resampling at the 5-minute frequency and
removing the 8 a.m. time interval for each day, we end up with 78,660 returns, covering
874 days corresponding to 90 observations per day. In Table 2.1, we also report descriptive
statistics about yields and spreads with respect to German Bund: Italy and Spain have
the highest average yields, both corresponding to 4.67%, while Germany has the lowest
equal to 2.76% denoting its safe heaven status; the average bid spread on Germany is
equal to 192 bps for Spain, 191 for Italy, 106 for Belgium, 54 for France and 35 for the
Netherlands. Of course, the information that the average indicator offers is limited in the
light that government bond spreads vary a lot throughout our sample period as can be

seen from Figure 2.1.
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Figure 2.1: 10-year government bond spreads

Figure 2.1 reports the 10-year government bond spreads (in bps) with respect to Germany for Italy,
France, Spain, Belgium and the Netherlands over the period 2nd January 2009 - 31st May 2012. Spreads
are computed on bid yields at 5-minute sampling frequency.

Government bond spreads were moving very closely until May 2010, when markets
start to pay more attention to sovereign debt risk in correspondence to the burst of
the Greek crisis. In May 2010, Greek government deficit was revised and estimated to be
13.6% of GDP with a correspondent decrease in international confidence in Greece’s ability
to repay its sovereign debt. As consequence, despite the first rescue package approved
by Eurozone countries and the IMF, concerns about Euro countries solvability began to

raise together with spreads.
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In Panel B of Table 2.1, we report the analysis of the trading activity around the
public events we are taking into consideration namely macroannouncements, government
bond auctions and rating actions. The time window analyzed ranges from 1 hour before
up to 1 hour after the release of each event. We compare both the number of trades per
hour as well as the time elapsed between two consecutive trades with respect to trading
hours with no particular events. Results in Table 2.1 show that there is no great evidence

of a different trading activity around the events analyzed.

2.2.1.2 Macroannouncements

Macroannouncements are a wide range of news, coming from a number of countries,
which constitute one of the most important source of information driving trading activ-
ity. The reason why bond markets are generally found to be more influenced by macroan-
nouncement releases is hilighted by the Fisher equation stating that the Yield-To-Maturity
(YTM) of a bond can be decomposed into two parts: the real interest rate component
(y]), which is closely linked to expectations about economic activity, and the average in-
flation expected to prevail over the maturity of the bond (7). Consequently, the nominal

yield yi* may be expressed as:
yi' = E (yi Q) + E (m|$2) (22)

From this decomposition it is clear that every change in y;* is determined by the infor-
mation set € at time ¢. Unlike stocks or corporate bonds, government bonds returns are
hardly affected by any asset-specific or private information; therefore we can claim that
Q) is to a great extent formed by public information in the form of regularly scheduled
announcements, macroeconomic or not, which constitute the main source of volatility for
this asset class at the intraday level.

We consider news releases related to the US, the Euro area, Belgium, France, Germany;,
Greece, Italy, the Netherlands, Portugal and Spain. In some cases, we are unable to use all
available macroannouncements as they are released when some markets are still closed.
This is for instance the case of France, with releases occurring between 6:30 and 7:45
a.m. UTC. Finally, in case of Spain, although macroannouncements are released at 8:00
a.m. UTC, we keep these indicators shifting them to 8:05 a.m. in order to match with
spreads data. Data related to macroannouncements are median expected value by survey
panelists (F), forecasts standard deviation (o) and actual value of the release (A) and they
were collected from Bloomberg. Surveys are conducted on a number of forecasters by the
Money Market Service (MMS) and these data are generally found to possess reasonable
properties as expectations series as they are unbiased, pass simple forecast rationality

tests and outperform naive time series forecasts (see, for instance, Balduzzi et al. (2001)).
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In our application, we adopt the standard surprise measure defined as S = (A — E)/o. A

complete list of the macroannouncements analyzed is presented in Table 2.2.

Table 2.2: Macroannouncements with prescheduled releases

Country Macroannouncement Frequency Release time No. Category Surprise
(UTC) Mean (SD)
Us Business inventories M 15:00 41 RE -0.55 (2.08)
Chicago PMI M 14:45 39 FL 0.87 (2.54)
Consumer confidence M 15:00 39 FL -0.29 (3.40)
CPI M 13:30 41 P 0.01 (1.03)
Durable goods M 13:30 40 FL -0.59 (2.70)
Factory orders M 15:00 40 FL 0.16 (1.11)
GDP advance Q 12:30 / 13:30 14 RE -0.13 (1.00)
GDP preliminary Q 12:30 / 13:30 14 RE -0.53 (1.45)
GDP final Q 12:30 / 13:30 13 RE 0.00 (2.28)
Industrial production M 14:15 41 RE -0.29 (1.82)
Initial jobless claim w 13:30 175 RE 0.00 (0.00)
Nonfarm payroll M 13:30 39 RE -0.09 (2.23)
Philadelphia FED Index M 15:00 41 FL -0.10 (3.69)
PPI M 13:30 41 P 0.06 (1.75)
Retail sales M 13:30 41 RE 0.05 (1.81)
University of Michigan M 14:55 39 FL 1.12 (1.49)
EA Business climate M 09:00 42 FL 0.17 (2.05)
Consumer confidence M 10:00 42 FL 0.14 (2.00)
Flash HICP M 10:00 42 P 0.07 (1.40)
HICP M 10:00 41 P 0.00 (0.00)
Industrial production M 10:00 41 RE -0.29 (1.82)
Introductory Statement M 13:30 40 RE
M3 M 09:00 41 P -0.44 (2.66)
Monthly Bulletin M 10:00 41 RE
PMI flash M 09:00 41 FL 0.18 (2.51)
PMI final M 09:00 41 FL 0.79 (2.87)
PPI M 10:00 41 P -0.05 (0.86)
Retail sales M 10:00 41 RE -0.79 (1.66)
Unemployment M 10:00 41 RE 0.41 (1.67)
DE CPI preliminary M 13:00 37 P 0.00 (1.32)
IFO: business confidence M 09:00 41 FL 1.24 (2.55)
Industrial production M 11:00 41 RE -0.15 (2.58)
Unemployment M 08:55 42 RE -0.63 (2.54)
ZEW M 10:00 41 FL 0.73 (2.53)
IT Business confidence M 08:30 / 09:00 41 FL 0.26 (2.85)
CPI preliminary M 10:00 42 P 0.35 (2.49)
CPI final M 09:00 / 10:00 41 P -0.98 (3.00)
GDP preliminary Q 09:00 / 10:00 13 RE -1.33 (2.78)
GDP final Q 09:00 / 10:00 12 RE -0.25 (0.87)
Industrial production M 09:00 41 RE -0.04 (2.44)
FR Industrial production M 07:45 / 08:45 2 RE 6.67 (25.93)

ES CPI M 08:00 41 P 0.06 (0.75)
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Table 2.2: Macroannouncements with prescheduled releases

Country Macroannouncement Frequency Release time No. Category Surprise
(UTC) Mean (SD)

GDP preliminary Q 08:00 14 RE 0.14 (2.03)

GDP final Q 08:00 14 RE -0.29 (0.73)

Industrial production M 08:00 40 RE -0.38 (2.69)
Unemployment Q 08:00 14 RE 0.75 (1.42)

PT CPI M 10:00 40 P -0.84 (2.79)
GDP preliminary Q 10:00 14 RE 6.43 (10.70)

GDP final Q 11:00 12 RE -3.00 (2.38)

NL CPI M 08:30 39 P 0.02 (1.18)
Industrial production M 08:30 39 RE -0.65 (3.74)
Unemployment M 08:30 41 RE -0.37 (2.14)

BE Business confidence M 14:00 41 P 0.10 (2.19)
GR CPI M 10:00 40 P -0.84 (3.49)
GDP preliminary Q 08:30 / 10:00 8 RE -0.19 (1.03)

GDP final Q 08:30 / 10:00 7 RE -3.00 (2.38)

Unemployment M 10:00 38 RE -0.02 (2.61)

Table 2.2 reports a description of macroeconomic announcements released in the period 2nd January 2009 - 31st
May 2012. In some cases the release time changes according to the summertime. FL stands for Forward Looking,
P for price and RE for Real Economy macroannouncement categories. Surprise is computed as (Actual Release
-Median Forecasts)/SD Forecasts.

The size of the surprises related to US and Euro area macroannouncements are smaller
than those concerning individual countries, implying a more accurate forecast by surveyors
in the first two cases, though it is fair to mention that the number of surveyors interviewed
for US and Euro area releases is higher than for individual countries. Finally, we drop
the France industrial production given that in only two cases macroannouncements were
released after 8 a.m. UTC, and the Portugal preliminary GDP because of its very high
dispersion (standard deviation equals 10.7) due to both poor forecasts and low number
of surveyors for this specific news. For the Euro area HICP we did not dispose about
forecasts. The distribution of macroannouncement surprises is represented in Figures
2.2-2.5:



Data and Methodology 21

%

cCl
CPI
PPI

Business Inventories
Chicago PMI

Durable Goods
Factory Orders

GDP Advance

GDP Preliminary

GDP Final

Indu strial Production
Initial Jobless Claim
Nonfarm Payroll
Philadelphia FED Index
Retail Sales

University Of Michigan

Figure 2.2: US macroannouncement surprises

Figure 2.2 presents the distribution of surprises related to US macroeconomic announcements released in
the period 2nd January 2009 - 31st May 2012.
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Figure 2.3: EA macroannouncement surprises

Figure 2.3 presents the distribution of surprises related to Euroa area macroeconomic announcements
released in the period 2nd January 2009 - 31st May 2012.



22 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

25 =
20 -
15 -

10 4

Ly

-10 -

-
s
or
Lo
—
—
L
sa
i

-15

DE - CPI Preliminary
DE - Business Confidence 4
DE - Industrial Production _
DE - Unemployment |
DE - ZEW |
IT - Busine ss Confidence |
IT - CPI Preliminary |
IT - CPIFinal |
IT - GDP Preliminary |
IT - GDP Definitive _
IT - Indu strial Production |
FR - Industrial Production 4
ES-CPI
ES - GDP Preliminary

Figure 2.4: National countries macroannouncement surprises (1)

Figure 2.4 presents the distribution of surprises related to German, French, Italian and Spanish macro-
economic announcements released in the period 2nd January 2009 - 31st May 2012.
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Figure 2.5: National countries macroannouncement surprises (2)

Figure 2.5 presents the distribution of surprises related to Spanish, Portuguese, Belgian, Greek and Dutch
macroeconomic announcements released in the period 2nd January 2009 - 31st May 2012.
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2.2.1.3 Bond Auctions

We take into consideration auctions of European countries issuing Euro-denominated
bonds: Austria, Belgium, Finland, France, Germany, Greece, Italy, Portugal, Spain and
the Netherlands. Most auctions take place between 8 and 10 a.m. UTC. To capture the
performance of an auction, we use two main variables: the average yield at which the
government sells the bonds and the bid-to-cover, that is how many bids the Government
received with respect to the total offer. These two data were collected just for auctions
relative to 10-year bonds as they not only correspond to the maturity of the spreads
analyzed but they even represent the most relevant ones.

In Table 2.3, we report the total number of auctions per country together with the de-
tail of 10-year bond auctions for which we provide details on mean and standard deviation

of the average yield and the bid-to-cover.

Table 2.3: Government bond auctions

No. of auctions No. of 10-year Average yield [%] Bid-to-cover
bond auctions Mean (SD) Mean (SD)
Austria 34 15 3.64 (0.68) 2.16 (0.44)
Belgium 113 25 3.98 (0.55) 2.07 (0.56)
Finland 8 4 2.75 (0.46) na
France 271 38 3.61 (0.59) 2.34 (0.75)
Germany 220 35 3.04 (0.84) 1.53 (0.29)
Greece 53 0 - -
Ttaly 193 46 4.76 (0.75) 1.42 (0.17)
Portugal 104 16 5.01 (0.79) 2.05 (0.76)
Spain 163 25 4.85 (0.81) 1.94 (0.40)
the Netherlands 142 18 3.42 (0.74) na

Table 2.3 reports a description on government bond auctions hold in the period 2nd Janaury 2009 - 31st
May 2012. Average yield: yield at which the government allocated the bonds issued in an auction. Bid-
to-cover: ratio between the number of bids the Government received and the amount of bonds offered.
Average yield and bid-to-cover are collected just for auctions concerning 10-year bonds.

Bid-to-covers are very similar for all the countries analyzed ranging from a minimum of
1.42 for Italian auctions to a maximum of 2.34 for French ones, while average yields reflect
countries different sovereign risk: safer countries such as Finland and Germany succeed
in selling bonds at higher prices and lower returns, with an average yield of 2.75% and
3.04% respectively, while riskier countries such as Italy, Spain and Portugal allocate their
bonds at an average yield of 4.76%, 4.85% and 5.01%, respectively.

The distributions of bid-to-cover and average yield per country are reported in Figures

2.6 and 2.7 respectively:
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Figure 2.6: Bid-to-cover

Figure 2.6 presents the distribution of bid-to-cover for 10-year government bond auctions hold in the
period 2nd January 2009 - 31st May 2012. Bid-to-cover offer information about the number of bids the
Government received with respect to the total offer.
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Figure 2.7: Average Yield

Figure 2.7 presents the distribution of average yields for 10-year government bond auctions hold in the
period 2nd January 2009 - 31st May 2012. Average yields are the yield at wihich the Government succeded
in selling its bonds.
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2.2.1.4 Rating Actions

We collect data concerning rating actions from the three main rating agencies: Standard
& Poor’s, Moody’s and Fitch. The aim is not only to assess whether downgradings have
an impact on government bond spreads but also to investigate whether some agencies
have bigger and/or more lagged impacts in comparison to the others. Note that in our
sample we deal mainly with downgrading actions as only two upgrading actions occurred
during the period considered, namely on 22nd February 2011 and 13th March 2012 for
Greece. Downgrading actions were undertaken against Austria, Belgium, France, Greece,

Ireland, Italy, Portugal and Spain as reported in Table 2.4.
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Table 2.4: Rating actions

S&P’s Moody’s Fitch

Austria 13-Jan-12 - -

Belgium 25-Nov-11 16-Dec-11 27-Jan-12

France 13-Jan-12 - -

Greece 14-Jan-09 22-Dec-09 22-Oct-09
16-Dec-09 22-Apr-10 08-Dec-09
27-Apr-10 14-Jun-10 09-Apr-10
29-Mar-11 07-Mar-11 14-Jan-11
09-May-11 01-Jun-11 20-May-11
13-Jun-11 25-Jul-11 13-Jul-11
27-Jul-11 02-Mar-12 22-Feb-11 (e)
27-Feb-12 09-Mar-12
02-May-12 13-Mar-12 (e)

17-May-12

Ireland 30-Mar-09 02-Jul-09 08-Apr-09
08-Jun-09 19-Jul-10 04-Nov-09
24-Aug-10 17-Dec-10 06-Oct-10
23-Nov-10 15-Apr-11 09-Dec-10
02-Feb-11 12-Jul-11
01-Apr-11

Italy 19-Sep-11 05-Oct-11 07-Oct-11
13-Jan-12 13-Feb-12 27-Jan-12

Portugal 21-Jan-09 13-Jul-10 24-Mar-10
27-Apr-10 16-Mar-11 23-Dec-10
24-Mar-11 05-Apr-11 24-Mar-11
29-Mar-11 06-Jul-11 01-Apr-11
24-Nov-11 24-Nov-11
13-Jan-12

Spain 19-Jan-09 30-Sep-10 28-May-10
28-Apr-10 10-Mar-11 07-Jul-11
13-Oct-11 18-Oct-11 27-Jan-12
13-Jan-12 13-Feb-12 07-Jun-12
26-Apr-12

Table 2.4 reports the rating actions undertaken by S&P’s, Moody’s
and Fitch during the period 2nd Janaury 2009 - 31st May 2012. All
the rating actions presented in Table 2.4 are downgradings, the only
exceptions are the two upgradings (e) which took place on 22nd Feb-
ruary 2011 and 13th March 2012 for Greece by Fitch.

2.3 Econometric Identification and Modelling of Jumps and

Cojumps

2.3.1 Identifying jumps and cojumps

We briefly describe the testing procedures implemented to correctly identify jumps and

cojumps.
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2.3.1.1 Detecting jumps

There exist a vast range of jump detecting procedures proposed in literature and Dumitru
and Urga (2012) report a comprehensive comparison among the available tests. As we are
interested in identifying the exact time of occurrence of jumps, the Andersen, Bollerslev
and Dobrev (2007, ABD henceforth) and the Lee and Mykland (2008, LM) jump detecting
procedures are the only two suitable tests to this purpose.

ABD and LM both assume a continuous time jump-diffusion data generating process

in the following log price process:
dpei = pyd(t,3) + o dW(t3) + keadg(t,i)  t=1,...,T,i=1,..N (2.3)

where p;; log asset price for the i-th subinterval belonging to day ¢; N number of equally
spaced subintervals belonging to day ¢ with the interval time length being equal to A;
p; locally bounded variation process; oy ; volatility process, strictly positive and cadlag;
W (t,i) Wiener process; dq(t,i) counting process, possibly a non-homogenous Poisson
process; Kt; = pti — Pri— jump size. The Brownian motion W (t, ), the jump sizes xq;
and the counting process ¢(t,4), are independent of each other. Moreover, in the absence
of jumps, the drift ;; and the instantaneous volatility o; are such that the underlying
data generating process is an Itd process with continuous sample paths.

The ABD test can be summarized as follows. The first step consists in choosing the
size a of the jump test at the daily frequency and defining § = 1—(1 — Oz)A the level of the
corresponding (1 — /3) confidence interval for a randomly drawn intraday diffusive return
approximately distributed as a normal with zero mean and variance N x BV;, where BV,
is the bipower variation for day ¢. The bipower variation is defined in Appendix 2.A.

In mathematical terms, the ABD test statistics is defined as:

ki (A) = reql I

7 W(N)><I>(1—B/2) (2.4)

where |y ;| is the absolute value of return on day t and time-interval i defined as p;; —
pri—1; © (1 — /2) refers to the corresponding critical value from the standard normal
distribution. Anyway, this procedure will tend to over-reject the diffusive null hypothesis
whenever there is substantial intraday variation in volatility; therefore Andersen et al.
(2007) suggest to set a to a conservatory level 10e™® in order to achieve satisfactory
practical performance in terms of effective power and size.

The LM test differs from the ABD just for the number of observations the BV is
computed on (K < N) and for the choice of the critical value, here not coming from
the normal but from the Gumbel distribution. The jump test statistic L;; is defined as

follows:

|7"t,1l

BV, (K) 5

Li; =

)

(2.5)
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The window size K should be large enough so that the effect of jumps on the estimation
of the instantaneous volatility disappears but at the same time it should be smaller than
the total number of observations per day, N. The condition K = O, (A®) with —1 <
a < —0.5 satisfies the requirements. Therefore there exists a relationship between the
choice of the sampling frequency A and the window length K. In general for NV, number
of observations per day, we have that /252 x N < K < 252 x N. Moreover, results
in Lee and Mykland (2008) show that when K is within the range, increasing K only
elevates the computational burden without marginal contribution and therefore the opti-
mal choice seems to be the smallest integer satisfying the necessary condition, /252 x N.
Lee and Mykland (2008) specific recommendation of optimal window sizes for one-week,
one-day, one-hour, 30-minute, 15-minute and 5-minute data are 7, 16, 78,110, 156 and
270 respectively for a 24-hour trading day.

As stated, the LM test does not use critical values from the normal distribution rather
from the maximum of the test statistics. Under some assumptions, it is possible to show

that:
max (Lt i) — Cirxn)

— £ 2.6
S(TxN) (2.6)
where £ has a Gumbel cdf: P (§ < z) =exp(—e *),T x N represents the total number of
. log m+log(log(T'x N
observations, Crxn = (2log (T x N))1/2* g(;o;;f]s[))xl/z)) and S(rx ) = W'
Therefore, the null hypothesis of no jump is rejected in case:
Li; —C,
A Ch oL (2.7)
S(TxN)

where P (£ < %) = exp (—6_5*) =1—-a.

The main drawback of ABD and LM tests is that they assume that spot volatility
measured by BV is approximately constant over the local window, hence one day for
the ABD or roughly the 90% of the observations in a day for LM. In fact, although the
volatility is time varying through a day, ABD and LM tests are both based on an estimate
of the average volatility of the returns in the local window. In order to deal with this
problem, Andersen et al. (2007) introduce the filtered J test (FJ) statistic based on the
standardization of returns even by a periodicity estimate s;; which has the function of

making the volatility time-varying through the local window:

re
FJ,, = % (2.8)
’ BVtStﬂ;
To obtain an estimate of the periodicity component 5;;, we implement the Boudt et
al. (2010) robust estimation technique based on the Truncated Maximum Likelihood
(TML) estimator. Boudt et al. (2010) show that the filtered jump test statistics increases

the accuracy of intraday jump detection methods. Finally, to control for the intraday
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periodicity, we adopt the Andersen and Bollerslev (1998) formulation modified with the

inclusion of government bond auctions and rating actions as follows:

R exp f (éTMU CUt,i)
= Vt=1,..,T (2.9)

St.i
\/]]\-[ Zﬁl (exp f @TML; xt,i) ) ’

f(éTML§3Ut,i> = 5o+501 +502 +Z)\ng

Z R, B Z U;Weekdays; +

7j=1

P
Z <5c,p cos <2]7\rfpz> + ds,psin <2]7\r[pz>> + €t (2.10)
p=1

where N number of intraday intervals 7 belonging to day t; Ny = (N+1)/2 and Ny = (N+
1)(N +2)/6 normalizing constants; St surprise for macroannouncements and government
bond auctions (for the last ones, surprise is computed as the difference in bid-to-cover
between current and previous 10-year auction); J the sum of macroannouncements and
auctions considered; Rgi dummy variable for rating action undertaken by rating agency b;
B is the number of rating agencies; A\; and ¢, event specific loading coefficients; P tuning
parameter determining the order of the expansion of the sinusoids; O, full parameter
vector to be estimated.

Moreover, the loading coefficients \; and ¢, are modeled applying the Andersen and
Bollerslev (1998) decay-structure which allows the specific event to impact over a time
window but with decaying weights. Macroannouncement surprises are allowed to impact
starting from 30 minutes before the release up to one hour and 30 minutes after, as in
Andersen and Bollerslev (1998). As far as government bond auctions are concerned, we
use a wider window, ranging from two hours before the auction ends, up to one hour
after it as we want to take into account the uncertainty in the markets during the auction
period. Finally, as the timing of rating actions is not foreseeable, we set the start of the

window in correspondence of the rating action up to two hours after it.

2.3.1.2 Detecting Cojumps

In order to evaluate whether and how markets are dependent from each other, we assess
whether markets share a simultaneous jump, that is whether there is evidence of a cojump.

To do that we firstly need to characterize co-jumps.
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Let consider the multivariate version of (2.3) so that the log-prices of M assets can be

’

written as X;; = (p;i, ...,p%) for (t,i) > 0. Assuming the log-price vector of X;; is a
semimartingale on some filtered probability space (Q, F (t,4)>09 P), the continuously com-

pounded log-return can be written as:
dlog Xm‘ = utﬂ-d(t, 7,) + Sm‘dW (t, Z) + Cde (t, Z) t=1,....,T,1=1,..N (2.11)

where uy; M-vector drift rate, F ;) adapted cadlag process; s ; (M x M ) matrix, F (t)

adapted cadlag process; W (t,i) M-vector of independent standard Brownian motions;
J (t,i) M-vector of counting process independent of W (¢,4); Cy; (M x M) matrix of
jump sizes, independent of each other and identically distributed. Cy; is assumed to be
independent from W (¢,4) and J (¢, 7).

The most naive method to test for the presence of co-jumps is to apply the univariate
test simultaneously on each asset and then to evaluate whether they occur simultaneously;
for example some early literature detected co-jumps by applying standard Barndorff-
Nielsen and Shephard (2004) test. Let consider to deal with M assets for which we want
to test the presence of co-jumps at a confidence level. In case we don’t care about the
correlation among the assets, the confidence level for each test should be set at a/M.
Anyway, as the assets are usually correlated, the total significant level is lower than «
and therefore we might loose some power or significance in the inference. In light of that,
before conducting the tests, returns are usually standardized by a robust estimation of
the instantaneous covariance matrix accounting for the local covariation of the returns
from the continuous part of the process.

Following developments in testing procedures for cojumps are introduced by Gobbi
and Mancini (2007) and Jacod and Todorov (2009) who specifically propose strategies
to test for co-jumps between a particular pair of asset returns. Instead Bollerslev et al.
(2008) introduce a panel based test statistic explicitly based on the covariance structure
in order to deal with idiosyncratic noise in individual returns.

In the empirical part of this Chapter, we adopt the definition proposed in Lahaye et
al. (2011), recently extended by Maini and Urga (2012). Given C assets, the contempo-

raneous cojump is defined as:

C
CoJump, ; = HI (‘FJtCZ ) (2.12)
c=1

where [(.) indicator function taking value 1 in case on day ¢ at the interval i there was
a significant jump F.J;; as per (2.8). In order to identify a sufficient number of cojumps
for further analysis, we define a cojump if two or more jumps occur within a 15 minutes

time window.
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2.3.2 Modelling jumps and cojumps
2.3.2.1 Mapping Jumps

We now turn to assess the linkage between jumps and their possible determinants, namely
macroannouncements, government bond auctions and rating actions. To this purpose, we
compare the number of jumps around a pre-specified event with respect to other periods
as it is discussed later in the Chapter. However, this simple comparison does not take into
account neither other variables which could cause the observed difference going beyond
the impact of the single event nor the concurrence with other news. Moreover, it is widely
documented (see for instance Balduzzi et al. (2001); Lu and Wu (2009); Rangel (2011))
that it is not the release per se which explains jumps as the surprise related to a particular
event; in case of government bond auctions we define the surprise as the difference in the
bid-to-cover and the average yield with the previous auction of bond of the same maturity.
When the release is within market expectation, there is no reason for market to jump after
the announcement. Moreover, when two releases occur simultaneously, the only way to
impute the impact to the correct release is to use surprise.

The econometric model we propose is able to map jumps to macroannouncements,
government bond auctions and rating actions in both the process governing the conditional
mean and the conditional variance of government bond spreads. With respect to the
conditional mean, we extend the Tobit-GARCH model in Lahaye et al. (2011):

) et e i >0 (2.13)

0 otherwise

|F Jy i

where |F'Jy ;| absolute size of significant detected jumps; 7, ; linear combination of day-of-
J .
the-week dummies; y, ; standardized US news surprises ) A; ‘S’g i §&; intraday periodic
j=1 ’
component and N number of intraday periods within a day. Lahaye et al. (2011) allow for

a potential delayed response to news by testing for lagged news; moreover they correct for
heteroskedasticity estimating the Tobit-GARCH model of Calzolari and Fiorentini (1998)
as proposed in Andersen et al. (2011).

With respect to the model for the conditional variance, rather than a simple GARCH
model as in Lahaye et al. (2011), we use a GARCH formulation driven by macroan-

nouncements as in de Goeij and Marquering (2006):

* * _ 2
ht,i = w1 +W2Dt,i71 +5ht,i71 + (051 + O‘2Dt,i71> €t2,i71 + <V1 + VQDt,’L'71> (Et,ifl) (214)

where macroannouncements impact in three alternative ways. First, w, allows for the
unconditional volatility level to differ from w; when an announcement D, ; is sched-

uled in the near future. This is the so-called preannouncement effect and, when it is
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found to be positive, it implies a higher unconditional volatility level in the period pre-
ceding the releases. Second, the coefficient ag captures the difference in persistency of
macroannouncements with respect to other kind of news. In particular, D;i_l are dummy
variables taking value 1 in case the absolute size of the surprise is greater than its stan-
dard deviation and zero otherwise. If the parameters ay are found to be negative/positive
and statistically significant, this means that macroannouncements are less/more persis-
tent with respect to regular shocks. Finally, vo accounts for a different leverage effect
in correspondence to macroannouncements and, if it is found to be positive/negative, it
implies that negative surprises have higher /lower impact than positive ones and that the
leverage effect is more/less pronounced for macroannouncements with respect to other

kind of news.

2.3.2.2 Modelling Jumps

The jump model we estimate is a Tobit-GARCH where both the mean and variance
processes are driven by macroannouncements, government bond auctions and rating ac-
tions. In particular, we allow for a pre-announcement effect that takes into account of
future releases of macroannouncements and government bond auctions for a pre-specified
number of time intervals, while rating actions are excluded as they are not prescheduled.
As per post-announcement, in our model we capture news announcement effect directly
via surprise effects related to macroannouncements and auctions rather than via dummy
variables, the only exception being the rating actions which indeed enter the model by
dummy variables taking value 1 after the rating action is public. Finally, another novelty
in our model is that we allow the surprise effect to impact for a pre-specified time window
after the release by modelling the coefficients loading the surprises by the polynomial
decay structure proposed in Andersen and Bollerslev (1998). Andersson et al. (2006)
as well as Lahaye et al. (2011) account for delayed response of the dependent variable
after an announcement but entering the model with lags of the surprise each loaded by
its own coefficient making the estimation procedure extremely complex. In our model,
the response pattern for each macroannouncement and auction is 12 periods long corre-
sponding to one hour after the release. The model for the mean equation is formalized as

follows:
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J
|F<]t,i| = [ + Z’Yl,ng}I [T € ((ta’b) ) (ta { + A))] +
=1
J ! 4
272,]‘ ‘Sﬂj" I [T S ((t7i - A) ) <t72))] +
=1
jB
Y 2B [T € (i = A), (8,0)] + &y + e (2.15)
b=1

where | F'J; ;| absolute size of significant detected jumps at o = 0.05 by the LM test filtered
by the intraday periodicity estimated by (2.9) and (2.10); Dl dummy variable taking value
1 if macroannouncements or government bond auctions are prescheduled in the next A
periods after (¢,17); ‘Sﬁ‘ absolute surprise for macroannouncements and government bond
auctions released up to A periods before (¢,7); J sum of the number of macroannounce-

ments and auctions; R? dummy variable taking value 1 if a rating action was undertaken
A , 5
up to A periods before (t,1); §;; = 0157 + (5211\,—22 + > (52+p cos 2P + §r4psin 2”sz> in-
p=1
traday periodicity as per Lahaye et al. (2011); e¢;|F ti—1 ~ N (0,h¢;), Fti—1 being the

information set available up to (¢, — 1).

The conditional volatility h;; is specified as follows:

J
hii = w1+ sz,jDi[ [re (i), (¢ i+ A))]+ Bheia +
j=1

al—i—ZaQ] T e ((bi—A—1),(ti— 1))+

M=

as bRV [T € ((ti— A —1), (¢, Z))]) 5t2,i—1 +

o
Il
-

(V1+ZV2] IIre((ti—A—1),(ti—1)] ] +

B
> va R [r € ((ti— A), (t,i))]) (5;¢—1)2 (2.16)
b=1

where D denotes the dummy variable taking value 1 if a macroannouncement or an
auction is scheduled to take place in the next A periods after (¢,i); D5 I denotes the
dummy variable taking value 1 for large macroannouncement surprises or big changes in
bid-to-cover or average-yield occurred in the previous A periods; R denotes the dummy

variable taking value 1 if in the previous A periods a rating action occurred.
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Unlike de Goeij and Marquering (2006), we define large surprises if the absolute sur-
prise is higher than one half of the standard deviation of this measure for all the macroan-
nouncement of the same kind in order to set a unique rule for macroannouncements and
bond auctions as, for auctions, we do not dispose of standard deviation of forecasts.

The Tobit-GARCH approximate log-likelihood is given by (2.17):

T N
logL = > > log(l—®W)I(|FJ|=0)

t=1 i=1
1 T N 82
T t,i
522 (log () + = ) I(|F.Jii] > 0) (2.17)
t=1 i=1 t,i

I?‘?]t,i—Thresholdt,i
=173
ht,i

(2.8); ® normal cdf function; 7175,7; defined as in (2.16) where, instead of ¢, ; we substitute

where 1 = with T'hreshold; ; the threshold adopted to identify jumps in

U, ;,_, which is obtained as:

N agi if |FJi| >0
Uti-1 = B2 ew) .
— @y A [FJil =0

with ¢ normal pdf function.

2.3.2.3 Modelling Cojumps

In order to determine the probability of a cojump occurrence we adopt a simple logit
model. We consider even the opportunity to estimate a multinomial model allowing to
distinguish between 2, 3, 4 or 5 cojumps occurrence probability but this model could
not be implemented because only very few observations are available for each class of
cojumps. Therefore we collapse cojump in a simple dummy variable: occurrence vs. non
occurrence. The model has the same specification adopted for jump mean in (2.15) except
for the estimation of the response pattern as here we load macroannouncement surprises
and delta in average yield and bid-to-cover for 10 years government bond auctions with
unitary weights throughout the time window considered. We model the cojumps identified
by the LM test filtered by the parametric estimate of intraday periodicity discussed in
Section 2.3.1.1. Considering that although we are modeling the simple event, cojump
vs no-cojump, the identified cojumps are usually very few and that logit model requires
at least 20% of events to get robust estimates (see for instance Tomz et al. (2003)),
we proceed with an oversampling by creating an artificial sample of size M with all
the identified cojumps representing 20% of M while the other observations are chosen
randomly. The procedure provides consistent and efficient estimates provided appropriate
statistical corrections are implemented. To this purpose, a prior correction approach can

be implemented consisting in computing the usual logistic regression estimators corrected
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using prior information about the fraction of ones in the population, 7, and the observed
fraction of ones in the sample, 3. For the logit model, the MLE BZ estimator for the
covariate in the subsample is a statistically consistent estimate of 3, while the corrected

estimate for the intercept (3 is:

s[5 655

2.4 Empirical Findings

2.4.1 Preliminary Analysis

Though, as already mentioned, we may identify jumps by applying the ABD and LM
testing procedures, we only report the LM tests adjusted for the intraday periodicity
estimated by TML as this is the procedure allowing to reduce spurious jumps detection
(see for instance Boudt et al. (2010)). As first step in assessing the relationship between
jumps and macroannouncements, bond auctions and rating actions, we compare jumps
occurrence around a specific event with respect to other periods. We set the time window
for the macroannouncement releases and government bond auctions ranging from 1 hour
before up to 1 hour after while for rating actions, given that these events are not presched-
uled as the other two cases, we set the window equal to two hours after the release. For
the selection of the time windows, we refer to Pearce and Roley (1983, 1985) and Jain
(1988) who find that the stock price response essentially completes in the trading day
and, more precisely, within one hour after the announcements. Wongswan (2006) shows
that announcement surprises induce large but short-lived increases in volatility within
thirty minutes of the announcements. Balduzzi et al.(2001), Gurkaynak et al. (2005) and
Andersen et al. (2007) confirm that reaction times to news are very short. Moreover, in
order to properly set response time windows, we analyze the empirical behaviour of the
absolute returns around the event specified. In Figures 2.8-2.9, we report the mean ab-
solute returns around macroannouncements, government bond auctions and rating actions
together with the 95% confidence level, on the left, and the same statistics but for days
with no event although around the typical hour of release on the right. We distinguish
between US and Euro Area macroannouncements as the usual release time is between
13:30 and 15:00 UTC and between 8:00 and 10:00 UTC respectively. On the x-axis we

report the number of 5-minute intervals preceding/following the time of release.
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Figure 2.8: Market activities around events: US, Euro area and individual
countries macroannouncements

The left-hand column of Figure 2.8 plots the mean absolute returns together with the 95% confidence
interval around the release of the US, Euro area and individual countries macroannouncements. The
right-hand column of Figure 2.8 plots the mean absolute returns around the typical average release time
of the news: 14:15 UTC for US macroannouncements, 9:00 UTC for Euro area and individual countries
macroannouncements. On the x-axis, we report the number of 5-minute intervals preceding/following the
time of the release.
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Figure 2.9: Market activities around events: government bond auctions and
rating actions

The left-hand column of Figure 2.9 reports the plots of the mean absolute returns with the 95% confidence
interval around the government bond auctions and rating actions. The right-hand column of Figure 2.9
plots the mean absolute returns around the typical average release time of the news: 9:00 UTC for
government bond auctions and 8:00 UTC for rating actions. On the x-axis, we report the number of
5-minute intervals preceding/following the time of the release.

In Table 2.5, we report the jumps detected for each country and a comparison of jump
occurrences during news with respect to no-news periods. Estimates for the intraday

periodicity in (2.10) are reported in Appendix I.



38 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

Table 2.5: Jumps: summary statistics

All IT FR ES BE NL
PANEL A
No. 4,255 1,134 486 1,313 961 361
P(Jump) 1.10 1.46 0.63 1.69 1.24 0.47
Mean abs. size [%] 1.73 1.56 1.77 1.50 2.40 1.32
z-test z-test z-test z-test z-test z-test

PANEL B: Macroannouncements
All  3.69 *** 256 *** 202 ** 2.30 ** 3.73 *** 3 35 *¥*
US 5.16 *** 3,53 *** 3 55 *¥**x 251 k%% 4.099 *¥¥x*x 497 ***

Euro area  2.02 ** 2.06 ** 0.35 1.93 ** 1.12 0.02
Individual countries -0.40 -0.25 -0.35 0.25 0.23 1.14
US - Real economy  4.82 *** 2,98 *** 334 *¥*x 2,02 ** 5.38 *** 4,47 ¥**
US - Forward looking 1.86 ** 2.07 ** 0.34 1.06 1.00 1.54 *
US - Price  1.28 0.05 2.32 ** 0.79 0.81 -0.09
Euro area - Real economy  -0.72 0.46 -1.40 -0.83 -0.03 -0.62
Euro area - Forward looking  3.03 *** 1,91 ** 1.42 * 2,93 ¥** 2,15 ** 1.81 **
Euro area - Price 1.11 1.34 * 0.39 1.22 0.27 -2.01
Individual countries - Real economy -1.46 -0.83 -1.42 -0.84 -1.60 -0.34
Individual countries - Forward looking 2.37 *** 1.34 * 0.87 2.08 ** 2.42 ¥** 3 22 *¥*¥*
Individual countries - Price -1.31 -0.86 -0.85 -0.64 -0.49 -0.39
PANEL C: Bond auctions
All 1.90 ** 0.01 0.28 2.72 *¥** (.13 0.02
France -1.99 -2.30 0.02 -1.29 -1.40 -0.50
Germany  0.55 -0.57 1.11 2.60 ***  .0.36 1.23
Greece 3.35 *** (.61 2.00 ** 1.20 2.41 ¥¥* 2,38 ¥**
Ttaly 3.65 *** 2.42 *** 19 3.62 *¥** 1.65 ** 0.78
Spain 2,95 *** 3,01 *¥** 1,94 ** 0.88 -0.21 0.96
PANEL D: Rating actions
All  2.15 *** 2,04 *** (.22 0.96 1.07 -0.34
S&P  1.99 ** 1.57 * 0.01 1.63 * 0.77 -1.14
Moody’s 1.16 -0.24 -0.16 1.06 1.78 ** 0.36
Fitch  0.25 1.95 ** -0.32 -1.21 -0.80 0.20
Belgium  5.22 *** 1,83 ** 2.24 ** 2.45 *¥*¥* .34 *** (.59
Greece -0.23 0.82 -1.53 -0.91 -1.09 0.57
Ireland -0.03 -1.27 -0.02 1.08 -0.01 -1.23
Ttaly 2.73 *** 6.00 *** _0.97 0.93 0.11 0.36
Portugal 0.19 0.84 0.55 0.03 -0.65 0.29
Spain  1.94 ** 1.74 ** 0.09 0.86 1.20 -0.34

Panel A of Table 2.5 reports the number of 5-minute returns identified as jumps by applying the Lee and Mykland
(2008) test adjusted by the intraday periodicty of volatility according to Boudt et al. (2010), defined in (2.8), at the
5% significance level as well as the average absolute size of jumps. Panels B-D provide a preliminary analysis of
the degree of association between jumps and macroannouncements, government bond auctions and rating actions
by applying the z-test to compare the frequency of jumps occurrence around the event in analysis with respect
to no-event situation. The null hypothesis is that the two percentages are equal. As per macroannouncements,
we just show the analysis according to the classification in real economy, forward looking and price releases as
reported in Table 2.2 while for government bond auctions, we report only relevant countries. *** ** * denote
1%, 5% and 10% significance level, respectively.

Overall, macroannouncements play an important role in explaining jumps in all coun-

tries. In particular, the biggest impact is due to US and Euro area releases while news
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concerning individual countries do not seem to determine jumps. As far as the economic
category of macroannouncements is concerned, news regarding the US real economy, such
as production and employment indicators with the non-farm payroll (the so called "king of
macroannouncements") are the most important together with Euro area forward looking
indicators, such as confidence indicators and purchase manager index, and some national
forward looking indicators.

As far as government bond auctions are concerned, their impact on jumps is
particularly important when we focus on countries with very high public debt, such as
Italy and Greece, when we see that around auctions, government bond spreads of almost
all countries jump substantially. Note that in 2011, Italy public debt was 120% of GDP
and in Greece 160%, while it was 106% for Portugal, 98% for Belgium, 86% for France,
81% for Germany 72% for Austria, 68% for Spain, 66% for the Netherlands and 48% for
Finland. In particular, around the Greek auctions, there is evidence of jumps in France,
Belgium and the Netherlands, while around the Italian auctions, the Italian, Spanish and
Belgian spreads jump significantly. Some evidence of presence of jumps is also found when
Spanish auctions take place, affecting in particular Italy and France. We interpret this
result as a sign of raising concern about Spanish government’s solvability.

Turning to rating actions, there is evidence that downgradings cause jumps when
considering all rating actions in all markets but the three rating agencies do not seem to
have a different impact. However, a crucial role is played by the country which was the
object of the rating action. In particular, actions taken against countries such as Belgium,
Italy and Spain cause jumps on government bond spreads while actions against smaller
and more fragile countries such as Greece, Ireland and Portugal do not seem to have any
significant effect. This result contradicts those reported in other studies. Alsakka and
Gwilym (2012) find that Moody’s decision to downgrade Greece to Caal from B1 on 1st
June 2011 determined an increase by 12 basis point in Greek 10-year government bond
yields and a decline of bond prices for Ireland, Spain and Portugal. On 13 June 2011, S&P
downgraded Greece from B to CCC (with negative outlook), causing Greek, Portuguese
and Irish 10-year bond yields to jump of 16.79%, 10.66% and 11.34% respectively. See
also Alsakka and Gwilym (2013)

Cojumps. To detect a large number of cojumps, we define cojumps whether two or
more jumps occur in a 15-minute time window rather than 5-minute window. When we
define a cojump considering a 5-minute time window we come up with just 475 cojumps
while, when expanding the time window to 15 minutes, we can detect up to 2,392 cojumps.
However, whenever possible, we conduce our analysis on both 5-minute and 15-minute
window with substantially unchanged results.

In Table 2.6, we report the analysis for cojumps identified applying (2.12).
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Table 2.6: Cojumps: summary statistics

>2 2 3 4 5
PANEL A
No. 1,196 828 271 62 35
P(Cojump) 1.54 1.07 0.35 0.08 0.05
P(Cojump|Jump) 33.15 22.95 7.51 1.72 0.97
z-test z-test z-test z-test z-test
PANEL B: Macroannouncements
All  1.87 *** (.23 1.10 3.15 2,51 ***
US 2.00 ** 0.06 1.24 2,98 ¥** 3 88 *¥*
EA  4.22 *** 3,74 *%* (90 1.13 2.4 ***
Individual countries -0.55 -0.31 -0.55 1.02 na
US - Real economy  3.07 *** (.97 1.77 ** 3.00 *¥** 4,25 *¥¥*
US - Forward looking -1.71 -2.11 -0.67 na na
US - Price -0.11 0.68 na na na
EA - Real economy 0.33 0.32 -0.57 na 3.30 ***
EA - Forward looking 4.92 *** 4,25 *** 1 .86 ** na na
EA - Price 0.69 0.51 0.00 na na
Individual countries - Real economy  0.06 0.63 -0.04 na na
Individual countries - Forward looking 1.29 * 0.05 2.91 *** (.16 -0.64
Individual countries - Price -2.64 -1.17 -4.03 1.16 na
PANEL C: Bond auctions
All 1.57 * 0.96 0.54 1.52 * 0.94
France -0.97 -1.01 0.17 na na
Germany  1.02 -0.76 1.24 0.84 5.03 ***
Greece 3.06 *** 3,20 *** 1712 na na
Ttaly 4.30 *** 2,68 *** 1.80 ** 3.76 *** g
Spain  1.86 ** 2.59 ***  _().88 na na

Panel A of Table 2.6 reports the number of contemporaneous cojumps identified by applying (2.12)
on jumps identified by applying the Lee and Mykland (2008) test adjusted by the intraday periodicty
of volatility according to Boudt et al. (2010), defined in (2.8), at the 5% significance level. Moreover,
in order to identify a sufficient number of cojumps for further analysis, we define a cojump if two
or more jumps occured in a 15-minute time window. P(Cojump|Jump) denotes the probability of
a cojump given that at least one of the country had a jump. Panels B-C provide a preliminary
analysis of the degree of association between cojumps and macroannouncements and government
bond auctions by applying the z-test to compare the frequency of cojumps occurrence around the
event in analysis with respect to no-event. The null hypothesis is that the two percentages are equal.
We did not report tests for rating actions as we observe a very low number of cojumps around rating
actions which did not allow us to carry out the tests. In case one of the two categories has less than
10 observations, the test statistic is not reported (na). As per macroannouncements, we just show
the analysis according to the classification in real economy, forward looking and price releases as
reported in Table 2.2 while for government bond auctions, we report only relevant countries. ***
** ¥ denote 1%, 5% and 10% significance level, respectively.

The results confirm what already reported for the jumps analysis. In particular,
US and Euro area macroannouncements are the most important drivers of cojumps, with
particular relevance of those concerning real economy and those related to forward looking
measures. As per auctions, those impacting the most are again those hold in Italy, Greece
and Spain while we did not report the analysis for rating actions as we did not dispose of
sufficient information to carry out a meaningful comparison. It is worth noting that the

largest impact of macroannouncements and auctions is found when considering cojumps
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in 4 or 5 countries simultaneously with respect to fewer series. For instance, in 6 out of
8 events (75%) for which we can compare the occurrence of cojumps in 5 series, cojumps
take place more often in correspondence to macroannouncements and auctions; when
considering 4 time series instead, we find cojumps in 4 out of 10 events (40%), while when
3 time series are considered we have 4 out of 18 (22%), and for 2 time series 5 out of 19
(26%). These findings are in support of the presence of systemic factors affecting all the

markets simultaneously.

2.4.2 Results for the Jump Model

The first step to estimate the model for the absolute jump size in (2.15) is the estimation
of the response pattern of jumps on macroannouncements and government bond auctions.

In Figure 2.10 we report some examples of response patterns.

0.25%
0.20%
0.15% -
0.10% -
0.05% -

0.00%

-0.05% -

Figure 2.10: Jump responses patterns

In Figure 2.10 we report some examples of jump responses patterns. These patterns capture the possible
delayed response of jumps to macroannouncements and government auctions surprises in a one hour time
window. The underlying assumption is that jumps responses vanish as time passes and therefore the
polynomial decay structure by Andersen and Bollerslev (1998) is adopted.

Once jumps response patterns are estimated, we pre-select, for the mean equation,
statistically significant variables at @ = 0.30 using a simple Tobit regression. After this
pre-selection, we estimate jointly the mean and the variance equations (2.15) and (2.16),

respectively, following Calzolari and Fiorentini (1998).
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2.4.2.1 Mean Equation.

Table 2.7 reports the results of mean equation in (2.15). When interpreting Tobit coef-
ficients remember that they measure the impact of a change in the corresponding inde-
pendent variable on the latent dependent variable weighted by the probability of being

above the threshold that in our case corresponds to the probability of observing a jump.

Table 2.7: Jumps: mean model

IT FR ES BE NL

constant -1.2294 ***  _1.,6069 *** _1.2543 *** -1.2023 *** -2.3056 ***

Macroannouncements - pre-release

Y12 (US - Chicago PMI)  0.1146 ***  0.2635 *** -0.0932
71,5 (US - Durable goods) 0.0625 ***
1.7 (US - GDP advance) -1.0008 *** -1.1920 **x*
71,8 (US - GDP preliminary) -1.6089 ***
V1,10 (US - Industrial production) 0.0526 *** 0.0361 ***
71,12 (US - Nonfarm payroll) ~ 0.1906 Hokk 0.0175 *** 0.2522 **x* -0.0936 *** 0.3491 ***
¥1,13 (US - Philadelphia FED index)  -0.2954 ***
114 (US - PPI) -0.9893 ***  _0.1098 *** -0.9936 ***
71,18 (EA - Consumer confidence) 0.1010 kol 0.1099 ***
71,21 (EA - Industrial production)  0.0563 Hokk -0.0673 *** 0.1215 *** 0.0824
Y122 (EA - Introductory Statement) ~ 0.0921 ***  _0.2162 ***  0.0378 ***  0.0683 ***  .0.1960 ***
V1,23 (EA - M3) -0.1935 ***
Y124 (EA - Monthly Bulletin) ~ -0.0871 *** 0.0471 ***
71,25 (EA - PMI Flash) 0.0082 **
71,26 (EA - PMI Final) 0.0705 *** 0.0468 ** -0.1487 ***
V1,27 (EA - PPI) 0.1948 ***
71,28 (EA - Retail sales) -0.1257 *kok
V1,34 (DE - ZEW) -0.0131 ¥XX0.1393 *** 0.0095 ***
71,30 (DE - CPI preliminary) -0.0937 *** -1.0607 ***
71,31 (DE - IFO Business confidence) 0.0662 *** 0.1883 ***
71,32 (DE - Industrial production)  -0.1276 ok -0.0364 *** -0.182 ***
71,33 (DE - Unemployment) 0.0779 ***
V1,37 (IT - GDP final) 0.2157 ***
V1,40 (IT - Industrial production) -0.1329 ***
V1,42 (ES - CPI) -0.1138 *** ~0.1662 ***
Y147 (PT - CPI)  -0.0899 *** -0.1786 *¥**  _1.1927 ***
Y150 (NL - CPI)  -0.1031 *** -0.3226 ***
71,52 (NL - Unemployment)  0.0663 Hokok 0.0905 *** -0.0625
V1,53 (BE - Business confidence) -0.0337 ***
V1,51 (GR - CPI) 0.2102 ***  0.1006 ***  .0.1495 ***
V1,55 (GR - GDP preliminary) -0.997] ***
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Table 2.7: Jumps: mean model
IT FR ES BE NL
Macroannouncements - post-release
Ya,2 (US - Chicago PMI) -0.8424 ***
72,4 (US - CPI) 0.7151 ***
Y2,7 (US - GDP advance) 1.0035 ***
Y28 (US - GDP preliminary) —-0.1218 *** 0.5839 *** -0.0951 ***
Y2,10 (US - Industrial production) -0.6848 Ak
72,11 (US - Initial jobless claim) 0.9997 *** -1.0000 ***
~a1o (US - Nonfarm payroll) ~ 0.3075 *¥¥  0.0671 ***  0.5770 ***  0.5092 ***  1.4448 ***
72,13 (US - Philadelphia FED index) -0.1163 ***
Y215 (US - Retail sales) ~ -0.2377 *** 0.2867 *** 0.3586 ***
72,16 (US - University of Michigan) 0.8618 ***
Y217 (EA - Business climate) —-0.8374 *** 0.0321 ***
72,18 (EA - Consumer confidence) 0.1723 ***
Ya.19 (EA - Flash HICP)  -0.0134 ***
Y225 (BA - Introductory Statement) ~0.0866 ***  0.0905 *** 0.2380 ***  _0.0957
a2z (BA - M3)  -0.5505 ***
Y224 (EA - Monthly Bulletin) ~ -0.1758 *** -1.4494 ***
2,25 (EA - PMI flash) 0.0439 *** 0.0045
Yo.26 (EA - PMI final)  -0.0631 *** 0.4480 ***  _0.3419 ***
72,30 (DE - CPI preliminary) -0.9986 ***
Y233 (DE - Unemployment) — -0.8114 *** -0.4523 ***
Yaaz (ES - CPI)  0.2379 **x -0.6807
Y244 (ES - GDP final) -1.0042 **%  _0.9992 ***  2,0739 **¥* (8127 ***
7¥2,45 (ES - Industrial production) ~ -0.1800 *** = -0.7106 ***  0.2289 ***
Ya.46 (ES - Unemployment) ~ -0.1959 *** 0.9603 ***  _(.5733 ***
Ya5a (GR - CPI)  0.2096 *** 0.2496 ***
Y255 (GR - GDP preliminary) — -0.1251 ***
72,56 (GR - GDP final) 1.2908 ***
Y257 (GR - Unemployment)  -0.1795 ***
Auctions - pre-release
Y1 58 (Austria) — -0.0534 ***
71,59 (Belgium)  0.0361 *** 0.0259 *** 0.0438 *** 0.0678 *** 0.3233 ***
Y160 (Finland) ~ 0.1539 *** 0.1032 ***  (0.1309 ***
Y161 (France) -0.0756 *¥¥  .0.1313 %% -0.0218 -0.0163
71,62 (Germany) 0.0145 ***
71,63 (Greece) -0.1215 *** -0.2130 ***
71,64 (Italy) -0.0212 i
71,65 (the Netherlands) 0.1484 *** -0.0137 0.1097
Auctions - post-release (bid-to-cover)
o5 (Austria)  1.0154 *** 1.0107 ***
-1.0029 ***

V2,59 (Belgium)
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Table 2.7: Jumps: mean model

IT FR ES BE NL
Yo,61 (France) -0.7427 *** 1.0022 ***
Y2,62 (Germany) -1.0011 *** 1.0041
Auctions - post-release (average yield)
Y271 (France) 1.0058 ***
V2,72 (Germany) 1.0039 ok 1.0015 *** 1.0013 *** 1.0007 *** 1.0052
V2,74 (Italy) -0.8344 *¥*% 0.7390 ** 0.9945 *** 1.0035 ***
V2,75 (the Netherlands) 1.0016 *** -0.9904 ***
Y276 (Portugal) 1.0094 ***
v2,77 (Spain)  -0.6236 *Ak 1.0260 ***
Rating actions
V2,78 (S&P) -0.0351 ***

Table 2.7 reports the estimates for the mean equation of the Tobit-GARCH model in (2.15). The dependent variable is the
absolute size of jumps identified by applying the Lee and Mykland (2008) test corrected by the intraday periodicity of the
volatility as proposed by Boudt et al. (2010) and defined in (2.8). Macroannouncements and auctions pre-release
are dummy variables taking value equal to 1 for time intervals preceding the release up to 1 hour before. Macroannounce-
ments and auctions post-release effect is captured by the absolute size of surprise associated to the specific release. For
bond auctions we define surprise as the difference in average yield and bid-to-cover with respect to the previous auction.
These "surprises" are available just for 10-year bond auctions. Surprises are loaded by specifc polynomial which have a
decay structure as proposed by Andersen and Bollerslev (1998) up to 1 hour after the release. Rating actions are dummy
variables taking value 1 for time intervals following the action up to 2 hours after the release, zero otherwise.

We report just variables which are significant at 10% level for at least one country. In some cases estimates are missing
because the correspondent dependent variable was not selected in the pre-selection procedure described in Section 2.4.2.
Estimates for the periodic component £ are not reported. *** ** * denote 1%, 5% and 10% significance level, respectively.

It is evident the relevance that macroannouncements and government bond auctions
have in explaining jumps in government bond spreads and in particular both effects, pre-
and post-announcement, turned out to be statistically significant. Moreover, releases con-
cerning individual countries are often important in explaining government bond spreads
of other countries. This result constitutes an additional evidence in favour of the strong
linkages existing among European countries. No role is found for rating actions. Note
that the strong relevance of macroannouncements and government bond auctions in de-
termining jumps we find can also be interpreted along the Veronesi (1999) equilibrium
model showing that stock prices overreact to bad news in good times and underact to
good news in bad times.

Macroannouncements. The results in Table 2.7 suggest that the pure knowledge
about a forthcoming announcement in the following hour is statistically important in ex-
plaining jumps. 8 out of 16 US, 9 out of 13 Euro area and 15 out of 26 individual countries
future macroannouncement releases significantly determine jumps. US non-farm payroll

together with the Introductory Statement are the most important factors of jumps in
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the five series considered with a coeflicient ranging from a -0.0936 for Belgium to 0.3491
for the Netherlands in the case of US Nonfarm payroll and from -0.2162 for France to
0.0683 for Belgium as far as the ECB Introductory Statement. Besides these two an-
nouncements, the other main drivers of jumps during the pre-announcement period are
US PPI on France, Spain and the Netherlands, Euro area industrial production on Italy,
France and Belgium and Euro area purchase manager index final on France, Spain and
Belgium, German ZEW on Italy, France and the Netherlands and German industrial pro-
duction on Italy, Spain and Belgium. Turning now to the post-announcement effects, 10
out of 16 from US, 8 out of 13 from Euro area and 11 out of 26 from individual coun-
tries surprises are statistically significant. In particular, the most important releases are
non-farm payroll, explaining large absolute jump sizes for all the five spread series con-
sidered with coefficient ranging from 0.3075 for Italy to 1.4448 for the Netherlands, the
Introductory Statement determining sizeable jumps in Italy (0.0866), France (0.0905) and
Belgium (0.2380), and the Spanish GDP release explaining jumps for France (-1.0042),
Spain (-0.9992), Belgium (2.0739) and the Netherlands (0.8127). Among other macroan-
nouncements, we notice the statistical significance of US GDP preliminary on Italy, Spain
and the Netherlands, US retail sales on Italy, France and Belgium, Euro area purchase
manager index final on Italy, Spain and Belgium and other Spanish releases such as in-
dustrial production on Italy, France and Spain and unemployment on Italy, Belgium and
the Netherlands.

The most important finding of our analysis so far is the high sensitivity of government
bond spreads to US and Euro area macroannouncements together with a low sensitivity to
individual countries, the only exception being Spain and Germany. The worsening of the
Spanish macroeconomic fundamentals represents an important news for the markets and
particularly important is the role of unemployment (at present the highest in Europe)
and the industrial production, that is falling more than any other European country.
Moreover, while Greece and Portugal are small economies, Spain is the fourth largest
economy in the Euro area and this makes the deterioration of its macro fundamentals
extremely relevant to the markets. As far as Germany is concerned, the largest economy
in Europe, markets pay attention to signals coming from Germany’s economic indicators
as they serve as leading indicators for the entire Euro area.

As per the category of macroannouncements, there is a confirmation of what already
reported in the preliminary analysis that is the important role played by economic indica-
tors such as employment level and industrial production, and forward looking variables,
with Euro area purchase manager index and German ZEW, as opposite to those related
to the consumer prices/inflation indicator.

It is interesting to compare and contrast the results of our analysis with those reported

in the literature. For instance, we find a very high sensitivity of European government
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bond spreads to US releases. This result confirms the findings in Ehrmann and Fratzscher
(2003), who investigate US, Germany and the Euro area money markets reaction to
monetary policy announcements by the Federal Reserve, the Bundesbank and the ECB
respectively. Authors show that linkage between money markets has increased over time
as movements in interest rate and volatility in either the US or the Euro area are mirrored
in the other market; in particular German and FEuro area react to Federal Reserve decision
but no evidence supports the other way round. The important role played by the non-
farm payroll and GDP is also documented in Lahaye et al. (2011), Jiang et al. (2011)
and Miao et al. (2012). This variable indeed plays a fundamental role given it represents
an important leading indicator of economy’s strength as, among US real economy, it is
released before durable goods, factory orders, retails sales and production index. This
result is consistent also with what reported in Andersen et al. (2007) where it is showed
that announcements released earlier impact much more than those released later in time.
Focusing now on Andersson et al. (2006), the only paper analyzing the impact of a broad
range of US, Euro area and individual countries macroannouncements, namely Germany,
France and Italy, Authors report that US are the most important macroannouncements in
explaining returns of German bond market while our analysis shows that, in addition to
the US ones, also a wide range of Euro area as well as individual countries measures have
explanatory power for jumps. Note that this result in Andersson et al. (2006), confirming
the evidence also in Andersen et al. (2007), stress the importance of the timing of the
news releases, and so macroannouncements related to Euro area, released earlier than
the US ones, already discount news coming from the US market and therefore have a
lower impact. Andersson et al. (2006) findings include the assessment of the importance
of non-farm payroll, Euro area industrial production and consumer confidence, German
and French industrial production together with forward looking measures such as IFO,
ZEW and French, Italian business confidence and Introductory Statement in driving the
volatility equation. These findings are quite in line with what reported in our analysis.
There are some novel and interesting results from our analysis that the existing liter-
ature does not document. First of all, we find evidence of the important role played by
the ECB Introductory Statement bringing to the market the key information concerning
decisions on ECB rates. Moreover, our results show the sensitivity of European govern-
ment bond spreads not only towards US and Euro area releases but also to individual
countries, with particular reference to those related to Germany and Spain. Finally, we
showed the importance of taking into account the pre-announcement effects which are
found to explain a great amount of jumps. Pre- and post-announcement convey different
kind of information with the first providing an indication about traders’ perception of fu-
ture news relevance while the second one, captured by surprises, leading traders to revise

their positions according to the actual releases.
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Government bond auctions. Focusing on government bond auctions, the differ-
ence in bid-to-cover with respect to the previous 10-year auction of 4 out of 7 countries
(Austria, Belgium, France and Germany) significantly explains government bond spread
in at least one case although the average yield of 10-year bond auctions has a greater
impact. In particular the German and Italian auctions are relevant for Italy (coefficients:
1.0039 and -0.8344), France (1.0015 and 0.7390), Spain (1.0013 and 0.9945) and Belgium
(1.0007 and 1.0035), while Spanish are for Italy (-0.6236) and Spain (1.0260). In addition,
we distinguish the post from the pre-release effect finding evidence of sizeable jumps even
before the publication of auctions results hold in 8 out of 10 countries namely Austria,
Belgium, Finland, France, Germany, Greece, Italy and the Netherlands. It is worth notic-
ing that we consider dummies for future auctions regardless of the maturity of bonds while
when turning to bid-to-cover and average yield we just analyze 10-year bond auctions.

When analyzing the pre-publication period, no clear pattern is found in that almost
all auctions, regardless of the country where they are hold, determine jumps, including
countries such as Finland and the Netherlands, while when focusing on average yield
we find strong impact of auctions hold in distressed countries, namely Italy and Spain,
together with those hold in Germany, representing a benchmark in the Euro area. This
result is not surprising as average yields to which bonds are allocated provide a better
signal of the performance of an auction and allow to discriminate more between safer and
riskier countries.

Rating actions. Turning now to the rating actions, this factor is statistically irrel-
evant and there is no difference among the rating agencies. Our results contrast with
findings in the literature assessing the impact of rating actions on returns or jumps. Kiff
et al. (2012) discuss that the most of the incremental information value is transmitted

” “

through negative credit warnings (i.e., “outlooks,” “reviews,” and “watches,”), rather
than actual rating changes. The same conclusion is also reported in Pukthuanthong-Le
et al. (2007), Hooper et al. (2008) and Hill and Faff (2010). Our analysis instead con-
firms a "reputation issue" attached to rating agencies: market participants do not rely on
rating agencies assessment in default risks in government bonds in the current European
sovereign debt crisis in the light that they were unable to correctly quantify risk in the

structured products on US mortgage loans.

2.4.2.2 Variance Equation.

Table 2.8 reports the results of variance equation (2.16).
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Table 2.8: Jumps: variance model

IT FR ES BE NL
w1 0.0038 0.1916 *** 0.0283 *** 0.0539 *** 0.2122 ***
Macroannouncements - pre-release
w22 (US - Chicago PMI) -0.0003 -0.0391 ***  -0.0007 0.0043 * -0.0184 ***
w24 (US - CPI) 0.0021 0.0295 *** -0.0015 0.0011 -0.2051
w25 (US - Durable goods)  -0.0003 -0.0067 0.0012 -0.0190 ***  -0.0423 ***
w27 (US - GDP advance) 0.0028 -0.0465 0.0227 *** -0.0023 0.0232 ***
w28 (US - GDP preliminary)  0.0022 0.0041 0.0371 *** -0.0050 0.0281 ***
w29 (US - GDP final)  0.0030 -0.1457 0.0030 -0.0388 ***  .0.2047
w2,10 (US - Industrial production)  -0.0013 0.0236 0.0052 -0.0013 0.0159 **
w212 (US - Nonfarm payroll)  0.0018 0.1141 *** -0.0091 ** 0.0243 *** 0.0157
w2,15 (US - Retail sales)  0.0007 0.0264 *** 0.0077 ** 0.0099 *** 0.0307
w2,16 (US - University of Michigan)  0.0011 -0.0335 ***  0.0043 -0.0033 -0.0140
w2,17 (EA - Business climate) -0.0015 -0.0466 *** -0.0034 -0.0075 ***  -0.0186
w32,22 (EA - Introductory Statement)  0.0009 0.0580 -0.0003 0.0103 *** 0.1089 ***
w223 (EA - M3) -0.0004 0.1089 *** 0.0024 0.0050 * 0.0227
w225 (EA - PMI flash)  0.0006 0.0229 *** 0.0041 0.0107 *** 0.0220 *
w2,29 (EA - Unemployment)  0.0010 -0.0588 ***  _(0.0054 0.0041 -0.1049 ***
wo.37 (IT - GDP final)  0.0001 0.0629 *** 0.0053 0.0216 *** 0.0239
w2,40 (IT - Industrial production)  -0.0012 0.0280 *** 0.0014 -0.0099 ***  .0.0748
w2,52 (NL - Unemployment)  0.0013 -0.0409 ***  -0.0074 -0.0015 0.0114
w2,53 (BE - Business confidence)  0.0026 0.0381 *** 0.0062 -0.0036 0.0624 ***
w254 (GR - CPI)  0.0001 -0.0240 -0.0064 0.0110 *** -0.0182 **
w256 (GR - GDP final) -0.0005 -0.1160 ***  -0.0070 0.0152 *** 0.0557
w2,57 (GR - Unemployment) -0.0001 0.0365 *** 0.0041 0.0050 * 0.0270
Auctions - pre-release
w362 (Germany)  -0.0004 0.0126 *** 0.0018 -0.0041 -0.0108
w263 (Greece)  0.0004 0.0026 0.0066 0.0032 ** 0.1048 ***
wa,66 (Portugal) -0.0001 -0.0153 ***  _0.0017 0.0002 -0.0090
w267 (Spain)  0.0008 0.0049 0.0001 0.0142 *** -0.0113 *
B3 0.9548 * 0.0548 *** 0.7337 *** 0.6268 *** 0.2269 ***
oy 0.0191 0.0760 *** 0.00427 0.0471 *** 0.0840 ***
Macroannouncements - post-release
asz,2 (US - Chicago PMI)  -0.0006 -0.0699 0.0352 -0.0138 ***  .0.0834 ***
2,3 (US - Consumer confidence) 0.0018 0.1864 *** 0.0054 0.0024 0.1161 ***
az,4 (US - CPI) -0.0030 -0.0618 ** -0.0079 0.0016 -0.0479
asz5 (US - Durable goods)  0.0039 -0.0431 ***  _0.0316 -0.0227 ***  (0.0207
az,7 (US - GDP advance)  0.0085 -0.0016 -0.0399 0.0986 *** 0.0876 ***
a2, (US - GDP preliminary) -0.0189 -0.0730 -0.0317 ***  (0.0003 -0.0066
a2,9 (US - GDP final) -0.0165 -0.0745 ***  _0.0050 -0.0319 ***  .0.0842
az,12 (US - Nonfarm payroll)  -0.0039 0.1442 *** 0.0436 0.0305 *** 0.0916
a2,16 (US - University of Michigan)  0.0027 -0.0052 0.0068 -0.0189 ***  (.0831 **
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IT FR ES BE NL
a2,21 (EA - Industrial production)  -0.0005 -0.0162 0.0497 * -0.0055 -0.0470
az,22 (EA - Introductory Statement) -0.0074 0.1162 *** 0.0296 *** 0.0062 0.0742 ***
az26 (EA - PMI final) -0.0122 -0.0353 0.0249 *** -0.0299 ***  .0.0072
a2,33 (DE - Unemployment)  0.0023 0.1261 ***  0.0175 0.0052 -0.0789
az,37 (IT - GDP final) -0.0179 -0.0718 -0.0265 -0.0325 ***  .0.0840 **
a2,45 (ES - Industrial production)  0.0050 -0.0479 0.0208 0.0384 *** 0.2065 ***
ag,47 (PT - CPI) 0.0031 -0.0335 ** -0.0238 0.0245 *** 0.0857
asz,52 (NL - Unemployment)  0.0056 0.0161 0.0210 0.0261 *** 0.1948 ***
a2,53 (BE - Business confidence) -0.0124 -0.0320 * -0.0017 0.0206 *** -0.0366
Auctions - post-release (bid-to-cover)
az,61 (France) 0.0012 0.0122 -0.0228 ***  (0.0456 *** -0.0028
Auctions - post-release (average yield)
a2,75 (the Netherlands)  0.0058 0.1715 * -0.0277 0.0084 ** -0.0027
ag,76 (Portugal)  0.0289 0.0490 0.1135 ** 0.0993 *** 0.2423
v1  0.0056 0.3343 *** 0.1516 *** 0.1002 *** 0.2692
Macroannouncements - post-release - Asymmetric effect
v2,1 (US - Business Inventories)  0.0113 -0.0351 ***  _0.0282 ***  _0.0071 ** -0.0105
v2,2 (US - Chicago PMI)  -0.0002 -0.0410 ***  -0.0591 ***  -0.0002 0.0331
v2.3 (US - Consumer confidence) -0.0070 * -0.2700 ***  _0.0416 *** -0.0883 *** _(.2885 ***
va,4 (US - CPI) 0.0046 -0.0834 ***  _0.0089 ** -0.0266 ***  _0.0633
va,5 (US - Durable goods) -0.0036 0.0017 0.0288 *** -0.0085 ** -0.0009
va6 (US - Factory orders) — 0.0134 *** -0.0750 ***  -0.0061 * -0.0017 -0.0129 ***
va,7 (US - GDP advance) -0.0065 * -0.0983 ***  0.0061 * -0.0936 ***  _0.2295 ***
va,s (US - GDP preliminary)  0.0227 *** 0.0007 0.0053 -0.0071 ** 0.0000
va9 (US - GDP final) 0.0194 *kx -0.0561 ***  (0.0555 *** -0.0153 ***  .0.0092 **
v2,10 (US - Industrial production)  0.0015 -0.0381 ***  (.0042 -0.2667 0.0018
v2,11 (US - Initial jobless claim)  0.0031 -0.0721 ***  .0.0080 ** 0.0011 -0.0983 ***
v2,12 (US - Nonfarm payroll)  -0.0010 -0.3404 ***  _0.0508 *** _.0.0466 *** -0.1100 ***
v2,13 (US - Philadelphia FED Index) 0.0097 Hokk -0.2049 ***  0.0037 -0.0482 ***  _0.0005
vg,14 (US - PPI) -0.0076 ** 0.0048 -0.0028 -0.6172 0.0034
v2,16 (US - University of Michigan) -0.0060 * -0.0825 ***  _0.0074 ** -0.0044 -0.0983 ***
v2,17 (EA - Business confidence) 0.0069 * -0.0003 -0.0157 ***  (0.0052 -0.0079 **
v2,18 (EA - Consumer confidence) 0.0182 kol 0.0031 0.0154 -0.0117 ***  _.0.0134 ***
v2,19 (EA - Flash HICP)  0.0030 -0.0398 ***  0.0178 *** 0.0052 0.0045
v2,21 (EA - Industrial production) -0.0076 *k 0.0004 -0.0545 ***  (.0015 0.0266 ***
v 22 (EA - Introductory Statement) 0.0078 ** -0.1282 ***  _(0.1326 *** -0.0668 *** _-0.0961 ***
va 03 (EA - M3) 0.0104 *xx -0.0358 ***  (0.0073 ** -0.0253 ***  _0.0140 ***
v2,24 (EA - Monthly Bulletin)  0.0086 ** 0.0058 -0.0866 ***  0.0091 ** 0.0000
va,25 (EA - PMI flash)  0.0038 -0.0002 0.0038 -0.0186 ***  .0.0891 ***
va,26 (EA - PMI final)  0.0161 *** 0.0002 -0.0383 ***  (.0036 0.0010
va27 (EA - PPI) -0.0123 *¥*% 0 0.0071 ** -0.0480 ***  -0.0289 ***  (.0148 ***
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Table 2.8: Jumps: variance model

1T FR ES BE NL
v2,28 (EA - Retail sale )  -0.0048 0.0030 -0.0361 ***  .0.0178 ***  0.0007
v2,29 (EA - Unemployment)  0.0129 *** -0.0026 0.0036 0.0026 0.0000
v2,30 (DE - CPI preliminary)  0.0055 -0.1306 ***  -0.0087 ** -0.0178 ***  (0.0000
v2,.31 (DE - IFO: business confidence)  0.0043 -0.0038 0.0094 *** -0.0178 ***  (.0044
v 32 (DE - Industrial production)  0.0143 Hokk -0.0390 ***  _0.0823 ***  (.0031 -0.0478 ***
v2,33 (DE - Unemployment) -0.0031 -0.0736 ***  0.0053 -0.0322 ***  (0,0133 ***
va,34 (DE - ZEW) -0.0064 * -0.0023 -0.1083 ***  _0.0033 -0.0868 ***
va,35 (IT - Business confidence) 0.0126 *** -0.0006 0.0200 *** -0.0164 ***  .0.0346 ***
v2,36 (IT - CPI preliminary) -0.0283 *¥*% .0.0066 * -0.0834 ***  (.0035 0.0000
va,37 (IT - CPI final) -0.0134 ¥*%k _0.0261 **¥*  (0.0249 *** -0.0307 ***  _0.0020
va,38 (IT - GDP preliminary) -0.0115 ***  0.0099 *** 0.0021 0.0028 0.0049
va,39 (IT - GDP final) 0.0211 *okk 0.0016 0.0147 *** 0.0061 * 0.0109 ***
v2,40 (IT - Industrial production)  0.0019 0.0009 -0.0182 ***  .0.0307 *** 0.0019
va 42 (ES - CPI) -0.0047 -0.1374 ***  _0.1202 *** -0.0631 *** -0.3038 ***
v2,43 (ES - GDP Preliminary) 0.0169 *** 0.0001 0.0066 * 0.0000 0.0000
v2,44 (ES - GDP Final)  0.0037 -0.0981 ***  _0.0660 *** -0.0269 *** -0.0408 ***
v2 45 (ES - Industrial Production)  -0.0049 -0.0315 ***  _0.1322 *** _0.0249 *** _0.1096 ***
v2,46 (ES - Unemployment)  0.0190 *** 0.0010 0.0009 -0.0024 -0.0192 ***
ve 47 (PT - CPI) 0.0001 0.0016 0.0208 *** -0.0046 -0.0105 ***
v249 (PT - GDP final)  0.0051 0.0000 -0.0401 ***  -0.0068 * -0.0703 ***
va,50 (NL - CPI)  0.0105 *** 0.0105 -0.0162 ***  (.0000 0.0000
v2,51 (NL - Industrial production)  0.0149 Hokk -0.0052 -0.0724 ***  .0.0109 ***  -0.0458 ***
v2,52 (NL - Unemployment) -0.0098 ¥X% 0 .0.0138 **¥*  _0.0849 ***  .0.0547 **¥*  _0.2027 ***
v2,53 (BE - Business confidence) 0.0142 *kk -0.0925 ***  _(0.1295 ***  _0.0622 ***  _0.0002
va5a (GR - CPI)  0.0171 *** 0.0000 -0.0093 ***  .0.0086 ** -0.0164
va55 (GR - GDP preliminary)  -0.0088 **  0.0000 0.0271 ***  0.0011 0.0003
va56 (GR - GDP final) -0.0067 * -0.0010 0.0139 *** -0.0054 -0.0895 ***
va,57 (GR - Unemployment)  0.0032 0.0015 0.0085 ** 0.0111 ***  0.0060 *
Auctions - post-release (bid-to-cover) - Asymmetric effect
v 58 (Austria) 0.0094 Hxx 0.0000 0.0003 0.0022 -0.0402 ***
va 59 (Belgium) —0.0175 *** -0.0132 ***  0.0088 ** -0.0645 ***  (0.0007
va2,61 (France) -0.0034 0.0007 -0.0124 ***  _0.0675 ***  (0.0029
vag2 (Germany) — 0.0075 ** -0.0310 ***  _0.0173 ***  (0.0019 0.0008
va 64 (Italy) -0.0104 ¥¥%_0.0553 ¥*¥*  (0.0294 *** -0.015 *** -0.1558 ***
va 66 (Portugal) 0.0248 *kk -0.0012 -0.0273 ***  .0.0426 ***  (0.0279 ***
va,67 (Spain)  0.0087 ** 0.0049 0.0270 *** -0.0094 ** -0.0390 ***
Auctions - post-release (average yield) - Asymmetric effect
V2,68 (Austria)  0.0119 *** 0.0000 0.0181 *** 0.0004 0.0000
va,69 (Belgium) -0.0229 *¥*% 0 .0.0744 ***  0.0180 -0.0404 ***  -0.0769 ***
va,71 (France) 0.0098 *kx -0.0110 ***  _0.0184 *** .0.0108 *** _.0.0067 *
vo 72 (Germany) -0.0075 *x -0.2470 ***  _0.1325 *** _.0.0339 *** _(0.1292 ***
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Table 2.8: Jumps: variance model

IT FR ES BE NL

va 74 (Italy -0.0066 * -0.0154 ***  _0.1812 ***  _0.0793 *** .0.0084 **

)
va,75 (the Netherlands) —-0.0126 ***  -0.0979 ***  0.0161 *** -0.0353 ***  0.0000
va76 (Portugal) -0.0369 ***  -0.0096 *** -0.1983 *** -0.0644 *** -0.2994

va,77 (Spain)  -0.0251 ***  .0.0097 ***  -0.0852 *** -0.0242 *** -0.0140 ***

Rating actions - Asymmetric effect

va,7g (S&P) -0.0004 0.0034 0.0028 0.0088 0.0070 *

Table 2.8 reports the estimates for the variance equation of the Tobit-GARCH model in (2.16). The dependent
variable is the absolute size of jumps identified by applying the Lee and Mykland (2008) test corrected by the intraday
periodicity of the volatility as proposed by Boudt et al. (2010) and defined in (2.8). Macroannouncements and
auctions pre-release are dummy variables taking value equal to 1 for time intervals preceding the release up
to 1 hour before the release. Macroannouncements and auctions post-release effect is captured by dummy
variables equal to 1 for large surprise. Large surprises are defined as: |Surprise| >0.5 SD(Surprise). For bond
auctions we define surprise as the difference in average yield and bid-to-cover with respect to the previous auction.
These "surprises" are available just for 10-year bond auctions. Surprises are evaluated up to 1 hour after the release.
Rating actions are dummy variables taking value 1 for time intervals following the action up to 2 hours after the
release, zero otherwise. Macroannouncements and auctions post-release - Asymmetric and Rating actions
- Asymmetric are defined as for Macroannouncements and auctions post-release. We report just variables which
are statistically significant at 10% level for at least one country. *** ** * denote 1%, 5% and 10% significance

level, respectively.

The coefficients wa ;, j = 1, ..., J account for a different level of unconditional volatility
in correspondence to the future macroannouncements or government bond auctions re-
leases with respect to time intervals not preceding any news. The coefficients are positive
and statistically significant, meaning that in the hour preceding one of the events in our
analysis, the level of volatility raises above the level wy. In particular, 22 macroannounce-
ments out of 55 are significant with higher relevance of those concerning US, among which
non-farm payroll for France (coefficient: 0.1141), Spain (-0.0091) and Belgium (0.0243),
retail sales for France (0.0264), Spain (0.0077) and Belgium (0.0099) and Chicago PMI
for France (-0.0391), Belgium (0.0043) and the Netherlands (-0.0184) and Euro area with
the PMI flash for France (0.0229), Belgium (0.0107) and the Netherlands (0.0220). More-
over we found that the level of volatility raises in correspondence to Italian and Greek
releases. In particular, Italian GDP final and industrial production future releases impact
on France (coefficients: 0.0629 and 0.0280) and Belgium (0.0216 and -0.0099) while Greek
GDP final and unemployment significantly explain jump sizes for France (coefficients: -
0.1160 and 0.0365) and Belgium (0.0152 and 0.0050) and Greek CPI determines jumps in
Belgium (0.0110) and the Netherlands (-0.0182). Turning now the attention to auctions,
we found little evidence of a raise in volatility in correspondence of prescheduled auctions
with limited impact of those which will be held in Greece and Spain both on Belgium and
the Netherlands.
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All variables used so far capture the pre-announcement effect. Once information
is released, traders process information and adjust the price according. Parameters
agj, j = 1,...,J + B account for persistency of announcement news while parameters
vo ; allow for the different leverage effect in correspondence to negative surprise lead by
macroannouncements with respect to standard negative news.

As far as the persistency parameters are concerned, starting from macroannounce-
ments there is no particular pattern in the significance as overall 19 parameters are posi-
tive while 14 are negative. This finding implies that macroannouncements do not persist
differently from other news. The same holds true for auctions. The only release deserv-
ing attention is the ECB Introductory Statement whose release increases persistency in
volatility in France (coefficient: 0.1162), Spain (0.0296) and the Netherlands (0.0742). As
already reported earlier in the Chapter, the ECB Introductory Statement conveys a lot of
information which can take some time to be completely processed by the market. More-
over, the reading of the Introductory Statement per se together with the time devoted to
questions and answers may take some time to be carried out.

The asymmetric effect is the most relevant part in the variance equation. In particular,
as far as both macroannouncements and auctions are concerned, quite a few coefficients are
negative and statistically significant implying that the leverage effect associated to these
events is less pronounced than other news. We like to interpret this finding as follows:
the availability of forecasts together with the scheduling of macroannouncement releases
decrease the uncertainty associated to these news. In contrast, other negative shocks
to the market, for instance political downturns or some banks failures, are completely
unforeseeable and thus have higher impact on government bond spreads. The evidence of
the lower leverage effect associated to macroannouncements with respect to other kind of
news contrasts the finding in de Goeij and Marquering (2006) where it is found evidence
of positive estimates for the leverage effect associated to macroannouncements. In our
analysis, we are using 5-minute data while de Goeij and Marquering (2006) paper is
based on daily data, thus our results should be more precise in assessing the different
impact of macroannouncements with respect to standard news.

Turning now to the analysis of the leverage effect associated to auctions, we still
observe a less pronounced effect than other news; this result too can be supported by
better quality in terms of information content and by that auctions are prescheduled

events.

2.4.3 Results for the Cojump Model

In this final section, we report the results from model estimation for cojumps.
First, in order to get robust estimates, we remove all the dummy variables which had

less than 15 observations for all the possible combinations with dependent variable in
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a 2x2 contingency table; on the remaining variables we then estimate the logit model

and adjust the estimates according to prior correction.

statistically significant variables explaining cojumps.

In Table 2.9, we report only

Table 2.9: Cojumps: logit model

Constant -5.1789

Macroannouncements - pre-release
Y112 (US - Nonfarm payroll) ~ 2.1708 ***
Y120 (EA - Introductory Statement) — 1.1798 ***
Y125 (EA - PMI flash) ~ 1.1897 ***
Y1 96 (BEA - PMI final) ~ 1.5830 ***
)

V1,27 (EA - PPI 0.6163 *

Macroannouncements - post-release
Yo7 (US - GDP advance)  3.0476 ***
Y212 (US - Nonfarm payroll) ~ 0.6829 ***
Y215 (US - Retail sales) ~ 0.5907 ***
Yoz (EA - PMI final)  0.2946 ***
Y224 (EA - Monthly Bulletin) ~ -1.4181 *
Y2.45 (ES - Industrial production)  0.1866 **

)

Ya,56 (GR - GDP final 0.7799 **

Auctions - pre-release
V1,50 (Belgium) 0.3908 *
Y1 64 (Italy)  0.4389 **
Y166 (Portugal) — -0.6717 **

Auctions - post-release (average yield)
Y2,61 (France) 4.1493 **
Ya64 (Italy)  2.4961 *okok

Test statistics

LogL -4,888.52
LR test 346.38 ***
Area under ROC curve 0.61

Table 2.9 reports the estimates for the logit model on cojumps. The dependent
variable is the contemporaneous cojump defined in (2.12) based on jumps identified
according to Lee and Mykland (2008) test corrected by the intraday periodicity of the
volatility as proposed by Boudt et al. (2010) and defined in (2.8). The interecept of
the logit model is corrected by (2.18) as suggested by the prior correction approach.
Macroannouncements and auctions pre-release are dummy variables taking
value equal to 1 for time intervals preceding the release up to 1 hour before the
release. Macroannouncements and auctions post-release effect is captured by
the absolute size of surprise associated to the specific release. For bond auctions
we define surprise as the difference in average yield and bid-to-cover with respect to
the previous auction. These "surprises" are available just for 10-year bond auctions.
Surprise effects are taken into consideration up to 1 hour after the release. We report
just variables which are statistically significant at 10% level. ROC curve: receiver
operating characteristic curve. *** ** * denote significance at 1%, 5% and 10%,
respectively.

Although the area under the ROC (receiver operating characteristic) curve indicates
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that we are not able to model in a satisfactory way cojump being equal to 0.61 (a com-
pletely random classifier model has an area under the ROC curve equal to 0.5 while in
the case of a perfect discriminating model this value is equal to 1), the results we get are
robust enough to suggest interesting findings. The most important variables in explain-
ing cojumps are those related to the US real economy, among which a prominent role
is played as usual by non-farm payroll (0.6829) but even by GDP advance (3.0476) and
retail sales (0.5907), together with forward looking measures concerning Euro area such as
PMI flash (1.1897) and PMI final (1.5830). Moreover, the importance of the Introductory
Statement is confirmed with a statistically significant coefficient of 0.1866. The relevance
of US non-farm payroll and retail sales in explaining cojumps is also stated in Lahaye et
al. (2011), while as far as auctions are concerned, we can see that Italian auctions are
crucially entering the model with the change in average yield with a coefficient of 2.4961
as well as with the pre-release effect (0.4389). Even for this model, the impact of rating

actions is statistically insignificant.

2.5 Conclusions

In this Chapter, we jointly modelled the impact of macroannouncements, government
bond auctions and rating actions on the 10-year government bond spreads for the bench-
marks of Belgium, France, Italy, the Netherlands and Spain with respect to the German
Bund, over the period 2nd January 2009 - 31st May 2012. We measured the impact of
three drivers on both mean and variance specifications, disentangling the pre- from the
post-announcement effect, via the identification and mapping of jumps and cojumps. We
considered a wide range of macroannouncements covering US, Euro area and individ-
ual countries together with government bond auctions and rating actions about largest
European countries.

Our results show the high sensitivity of jumps and cojumps to US and Euro area
macroannouncements plus specific Spanish and German macroannouncements. With re-
spect to macroannouncements categories, very important is the role played by the vari-
ables concerning real economy, such as US non-farm payroll, retail sales and GDP, together
with the forward looking indicators among all consumer confidence indicators and pur-
chase manager indexes playing a key role; monetary news are found to be irrelevant. More-
over, the ECB Introductory Statement turned out to be a significant determinant of both
jumps and cojumps. Finally, macroannouncements are important drivers for both the
mean and variance of spreads entering significantly at both pre and post-announcement
levels.

Government bond auctions hold in countries experiencing deep economic downturn,

such as Italy and Spain, significantly explain jumps and cojumps. Finally, rating actions
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do not produce sizeable jumps in the markets.

To the best of our knowledge this is the first paper assessing in a comprehensive way
the drivers of jumps and cojumps associated to government bond spreads. Our framework
allows to consider simultaneously a relevant number of variables which is crucial in order
to properly measure the impact of these events; this is important also because macroan-
nouncements in the Furo area and government bond auctions take place at almost the
same time. Finally, the evaluation of the impact of auctions on spreads is relevant also
to practitioners who focus even on government bond auctions in setting their trading
strategies.

There are important policy implications from our analysis. We showed that move-
ments in government bond spreads are significantly determined by macroannouncements
and government bond auctions, and thus in the current sovereign crisis intraday move-
ments were driven by changes in macroeconomic fundamentals and not, or at least not
only, by speculative actions. In addition, the fact that events taking place in some in-
dividual country, such as Germany and Spain for macroannouncements and Italy and
Spain for auctions, have a significant impact in other countries, shows the great level of
interdependence between countries. This conclusion is supported also by that the higher
number of cojumps for all the government bond spreads in the analysis are significantly
associated to macroannouncements and government bond auctions.

The findings in this Chapter suggest interesting additional developments. Our analysis
is very comprehensive about the possible determinants of jumps and cojumps, however
we envisage that at least two other possible drivers may play an important role in an
uncertain and volatile environment. In this Chapter, we analyzed the impact of the
downgrading actions once the decision of the rating agency becomes public: it will be
interesting to study whether warnings and outlook changes announced by rating agencies
could have some impacts on government bond spreads. The second issue deals with
the analysis of market’s reactions to political uncertainty. For instance, the inconclusive
results of Italian elections of the 25th February 2012 brought on the market a high level of
uncertainty which determined a substantial increase in Italian government bond spread of
51 bps in just one day and which affected even Spanish spread with an increase of 30 bps.
Finally, following Beechey and Wright (2009) who look at announcement effects in the
real and nominal US Treasury market using real yields, nominal yields, and the spread
between the two, we may also look at yields on the German Bund, yields on the other

bonds, and the spreads between them. This is part of an ongoing research agenda.



56 Macroannouncements, Bond Auctions and Rating Actions in the European Government Bond Spreads

2.A Appendix I - Realized Measures
Consider a scalar log-price X; evolving in continuous time as:
dX; = Mtdt + o dWy + dJy (219)

where p, drift, o volatility, W; Brownian motion, J; pure Lévy process with increments
Ji—Js = Zt: k(7) with k(7) jump size.
The OVTe:rZLll volatility of (2.19) is the Quadratic Variartion (QV) which is defined as:
t M
QVi = /t_l o2ds + Zl k(T)? (2.20)

where M; number of jumps in day ¢.

QV in (2.20) can be decomposed into two components, the Integrated Variance (IV):

t
IV, = / olds (2.21)
t—1
and the Jump Variance (JV):
My
JVi=> k(1) (2.22)
T=1

A consistent estimator of QV is the Realized Volatility (RV) by Barndorff-Nielsen and

Shephard (2004):
N

RV, => r(r)* 5 QV; (2.23)

=1
with N number of intraday transactions belonging to day t.
In absence of any jumps, the limiting distribution of the RV estimator is v N (RV, — IV}) —
N (0,21Q;) with 1Q the Integrated Quarticity defined as:

t
1Q; = / otds (2.24)
t

-1
A consistent estimator of the IV is the Bipower Variation (BV) by Barndorff-Nielsen
and Shephard (2004) defined as:

N\ r/ N \&
BV; = py° <N—1> > " frral || = 5 <N—1> > frra 7] (2.25)
T=2 T=2

The BV is robust to the presence of jumps in previous periods as it measures only the

integrated variance attributable to the diffusive component.
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2.B Appendix II - Intraday Deterministic Component

2.B.1 Methodology

The combination of recurring cycles at the daily frequency and a slow decay in the aver-
age autocorrelations may be explained by the joint presence of the pronounced intraday
periodicity coupled with the strong daily conditional heteroskedasticity. Andersen and
Bollerslev (1998) formalize the relationship between intradaily and daily returns as fol-
lows:

Tei —Tii = 0Seiz t=1,..,T i=1,..,N (2.26)

where T number of days in the sample; N number of intraday intervals belonging at each
t; 7¢,; observed return on day t and interval 7; 7;; expected return; o; daily conditional
volatility; s;; deterministic intraday periodic component; z;; i.i.d. mean zero and unit
variance term. All the return components o4, s;; and z;; are assumed to be independent.
In the absence of intraday periodicity (s;; = 1), the intradaily returns may be represented
in the form r;; = oy2,. Thus, (2.26) extends the standard volatility model for daily
returns to an intraday setting with independent return innovations and deterministic
volatility pattern.

Without additional restrictions, the components of (2.26) are not separately identifi-
able. The estimation of (2.26) can be carried out by squaring and taking the logs so that
the deterministic intraday periodic component s;; can be isolated as the sole explanatory

variables:

2log [|r; — Tril] — 2log |o¢| = 21og ‘St,i‘ + 2log }zm} (2.27)

and setting 2log ‘Zt,i =u; +cwithec=FE [2 log zt’i} , (2.27) becomes:
2log [|r; — Tril] — 2log |o¢| = 21og }st7i| +c+u

Andersen and Bollerslev (1998) model the intraday periodicity using a parametric ap-

proach and by replacing 2 log ‘stﬂ- with f(6; ;) ending up with:
210g Hrm — ?t,iH -2 log ]8,5] = f((g, .%'m’) +c+ at’i (2.28)

where 4 ; i.i.d. distributed with zero mean and density function corresponding to that of

the centered absolute value of the log of a standard normal random variable as in (2.29):

g(z) = \/zexp [z4+c—0.5exp (2(z+0))] (2.29)

with ¢ = —0.65318, that is the mean of the log of the absolute value of a standard normal

random variable.
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In modelling the intraday periodicity component, Andersen and Bollerslev (1998) as-
sume that the volatility process is driven by simultaneous interaction of numerous compo-
nents, some associated with economic news releases, some with predominantly predictable
calendar effects, and some with persistent, unobserved (latent) factor.

The baseline assumption is that the log-volatility response, conditional on the type
of the macroannouncement, the time of the release and other relevant calendar informa-
tion, has a well-defined expected value, E [log s; ;] . This average impact is then governed
by purely deterministic regressors. Of course, the innovations, logs;; — E [log s;;], will
typically be highly correlated for the immediate period following a new release. This
will induce serial correlation and heteroskedasticity in the error terms of the regression
proposed below. The term log|o|, is assumed to be strictly stationary and with finite
unconditional mean, E [log |o¢|] .

The presence of the intraday periodic component reduces the overall level of the in-
tradaily return autocorrelations without affecting the autocorrelation pattern. The in-
traday periodic component s;; can be modeled using two alternative approaches, both
based on the approximation through polynomial terms and trigonometric functions which
are parametrizations particularly useful in case of regularly recurring patterns. The first
approach is based on the Fourier Flexible Functional (FFF) form proposed by Gallant
(1981) and popularized by Andersen and Bollerslev (1998). The second one was intro-
duced by Dacoronga (1993) relying on the sum of three polynomials corresponding to
the three distinct geographical locations of the markets; this approach does not apply to
our data as we are investigating just the Euro area market. We now present the FFF
approach as in Andersen and Bollerslev (1998).

In the first step, the mean process 7;; is modeled given a reasonable estimator for
8?. In particular, the daily volatility o; can be estimated according to a GARCH process,
even on a longer data sample, in order to capture the daily volatility clustering. The

intradaily volatility estimate is obtained using the following transformation:
Gii = 01/ N*? (2.30)

where N is the number of observations for day ¢. At this point, the observable regressand
and regressors in (2.28) are provided.

In the second step, a parametric representation of the regressor E[log f(6;t,1)]
of the form f(6;x;) is imposed. In detail Andersen and Bollerslev (1998) propose the
following form:

. .9 J
2 1 .
! (9’ (Em) = do+ 5071F1 + 50,2F2 + E /\ng,i +
J=1

" 27mp 2mp
Z (507]3 cos <N1) + ds,psin <N1)> + et (2.31)

p=1
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where N1 = (N +1)/2 and No = (N + 1)(N + 2)/6 normalizing constants; StjZ surprise
effect of macroannouncement j during interval 7 on day ¢; \; event specific loading coeffi-
cient; P tuning parameter determining the order of the expansion of the sinusoids; 6 full
parameter vector to be estimated. The role of A; is to capture the response of returns
to macroeconomic announcements. The idea under study is that the event j impacts
volatility over N; intervals. In Andersen and Bollerslev (1998) this is achieved imposing
a decay-structure on the volatility response pattern and estimating the degree to which

events load onto this pattern by:
A(J,7) =Ajv(@) i=0,1,...,N; (2.32)
where 7(7) dictates the response at lag i = 0, 1, ..., N; modeled by a third-order polynomial:
VG6) = o [L= i/ (N + D] + 81— (f (N +1))°] i+ 6 [1 = @/ (N; + )] (233)
Equation (2.33) is obtained starting from:
p(1)=co+at+...+cp7? (2.34)

to which two bounds are imposed, p(0) = 0, so that the impact reflects a gradual move-
ment away from the standard pattern, co = 0, and p(N) = 0 so that the macroannounce-
ment effect slowly fades. The next step is to substitute 7 = N in (2.34), solving for ¢,
and inserting the resulting expression for ¢, back into (2.34). In this way, a restricted

polynomial with one less parameter is obtained:
p(r)=co[L— (7/N)’] + {1 — (T/W)pil} ™+t - (7/N)] 7 (2.35)
The common response structure is finally obtained:
p; (1) = \jpo(T) (2.36)

The cumulative response measure over the entire event window is expressed as a
multiplicative factor scaled in units of average volatility per interval over the period and

takes the following form:

N; N (i
M) =>" [exp (Ajz()) — 1] (2.37)
=0

Through translation of the resulting estimates for A; from (2.32), the immediate response

in the j absolute returns is then given by exp ()TJ'y(O) / 2) — 1, while the response at the
i—th lag equals exp ():\37(@)/2) — 1. At lag i = N; the impact is forced to be 0.
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Once (2.32) is estimated, the intraday periodic component for interval i belonging to
day t is given by:
Texp (f (01:) /2)
Z?:l fo\; exp (f (57 SCt,i) /2)

Although the two-step method is not fully efficient as the error terms are not normally

~

St,i

(2.38)

distributed, given correct specification of the first-step FFF regressor, the estimated para-
meters are consistent. The logarithmic transformation introduced in (2.27) is particular
useful for eliminating the extreme outliers in the 5-minute return series and let the re-
gression be more robust. Anyway, price jumps may cause a large bias in the periodicity
estimator proposed by Andersen and Bollerslev (1998). Therefore Boudt et al. (2010)
introduce a robust alternative to intraday periodicity estimation.

To introduce Boudt et al. (2010) estimation technique, we first have to introduce the
non-parametric estimation of the intraday periodicity factor. The non-parametric peri-
odicity estimator is based on a scale estimate of the returns standardized by an estimate
of volatility, 1 m...., ?T',m m=1,....,M = N x 5, 5 being the days in a week, sharing
the same periodicity factor 7, and M = N x 5 be the total number of local windows.
Assuming that the periodicity factor depends only on the time of the day and day of
the weck m at which ry; is observed, we have that 71;....,77 ; are the T (T/M) returns
observed on the same time of the day and day of the week m. The non-parametric peri-
odicity factor estimators are generally defined as the square root of the expected value of

the ratio between the spot variance and the mean variance over a local window:

ag

2
m (2.39)

2
Sm=E | T
M f(l—l)M opdm

The alternative non-parametric estimators differ for the the measure of the volatility used.
The denominator in (2.39) ensures that the standardization condition that the squared

periodicity factor has mean one over the local window is met:

1 M
i Y ost=1 (2.40)
m=1

The first non-parametric periodicity estimator was proposed by Taylor and Xu (1997)
and was based on the standard deviation of all standardized returns belonging to the same
local window. Anyway in presence of jumps, the SD estimator is strongly biased. There-
fore, Boudt et al. (2010) suggest to use a robust scale estimator, the Shortest Half Scale
proposed by Rousseeuw and Leroy (1998). To define the Shortest Half (ShortH hence-
forth) scale estimator, we need to introduce the corresponding order statistics 71 . - - - ,

’F(’f)m where m = 1,..., M such that r(y),, < rg)m, < ... < ’F(’f)m The shortest half
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scale is the smallest length of all halves consisting of h,, = [f / 2} + 1 contiguous order

statistics:

ShortHy, = 0741100 {7,y m = F(1) ms s ) = T 1)m | (2.41)

The ShortH estimator for the periodicity factor equals:

~ShortH __ ShOTth
Sm =

(2.42)

% mil ShortH?2,

The ShortH is highly robust to jumps, but it has only a 37% efficiency under normality
of the 7 ,,s (Rousseeuw and Leroy, 1988). A more efficient estimator than the ShortH,
being robust to jumps as well, is obtained using the Weighted Standard Deviation (WSD
henceforth), where the weights depend on the value of the standardized returns divided

by the ShortH periodicity estimate:

D
ssh fos ik (2.43)
T
\[ % X WSDE,
t=1
where:
T =2
1 WimT
WSD,, = 1.0812“;“””” (2.44)
The weights are given by wy,, = w (?t,m J5ohortH ) where we use as a weight function

w(z) = 1 if 22 < 6.635 and 0 otherwise. The threshold 6.635 equals the 99% quantile of
the x? distribution with one degree of freedom. If there are no price jumps, the WSD
gives a zero weight to on average 1% of the returns. If there are jumps, more observations
are downweighted. The WSD in (2.44) has a 69% efficiency under normality of the 7;s, as
opposed to the 37% efficiency of the ShortH (see Boudt et al. (2010) for further details).

The main drawback of non-parametric estimators for the intraday periodic component
is that they only use the subset of the data for which the returns have the same periodicity
factor. Andersen and Bollerslev (1998) show that more efficient estimates can be obtained
if the whole time series dimension of the data is used for the estimation of the periodicity
process as it is done when parametric estimation is carried out. Anyway, we were stating
that OLS is not efficient because of non-normality of the error term. Therefore, the

OLS(Z)

maximum likelihood estimator should be preferred. Denote p = 22 and, recalling

(2.29), let p™(z) be the negative log likelihood function:

pME(2) = —0.5log(2/7) — z — ¢+ 0.5exp(2(z + ¢)) (2.45)
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The OLS and ML estimators for (2.28) are given by:

~OLS

0 = argmlng ~ Z Z pOLS (uost,m) (2.46)
t 1 m=1

~ML

0 = arg mlng = Z Z p uﬁ,t,m (2.47)
t 1 m=1

These p-functions are called loss functions. The non-robustness of the OLS and ML
estimators to jumps is due to the unbounded effect an observation can have on their loss
function. Martens et al. (2002) mention that the effect of jumps on the OLS estimator
is attenuated because the regression is based on the log of the standardized returns, but
solely a log-transformation is not sufficient to attain robustness to jumps.

As an alternative to the OLS and ML estimators, Boudt et al. (2010) propose to use
the Truncated Maximum Likelihood (TML) estimator introduced by Marazzi and Yohai
(2004). This estimator gives a zero weight to observations that are outliers according to
the value of the ML loss function. Therefore, in a first step residuals are computed using

the robust non-parametric estimator fiysp in (2.43). Recalling again (2.28), let
WSD _ rei — Tl 1 WSD
Ut og | = — ¢~ log f(x1,) (2.48)
ti

is large have a low likelihood and are therefore

Observations for which pM L (u% SD )

likely to be outliers. Denote ¢ an extreme upper quantile of the distribution of u; ;. The
TML estimator is defined as:

~TML
0 = arg miny Z Z we i oM (ug.y ) (2.49)
i 1Zz 1Wti =1 =1

MLV SP) < pML(q)

and 0 otherwise. Henceforth, we take ¢ as the
L(uEgSD)

with wy; = 11if p
99.5% quantile such that all observations with p"
in the objective function of the TML estimator. Like for the WSD, the choice of these

thresholds implies that, if there are no price jumps, the TML gives a zero weight to on

> 3.36 receive a zero weight

average 1% of the returns. If there are jumps, more observations are downweighted.
Like for the non-parametric periodicity estimators, we impose that the squared period-
icity factor has mean one in the local window. The parametric estimate for the periodicity

factor thus equals:

ex 0 x )
ML _ pf( TML; Tt

St
\/ﬁl Z%il (exp f (9TML; wt,i) ) ’

where z;; set of covariates used to model the intraday periodicity as in (2.31).

Vi=1,..,T (2.50)
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In a recent paper, Hecq et al. (2012) test for the presence of commonalities in the
intraday periodic components in a set of 30 US asset returns concluding that only three
factors are driving the intraday periodicity in volatility. The first one can be attributed to
the typical U-shaped pattern observed in return volatility over the trading day while the
other two capture more erratic fluctuations: the second factor shows a slowly decreasing

intraday trend while the third factor has a sinusoidal behaviour.

2.B.2 Empirical Results

Focusing on data used in this Chapter, we estimated both non-parametric, ShortH and
WSD, and parametric versions of the intraday periodicity. The parametric specification is
in (2.10). As far as non-parametric estimation is concerned, we consider as local window
a day of the week so that we effectively estimate the intraweekly periodicity. In Table
2.B.1 we report the estimates obtained through the parametric approach combined with

the Truncated Maximum Likelihood technique.
Table 2.B.1: Intraday periodicty estimates

IT FR ES BE NL
Constant ~ 0.0000  0.0000  0.0000  0.0000  0.0000
AR(1) 0.1436  0.4944 0.1332  0.2513  0.5330
MA(1) -0.2728 -0.7641 -0.3039 -0.4431 -0.8121
do 0.7755  0.0736  -0.8062 0.1983 -0.2417
do,1 -1.8378 -0.1945 2.9184 -0.2654 0.7914
do2 0.6314  0.0792 -0.9748 0.1064 -0.2684

)

Macroannouncement Surprises
A1 - US - Business Inventories  0.0046 0.0010 0.0010 -0.0039 0.0030
A2 - US - Chicago PMI ~ 0.0026  0.0017  0.0017  0.0006 -0.0001
A3 - US - Consumer Confidence  0.0007 0.0019 0.0038 0.0023 0.0017
A4 -US-CPI 0.0018 0.0092 0.0046 0.0002  0.0084
As - US - Durable Goods -0.0009 -0.0010 -0.0022 -0.0025 -0.0030
X6 - US - Factory Orders  0.0058  0.0073 -0.0030 -0.0049 0.0049
A7 - US - GDP Advance -0.0033 -0.0010 -0.0057 -0.0106 -0.0063
Ag - US - GDP Preliminary -0.0020 -0.0003 -0.0049 -0.0049  0.0005
Ao - US - GDP Final 0.0017  0.0041 -0.0019 0.0048 -0.0064
A10 - US - Industrial Production -0.0008 -0.0013 -0.0022 -0.0011  0.0022
A11 - US - Initial Jobless Claim  1.7785 -0.3580 0.7952  1.2892  -2.5060
A12 - US - Nonfarm Payroll -0.0003 0.0014  0.0035 -0.0002  0.0012
A1z - US - Philadelphia FED  0.0012 -0.0014  0.0005 -0.0013  0.0021
A4 - US-PPI  0.00563 -0.0014 -0.0016 -0.0027 -0.0036
A1s - US - Retail Sales  -0.0019  0.0009  0.0020 -0.0009 -0.0013
A6 - US - University Of Michigan -0.0028  0.0003  0.0026 -0.0102 -0.0040
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Table 2.B.1: Intraday periodicty estimates

IT FR ES BE NL
A7 - EA - Business Climate  0.0008 -0.0013 -0.0017 0.0004 -0.0019
A1s - EA - Consumer Confidence  0.0013 0.0011  -0.0047 -0.0025 -0.0045
A19 - EA - Flash HICP  0.0023  0.0010  0.0003  0.0033  0.0078
A21 - EA - Industrial Production 0.0003  0.0009  0.0053  0.0065 -0.0027
A22 - EA - Introductory Statement  0.0063 0.0137 0.0113 0.0194 0.0241
A2z - EA-M3 -0.0018 -0.0019 -0.0019 0.0005 -0.0007
A24 - EA - Monthly Bulletin ~ 0.0014  -0.0052 0.0116  0.0031  -0.0020
A25 - EA - PMI Flash  -0.0010  0.0003 -0.0017 -0.0015  0.0013
A26 - EA - PMI Final  0.0036  0.0021  0.0041  0.0011  0.0027
A27 - EA - Purchase Price  -0.0005 -0.0092 -0.0104 -0.0001 -0.0024
A2g - EA - Retail Sales 0.0062 -0.0003 0.0135 0.0089  0.0067
A29 - EA - Unemployment 0.0005  0.0002 -0.0009 -0.0006 -0.0038
Aso - DE - CPI  0.0000 -0.0042 0.0027 -0.0039 0.0014
A31 - DE - IFO:Business Confidence  0.0012 0.0014 0.0026 0.0015 0.0021
A3z - DE - Industrial Production  0.0005 -0.0047 -0.0007 -0.0022 -0.0047
A3z - DE - Unemployment  0.0038  0.0043  0.0030 0.0013 -0.0007
As4 - DE - ZEW  0.0019  0.0023  0.0038  0.0035  0.0047
Ass - IT - Business Confidence  0.0010 -0.0001 -0.0017 -0.0015 -0.0007
Asge - IT - CPI Preliminary -0.0003  0.0016 -0.0006 -0.0012 -0.0014
Ag7 - IT - CPI Final  0.0027  0.0000  0.0028  0.0011  0.0035
Asg - IT - GDP Preliminary -0.0037 -0.0005 -0.0033 -0.0016 0.0054
Azg - IT - GDP Final 0.0211  0.0094 0.0116  0.0251  0.0139
A0 - IT - Industrial Production  0.0022 0.0021  -0.0016  0.0020 0.0011
Aa1 - FR - Industrial Production -0.0033  -0.0046 -0.0032 -0.0020 -0.0050
Ag2 - SP - CPI  0.0049 0.0007 0.0032  0.0079  0.0110
A4z - SP - GDP Preliminary -0.0030  0.0050 -0.0029 0.0027 -0.0011
Ag4 - SP - GDP Final -0.0008 -0.0160 -0.0054 -0.0093 -0.0007
Aas - SP - Industrial Production -0.0021  -0.0009 0.0016 -0.0006 0.0029
A6 - SP - Unemployment -0.0024 -0.0087 -0.0013 -0.0017 -0.0074
Aq7 - PT - CPI  0.0015 -0.0034 -0.0001 -0.0006 0.0020
Agg - PT - GDP Preliminary  0.0004 -0.0001  0.0002  0.0005 -0.0006
Ag9 - PT - GDP Final 0.0045 0.0041 0.0129  0.0035 -0.0079
Aso - NL - CPI  -0.0002 0.0016  0.0058  0.0083 -0.0036
As1 - NL - IndustrialProduction  0.0003  0.0005 -0.0017  0.0005 -0.0009
As2 - NL - Unemployment  0.0041  -0.0004 0.0057  0.0007  0.0010
As3 - BE - Business Confidence -0.0057 -0.0042 -0.0037 -0.0060 -0.0020
Asa - GR - CPI  -0.0014 -0.0011 -0.0012 -0.0003 0.0021
As5 - GR - GDP Preliminary  0.0034  0.0044  0.0105  0.0018  0.0171
As6 - GR - GDP Final -0.0029 -0.0003 -0.0015 -0.0020 -0.0047
As7 - GR - Unemployment -0.0034 -0.0003 -0.0002 -0.0019 -0.0011




Appendix II - Intraday Deterministic Component 65

Table 2.B.1: Intraday periodicty estimates

IT FR ES BE NL

Bid-to-cover 10yrs Auctions

Asg - Austria  0.0034  -0.0004 0.0031 -0.0018  0.0026

Asg - Belgium  -0.0084 -0.0047 -0.0095 -0.0014 -0.0028

Aé1 - France  0.0037  0.0061  0.0004 0.0036 -0.0004

A2 - Germany  0.0021  0.0189  0.0009 -0.0124 -0.0162

Aéa - Italy  0.0112  0.0391 0.0186  0.0328  0.0391

As¢ - Portugal -0.0039  0.0052  0.0013  0.0013  0.0035

As7 - Spain  -0.0084 -0.0023  0.0050 -0.0128  0.0052

Rating
¢, - S&P  0.0028 -0.0001 0.0010 -0.0017 -0.0072
¢, - Moody’s -0.0053 -0.0055 -0.0004 0.0127 -0.0028
¢5 - Fitch ~ 0.0063  0.0020  0.0081 -0.0002  0.0034

Day of the Week
01 - Tuesday  0.0101  0.0086 -0.0268 -0.0099 0.0015
02 - Wednesday  0.0007  0.0081 -0.0170 -0.0004 0.0137
03 - Thursday  0.0097  0.0092 -0.0239 -0.0060 0.0054
04 - Friday  0.0376 0.0225 -0.0059  0.0249 0.0151

Periodic Component
dc1 -0.2600  0.0555  0.6921  0.0242  0.2420
de2 -0.1312  -0.0303 0.1245 -0.0282  0.0094
de,3 -0.0425  0.0041  0.0687  0.0057  0.0314
de,a -0.0302  -0.0075 0.0388  0.0063  0.0138
de5  -0.0156 0.0222  0.0389  0.0166  0.0444
ds,1  0.0365 0.0164 0.0599 0.0394 -0.0221
ds,2 0.0514  0.0459 0.0467 0.0359  0.0293
ds,3  0.0256  -0.0027  0.0096  0.0031  0.0052
ds,a 0.0245 0.0313 0.0096 0.0117  0.0156
ds,5 0.0071  0.0108 -0.0189 -0.0082  0.0046

Table 2.B.1 reports the estimates for the parametric intraday periodicity following
(2.10) and estimated by TML.

Figure 2.11 depicts a comparison among the three alternative estimates for the in-

traweekly periodicity: ShortH in grey, WSD in black and the parametric one in blue.
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Figure 2.11: Intraweekly Periodicity Estimates

In Figure 2.11 we represent the three intraday periodicity components estimated by ShortH (grey), WSD
(black) and parametric-TML (blue).
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Chapter 3

High- and Low- Frequency
Correlations in European
Government Bond Spreads and

Thelr Macroeconomic Drivers

Abstract

In this Chapter, we propose a high frequency DCC-MIDAS model for jointly esti-
mating the high and low frequency components for both volatilities and correlations of
European government bond spreads. We consider spreads of the 10-year benchmarks for
Belgium, France, Italy, Spain and the Netherlands with respect to Germany, over the
period 1st June 2007 - 31st May 2012. The high frequency component of volatilities and
correlations, reflecting financial market conditions, is evaluated at 15 minutes while the
low frequency component, remaining fixed through a month, is expected to depend on
countries macroeconomic conditions.

We provide evidence of strong linkages between European government bond spreads
volatility and worsening macroeconomic fundamentals with respect to Germany. More-
over, our results show that as two countries get similar in terms of their macroeconomic
fundamentals, relative spreads tend to get more correlated, though the increasing corre-
lation in spreads during the worst phase of the sovereign crisis could not be completely
ascribed to macroeconomic factors. These results highlight the presence of increasing
financial integration and systemic risk during that period.

Keywords: High-Frequency MIDAS Models, Government Bond Spreads, Macroeco-
nomic Variables, Correlations, Volatilities.

J.E.L. Classification Numbers: E44, G12, H63, C32, C58.
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3.1 Introduction

According to the covered interest parity condition, two otherwise equivalent bonds issued
in two different currencies should have the same yield expressed in one currency. How-
ever, deviations from covered interest parity condition evaluated on sovereign bond yields
may occur because of different default risk of the issuer, different liquidity conditions
and characteristics of the bonds, and also because of imperfect market integration either
preventing or slowing down trading arbitrage to eliminate yield differences. If we consider
European government bonds of a same maturity, and similar liquidity, any difference be-
tween two or more countries should be ascribed to credit risk which itself depends on
country-specific macroeconomic and financial fundamentals. Therefore there should exist
a linkage between macroeconomic fundamentals and government bond spreads.

Investigating the existence and the nature of the relationship between market volatility
and macroeconomic fundamentals is crucial in understanding issues relevant to policy
makers and institutional investors. For instance, by analyzing the comovements during
the current sovereign debt crisis, we could assess market perception of sovereign debt
risk. In particular, one would expect countries with larger fiscal deficits or with worst
economic fundamentals to be characterized by higher volatility in their bond markets with
respect to more stable countries, with this differential becoming more pronounced during
crisis periods. In addition, we may verify whether all countries experience a worsening in
government bond spreads because of a regime shift in the market pricing of government
credit risk during a turmoil period. These issues are relevant not only to macroeconomists
and policy makers studying systemic risk but are also of interest to financial institutions
working in derivatives pricing, portfolio selection and risk management since they help to
uncover linkages between price movements and underlying risk factors or business cycle
state variables.

There is a rich empirical literature investigating the impact of macroeconomic funda-
mentals on stock market volatility since the seminal paper by Schwert (1989). Focusing
on longer horizon bond returns, Attinasi et al. (2011) identify several important factors
as possible determinants of risk premia paid by governments relative to the benchmark
country, the most relevant being country’s creditworthiness as reflected by its fiscal and
macroeconomic position. Other factors affecting government bond spreads are liquidity
risk, international risk aversion, macroannouncements and fiscal policy events. Bikbov
and Chernov (2010) also find that the 10-year premium is more responsive to macroeco-
nomic conditions than the 1-year premium, while the term premia declines in response
to good economic conditions, captured by the increase in either real activity or inflation.
Aizenman et al. (2013) estimate the pricing of sovereign risk for sixty countries based

on fiscal space and other economic fundamentals showing that, although these variables



Introduction 75

significantly determine market-based sovereign risk, the explanatory power of fiscal stance
measures (e.g. debt-to-GDP) drops during the crisis period. In particular, risk pricing of
the peripheral countries such as Greece, Ireland, Italy, Portugal and Spain is not predicted
accurately with the periphery default risk being priced much higher than the risk with
respect to other European countries.

An alternative interpretation given by Aizenman et al. (2013) to the failure of macro-
economic fundamentals to explain volatilities is that market is not pricing on current
but on expected (future outlook of) fundamentals and therefore the inability of models
to capture such high spreads is due to the market expectation that peripheral countries
fundamentals will deteriorate. Thus, Aizenman et al. (2013) suggest to incorporate in the
model not only real economy measures but also forward looking indicators. Similarly, von
Hagen et al. (2011) show that bond yield spreads before and during the crisis are largely
explained by the impact of fiscal imbalances becoming more relevant after the Lehman
& Brothers default in September 2008, identifying in the higher general risk aversion,
measured by corporate credit spreads, the main cause of the increase in the spread on
non-benchmark bonds. Mody (2009), investigating the drivers of European government
bond spreads, shows that before the start of the subprime crisis in July 2007, the weekly
changes in spreads were essentially random with no obvious determinants while, once
that the crisis burst and through to the rescue of Bear Stearns, the movements in spreads
reflect global factors, in particular a flight to quality and global financial sector instabil-
ity. Attinasi et al. (2011) analyze the impact of unemployment, industrial production
and inflation measures on European spreads concluding that real activity is only weakly
correlated with yields while inflation strongly contributes to explain spreads. This result
is in contrast with Ludvigson and Ng (2009) and Lustig et al. (2013) where the impor-
tance of industrial production in explaining returns for both bonds and foreign exchange
is assessed. The role of macroeconomic drivers is also important in modelling other asset
classes. Paye (2012) shows that macroeconomic variables (including commercial paper-
to-Treasury spread, default return, default spread and the investment-to-capital ratio)
significantly explain S&P 500 market volatility, particularly pronounced during recession
periods. Christiansen et al. (2012) evaluate the dependence of volatility of a broad range
of asset classes (equity, bond, commodities and foreign exchange) on macroeconomic and
financial variables, providing evidence of the significant role played by proxies for credit
risk, funding liquidity and time-varying risk premia, while inflation and industrial pro-
duction turned out to be less informative. A similar result is reported in Baele et al.
(2010) where, using a dynamic factor model to study comovements between stock and
bond returns, the Authors report that macroeconomic factors (output gap, inflation and
short rate) mildly contribute to explain stock and bond return correlations while other

factors, such as liquidity proxies, play an important role. Finally, relationship between
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volatile fundamentals and volatile stock markets in a cross-section of countries is also
reported in Diebold and Yilmaz (2010) and Hilscher and Nosbusch (2010).

Ang and Piazzesi (2003) are the first to analyze the sensitivity of the entire term
structure to macroeconomic fundamentals providing evidence that macro factors explain
the 85% of bond yields variance. Finally, in the analysis of the link between macroeco-
nomic fundamentals and government bond spreads, a great attention has been devoted to
countries fiscal conditions. Barrios et al. (2009) present empirical evidence of the strong
positive relationship between current account deficits, foreign debt and risk aversion with
sovereign risk premium, while Gros (2011) shows that foreign debt is more important
than public debt.

In this analysis, we assess whether and how the 10-year European government bond
spreads intraday movements were driven by macroeconomic fundamentals, both in terms
of volatility and correlations. The main issue we focus on is of relevance given the strong
increase in government bond spreads, especially of peripheral countries, experienced dur-
ing the recent European sovereign crisis; this has generated ample debate between econo-
mists about whether spreads reflect worsening economic conditions or rather speculative
trading activity leading to an overshooting of spreads.

This Chapter also offers a methodological contribution. In order to jointly model high-
and low-frequency multivariate time series, we adopt and extend the MIxed Data Sampling
(MIDAS) approach, proposed in the seminal papers by Ghysels, Santa-Clara and Valkanov
(2004, 2005, 2006) and Ghysels, Sinko, and Valkanov (2007). The MIDAS framework
allows linking financial market data, sampled at high-frequency, in general daily, and
data on macroeconomic fundamentals recorded at lower frequency, in general monthly or
quarterly. [See also recent developments in regression models as Andreou et al. (2010)
and VAR models as in Ghysels (2012), in modelling and testing for Granger causality as
in Ghysels et al. (2013), and predictive ability of financial variables as in Andreou et al.
(2013) and Galvao (2013)]. This Chapter makes two contributions to MIDAS literature.
First, the MIDAS approach is extended to the case when tick-by-tick financial market data
are available though resampled at an appropriate frequency; in particular we combine 15-
minute frequency data on spreads with monthly macroeconomic data. To the best of
our knowledge, there has been no previous attempt to apply MIDAS framework to high-
frequency data. Second, we extend the Colacito et al. (2011) DCC-MIDAS based upon
a pure time series approach by allowing the low-frequency (monthly) correlation to be
driven by country macroeconomic fundamentals. Finally, another important contribution
of the paper is that, by exploiting high- and low-frequency correlations, we evaluate
time-varying possible phenomenon of ongoing economic and financial markets integration
amongst European countries.

The remainder of the Chapter is organized as follows. In Section 3.2, we discuss
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the dataset and the macroeconomic variables. Section 3.3 presents the high frequency
MIDAS regression models and discusses some data preparation procedures. In Section
3.4, we report the results for both univariate and multivariate GARCH-MIDAS models.

Section 3.5 concludes.

3.2 Data Description

3.2.1 Spreads

We use data for the 10-year government bonds of Belgium, France, Germany, Italy, Spain
and the Netherlands over the period 1st June 2007 - 31st May 2012. We consider bid
data. The 10-year bonds are bond market benchmarks at the most active maturities.
Morningstar provided us with this unique tick-by-tick dataset that we resampled at the
microstructure noise robust 15-minute frequency using calendar time, excluding time in-
tervals with missing values for at least one country.

The trading period considered is 8 a.m. - 3:30 p.m. coordinated universal time (UTC).
We detect and remove holidays and outliers by applying a filter which is a modification
of the procedure to remove outliers proposed in Brownlees and Gallo (2006) that we
implement following the steps suggested by Barndorff-Nielsen et al. (2011, p. 156), the
implementation can be summarized as follows.

Let p:; be a tick-by-tick time series of log-prices, where ¢t = 1,...,T" denotes day and

i =1,..., N the time interval of day t, then an observation is removed iff:

|pti — Pri (kL)‘ > max {4M Dy ;(k),nv} A |pri — Dry (kR)‘ > max {4M Dy ;(k), ny}
(3.1)
where k the bandwidth; p ; (k:L) and P ; (k‘R) sample medians of the k/2 observations
respectively before (L for left) and after (R for right) (¢,4); M Dy (k) mean absolute
deviation from the median of the whole neighborhood of length k; A intersection operator;
~v mean of the k absolute returns; n y—multiplier.

The advantage of this rule lies in the separate comparison of the (¢,4)-th trade against
the left and right neighbours while the measure of dispersion is calculated on the whole
bunch of k trades. This approach is specifically designed to avoid detecting jumps as false
outliers.

Finally, we also remove the first return of the day that occurs at 8 a.m. as it largely
reflects the adjustment to information accumulated overnight and hence exhibits a spu-
rious excess variability compared to any other 15-minute intervals. The data selection

procedure is summarized in Table 3.2.1.
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Table 3.2.1: Government Bond Yields and Spreads: Data Selection and De-
scriptive Statistics

DE BE FR IT ES NL
No. ticks 3,077,442 841,854 1,096,247 978,261 978,357 657,249
Limiting trading time 2,928,107 831,094 1,027,268 917,455 969,129 645,773
No. trades per day: Mean (SD) 2,345 (1,889) 659 (481) 828 (596) 736 (526) 764 (512) 513 (378)
Trade duration: Mean (SD) [s] 14.2 (44.4) 47.0 (115.7) 38.0 (88.6) 42.9 (97.1) 38.1 (90.3) 60.4 (123.4)
15-minute intervals 39,649 39,649 39,649 39,649 39,649 39,649
Exclude Ist daily obs 38,370 38,370 38,370 38,370 38,370 38,370
Bid YTM
Mean (SD) [%)] 3.18 (0.82) 4.01 (0.47) 3.61 (0.58) 4.66 (0.69) 4.58 (0.65) 3.48 (0.75)

Median (1st - 99th pct) [%)]
Bid-Ask Spread of YTM

Mean (SD) [bps]

Median (1st - 99th pct) [bps]

3.20 (1.48 - 4.64)

0.63 (0.05)
0.62 (0.56 - 0.76)

4.08 (2.99 - 4.96)

1.00 (0.06)
1.00 (0.89 - 1.11)

3.56 (2.52 - 4.78)

0.78 (0.08)
0.79 (0.66 - 0.94)

457 (3.76 - 6.99)

0.64 (0.05)

0.64 (0.51 - 0.8)

441 (3.76 - 6.38)

0.75 (0.05)
0.75 (0.67 - 0.89)

3.54 (1.98 - 4.79)

0.72 (0.05)
0.72 (0.65 - 0.85)

Bid Spread
Mean (SD) [bps]
Median (1st - 99th pct [bps])
Bid-Ask Spread of Spread
Mean (SD) [bps]
Median (1st - 99th pct) [bps]

83 (64)
65 (7 - 272)

0.34 (0.20)
0.39 (-0.62 - 0.48)

42 (33)
34 (5 - 147)

0.16 (0.07)
0.15 (-0.01 - 0.29)

150 (125)

117 (27 - 505)

0.01 (0.06)

0.03 (-0.12 - 0.13)

141 (124)
82 (5 - 472)

0.12 (0.07)
0.13 (0.00 - 0.24)

30 (17)
26 (4 - 81)

0.09 (0.08)
0.11 (—0.05 - UAQI)

Table 3.2.1 reports the data procedure selection on government bond yields and spreads together with some summary statistics. Limiting trading time
means removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described in (3.1) in the
text. Tick-by-tick data are resampled using calendar time (see details in the body of the chapter). The 1st observation of each day is removed as it presents
excess volatility. In square brackets is the unit of measurement. Pct stands for percentile.

For each time series, we report the overall number of ticks available from which we

remove holidays, weekends and trades occurred outside the trading period 8 a.m. - 3:30

p.m. UTC. Following the filtering procedure in (3.1) we detect a percentage of outliers

ranging from 0.09% for Germany to the 0.16% for Belgium. In addition, we also report

some descriptive statistics to get useful insights about market liquidity. In particular, we

compute the mean number of trades per day and the time elapsed between two consecutive

trades, where both statistics indicate that the most liquid market is the German one with

a daily average number of trades of 2,345 and a trade duration of 14 seconds, followed
by France (828 trades, 38 seconds), Spain (764 trades, 38 seconds), Italy (736 trades, 43
seconds), Belgium (659 trades, 47 seconds) and the Netherlands (513 trades, 60 seconds).

After resampling at the 15-minute frequency and removing the 8 a.m. return for each

day, we end up with 38,370 returns, covering 1,279 days corresponding to 30 observations

per day. In Table 3.2.1,we also report descriptive statistics about yields and spreads with

respect to German Bund: Ttaly has the highest average yield (4.66%), while Germany has

the lowest equal to 3.18%; the average bid spread with respect to Germany is equal to
150 bps for Italy, 140 for Spain, 83 for Belgium, 42 for France and 30 for the Netherlands.

The information that the average indicator offers is limited in the light that government

bond spreads vary a lot throughout our sample period as it is evidenced in Figure 3.1:
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Figure 3.1: 10-year Government Bond Spreads (bps)

The figure reports the 10-year government bond spreads with respect to Germany for Belgium, France,
Italy, Spain and the Netherlands over the period 1st June 2007 - 31st May 2012. Spreads are computed
on bid yields at 15-minute sampling frequency.

Government bond spreads move very closely until May 2010, when markets start to
pay more attention to sovereign debt risk as a response to the burst of Greek crisis. In
May 2010, the Greek government deficit was revised and estimated to be 13.6% of GDP
leading to reduction of confidence in Greece’s ability to repay its debt. Despite the first
rescue package was then approved by European countries and the IMF, concerns about

Furo countries solvability began to raise together with spreads.

3.2.2 Macroeconomic Variables

We select two real economy variables, employment and industrial production, and a for-
ward looking indicator, the economic sentiment. Our choice is motivated by the existing
literature such as, amongst others, Mody (2009) and Aizenman et al. (2013). Macro-
economic data are available at monthly frequency and were obtained from the Eurostat
website, starting from January 2005 up to May 2012. The economic sentiment is also pro-
vided by Eurostat and it is composed of five sectoral confidence indicators with different
weights: industrial, services, consumer, construction and retail trade.

Given that the dependent variable in our study is expressed in terms of difference of the
10-year government bond yields of each country and Germany, also the macrovariables,

reported in Figures 3.2-3.4, are expressed in terms of difference between each country and
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Germany macrovariables.
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Figure 3.2: Employment - Level

The figure reports the difference in employment levels for Belgium, France, Italy, Spain and the Nether-
lands with respect to Germany over the period January 2005 - May 2012. Series are normalized by the
initial value.
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Figure 3.3: Industrial Production - Level

The figure reports the difference in industrial production levels for Belgium, France, Italy, Spain and the
Netherlands with respect to Germany over the period January 2005 - May 2012. Series are normalized by
the initial value.
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Figure 3.4: Economic Sentiment - Level

The figure reports the difference in economic sentiment levels for Belgium, France, Italy, Spain and the
Netherlands with respect to Germany over the period January 2005 - May 2012. Series are normalized by
the initial value.

All the macroeconomic variables considered capture very well the worsening macro-
economic conditions starting from the last quarter of 2008, with the dramatic drop of
the level of employment for Spain and the strong contraction of industrial production,
especially evident for Spain, Italy and France. It is worth noticing that the literature on
the topic (see for instance Barrios et al. 2009, and Gros 2011), often consider as potential
macroeconomic drivers measures of fiscal sustainability such as debt-to-GDP. First, there
is the case that Spain was experiencing a very high spread despite it had a debt-to-GDP
ratio (69.3% in 2011 and 84.2% in 2012, defined as consolidated general government gross
debt to GDP) below or approximately equal to the German one (80.4% and 81.9%); on
the contrary Belgium showed a low spread despite a debt-to-GDP (97.8% and 99.6%)
higher than the Spanish one (Note that it was 85.8% and 90.2% for France, 120.8% and
127.0% for Ttaly, 106.4% and 117.6% for Ireland, 65.5% and 71.2% for the Netherlands).
This suggests that debt-to-GDP may not be an appropriate economic indicator to influ-
ence government bond spreads. In addition, the debt dynamics is determined by economic
growth perspectives which are better captured by the macroeconomic variables consid-
ered in our analysis. Finally, deb-to-GDP is available at quarterly frequency while all the
other macroeconomic indicators are available at monthly frequency. For all these reasons
we do not consider this indicator in our analysis.

In addition to the level of macroeconomic fundamentals, we are going to investigate
also the impact of their volatilities on government bond spreads: ceteris paribus, a country
with more volatile fundamentals is more likely to experience a severe weakening of its
macroeconomic conditions which may force it into default. Volatility of macroeconomic

fundamentals is estimated, following Schwert (1989), by fitting an autoregressive model
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for each macrovariable Y, augmented by some dummy variables D’ corresponding to the

aggregation period of interest U (e.g. months, quarters, years):

U U
Y, = Z a; DI 4 Z BYr_i+e; (3.2)
j=1 i=1

The squared residuals /5\3 provide an estimate of macroeconomic volatility whose frequency

corresponds to the frequency at which macrovariables are sampled.

3.3 Modelling Mixed Frequency Times Series

The idea of combining two kind of models and two sampling frequencies with the aim
of incorporating in a same model macroeconomic effects and time series dynamics has
already had some developments in literature. The underlying idea of these kind of models
is that the same news may have a different effect on high frequency returns depending on
the state of the economy which is measured at a lower frequency.

One of the most promising approach to deal with two sampling frequencies is the
so-called MIxed Data Sampling (MIDAS) introduced by Ghysels, Santa-Clara and Valka-
nov (2004, 2005, 2006) and Ghysels, Sinko, and Valkanov (2007). MIDAS represents a
simple, parsimonious and flexible class of time series models that allow the left-hand and
right-hand variables of time series regressions to be sampled at different frequencies. The
MIDAS framework allows to use the raw data avoiding any apriori prefiltering. The liter-
ature on MIDAS deals with the high-frequency component measured at daily frequency
while the data at low frequency are usually sampled monthly or quarterly.

To introduce MIDAS, let Y; be sampled at some fixed sampling frequency and call
this the interval of reference and X ™) be sampled m times faster. The MIDAS regression
can be written as Y; = B¢ + 3, Z}]:o B(j)Xt(Tj)/m + ¢, where the dependent variable Y; is
projected onto a history of previous J lagged observations of X t%z In order to keep the
number of parameters low, each lagged variable X (™) is not loaded by a specific coefficient
rather by a weighting function B(j;0) of a few parameters summarized in vector 6 while
the overall impact of lagged Xt(m) on Y is captured by ;. There exist alternative weight
function which can be adopted among which the exponential Almon lag as specified in

(3.3):
017+ 00

ZJ . ef1i+.. 059

B(j;0) = (3:3)

Note that the rate of weights decline determines how many lags are included in the
MIDAS regression so that the lag data selection is purely data driven. Ghysels et al.
(2005) use the function form in (3.3) with two parameters ¢; and 6; in that case a

declining weight is guaranteed as long as 62 < 0.



Modelling Mixed Frequency Times Series 83

Alternatively, weights parametrization can be based on Beta function in (3.4):

£ 9;,92)
Zj:l f(5;01,02)

where f (%, 01,02) is the Beta function which allows a greater flexibility with respect to the

B(j;01,02) = (3.4)

exponential Almon. In particular, setting #; = 1 and 05 > 1 implies weights to be slowly
declining while as 6y increases, weights decrease faster. Finally, when 6; > 1 weights
are allowed to assume a hump-shaped pattern. Both Almon polynomial and Beta lag
specification provide some very useful features. First of all, as they give positive weights,
the estimated volatility is guaranteed to be positive; moreover weights sum up to unity
and the lag data selection is purely data driven.

Ghysels et al. (2004) show that the common practice of aggregating all the data to
the common least frequently sampled process will always be less efficient than a MIDAS
regression that exploits the availability of the higher sampled time series X ™). Alternative
MIDAS specifications exist which can take into account nonlinearities, unequally spaced
observations and multiple equations. Some applications of MIDAS framework to GARCH
models have been recently proposed in the literature too by Engle and Rangel (2008) and
Engle et al. (2013).

The literature available up to now on MIDAS deals with data measured at daily fre-
quency together with data sampled at lower frequencies such as months and quarters. In
this Chapter, we propose to evaluate the impact of the slowly moving component measured
at monthly frequency on high frequency returns sampled using a 15-minute time window.
In particular, we extend the MIDAS approach and propose to evaluate the impact of the
slowly moving component measured at monthly frequency on high frequency returns sam-
pled using a 15-minute time window robust to both asynchronicity and microstructure
noise although sufficiently thick to provide a flavour of intraday movements. In particular,
we compare models estimated using a pure time series approach, where both high and low
frequency components are obtained from asset returns, with the case where the slowly
moving component, in both volatility and correlation, is driven by macroeconomic vari-
ables measured at monthly frequency. For this purpose, we extend the GARCH-MIDAS
model of Engle et al. (2013) and the DCC-MIDAS model proposed by Colacito et al.
(2011).

3.3.1 High Frequency MIDAS Regression Models

Let us consider an (M X 1) vector of returns for the i-th subinterval belonging to month

I

T Tri = [ri i r%} distributed as a multivariate normal variable with mean vector u

(M x 1) and variance covariance matrix H,; of order (M x M). Following the classical

DCC model of Engle (2002), the variance-covariance matrix H;; can be decomposed
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as D, ;R ;D,; with D, ; diagonal matrix of volatilities and R, ; conditional correlation
matrix. By applying the GARCH-MIDAS by Engle et al. (2013), where the overall
volatility can be decomposed into two parts, one pertaining to short term fluctuations,
gr,; and the other to a long-run secular component, 1, the univariate volatilities can be

modeled as:
Tri =W+ gri€ri (3.5)

where e, ;|®7 ;-1 ~ N(0,1) with ®,;_; the information set available up to (7,7 — 1).
The volatility dynamics of the high frequency component g ; is modeled as a GARCH(1,1)
process:

2
Tzl

Vr

while the low frequency component can be modeled using a pure time series approach

gri=0—-a-B)+a——+Bgri (3.6)

with ¢ being a smooth average of the most recent U monthly realized volatilities RV

computed on a fixed span window as described in (3.7) below:

U
logt, =m+9» ¢, (w)RV,_, (3.7)

u=1

with ¢, (w) being the weighting scheme which can be based on beta or exponential func-

tion:
(w/U)*1 (1—u/U)*2 "1
0, (W) = S G/ =g Uyt Beta (3.8)
w"/ (Z] le) Exponential

In our empirical applications, in the light that the two weighting functions are equivalent
in terms of goodness of fit (see Engle et al. 2013), we use the beta exponential function
where the parameter wj is set to 1 in order to assure that weights are slowly decaying.
We call this the Time Series GARCH-MIDAS (TS GARCH-MIDAS) model.

The second specification for the low frequency component 1. depends on macroeco-
nomic variables. In our empirical applications, we adopt the specification as described in
(3.9) below:

logz/JT—m—i—ZﬁSlZcp w) X5 4 2198”24,0 w) X2, (3.9)

s,l Ys,l,DE

Y, o
where X sﬂ is defined as abs < ;;}‘ - YQZ"DE>, Y ! indicates the level (1) of the macro-

70

SLDE Lofers to the

economic variable s at month 7 so that Y, "is the first available value, Y
same macrovariable s for Germany (DFE) which serves as benchmark country. During the
time window analyzed both government bond spreads volatility and the absolute difference
between macroeconomic fundamentals of each country and Germany increased substan-

tially and therefore it is mandatory to maintain the common trend between the two time
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series. XY, is specified as abs <Yffu - Yf;vq;DE> where Y, volatility (v) of macrovariable
s defined as in (3.2). Y;"""P¥ refers to the volatility of the same macrovariable s for Ger-
many. ¢, (w) are beta weights as in (3.8) and U is the maximum lag for macrovariable s,
with s = 1,..., S with S representing the total number of macroeconomic variables. We
refer to this model as the GARCH-MIDAS with Macroeconomic Variables (MV GARCH-
MIDAS) model.

Similarly to the TS GARCH-MIDAS in (3.7), the long run component is a smooth
average of the most recent U values of each macrovariable s, for which we consider both
level and volatility. Unlike Engle et al. (2013), we allow each macrovariable s, in both
level and volatility components, to enter the model with a specific coefficient 95V In
this way, the model is more flexible and it also allows to measure the role played by each
macroeconomic variable in explaining the long run volatility.

Engle et al. (2013) propose a measure of the amount of volatility explained by the

long-term component on the overall volatility, the so-called variance ratio specified as:

Var (log (¢,))
Var (IOg (gT,in))

Once univariate volatilities are estimated, the main focus is on the correlation dynam-

(3.10)

ics. Colacito et al. (2011) show that the high-frequency correlations obey a standard DCC
scheme but here the intercept is a slowly moving process that reflects the fundamental or
long-run causes of time variation in correlations.

Based on the DCC framework by Engle (2002), the elements pf_]l of the conditional

correlation matrix R, ; for month 7 and subinterval ¢, with k,j = 1,..., M, are computed

as:
Pli]z = ﬁ (3.11)
\/ q‘r,i \/ qT,i
whose elements qf]; are modeled by:
kj _ki k . L
q‘r,Ji = pTJ(l —a- b) + agT,i—l&Z-,ifl + qu’ji,1 (312)

where the intercept is time dependent and it is specified as a smooth weighted average of
the most recent U* correlation matrices of standardized residuals §ri = DT_Z1 (rri— ) as
in (3.13):

Uki
Y Nk
plﬁj = Z Pu (wkj> CT.,]’Z—U (313)
u=1
Ty ki
> g
kj l=r,i—UkJ

= (3.14)

AN G}

I=7,i—UkJ =7,4i—UkI

Ta—U
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where ¢, (w*7) is the beta weighting function in (3.8).

The model proposed in Colacito et al. (2011) is a pure time series approach as the long
run correlation is allowed to be time dependent. In our analysis, we propose to link the
long run correlation ﬁﬁj to relevant macroeconomic indicators/variables. The intuition is
that the long-term correlation component should be interpreted as the predicted or the
expected correlation given a certain state of the economy, while deviations of the short-
run correlations from the long-run should be influenced by other factors related to trading
activity.

Thus, we propose the following specification:

S U
W= eSS on ) |AYE - a4
s=1 u=1

S U

S0 e (w) ‘Aijﬁf — AYIEY (3.15)
s=1 u=1

Given that correlations follow stationary processes, we consider the rate of changes
of the macroeconomic variable levels (I) with respect to the previous period defined as
AYFESL — 100 x [ln (YTk;s’l> —In (YTkisl’lﬂ for the macroeconomic fundamental s of coun-
try k£ between months 7 and 7 — 1. Moreover, we expect that the correlation between
country k£ and country j increases when the absolute difference in fundamentals of the two
countries vanishes and to decrease when the fundamentals diverge. Therefore, we enter the
model with a measure of the absolute difference in the rate of change for macrovariable s

during the period (7,7 — 1) between two countries k and j defined as ’AYT’“S’I — AYTj;S’l

For the volatility component, we compute the volatility of changes for macroeconomic
fundamental s occurred during the period (7,7 — 1) for country k defined as AV,
As for the level, we consider the absolute difference between the volatility of changes for
macrovariable s for the two countries & and j which takes the form ‘AYT’C;S’” YN 2
Again the assumption is that as the absolute difference of fundamentals volatility between
two countries tends to zero, countries should move in a more similar way and vice versa.
To guarantee that 77@ lies between -1 and +1, following Christodoulakis and Satchell
(2002), we adopt the Fisher-z transformation (Fisher 1915) of the correlation matrix:

. e (27§j ) ~1
prl = —— (3.16)
exp (27#) +1

and we apply the shrinkage technique as proposed in Kwan (2008) and implemented in
Golosnoy and Herwartz (2012), consisting in identifying the minimum A € [0, 1) such that
the matrix ]Tlm, defined as:

Ryi=(1=NRri+ A (3.17)
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is positive semidefinite, where I is (M x M) identity matrix and A determines the pro-
portion to which the eigenvalues of the matrix R, ; shrunk to unity.

The approach described here to model the correlation matrix allows to get consistent
estimates of the long run volatility obtained at the first step. Note that Chirac and Voev
(2011) propose to estimate the variance covariance matrix by decomposing correlation
matrix time series into Cholesky factors, guaranteeing the matrix to be positive semidef-
inite, and modelling them with a suitable time series model. Afterwards, the matrix is
reconstruct. In our case, this approach is not suitable as it implies the estimation of the
entire covariance matrix and this would imply a re-estimation of variances which have
already been modeled in the first step. Instead, in our framework, we estimate variances

in the first step and, in the second step, we just model the correlation matrix.

3.3.2 Data Preparation

For both model specifications, first we identify jumps for all the returns series so that

variance estimates obtained from GARCH models are not influenced by large jump devi-

ations. For the identified jumps, we substitute the value of the threshold used to test for

the presence of jumps. For instance, we identify jumps using the robust Lee and Mykland

(2008) test filtered for the intraday periodicity s, ; as proposed by Boudt et al. (2010):
_ el

FJ,; === (3.18)

o-tst,i

where |r;;| is the absolute value of log-return on day ¢ and time-interval i and o, is
the bipower volatility of day ¢. Having adopted the Lee and Mykland (2008) test, the
threshold is given by:

(Srp* + Cr) (&\té\t’i) sgn(re;) (3.19)

where St =1/ (2log (T x N))1/2; (T'x N) time series length; f* = —In(—In (1 — a)); «
the significance level of the test; Cp = (2log (T x N))/% —log 7 + (log (log (T x N)))/
(2 (2log (T x N))1/2>; sgn the sign function.
As far as the periodicity component s; ;, following Chapter 2 we adopt a parametric
formulation which is estimated by the Truncated Maximum Likelihood (TML) approach
by Boudt et al. (2010) described respectively in (3.20) and (3.21):

R exp f (éTML;xt,z)
= Vi=1,..,T (3.20)

St,i
\/J{f é (epr (9TML; mt,i))2
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f(éTMMl't,i) = 5o+501 +502 +Z)‘ng

Z Py RY it Z v;Weekdays; +

7j=1

" 2mp 27p
Z <(507p COS (N’l> + (557p sin (N'L)) + Et{i (321)

p=1

where N the number of intraday intervals ¢ belonging to day t; Ny = (N +1)/2; Np =
(N + 1)(N + 2)/6 normalizing constants; Sgl the surprise for macroannouncements and
government bond auctions (for the last ones, surprise is computed as the difference in bid-
to-cover between current and previous 10-year auction); J the sum of macroannounce-
ments and auctions considered; Rf’i dummy variable for rating actions undertaken by
rating agency b; B number of rating agencies; \; and ¢, event specific loading coef-
ficients; P tuning parameter determining the order of the expansion of the sinusoids;
O full parameter vector to be estimated. For a description of macroannouncements,
government bond auctions and rating actions we refer to Chapter 2, Tables 2.2-2.4.

Moreover, the loading coefficients A\; and ¢, are modeled applying the Andersen and
Bollerslev (1998) decay-structure which allows the specific event to impact over a time
window but with decaying weights. Macroannouncement surprises are allowed to impact
starting from 30 minutes before the release up to one hour and 30 minutes after, as in
Andersen and Bollerslev (1998). As far as government bond auctions are concerned, we
use a wider window, ranging from two hours before the auction ends up to one hour after
it as we want to take into account the uncertainty in the markets during the auction
period. Finally, as the timing of rating actions is not foreseeable, we set the start of the
window in correspondence of the rating action up to two hours after it. The estimates
of the intraday periodicity is reported in Appendix 3.A. while a skinny description of
detected jumps is shown in Table 3.3.1.

Table 3.3.1: Jumps description
IT FR ES BE NL
No 404 261 483 462 213
% 1.14 0.74 137 131 0.60
Mean abs size [%] 6.28 4.63 5.80 4.46 3.70

Table 3.3.1 reports the number of jumps and their absolute mean size
detected by the Lee and Mykland (2008) test corrected for the intraday
periodicity as described in (3.18)-(3.21).

We identify a variable percentage of jumps: 1.31% for Belgium, 0.74% for France,
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1.14% for Ttaly, 1.37% for Spain and 0.60% for the Netherlands. The mean absolute size
of jumps ranges from a minimum of 3.70% for the Netherlands to a maximum of 6.28%
for Italy.

Once jumps have been censored, returns are standardized by the intraday periodicty
5;; in (3.20)-(3.21) in order to control for the U-shape. Finally, on the standardized and
jump-free returns, we fit an ARMA(1,1) model whose estimates are reported in Table
3.3.2.

Table 3.3.2: Parameter estimates for ARMA
IT FR ES BE NL
© 0.0000 *** 0.0000 *** 0.0002 *** 0.0000 0.0000 ***
0  0.7784 *** 0.0757 ***  _.0.4425 *** _(0.1098 *** 0.2157 ***
¢ -0.7509 *** _0.2774 *** 0.4078 *** -0.0015 ** -0.5906 ***

Table 3.3.2 reports the ARMA parameters estimated on jump-free returns standardized by
the intraday periodicty as described in the text. *** ** and * denote statistically significance
at 1%, 5% and 10% signficance level respectively.

3.4 Empirical Results

3.4.1 Univariate Models

The first model we estimate is the GARCH-MIDAS where the long run component is a
smooth weighted average of monthly realized volatilities (RV) computed on a fixed span
window as described in (3.7). In Table 3.4.1, we report estimates for the TS GARCH-
MIDAS. The monthly frequency is adopted as this is the shortest frequency at which the
macroeconomic variables are available. Following Engle et al. (2013), in estimating the
GARCH-MIDAS model we put special care in selecting the lag structure in each MIDAS
polynomial specification for 9. (U in our notation). To this purpose, we estimate three
alternative specifications corresponding to 3, 6 and 12 months and comparing the log-
likelihoods we choose the MIDAS lag equal to 6 months. As per the weight function,
we select the beta lag function in (3.8) setting wy = 1 so that weights are monotonically
decreasing over the lags, with the shape of weights governed by ws. Moreover, following
Engle et al. (2013), in order to avoid numerical instability in the estimation procedure,

we set an upper bound equal to 300 for ws.



High- and Low- Frequency Correlations in European Government Bond Spreads and Their Macroeconomic
90 Drivers

Table 3.4.1: Parameter Estimates for the TS GARCH-MIDAS Models
BE FR IT ES NL
0.0534 *** 0.0590 *** 0.0417 *** 0.0558 *** 0.0714 ***

o
B 0.9370 *** 0.9274 *** 0.9507 *** 0.9302 *** 0.9139 ***
m -6.3869 *** _6.6277 *** _6.3461 *** _-6.2041 *** _7.2470 ***
0 0.9080 *** 0.8685 *** 0.9042 *** 0.9749 *** 0.7047 ***
w2 5.5888 ***  ,8412 *** 3.3698 6.8412 *** 5.5588 ***
LogL 124,087 128,523 111,814 114,503 129,831
Variance ratio 0.70 0.65 0.74 0.85 0.37

Table 3.4.1 reports estimates for the TS GARCH-MIDAS model where the long run
component is a smooth weighted average of previous six monthly realized volatilities.
Realized volatilities are estimated on a fix monthly span while the high frequency
component is measured at 15-minute frequency. Weights are computed according to
the beta function where the first parameter w; is set to 1. *** ** * denote 1%, 5%
and 10% significance level, respectively.

Almost all coefficients in Table 3.4.1 are statistically significant, both those related to
standard GARCH (« and ) and those related to the MIDAS model (m, 0, and ws). As
expected, the sum of the parameters o and 3 is close to 1. Estimates of 6 indicate that
long run volatility at time (7,4) depends positively on past realized volatilities. The beta
weight parameters wy assume values greater than 1 ranging from 3.37 to 6.84, implying
that weights follow a decaying pattern with higher weights attributed to more recent RVs
and lower weights to the past RVs.

Another important result in Table 3.4.1 is the high values of the variance ratios mea-
suring the amount of the overall volatility explained by the long term component. There is
evidence that the long run variance contributes substantially to explain the overall volatil-
ity, ranging from a maximum of 0.85 for Spain to a minimum of 0.37 for the Netherlands.

In Figure 3.5, we report the estimated volatility, at high-frequency (blue line) and
at low-frequency (black line) components obtained from the estimates reported in Table
3.4.1.
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Figure 3.5: TS GARCH-MIDAS Models
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The figure reports the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained from the TS GARCH-MIDAS model where the long run component is a smooth
weighted average of previous six monthly realized volatilities. Estimates are reported in Table 3.4.1. The
blue line is the high-frequency (15-minute) component while the black line is the low-frequency (monthly)

component.
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There is evidence that the volatility of government bond spreads increased substan-
tially for all the countries, and this pattern is particularly pronounced for Italy and Spain

and to a less extent for France, Belgium and the Netherlands.

3.4.1.1 GARCH-MIDAS Models with Macroeconomic Variables (MV GARCH-

MIDAS)

In the second GARCH-MIDAS specification, the low-frequency component is driven by
macroeconomic variables (employment, industrial production and economic sentiment) as
described in (3.9). As macroeconomic variables are measured at monthly frequency, the
long run component of volatility remains constant through each month. Finally, in order
to be able to compare the results of this model with those reported in Table 3.4.1, we fix
the MIDAS lag equal to 6 months and in the beta lag function in (3.8) we set w; = 1,

estimating the parameter wy with an upper bound for ws equal to 300. We report the

results of the estimated MV GARCH-MIDAS in Table 3.4.2.

Table 3.4.2: Parameter Estimates for the MV GARCH-MIDAS Models

BE FR IT ES NL
a 0.0447 ***  (0.0611 *** (0.0398 *** (0.0582 *** (.0921 ***
B 0.9536 *** 0.9234 *** (0.9534 *** (0.9209 *** (0.8658 ***
m -10.71 ¥*¥*  _12.56 ¥*¥*  _11.19 ¥** _11.40 *** _8.92 ***
01,, (Employment) -19.14 -9.39 *** -36.76 * -5.09 24.64 ***
02, (Industrial production) 26.99 ** 20.21 *** 27.52 *** 13.56 ***  _40.20 ***
03, (Economic sentiment) 12.49 *** -0.38 1.70 * 3.33 *** -3.59 ***
w2,1,1 (Employment) 0.62 29.71 *** 29.40 * 29.22 *** 56.09
w2,2,; (Industrial production) 1.87 ** 0.96 *** 0.98 *** 1.36 0.99 ***
w2,3,; (Economic sentiment) 33.82 ** 39.75 ** 39.46 * 39.60 ** 3.23
01, (Employment) -7.49 ** 2.7 Hk -3.27 **K 924 *k% 3] | kkx
02,, (Industrial production) -20.62 33.17 * -6.19 23.91 14.00
03,5 (Economic sentiment)  13.88 -1.44 *** -1.28 3.48 -5.69 ***
w21, (Employment) 0.98 *** 1.08 *** 0.97 *** 1.02 *** 1.03 ***
w2,2,» (Industrial production) 5.28 *** 2.12 *** 0.78 1.55 0.96 ***
w2,3,0 (Economic sentiment) 1.00 *** 0.69 *** 3.52 1.09 *** 1.40 ***
LogL 124,052 128,541 111,826 114,567 129,950
Variance ratio  0.42 0.63 0.80 0.87 0.67

Table 3.4.2 reports estimates for the MV GARCH-MIDAS where the long run volatility is a function
of the absolute difference in macroeconomic variables (employment, industrial production and economic
sentiment) observed over the last six month for each country with respect to Germany as specified in
(3.9). Both levels and volatilities of macroeconomic fundamentals concur in determining the long run
component of volatilities. The low-frequency component is updated monthly, in correspondence to new
macroeconomic data, while the high-frequency component is evaluated on a 15-minute time window. The
absolute difference in volatilities were rescaled: employment volatility by 10e4 while industrial production
and economic sentiment volatility by 10e2. Weights are computed according to the beta function where
the first parameter wy is set to 1. *** ** and * denote 1%, 5% and 10% significance level, respectively.
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Overall, the macroeconomic variables are statistically relevant in explaining the volatil-
ity of European sovereign spreads. In particular, the most important driver is the ab-
solute difference between each country industrial production with respect to Germany:
an increase of that difference determines a correspondent increase in volatility of Belgian,
French, Italian and Spanish spread and a decrease in Dutch spread. This finding is sup-
ported also by Ludvigson and Ng (2009) and Lustig et al. (2013). As far as the economic
sentiment is concerned, an increase in the absolute difference with respect to Germany
implies a higher spread volatility for Belgium, Italy and Spain while it is negative for
the Netherlands. In line with findings in Aizenman (2013) and Veronesi (1999), this re-
sult suggests that volatility has a forward looking nature reflecting the uncertainty about
future macroeconomic conditions: the higher the uncertainty, the lower the economic
sentiment is and the higher the market volatility becomes. Finally, increasing absolute
difference in employment level with respect to Germany determines an increase in spreads
just for the Netherlands while it has a negative effect on all other countries. Considering
now the differences between each country and German volatility fundamentals, we can
say that they are less important than the levels. Moreover, no clear pattern is identifiable
as, in case of employment, an increase in volatility difference determines a lower volatility
in France, Italy and Spain and a higher one for the Netherlands. Higher volatility differ-
ence for industrial production generates higher volatility for France while an increase in
volatility difference of economic sentiment implies a lower spread volatility for France and
the Netherlands. A final important result reported in Table 3.4.2 relates to the variance
ratios, which appear quite high for each country, ranging from a minimum of 0.42 for
Belgium to a maximum of 0.87 for Spain. This indicates that the long term component
modeled by macroeconomic variables explains a great amount of total volatility. In Figure
3.6, we depict the low and the high-frequency components of volatility obtained from the
estimates reported in Table 3.4.2.
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Figure 3.6: MV GARCH-MIDAS Models

Figure 3.6 plots the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained by the MV GARCH-MIDAS model where the long run component is a function
of the absolute difference in macroeconomic fundamentals, namely employment, industrial production
and economic sentiment, observed over the last six months for each country with respect to Germany,
as specified in (3.9). Both levels and volatilities of macroeconomic fundamentals concur in determining
the long run component of volatilities. Estimates are reported in Table 3.4.2. The blue line is the high-
frequency (15-minute) component while the black line is the low-frequency (monthly) component.
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3.4.1.2 Comparison Between the TS GARCH-MIDAS and MV GARCH-
MIDAS Specifications.

We now compare the two alternative GARCH-MIDAS specifications with a standard
GARCH whose estimates are reported in Table 77:

In Table 3.4.3, we report the results of the comparison between TS GARCH-MIDAS
and MV GARCH-MIDAS specifications as well as with standard GARCH models.

Table 3.4.3: GARCH MIDAS Models: A Comparison

IT FR ES BE NL
Log Likelihood
GARCH 111,739 128,403 114,335 123,992 129,751
TS GARCH-MIDAS 111,814 128,523 114,503 124,087 129,831

LR test (vs GARCH) 149.45 *** 239,25 ***  336.32 *** 190.74 ***  160.29 ***

MV GARCH-MIDAS 111,826 128,541 114,567 124,052 129,950
LR test (vs GARCH) 174.27 *¥* 27556 *** 464,77 *** 120.02 *** 398,78 **
AIC

GARCH -6.333 -7.278 -6.480 -7.028 -7.354
TS GARCH-MIDAS -6.337 -7.284 -6.4901 -7.033 -7.358
MV GARCH-MIDAS -6.338 -7.285 -6.493 -7.030 -7.365
BIC

GARCH -6.333 -7.277 -6.480 -7.027 -7.354
TS GARCH-MIDAS -6.336 -7.283 -6.489 -7.032 -7.357
MV GARCH-MIDAS -6.334 -7.281 -6.489 -7.026 -7.361
Variance Ratio
TS GARCH-MIDAS 0.74 0.65 0.85 0.70 0.37
MV GARCH-MIDAS 0.80 0.63 0.87 0.42 0.67

Table 3.4.3 reports a comparison of alternative volatilites estimates. GARCH is the classical
GARCH(1,1) model by Bollerslev (1986). In the TS GARCH-MIDAS model, the low-frequency
component is a smooth weighted average of previous six monthly realized volatilities and reported
in Table 3.4.1. In the MV GARCH-MIDAS model, the low-frequency component is a function of
the absolute difference in macroeconomic variables (employment, industrial production and eco-
nomic sentiment) for each country with respect to Germany and reported in Table 3.4.2. LR test is
provided only with respect to classical GARCH as the two GARCH-MIDAS specifications are not
nested. AIC and BIC are Akaike and Schwarz information criterion respectively, whose values are
divided by T=35,286. Variance ratio, defined in (3.10), indicates the overall amount of volatility
explained by the long run component. *** ** and * denote 1%, 5% and 10% significance level,
respectively.

Both TS and MV GARCH-MIDAS specifications provide a better fit in terms of log-
likelihood with respect to classical GARCH: the likelihood ratio tests (LR) reject the
null hypothesis of model equivalence for all the countries. This result indicates that the
assumption of constant long run volatility over time in GARCH models is restrictive, as

it can also be seen from a visual inspection of Figures 3.5-3.6 that report a strong break
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in the volatility pattern from 2010 onwards.

When comparing the two GARCH-MIDAS model, Akaike information criteria selects
the MV GARCH-MIDAS specification for all the countries but Belgium while, when con-
sidering Schwarz information criteria, the best model is always the TS GARCH-MIDAS
exception made for the Netherlands. This result is justified by the preference for lower
parametrized models accorded by Schwarz criteria and by the fact that in Table 3.4.2
some parameters which are not statistically significant are left in the equations. This
fact determines a blow up of the number of parameters used for inference, raising up the
Schwarz criteria and penalizing the MV GARCH-MIDAS.

Focusing now on the variance ratio, providing an indication of the amount of to-
tal variability explained by the long run component, we find evidence supporting MV
GARCH-MIDAS on TS GARCH-MIDAS for Italy (0.80 vs. 0.74), Spain (0.87 vs. 0.85)
and the Netherlands (0.67 vs. 0.37). Instead the TS GARCH-MIDAS is selected for
France (0.65 vs. 0.63) and Belgium (0.70 vs. 0.42).

The existence of a countercyclicality relationship between macroeconomic environment
and market volatility was already assessed by Schwert (1989) where he showed that, as the
macroeconomic fundamentals deteriorate, market volatility increases and viceversa. Engle
et al. (2013) analyze this relationship more deeply carrying out a forecasting comparison
among the alternative GARCH-MIDAS specifications for volatility showing that, when the
long term component is driven by inflation and industrial production growth, they obtain
the same out-of-sample predictability for horizons of one quarter while, at longer horizons,
this model outperforms the pure time series statistical models. Instead, according to
variance ratio TS GARCH-MIDAS outperforms MV GARCH-MIDAS.

The other only paper dealing with GARCH-MIDAS is Conrad et al. (2012) where
authors study the long and high volatility components of oil and stock. In particular, the
low frequency component is a function of some macroeconomic variables among which
the term spreads, housing starts, corporate profits and unemployment rate are the most
relevant. In particular they show that, in general, survey-based ex-ante measures of
economic uncertainty are more informative with respect to standard economic measures.
In addition, Conrad et al. (2012) compare their model with a GARCH-MIDAS where the
long-run component is a smoothed average of past realized volatility showing that when
macroeconomic factors are used instead, the goodness of fit improves, which is the same
evidence we find. Baele et al. (2010) too show the relevance of macroeconomic variables
in explaining long-term bond volatility. In their paper they consider both stock and bond
volatility and they show that macroeconomic variables have actually a harder time in
fitting stock market volatility than they do with bond volatility, where the short term
interest rate is strongly relevant. Instead, non-macroeconomic variables, such as cash-flow

growth or liquidity measures, significantly explain stock market volatility while they do
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not impact on bond volatility.

Paye (2012) explores the relationship between S&P volatility and macroeconomic fun-
damentals taking into account a number of variables such as current and expected GDP
growth, the investement-capital ratio for US economy, volatility of growth in industrial
production, net payout, volatility of inflation growth and the term spread. In a forecast-
ing exercise, the Author shows that variables capturing the level of future uncertainty
Granger cause volatility although the Giacomini and White test for superior predictive
ability rarely indicates a better performance of the model including macroeconomic vari-
ables. Finally, Paye (2012) provides evidence that macroeconomic variables become more
significant during recession periods with a prominent role of the investment per capital
ratio.

Another paper dealing with this topic is Christiansen et al. (2012) where macro-
economic and financial variables impact on return volatility is assessed. In their paper
Authors take into account a broad range of asset classes, including stocks, bonds, foreign
exchange and commodities, and they model assets realized volatilities as autoregressive
processes augmented with some macroeconomic variables as well as with market and
funding liquidity measures and credit and counterparty risk. They show that the most
important drivers of stock volatility are associated with the effects of leverage while money
market stress and funding liquidity measures are relevant for all the asset classes consid-
ered. The TED spread, defined as the difference between the interest rates on interbank
loans and on US Treasury-bills, providing a measure of both funding market liquidity
and counterparty credit risk is found to have overall a strong impact. As per specific
bond volatility drivers, credit spread, term spread and the S&P 500 turnover, which is
commonly viewed as a proxy for difference in opinion, turn out to be statistically signif-
icant. Finally, focusing on proper macroeconomic variables, Christiansen et al. (2012)
evaluate inflation and industrial production but these variables were always found to be

statistically not significant.

3.4.2 Multivariate Models

Correlation matrices are estimated using the following two approaches. In the first spec-
ification, the TS DCC-MIDAS model, univariate volatilities are obtained from the TS
GARCH-MIDAS, where the long run component is a weighted average of past RVs pre-
sented in Table 3.4.1, and the long-run component is a weighted average of correlation
matrices of past standardized residuals as in Colacito et al. (2011) model described
in (3.13) and (3.14). In the second specification, the MV DCC-MIDAS, the univariate
volatilities are obtained from the MV GARCH-MIDAS, where the slowly varying compo-
nent is modeled through macroeconomic variables as presented in Table 3.4.2, while as per

correlation matrix, the long run component is inferred from macroeconomic fundamentals
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of the countries in analysis as described in (3.15).

3.4.2.1 The TS DCC-MIDAS Model

Starting from the TS DCC-MIDAS model, we estimate the long-run correlation matrix
using a fixed step rather than a rolling window and therefore the long run correlation
matrix is computed on the first day of each month on previous month standardized resid-
uals and then it is kept fixed through the current month. This choice is motivated to
assure the comparison between the TS DCC-MIDAS model with the MV DCC-MIDAS
as macroeconomic fundamentals are observed monthly and therefore the long run com-
ponent of correlation is fixed through the month. As already done for the univariate
GARCH-MIDAS, we impose a beta lag structure for weights loading the past correlation
matrices of standardized residuals in (3.13) and, as in Colacito et al. (2011), we set w; to
1 in the beta function. In the multivariate framework, we deal with the MIDAS lag selec-
tion corresponding to U* in (3.13) and therefore we test some alternative specifications,
ranging from 2 to 12 months, and compare models in terms of log-likelihood. Results are
reported in Table 3.4.4.

Table 3.4.4: DCC-MIDAS lag selection

MIDAS Lag LogLikelihood
2 months 630,029
3 months 630,019
4 months 630,003
5 months 629,974
6 months 629,956
9 months 629,893
12 months 629,975

Table 3.4.4 reports the log-likelihood for alterna-
tive T'S DCC-MIDAS models obtained by varying
the MIDAS lag U* in (3.13).

According to the log-likelihood, we should choose a MIDAS lag of 2 months which
presents the highest value but, when that MIDAS lag is selected, ws in the beta weight
function takes value equal to 150 which could be sign of numerical instability. Therefore
we decide to set the MIDAS lag equal to 3 months in which case the loglikelihood is
630,019 against 630,029 when MIDAS lag is set to 2 months. Moreover, although we
could have selected alternatives U*/ for all the 10 covariances to be modeled, we set it

equal for all of them.
In Table 3.4.5, we report the estimates of the TS DCC-MIDAS model (3.13):
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Table 3.4.5: Parameters Estimates for the TS DCC-MIDAS Model

a b w2
0.0062 *** (,9893 *** 3.1333 *
LogL 630,019

Table 3.4.5 reports estimates for the TS DCC-MIDAS model where
the long run component of correlation is a smooth weighted average of
previous three monthly correlation matrixes of standardized residuals.
The long run component is kept fixed throughout the month while the
high frequency component is evaluated on a 15-minute time window.
Weights are computed according to the beta function where the first
parameter w;i is set to 1. Univariate volatilities are obtained by the
TS GARCH-MIDAS model where the long run component is a smooth
weighted average of RVs reported in Table 3.4.1. *** ** and * denote
1%, 5% and 10% significance level, respectively.

The parameter governing the weight function is greater than 1 and, as wi is set to 1,
this implies that weights are decaying with time: higher weights are attributed to most
recent correlation matrices of standardized residuals.

In Figures 3.7-3.8, we report the pattern of the high- and low-frequency correlations

estimated using the pure time series approach.
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Figure 3.7: TS DCC-MIDAS Model

The figure reports the pairwise correlations estimates of 10-year government bond spreads with respect
to the German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007
- May 2012. Correlations are obtained from the TS DCC-MIDAS model where the long run component
is a smooth weighted average of previous three monthly correlation matrices of standardized residuals.
Univariate volatilities are obtained from the TS GARCH-MIDAS reported in Table 3.4.1. DCC-MIDAS
estimates are reported in Table 3.4.5. The black line is the low-frequency (monthly) component while the

blue line is the high-frequency (15-minute) component.
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Figure 3.8: TS DCC-MIDAS Model

See notes to Figure 3.7.

A very interesting feature is the jump in the high-frequency correlations that emerge
for all the pairs of countries between December 2010 and July 2011, when a series of
important events occur including the second Greek bailout and the Portuguese bailout.
Note that at the beginning of December 2010, the ECB announces the purchasing of
government bonds in large scale and Ireland asked for financial help. All these events
determined a sensible increase in risk aversion, with the consequence that market move-
ments got heavily news-driven and traders started to operate in a synchronized way across
the different markets. In Chapter 4, we estimate correlations using alternative techniques
robust to both microstructure noise and asynchronous trading, e.g. inter alia Ait-Sahalia
et al. (2010) and Barndorff-Nielsen et al. (2011), finding the same pattern inferred here
during the period December 2010 - July 2011. In Chapter 4 we will argue that the pattern

of the estimated correlations over that period can be explained by a negative correlations
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between Germany and the other European countries, as the result of completely differ-

ent /opposite trading activity in German bond with respect to bonds of other countries.

3.4.2.2 The MV DCC-MIDAS Model

We now turn to the MV DCC-MIDAS specification where the long run component is
modeled by macroeconomic fundamentals as described in (3.15). In particular, we assume
that the correlation between country A and country B depends just on countries A and B
fundamentals. As discussed in Section 3.3, macroeconomic variables enter the model via
a measure of the absolute distance between the rate of changes of macroeconomic drivers
of countries A and B. We expect that, as the fundamentals of the two countries get closer,
and therefore their absolute difference goes to zero, the government bond spreads of the
two countries become more correlated and viceversa. As per the univariate analysis, we
take into consideration employment, industrial production and economic sentiment. In
order to keep comparability with results in Table 3.4.5, we fix the MIDAS lag equal to
3 months and adopt the beta lag specification, always fixing w; equal to 1. We report
estimates in Table 3.4.6.
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Overall, the macroeconomic variables turned out to be statistically significant drivers
of correlations between each pair of countries. Starting from the level of macroeconomic
variables, an increase in the absolute differences in the rate of change of employment de-
termines a statistically significant decrease in correlations in 6 out of 10 pairs of countries
while a positive relationship is detected just for Belgium and France. Focusing on the
industrial production, as the rate of changes of two countries diverge, the government
bond spreads with respect to Germany get more dissimilar in 4 out of 10 cases while a
positive relationship is found just for the correlation between France and the Netherlands.
Finally, as far as the economic sentiment is concerned, for 7 out of 10 pairs of countries
we observe a negative sign indicating that as the two countries become more dissimilar in
terms of the forward looking measure, they move in a less correlated way. Therefore, there
is a confirmation of our assumption about a negative dependence between the correlation
of two countries and the absolute difference between their macroeconomic fundamentals:
as two countries get more similar in terms of their macroeconomic fundamentals, the
respective government bond spreads start to move more closely.

Focusing now on the absolute difference in volatility of the rate of change of fundamen-
tals, our results support the empirical evidence highlighted for the level of macroeconomic
variables. A divergence in employment volatility determines a decrease in correlations in
4 out of 5 pairs of countries for which the estimates are statistically significant, in 6 out
of 6 when taking into account industrial production and in 5 out of 6 when focusing
on economic sentiment volatility. Therefore, not only convergence in rates of change of
macroeconomic variables determines an increase in correlation but the volatility of the
rate of change too explains correlations in the same direction: as two countries get more
similar in terms of volatilities of their fundamentals, their government bond spreads get
even more correlated.

In Figures 3.9-3.10, we depict the pattern of correlations according to estimates re-
ported in Table 3.4.6:
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Figure 3.9: MV DCC-MIDAS Models

The Figure plots the pairwise correlations estimates of 10-year government bond spreads with respect to
the German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 -
May 2012. Correlations are obtained from the MV DCC-MIDAS model where the long run component
is a function of the absolute difference in macroeconomic fundamentals, namely employment, industrial
production and economic sentiment, observed over the last three months for each pair of countries as
specified in (3.15). Both levels and volatilities of macrovariables concur in determining the long run
component of correlations. Estimates are reported in Table 3.4.6. The black line is the low-frequency
(monthly) component while the blue one is the high-frequency (15-minute) component.
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Figure 3.10: MV DCC-MIDAS Model

See notes to Figure 3.9.

From Figures 3.9-3.10, we evidence a failure of the model in describing the break in
correlations occurred during the period December 2010 - July 2011. This can be explained
by that macroeconomic variables used in this study are not able to capture what happened
at high-frequency level in the markets during that very distressed period.

In Table 3.4.8 we compare the two DCC-MIDAS reported in Table 3.4.5 and 3.4.6
together with the classical DCC model by Engle (2002) whose parameters are reported
in Table 3.4.7. Note that as the two DCC-MIDAS models are not nested, we apply the
likelihood ratio test just to compare the two DCC-MIDAS with the standard DCC.
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Table 3.4.7: DCC
a b

0.0045 *** (0,9953 ***
LogL 629,410

*** denotes significance at 0.01. w1 is set to 1.

Table 3.4.8: DCC-MIDAS Models: A Comparison

LogL LR test vs DCC AIC BIC
DCC 629,410 -35.6747 -35.6742
TS DCC-MIDAS 630,019 1,218 *** -35.7091 -35.7084
MV DCC-MIDAS 630,054 1,288 *** -35.7038 -35.6721

Table 3.4.8 reports a comparison of alternative DCC models. DCC is the classical
DCC(1,1) model by Engle (2002) whose parameters are reported in Table 3.4.7. In
TS DCC-MIDAS model, the low frequency component is a smooth weighted average
of previous three correlation matrices of standardized residuals and reported in Table
3.4.5. In the TS DCC-MIDAS univariate volatilities are obtained by the TS GARCH-
MIDAS reported in Table 3.4.1. In the MV DCC-MIDAS model, the low frequency
component is a function of the absolute difference in macroeconomic fundamentals,
namely employment, industrial production and economic sentiment, for each pairs of
countries and reported in Table 3.4.6. In this case univariate volatilities are obtained
by the TS GARCH-MIDAS reported in Table 3.4.2. LR test is provided just with
respect to classical DCC as the two DCC-MIDAS specifications are not nested. AIC
and BIC are Akaike and Schwarz information criterion respectively, whose values are
divided by T=35,286. *** ** and * denote 1%, 5% and 10% significance level,
respectively.

Both the likelihood ratio tests and the information criteria indicate that the two DCC-
MIDAS specifications outperform the classical DCC model by Engle (2002). This finding
is relevant given that, as already discussed for the volatilities, the classical assumption
that the unconditional or long run correlation is fixed over time is rejected by the data. Al-
lowing the long run correlation to be time varying, independently of which DCC-MIDAS
specification we adopt, improves substantially the explanatory power of the model. This
conclusion is also evident from a visual inspection of Figures 3.7-3.8 and 3.9-3.10, which
show a strong break in the pattern of correlations during the period December 2010 -
July 2011. In terms of which DCC-MIDAS specification to use, the TS DCC-MIDAS
outperforms the alternative MV DCC-MIDAS model with Akaike criterion increasing
from -35.7091 to -35.7038 and Schwarz criterion from -35.7084 to -35.6721. This find-
ing confirms what reported earlier in the Chapter in commenting Figures 3.9-3.10: the
macroeconomic variables are unable to explain what happened in the financial markets
during the recent distressed period. This result sheds light in identifying the possible
sources underlying the increasing systemic risk: the substantial break in correlations in

government bond spreads, despite no change in correlations between countries fundamen-
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tals, shows that the increase in risk originated from financial markets rather than from
shocks coming from the real economy. The sharp increase in correlations is most likely
due to a change in market sentiment, and markets during crisis periods becoming more
volatile and investment activities myopic. In particular, during the recent sovereign crisis,
markets penalized more peripheral European countries in favour of Germany considered
a "safe heaven".

Figures 3.9-3.10 highlight interesting linkages of our findings to the concept of conta-
gion (Forbes and Rigobon 2002, Bekaert et al. 2005, 2012), as increasing correlations not
entirely explained by macroeconomic fundamentals, and are also in line with the evidence
reported for other asset classes in terms of systemic risk. There are alternative views in
literature according to the causes behind change in systemic risk. Our results are in line
with Ang and Longstaff (2011) where a stronger linkage among CDS spreads of Eurozone
countries with respect to the US is assessed. This result provides evidence that systemic
risk is not directly caused by macroeconomic integration but it has its roots in financial
markets. A similar evidence is reported in other papers such as Kodres and Pritsker
(2002), Brunnermeier and Pedersen (2009) and Allen et al. (2009) where it is shown that
systemic risk is created through channels such as capital flows, funding availability, risk
premia and liquidity shocks rather than macroeconomic shocks. Another study support-
ing our results is Baele et al. (2010) where the factors explaining the dynamics of the
correlation between stock and bond returns are investigated. Their main result is that
macroeconomic fundamentals, such as output gap and inflation, do not explain signifi-
cantly stock and bond returns correlations while other variables, such as liquidity proxies
and risk aversion, have a prominent role. Karloyi and Stulz (1996) study whether there
exists a relationship between US macroeconomic announcements and covariances. They
come out with a negative answer providing evidence that instead, what determines higher
covariances are large contemporaneous return shocks in the national markets. Therefore
these findings may be used to support our results about the presence of large and si-
multaneous shocks in European government bond spreads behind the sharp increase in

correlations.

3.4.2.3 DCC-MIDAS MVRA, macroeconomic and risk aversion approach

In order to assess whether the change in the correlation structure evidenced in previous
Section reflects an increasing risk adverse environment, we augment (3.15) with some
variables usually adopted to describe risk aversion such as TED, VIX and the price of
gold. The TED is defined as the difference between the interest rates on interbank loans
and on short-term US government debt and it is a measure of credit risk; in practice it
is usually computed as the difference between the 3 months LIBOR and the 3 months
yield-to-maturity of US T-bill. The VIX is a measure of the implied volatility of S&P
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500 index option and therefore it gives an idea of market perceived volatility. Finally
we consider even the price of gold as it usually works as the safe heaven investment;
therefore an increase in its price should reflect a higher demand in consequence of raising
risk aversion. In Figure 3.11 we report the time series for the period of interest for the

three variables.
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Figure 3.11: Risk aversion variables

Figure 3.11 reports the pattern of TED, VIX and gold price during the period June 2007 - May 2012.

From a simple graphical analysis, we can see that neither VIX nor TED show an
increase during the period December 2010 - July 2011 corresponding to the break in
correlations for all the pairs of European government bond spreads observed in Figures
3.7-3.8 and 3.9-3.10. Anyway we try to add all the three variables in (3.15) and estimate
a model for the conditional correlations based on countries macroeconomic fundamentals

and risk aversion measures. Results are reported in Table 3.4.9.
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Results in Table 3.4.9 show that there exists a negative relationship between the risk
aversion measures and correlations for some of the countries analyzed contradicting our
initial hypothesis about the existence of a positive relationship. The log-likelihood of the
model improves, moving from 630,054 to 630,107 and the Likelihood ratio test is 106.18
with a p-value of 0.0002 which allows not to reject the hypothesis of a better fitting of the
model including the risk measures. Anyway, the increase in correlation during the period

December 2010 - July 2011 still remains unexplained (we do not report Figures here).

3.4.3 A Useful Eigensystem Decomposition of the Correlation Matrix

According to the analysis carried out up to now, we have obtained two correlation pat-
terns: the first, measured at 15-minute frequency, capturing financial markets behaviour;
the second one, inferenced from countries macroeconomic fundamentals, is assessed at
monthly frequency. In this final section, we evaluate the presence of time-varying (on-
going) integration between European countries. This is an interesting exercise for the
implications in terms of the presence of contagion and /or systemic risk during the sov-
ereign crisis.

Applying the classical definition of contagion by Forbes and Rigobon (2002), that is
a significant increase in crossmarket linkages after a shock to one country or to a group
of countries, we can therefore conclude with strong evidence of contagion according to
high frequency data while this evidence does not seem so clear using macroeconomic
data. Anyway, in this context we feel that contagion analysis is not appropriate. In
fact, although Greece could be identified as the source country from which contagion
propagated to the rest of Europe, we do not think that the bursting of European sovereign
crisis could be attributed entirely to Greece as for example occurred during the subprime
crisis where the crisis originated completely in the US. In fact, Greece is a very small
FEconomy in Europe and therefore its bailout could not be the unique reason for the
increase in European government bond spreads. From our point of view, Europe in itself
experienced and is experiencing an harder situation in which a number of countries among
which Ireland, Italy, Portugal and Spain saw their fundamentals to deteriorate and their
GDP to decline. We could even speak about contagion but in a broader sense in which
each country became more sensitive to each other countries, a phenomenon that we could
call European Systemic risk. Therefore we think it is more appropriate to analyze the
degree of integration of European countries rather than testing for contagion from Greece.

From a theoretic point of view, two markets are said to be integrated when two
identical assets traded on two alternative markets have identical prices at a time. Baele
et al. (2004) test for integration among government bond markets through a simple

regression:
AR] = o] + BIARS + &) (3.22)
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where ARg change in the yield on an asset in country j at time ¢ and AR} yield change on
a comparable asset in benchmark country k. In the framework of (3.22) two markets are
said to be integrated when the intercept a{ converges to zero and B{ tends to 1 implying
that changes in the benchmark country k are perfectly reflected in country j.

Recently, Muller et al. (2005) proposed a conceptually simple and yet powerful tool
for detecting and characterizing time dependent phase-shape correlations in multivariate
datasets based on the eigenvalue decomposition of the correlation matrix. This decom-
position was applied by Rak et al. (2006) with the purpose of assessing the evolution of
the components of the WIG20. Muller et al. (2005) showed that changes in the degree
of synchronization in all or a subset of signals are reflected in coordinated changes in the
highest and lowest eigenvalues and that information on the channels involved and the
type of their interactions can be obtained from the corresponding eigenvectors. This kind
of analysis is part of the random matrix theory; random matrix theory is based on the
comparison of the results obtained for the eigenvalues of the correlation matrix of a real
system with eigenvalues of the correlation matrix of a pure random system. We just recall

some results drawn from that theory.

Proposition 1 Let L x N be a matriz with random numbers built on a Gaussian distri-
bution with mean zero and standard deviation o such that its limit Q@ = L/N for L — oo
and N — oo remains finite and greater than 1. The eigenvalues A of such a matrix will

have the following Marenko-Pastur probability density function:
Q Ar =N (A=A
) ()\) _ \/( + ) ( )

27102 A

A =o? <1+$—2\/g> and \; = o? <1+c12+2\/g> (3.24)

Muller et al. (2005) show that in general the lower part of the spectrum of eigenvalues

(3.23)

where

and eigenvectors is not dominated by noise and/or random correlations, but also contains
essential information about the correlation dynamics of the system. In particular, they
present evidence supporting the concept that there exist situations for which the lower
part of the spectrum contains statistically more relevant information than the largest
eigenvalues and their corresponding eigenvectors. Muller et al. (2005) show how the
analysis of the largest and smallest eigenvalues and their corresponding eigenvectors can

be combined to extract details of changes in the correlation pattern.

Proposition 2 Let C' be a correlation matriz of variables X ; the sum of the eigenvalues
of C is time independent and equal to the dimension of the multivariate data set M.
Hence, the change of any of the eigenvalues has to be compensated by a corresponding

change of at least one of the others.
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Proposition 3 Let X be variables which are not correlated. The values of the nondiag-
onal elements of their correlation matriz C tend to zero if the time window At tends to
infinity (Uma—oo Cjr, = 0 V5 # k). In that case the spectrum of C is completely degener-
ate and \j = 1 Vj. For any finite value of At, however, the values of Cji, with j # k,
remain finite, which leads to a lifting of the degeneracy. In this case the eigenvalues
are distributed around 1, reflecting the presence of random correlations within the finite

window At.

In order to assess which components contribute the most to the time structure of
correlation matrices, Muller et al. (2005) introduce the participation ratio or number of
principal component. Let aj,, be the expansion coefficient of eigenvector v;, the number

of principal components contributing to the dynamic of the system is defined as:

1
M 4
T MY lam]

(3.25)

In case all the basis states m contribute equally to the expansion of the eigenvector j, N JI-’
will take values close to 1 while, when the eigenvector v; is driven by few components,
N. JP will take values close to 1/M.

Moreover, Muller et al. (2005) propose the symmetry parameter which allows to

discriminate between positive and negative correlations defined as:

S; =

M
> sgn (ajm) \ajm!2‘ (3.26)
m=1

We now apply Muller et al. (2005) framework to the time varying correlation matrices,
at high and low frequency level, estimated by the MV DCC-MIDAS reported in Table
3.4.6. This procedure will allow us to assess integration in financial markets, at high
frequency level, and in countries fundamentals, measured at monthly frequency. Our
purpose is, in both cases, to evaluate whether the European countries analyzed, Belgium,
France, Italy, Spain and the Netherlands, experienced an increase in integration through
the time period analyzed. Moreover, by computing the participation ratio in (3.25), we
will be able even to understand whether a specific country played a more active role in
the changing integration pattern or whether all the countries contributed almost in the
same manner to that process.

Figure 3.12 reports the contribution of each eigenvector to the evolving structure of

high-frequency correlation matrix.



High- and Low- Frequency Correlations in European Government Bond Spreads and Their Macroeconomic
114 Drivers

0.9 4

0.8 -

0.6

0.5

0.4

0.3 -

0.2 -

0.0 T T T T T T T T T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

Figure 3.12: Eigenvectors contribution to the time pattern of high frequency
correlation matrix

Figure 3.12 reports the contribution of the eigenvectors extracted from the high frequency correlation
matrix and its time dynamics.

The principal eigenvector explains on average a 50% of the total variability of the
correlation matrix confirming the existence of a global risk factor through the period
considered. Moreover, as already seen when analyzing the pairwise correlations in Figures
3.9-3.10, we find evidence of a substantial increase in the variability explained by the
eigenvector associated to the largest eigenvalue during the deepest period of the crisis
corresponding to December 2010 - July 2011. The other four eigenvectors explain a similar
amount of variability of the evolution of correlation matrix with a drop in correspondence
of the period December 2010 - July 2011 due to an increasing importance of the leading

eigenvector. In Figure 3.13, we report the participation ratio as defined in (3.25).
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Figure 3.13: Participation Ratio Based on the High-Frequency Correlation Ma-
trix

The figure reports the participation ratio for the 15-minute correlation matrix computed applying (3.25).

From Figure 3.13 it is interesting to see that, although the participation ratio takes
very high values throughout the entire period of our analysis, it is persistently close to
1 during the crisis period between December 2010 and July 2011, meaning that all the
countries in that period contributed equally to the expansion of the maximum eigenstate.
This result supports the evidence that there was no leading country during the crisis
period, no country determined contagion, but all European countries play a similar role
in the development of the sovereign crisis. This suggests the presence of a dominant global
market factor resulting from the interactions of all other/local markets (see also Belvisi
et al. 2013). The component of the eigenvectors are all positive making the computation
of the symmetry parameter in (3.26) meaningless.

The analysis carried out so far is based on the high-frequency correlations providing
an indication of time-varying integration between European financial markets. We turn
now to the analysis of the low-frequency correlations driven by macroeconomic variables to
assess whether a similar pattern is present in the integration in the economies of European
countries. Figure 3.14 reports the percentage of variability of the low-frequency correlation

matrix explained by its eigenvectors.
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Figure 3.14: Eigenvectors contribution to the time pattern of Low Frequency
Correlation Matrix

Figure 3.14 reports the contribution of the eigenvectors extracted from the low frequency correlation
matrix and its time dynamics.

Figure 3.14 shows that Belgium, France, Italy, Spain and the Netherlands correla-
tions estimated via macroeconomic factors were mainly driven by a leading eigenvector
explaining a percentage of variability between 30% and 60%. In addition, the amount of
variability explained by the leading eigenvector shows a noticeable drop starting from the
end of 2008 and lasting up to the end of 2009 in correspondence of the subprime crisis;
we also note the existence of another drop starting from the beginning of 2012. On the
contrary, no systematic pattern is found over the period December 2010 - July 2011. In
Figure 3.15, we report the participation ratio computed on the time varying long-term

correlation matrix.



Empirical Results 117

1.00

0.95 -

0.90 -

0.85 -

0.80 -

0.75 -

0.70 T T T T T T T T T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

Figure 3.15: Participation Ratio Based on the Low-Frequency Correlation Ma-
trix

The figure reports the participation ratio for the monthly correlation matrix computed by (3.25).

The figure shows a sharp drop during the period September 2008 - April 2009, cor-
responding to the burst of the subprime crisis with the default of Lehman & Brothers,
followed by another drop around October 2009. These results can be interpreted jointly
with what reported in Figures 3.2-3.4: a sharp increase in the Spanish level of unem-
ployment starting in the mid of 2008, when also the industrial production differential for
Belgium and the Netherlands vs Germany decreases much less than for France, Italy and
Spain; finally, no evidence of increase in participation ratio is found during the period
December 2010 - July 2011.

To summarize, when considering 15-minute (high-) frequency component of correla-
tions, reflecting financial market conditions, we note a sharp rising in integration during
the period December 2010 - July 2011 shown by both an increase in the overall amount
of variability of the correlation matrix explained by the leading eigenvector and by the
participation ratio being very close to one, with little or no variability indicating that all
countries have a similar role in explaining the increase in integration. When we focus
on macroeconomic factors, although there is evidence that European countries are very
integrated, we do not find evidence of a change in the level of integration during the
period December 2010 - July 2011. On the contrary, we find a low degree of integra-
tion in correspondence of the burst of the subprime crisis of 2008-2009. Thus, there is
strong evidence of increasing systemic risk in European bond markets during the pick of
the sovereign debt crisis mainly determined by sentiment driven trading activities across
European financial markets which appear highly integrated.

Some research on market integration has already been carried out. See for instance
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Matheson (2013) who, by investigating the growth-pattern of 185 countries, shows that
the crisis led to a widespread synchronization/integration across countries, though in the
early part of the recovery, the integration decreased because of differences in countries
macroeconomic conditions and in fiscal and monetary policy responses to the crisis itself.
Moreover, while during the crisis period a global factor seems to have driven country’s
growth, during the post-crisis period the global factor looses its explanatory power, in-
dicating that the country specific characteristics explain the different growth patterns.
In addition to that, Schulz and Wolff (2008) show that the homogenization of trading
platforms, through technical innovations promoting price transparency and competition,
increases integration in the ultra-high frequency European sovereign bond yields. These

findings are also supported by von Hagen et al. (2011).
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3.5 Conclusions

Since the introduction in 1999 of the Euro with the single monetary policy under the
authority of the ECB, the 10-year yields converged significantly from highs in excess of
300 basis points to a maximum of 30 basis points one year after the birth of the common
currency. The resulting remarkable compression of sovereign risk premium differentials
was considered a hallmark of successful financial integration in the Euro area but it also
raised doubts about the ability of financial markets to impose fiscal discipline across union
members and to discriminate between the qualities of fiscal policies coherently based on
economic rationality. With the explosion of the sovereign debt crisis in 2011, financial
markets became more careful in monitoring the fiscal performance of member states and
restarted to exert disciplinary pressure on governments. The main question was whether
the high spreads reflected the fundamentals of a country or rather they were determined
by a regime shift in the market pricing of government credit risk as, during crisis periods,
market penalization of fiscal imbalances can be higher than during normal times.

In this Chapter, we propose a DCC-MIDAS model for jointly estimating the high- and
low-frequency components for both volatilities and correlations of European government
bond spreads. We consider 10-year benchmarks for Belgium, France, Italy, Spain and
the Netherlands with respect to Germany, over the period 1st June 2007 - 31st May
2012. The high-frequency component of volatilities and correlations, supposed to reflect
financial markets conditions, is evaluated at 15-minute sampling while the low-frequency
component, remaining fixed through a month, is expected to depend on country specific
macroeconomic conditions.

We provide evidence of the strong linkage between increasing volatility of European
government bond spreads and deteriorating countries macroeconomic fundamentals with
respect to German ones. In particular, we show that the model augmented by macro-
economic fundamentals provides a better fit than the pure time series model, stressing
the role of macroeconomic variables in driving government bond spreads even during the
sovereign crisis. In addition, by estimating a DCC-MIDAS model where the long run
component is driven by macroeconomic fundamentals, we show that as two countries get
more similar in terms of their macroeconomic fundamentals, their bond spreads tend to
move together. Moreover, unlike for volatilities, the pure time series model for correla-
tions outperforms the specification including macroeconomic fundamentals. The different
performance of the two DCC-MIDAS is particularly evident during the period December
2010 - July 2011, when a severe uprise in all the pairwise correlation patterns is identifi-
able. This finding supports the idea of increasing risk-aversion of investors who favoured
the German bonds serving as a safe heaven. Finally, we analyze the time-varying degree

of integration of European countries and we show that the increasing integration in finan-
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cial markets during the period December 2010 - July 2011 is not supported by a similar
increasing integration of countries in terms of their macroeconomic fundamentals.

The findings in this Chapter suggest further developments. We showed that among the
factors which contribute the most to explain the pattern in European government bond
spreads are country specific macro fundamentals together with the expectation about
future economic outlook as captured by the economic sentiment. During the recent crisis,
future expectations played a prominent role. In particular, government’s ability to set
up proper measures to face the crisis together with political uncertainty were priced in
government bonds. In this respect, the case of Italy is very exemplary as the country
experienced an abnormal increase in its government bond spread both in November 2011,
in correspondence of Berlusconi’s government downturn, and in recent days (September
2013) when the Italian bond spread was above the Spanish one despite the better Italian
macroeconomic fundamentals because of new political uncertainty. On the other side,
the Irish case, with the spread moving from highs of 800 bps in June 2011 to the actual
220 bps, shows as government’s ability to undertake proper reforms can lead investors to
revise their judgment on a country creditworthiness.

For policymakers it is important to identify the factors driving markets as this step
helps to estimate the probability that risk materializes and thus to take appropriate
policy actions which become particularly important in the presence of a highly integrated
financial system, rising the risk that shocks propagate across markets. Thus, it is also
important to analyze whether other factors besides macroeconomic shocks, such as for
instance political uncertainty and procyclical behaviour of policy authorities and major
institutional investors, impact on government bond spreads. This is part of an ongoing

research agenda.
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3.A Appendix I - Intraday Periodicity
Table 3.A.1: Intraday periodicity estimates
IT FR ES BE NL
Constant 0.0000 0.0000 0.0002 0.0001 0.0000
AR(1) 0.6350 0.1246  -0.4570 -0.0756 0.2171
MA(1) -0.6068 -0.2990 0.4327 -0.0023 -0.5625
do 4.6638 3.0354 4.9300 7.0209 5.1410
do,1 -13.3151 -9.0558 -14.0015 -20.1177 -15.5761
00,2 4.6828 3.2026 4.8788 6.9948 5.5255
Macroannouncement Surprises
A1 - US - Factory Orders  -0.0035 0.0016 0.0011 -0.0006 0.0056
A2 - US - Durable Goods 0.0000 0.0016 0.0016 0.0012 0.0009
A3 - US-CCI  -0.0036 0.0002 0.0012 0.0000 -0.0018
A4 - US - Chicago PMI  -0.0049  -0.0006 -0.0035 -0.0010 -0.0051
As - US-CPI  -0.0002 0.0025 0.0084 0.0050 -0.0003
X6 - US - GDP Advance -0.0024 0.0003 0.0021 0.0013 -0.0031
A7 - US - GDP Preliminary  -0.0065 -0.0066  -0.0085 -0.0057 0.0055
As - US - GDP Final 0.0062 0.0004 0.0023 0.0037 -0.0065
A9 - US - Business Inventories -0.0001 0.0025 -0.0036 -0.0047 0.0038
A10 - US - NonFarm Payroll  -0.0037 0.0021 0.0028 -0.0019 -0.0011
A11 - US - Initial Jobless Claim  -0.0018 0.0011 -0.0023 -0.0009 0.0009
A12 - US - University Of Michigan 0.0010 0.0047  -0.0103 -0.0013 0.0177
A13 - US - Retail Sales  -0.0040 -0.0024  0.0058 -0.0011 0.0018
A14 - US - Philadelphia FED Index  0.0002 0.0011 0.0004 -0.0029 0.0024
A5 - US - PPI 0.0039  -0.0016  -0.0023 -0.0069 -0.0033
A16 - US - Production Index  0.0019  -0.0012  -0.0003 -0.0068 0.0032
A17 - EA - HICP Flash Estimate  -0.0029  -0.0092  -0.0070 -0.0106 0.0024
A1s - EA - Business Confidence Indicator 0.0007 -0.0001 0.0007 -0.0011 0.0006
A1g - EA - Consumer Confidence Indicator  -0.0021 0.0039 0.0006 -0.0001 -0.0011
A20 - EA - Industrial Production -0.0037 0.0060 0.0053 -0.0017 -0.0011
Ao1 - EA - M3  -0.0057 -0.0014 -0.0004 0.0005 0.0002
A22 - EA - Retail Sales 0.0069 0.0001 0.0188 0.0081 0.0054
A23 - EA - Unemployment 0.0060 0.0023 0.0001 0.0012 -0.0045
A24 - EA - PPI -0.0116  -0.0144  -0.0049 0.0006 -0.0049
A2s - EA - PMI Flash 0.0032 0.0002 -0.0035 -0.0053 -0.0018
A2g - EA - PMI Final 0.0042 0.0025 0.0080 0.0027 -0.0028
A27 - EA - Introductory Statement 0.0020 0.0054 0.0042 0.0107 0.0147
A2s - EA - Monthly Bulletin 0.0012  -0.0070 0.0047 -0.0126 -0.0064
A29 - DE - ZEW 0.0007 0.0019 0.0010 0.0039 0.0025
A30 - DE - Business Confidence 0.0048 -0.0011 0.0034 0.0004 0.0030
A31 - DE - CPI Preliminary 0.0077  -0.0136 0.0043 -0.0033 0.0003
A32 - DE - Unemployment 0.0000 0.0000 0.0000 0.0000 0.0000
As3 - DE - Industrial Production  -0.0051  -0.0050  -0.0002 -0.0031 -0.0029
Azq - IT - GDP Preliminary  -0.0010  -0.0011  -0.0006 -0.0027 0.0010
Ass - IT - GDP Definitive 0.0229 0.0037 0.0135 0.0124 0.0073
A36 - IT - Business Confidence 0.0028 0.0005 0.0003 0.0022 -0.0007
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Table 3.A.1: Intraday periodicity estimates

IT FR ES BE NL
Ag7 - IT - CPI Preliminary ~ -0.0041  -0.0021 0.0002 -0.0031 -0.0018
Asg - I'T - CPI Final 0.0002 0.0003 0.0013 -0.0007 0.0008
A3g - IT - Industrial Production 0.0055 0.0037 -0.0055 -0.0006 0.0006
A0 - FR - Business Confidence 0.0000 0.0000 0.0000 0.0000 0.0000
A1 - FR - Industrial Production 0.0003 -0.0010 0.0010 0.0010 -0.0005
A2 - PT - CPI 0.0029  -0.0015  -0.0012 0.0005 0.0015
M43 - PT - GDP Preliminary 0.0012  -0.0002  -0.0002 -0.0010 0.0000
Aaa - PT - GDP Final  0.0006  -0.0024  -0.0031 0.0013 -0.0042
A5 - BE - Business Confidence  -0.0021 -0.0018  -0.0011 -0.0027 0.0007
A6 - GR - GDP Final  -0.0027 -0.0043  -0.0013 -0.0028 -0.0027
A7 - GR - GDP Preliminary  -0.0016 0.0139 0.0297 -0.0094 0.0083
Mg - GR-CPI  -0.0023 -0.0003 -0.0039 -0.0005 0.0029
A9 - GR - Unemployment  -0.0035  -0.0001 0.0013 -0.0016 0.0038
As0 - NL - Unemployment  -0.0017 0.0002 -0.0002 0.0030 0.0013
As1 - NL - CPI 0.0074 0.0028 0.0145 0.0074 -0.0018
As2 - NL - IndustrialProduction 0.0005 0.0005 -0.0008 -0.0006 -0.0003
Bid-to-cover 10yrs Auctions
v, - Austria  0.0079 0.0025 -0.0041 0.0021 -0.0005
v, - Belgium  -0.0112  -0.0031  -0.0128 0.0054 -0.0028
v5 - France  -0.0052 0.0026 0.0007 -0.0038 -0.0017
v, - Germany 0.0019  -0.0126  -0.0006 -0.0071 -0.0183
Vs - Greece  -0.0389 0.0484 0.0073 0.0463 -0.0354
v - Italy  -0.0517 0.0229  -0.0430 0.0101 0.0462
v, - Portugal  -0.0204  -0.0043 0.0067 -0.0077 0.0018
g - Spain 0.0619 0.0310  -0.0092 0.0164 0.0086
Rating
¢, - S&P 0.3409 0.1578 0.2421 0.0417 -0.0275
¢, - Moody’s  -0.4756 0.0130 0.1431 0.1366 0.0390
¢4 - Fitch 0.1720  -0.0674  0.1768 0.1043 -0.0213
Day of the week
01 - Tuesday  -0.1005 -0.0051  -0.0557 -0.1004 -0.0185
02 - Wednesday  -0.1373  -0.0268 -0.0134 -0.1040 -0.0486
03 - Thursday  -0.0729 0.0143  -0.0039 -0.0582 -0.0331
04 - Friday  -0.0939 -0.0170  -0.0330 -0.0805 -0.0502
Periodic Component
de1 -2.3539 -1.5858  -2.4144 -3.6652 -2.8998
de2  -0.5068  -0.3516  -0.5133 -0.8455 -0.6802
de3 -0.1871  -0.0966  -0.1485 -0.3263 -0.2563
dc,a -0.0217  -0.0006  -0.0163 -0.1293 -0.0880
des -0.0243 0.0151 -0.0068 -0.0530 -0.0441
ds,1 -0.1065 -0.0673  -0.1849 -0.2861 -0.0712
ds,2  -0.0180 0.0147  -0.0655 -0.1128 0.0220
0s,3 0.0168 0.0078  -0.0476 -0.0756 0.0049
Os,4 0.0006 0.0287  -0.0249 -0.0349 0.0037
0s,5 0.0236 0.0150  -0.0258 -0.0156 0.0207
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3.B Appendix II - Daily Data

In this Appendix we report a similar exercise to the one presented in Section 3.4 where

the high frequency component is evaluated at daily frequency rather than at 15-minute.

Table 3.B.1: Parameter Estimates for the TS GARCH-MIDAS Models - Daily

Data
IT FR ES BE NL
o 0.2247 *¥** 0.2007 *** 0.2563 ***  (.1757 *** 0.2261 ***
B 0.6497 *** 0.5884 *** 0.6623 ***  (.7512 *** 0.6817 ***
m  -3.0419 *** _3 5617 *** _2.7556 *¥** _2.6074 *** .4.0034 ***
0 0.8203 *** 0.8166 *** 0.8584 ***  (.8741 *** 0.6594 ***
wa  4.49 ** 28.48 3.83 ** 0.97 **x* 3.30 ***
LogL 1,995 2,929 2,001 2,410 3,082
Variance ratio 0.77 0.83 0.78 0.69 0.37

Table 3.B.1 reports estimates for the TS GARCH-MIDAS model where the long run com-
ponent is a smooth weighted average of previous six monthly realized volatilities. Realized
volatilities are estimated on a fix monthly span while the high frequency component is mea-
sured at daily frequency. Weights are computed according to the beta function where the first
parameter wy is set to 1. *** ** * denote 1%, 5% and 10% significance level, respectively.
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Table 3.B.2: Parameter estimates for the MV-GARCH-MIDAS models - Daily

Data
IT FR ES BE NL
a 0.2176 ***  (0.1489 ** 0.2509 ***  (0.1677 *** 0.1607 ***
B 0.5852 ** 0.6725 ***  0.6003 *** (0.7309 *** (.7764 ***
m -8.68 -11.49 ***  _8 71 *** -9.15 *** -7.38 ***
01, (Employment) -15.24 43.23 *** 3.3 21.96 3.95
02,1 (Industrial Production) 29.06 22.8 *** 10.91 ** -7.69 -14.28 ***
0s,; (Economic Sentiment) -3.07 -5.78 * 9.25 *** 28.28 6.86 *
wz,1,1 (Employment) 152.5 0.88 *** 28.27 0.97 *** 151.02
w221 (Industrial Production) 1.32 1.38 *** 4.04 155.36 108.75
w2,3,1 (Economic Sentiment) 0.6 98.08 131.94 1 Kk 137.02
01,0 (Unemployment) 31.96 23.06 -6.79 -8.14 *** -67.66 **
02,5 (Industrial Production) -280.05 -49.18 ** 188.62 ** 41.92 104.99 ***
02,5 (Economic Sentiment) -52.8 -58.62 ***  _235.5 ***  26.53 * 9.56
w2,1,0 (Employment) 0.98 *** 1.07 *** 0.95 *** 145.83 0.98 **x*
w2,2,» (Industrial Production) 2.05 * 248.29 1 Fk* 8.36 ** 1.86 ***
w2,3,» (Economic Sentiment) 5.4 109.96 1.36 *** 149.18 13.06
LogL 2,016 2,952 2,017 2,423 3,101
Variance ratio  0.89 0.89 0.86 0.86 0.55

Table 3.B.2 reports estimates for the MV-GARCH-MIDAS model where the long run component is a
function of the absolute difference in macroeconomic fundamentals (employment, industrial production and
economic sentiment) observed over the last six month for each country with respect to Germany as specified
in (3.9). Both levels and volatilities of macrovariables are considered. The low frequency component is
updated monthly, in correspondence to new macroeconomic data, while the high frequency component is
evaluated on a daily basis. The absolute difference in volatilities were rescaled: employment volatility by
le4 while industrial production and economic sentiment volatility by 1e2. Weights are computed according
to the beta function where the first parameter w; is set to 1. *** ** * denote 1%, 5% and 10% significance

level, respectively.
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Table 3.B.3: GARCH MIDAS Models: A Comparison - Daily Data

IT FR ES BE NL
Log Likelihood
GARCH 1,973 2,908 1,975 2,376 3,072
TS GARCH-MIDAS 1,995 2,929 2,001 2,410 3,082

LR test (vs GARCH) 43.84 *¥* 42,98 *** 52,04 *%% 70,44 *¥* 20,37 ***

MV GARCH-MIDAS 2,016 2,952 2,017 2,423 3,101
LR test (vs GARCH) 85.67 *** 88.93 *** 84,73 *** 06.34 *** 59.23 **
AIC

GARCH -3.0842 -4.5473 -3.0871 -3.7138 -4.8038
TS GARCH-MIDAS -3.1139 -4.5762 -3.1238 -3.7642 -4.8150
MV GARCH-MIDAS  -3.1309 -4.5965 -3.1330 -3.7688 -4.8298
BIC

GARCH -3.0762 -4.5392 -3.0790 -3.7057 -4.7957
TS GARCH-MIDAS -3.0937 -4.5561 -3.1036 -3.7440 -4.7949
MV GARCH-MIDAS -3.0705 -4.5360 -3.0725 -3.7083 -4.7693
Variance Ratio
TS GARCH-MIDAS 0.77 0.83 0.78 0.69 0.37
MV GARCH-MIDAS 0.89 0.89 0.87 0.86 0.55

Table 3.B.3 reports a comparison of alternative volatilites estimates. GARCH is the classi-
cal GARCH(1,1) model by Bollerslev (1986) (estimates are not reported here). In the TS
GARCH-MIDAS, the low frequency component is a smooth weighted average of previous six
monthly realized volatilities and reported in Table 3.B.1. In the MV GARCH-MIDAS the low
frequency component is a function of the absolute difference in macroeconomic fundamen-
tals, namely employment, industrial production and economic sentiment, for each country
with respect to Germany and reported in Table 3.B.2. LR test is provided just with respect
to classical GARCH as the two GARCH-MIDAS specifications are not nested. AIC and
BIC are Akaike and Schwarz information respectively, whose values are divided by T=1,279.
Variance ratio, defined in (3.10), indicates the overall amount volatility explained by the
long run component. *** ** * denote 1%, 5% and 10% significance level, respectively.
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Figure 3.B.1: MV GARCH-MIDAS Models - Daily Data

Figure 3.B.1 plots the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained by the GARCH-MIDAS model where the long run component is a function of
the absolute difference in macroeconomic fundamentals, namely employment, industrial production and
economic sentiment, observed over the last six months for each country with respect to Germany, as
specified in (3.9). Both levels and volatilities of macrovariables are considered. Estimates are reported
in Table 3.B.2. The black line is the low frequency (monthly) component while the blue one is the daily

component.
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Table 3.B.4: Parameter estimates for the TS DCC-MIDAS Model - Daily Data

a b w2
0.0048 ***  (.9942 *** 1.3009
LogL 14,120

Table 3.B.4 reports estimates for the TS DCC-MIDAS model where
the long run component of correlation is a smooth weighted average of
previous three monthly correlation matrices of standardized residuals.
The long run component is kept fixed throughout the month while the
high frequency component is evaluated on a daily basis. Weights are
computed according to the beta function where the first parameter w1
is set to 1. Univariate volatilities are obtained by the TS GARCH-
MIDAS model where the long run component is a smooth weighted
average of RVs reported in Table 3.B.1. *** ** * denote 1%, 5% and
10% significance level, respectively.
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Table 3.B.6: DCC-MIDAS Models: A Comparison - Daily Data

LogL LR test vs DCC AIC BIC

DCC 14,069 -22.00 -21.99

TS DCC-MIDAS 14,120 101.82 *** -22.07 -22.05
MV DCC-MIDAS 14,367 596.47 *** -22.25 -21.73

Table 3.B.6 reports a comparison of alternative DCC models. DCC is the classical
DCC(1,1) model by Engle (2002) whose parameters are not reported here. The TS
DCC-MIDAS estimates are reported in Table 3.B.4 and MV DCC-MIDAS in Table
3.B.5. LR test is provided just with respect to classical DCC as the two DCC-MIDAS
specifications are not nested. AIC and BIC are Akaike and Schwarz information
respectively, whose values are divided by T=1,279. *** ** * denote 1%, 5% and
10% significance level, respectively.
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Figure 3.B.2: MV DCC-MIDAS Model - Daily Data

Figure 3.B.2 plots the correlation estimates of 10-year government bond spreads with respect to the
German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 -
May 2012. Correlations are obtained from the MV DCC-MIDAS model where the long run component
is a function of the absolute difference in macroeconomic fundamentals, namely employment, industrial
production and economic sentiment, observed over the last three months for each pair of countries as
specified in (3.9). Both levels and volatilities of macrovariables concur in determining the long run
component of correlations. Estimates are reported in Table 3.B.5. The black line is the low frequency
(monthly) component while the blue one is the high frequency (15-minute) component.
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Figure 3.B.3: DCC-MIDAS MV Model - Daily Data

See notes to Figure 3.B.2
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Chapter 4

Comparing alternative integrated

covariance estimators

Abstract

In this Chapter, we carry out a comprehensive Monte Carlo simulation exercise aimed
at comparing the alternative integrated covariance estimators and synchronization meth-
ods that have been recently proposed in the literature. The Monte Carlo comparison
evidences as the two best estimators are those introduced by Ait-Sahalia, Fan and Xiu
(2010) and by Shephard and Xiu (2012). The best performance of Ait-Sahalia, Fan and
Xiu (2010) estimator is achieved in combination with the refresh time synchronization
procedure while the Shephard and Xiu (2012), directly applied on non-synchronized data,
suffers from upward bias which is anyway averaged out when evaluating correlations. We
even propose a backtesting risk management exercise based on a portfolio of European
government bonds confirming Monte Carlo results.

Keywords: Integrated Covariance, Asynchronicity, Microstructure Noise, Monte
Carlo, Risk management, Backtesting.

J.E.L. Classification Numbers: C01, C14, C58, D53, D81.
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4.1 Introduction

The proper estimation of correlation matrix is fundamental in a lot of finance fields such as
portfolio optimization and risk management (e.g. Schafer et al. (2009)). The availability
of high frequency data has opened the route to the development of a new set of covariance
matrix estimators based on such data, the integrated covariance estimators.

The first estimator of integrated covariance relying on high frequency data was origi-
nally introduced by Barndorff-Nielsen and Shephard (2004). This estimator was succes-
sively shown to be strongly biased when applied to tick-by-tick data given that it does
not take into account neither market microstructure noise nor non-synchronous trading.

Asynchronicity deals with the fact that transaction data are recorded at random times
so that prices are available at irregularly spaced times. Unfortunately, classical economet-
rics techniques cannot be applied to asynchronous data as a general underlying assumption
is that data are recorded at the same time. Therefore, in order to be able to deal with
asynchronous data, specific synchronization tools were developed, so that classical econo-
metrics can still be applied even to non-synchronous recorded data, together with new
estimators explicitly designed to deal with such kind of data.

The simplest procedure to synchronize data is carried out by selecting a common in-
terval length A and interpolating the missing observations in some way. This procedure
presents two main pitfalls: firstly it is heavily dependent on the choice of h; in a sec-
ond place interpolation could be another bias source (see for instance Barucci and Reno
(2002)). Moreover, Miinnix et al. (2010) show that each term of the Pearson correlation
coefficient can be divided into two parts, one contributing to the correlation, deriving
from the overlapping of returns, and the other which is uncorrelated, not overlapping,
just causing the correlation coefficient to decrease and being the origin of the so called
Epps effect.

The Epps effect has a long history and different are the reasons ascribed to it. A
first empirical assessment of the existence of a negative relationship between sampling
frequency and correlation can be found in Niederhoffer and Osborne (1966). In their
paper they argue that the negative correlation in tick-by-tick price changes is due to the
presence of queues of limit orders acting as temporary barriers between which market
price moves back and forth as each order in a flow of randomly arranged market orders
to buy or sell (at the best available price) transacts with one of the limit orders. Epps
(1979) explains the existence of a negative relationship between successive price changes
in the same stock with the persistence for short periods of a similar effect that exists
among changes in price from one transaction to the next. A successive work by Lundin et
al. (1990) provides evidence of a significant inverse relationship between correlation and

activity: the more an asset is traded, the less evident the Epps effect is. In addition to
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that, they claim that the reason why we do not recover the same correlation at different
time scales is that different actors play different roles at different frequencies. Reno
(2003) shows, through an extensive Monte Carlo simulation, that when two assets are
traded synchronously, and if there is no lead-lag relationship, no frequency effects should
be observed in the correlation measurements. This finding would suggest that the most
relevant determinant of the Epps effect is asynchronicity. Finally Miinnix et al. (2010)
identify another cause of the Epps effect in the discretization of the price process. A more
intuitive reason justifying the Epps effect is that, as the sampling frequency increases,
there are more and more zero-returns in the presence of non-synchronous trading causing
the estimated correlation being biased towards zero.

Together with synchronicity, a general assumption underlying classical financial econo-
metrics techniques is that observed prices are the true efficient prices. Anyway, especially
when moving to very high frequencies, we hardly observe the true prices due to the
presence of the microstructure noise. Microstructure noise is commonly claimed to be
determined by discreteness and bid-ask spread bounce and its main detrimental effect is
inducing autocorrelation in high frequency returns. Moreover noise is often pointed out
to be one of the causes of the Epps effect as, while the magnitude of the noise relative
to the price signal increases, so does the realized variance estimator (Griffin and Oomen
(2008)).

Starting from Barndorff-Nielsen and Shephard (2004), numerous researchers tried to
identify a good integrated covariance estimator robust to both asynchronicity and mi-
crostructure noise, but there is no clear view about which one is the best. For instance
the Cumulative Covariance by Hayashi and Yoshida (2005) does not deal with microstruc-
ture noise; the Multivariate Realized Kernel by Barndorff-Nielsen et al. (2011) and the
Modulated Realized Covariance by Christensen et al. (2010) do not converge at the op-
timal rate while the Two Scale Realized Covariance by Zhang (2011) and the QMLE by
Ait-Sahalia et al. (2010) are not guaranteed to be positive semidefinite.

In order to shed some light on this stream of literature, we carry out an extensive Monte
Carlo simulation evaluating the alternative integrated covariance estimators behavior in
presence of alternative degrees of microstructure noise and liquidity; the estimators are
even compared with respect to alternative synchronization schemes. Moreover, we ac-
company the Monte Carlo simulation with an empirical risk management exercise where
the alternative estimators are evaluated in a comprehensive backtesting appraisal with
respect to a number of possible tests involving both Value-at-Risk as well as Tail risk
measures.

The remainder of the Chapter is organized as follows. In Section 4.2 we review the
alternative estimators proposed together with the possible synchronization schemes; in

Section 4.3 we describe our Monte Carlo experiment while the risk management empirical
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exercise is reported in Section 4.4. Section 4.5 concludes.

4.2 Synchronization and Integrated Covariance Estimators

Consider a matrix ((7" x N) x M) of log-prices X = (X(;;))¢,i)>0 defined on a probability

space (0,9 P%) with an information filtration (F8 Z-)>( 10’ T being the number of
) (t,5)>

days included in the sample, N the number of tick data recorded for each day and M

the number of assets under consideration. Efficient prices are supposed to be Brownian

semimartingales:
t ¢
Xty = Xt0) + /audu + /Juqu (t,i) >0 (4.1)
0 0
with a = (a(m))(t,i)zo M-dimensional predictable locally bounded drift vector, o =

(o)) ti>0 adapted cadlag M x M covolatility matrix and W = (W) win>0 M-
dimensional Brownian motion.

The quadratic covariation process of X for day t is defined as:

N / .
[Xi] = lim (Xti) — Xtier) Xi) — Xior)) = /O Y(u)du X =00

N—o00 4
=1

/

(4.2)

for any sequence of deterministic partitions 0 = (¢,0) < (¢,1) < ... < (¢, N) = 1 with
sup; {(t,7) — (t,i — 1)} — 0 for N — oo.
Anyway, due to microstructure noise, we hardly observe the efficient price X rather

we usually deal with its noisy version Y = (Y4 ;))t,i)>0, recorded at discrete time points:
Y=X+¢ (4.3)

where € = (£(;,5))(¢,i)>0 1-1.d. process accounting for the microstructure noise and indepen-
dent from X.
In the remainder of this Section we will first discuss how to synchronize data to move

afterwards to the alternative integrated covariance estimators proposed in the literature.

4.2.1 Synchronization

Synchronization is the process of transforming two or more time series recorded at differ-
ent frequencies in two or more processes with concurrently trading times, which can be
regularly or irregularly spaced.

The general idea about synchronization is to resample original tick-by-tick data with
respect to a pre-specified grid with the alternative methods differentiating in the way the

initial grid is set. To simplify the exposure we will consider just one trading day t. Let
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N be the number of sampling points constituting the resampling grid V% : [0,1]. Each

element of V5 can be indicated as v .y with z =0, ..., N where v(,0) =0 and v =1.

(t.N)
The simplest case is to consider V5 a regular grid where the sampling points are equally
spaced so that vy .y — vy .—1) = Afor V2 =1,.., N. An alternative is to let the Uy Z)’s

depend on the observation times (e.g. refresh time) so that the resampling time points
belonging to the grid won’t be equally spaced: v .) — v .—1) = A2 for z =1, ,Kf
with A®2) denoting the time length between sampling points U(t,2—1) and vy ).

Unfortunately synchronization does not come at any costs. In fact, as new informa-
tion gets built into prices at varying intensities according to their different trading times,
synchronization causes spurious cross-autocorrelation among assets. Moreover, any syn-
chronization method implies a discard of a number of prices with consequences on the
efficiency of the estimators.

In the remainder of this Section we will discuss the alternative synchronization meth-

ods proposed in the literature.

4.2.1.1 Previous Tick

The first synchronization tool we introduce, the Previous Tick (PT henceforth), is may
be even the simplest one as it is based on an equally-spaced grid. To each grid time
point, the price immediately preceding the pre-specified sampling point is imputed. To
formalize, let Y! be recorded on L1 time scale and Y2 on Sp2, the previous ticks lit,2)

and s ,) are identified as follows:

li:) = max{p e Lyt <wvgyy)} (4.4)
Sty = max{0e€ S :0<uvgy,}

where v(; ) elements belonging to Vg : 0 = v 0) < vy < ... < v(tﬁ) =1and A =
1/N resampling frequency. We will indicate the resampled times for day t with z =
1,.., N.

A specific drawback of Previous Tick synchronization scheme is that it is highly de-

pendent on the regular sampling frequency A selected.

4.2.1.2 Refresh time

A more advanced synchronization scheme not based on an equally spaced grid is the
Refresh Time (RT henceforth) proposed by Barndorff-Nielsen et al. (2011).

Let ¥ = (Yl,Y2, L, YM )I be a M-dimensional log-price process where prices are
observed irregularly and non-synchronously over the interval [0,1]. Observation times
for the m-th asset are indicated as (¢,1)",(¢,2)", ..., (t, N™)"™ where N™ is the overall
number of tick-by-tick data recorded for the m-th asset.
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Definition 4 The first refresh time on [0, 1] is defined as (¢, z(1)) = max ((¢, 1), ..., (¢, 1)M)
while the subsequent z-th refresh times are identified as (t,z + 1) = max ((t, N&Z + 1)1 e

(t, NM + 1) ) .

Refresh time can be interpreted as the (z + 1)-th time that all the prices have been
refreshed. In particular (¢,z(1)) is the time that it has taken for all the M assets to
trade for the first time. The refresh times’ sample size N is determined by the degree
of non-synchronicity and by the sample size of the M-assets T, T2, ...,7™. The main
drawback of the Refresh Time is that it is highly dependent on the relatively illiquid
assets. This could lead some bias in the estimation as refresh time points are determined
by the occurrence of the relatively more illiquid assets letting the selected observations of

the other assets always ahead of the corresponding illiquid asset.

4.2.1.3 Generalized synchronization scheme

The Generalized Synchronization scheme was proposed by Ait-Sahalia et al. (2010); this
is a class of synchronization methods which subsumes both previous tick and refresh time

schemes.

Definition 5 A sequence of time points {(t,O) L, 1), (t, N)} s said to be the Gen-

eralized Sampling Time for a collection of M assets if:

L0=(t0)<(t1)<..< (t,]\?) —1;

2,

2. there exists at least one observation for each asset between consecutive (t,z)’s;

3. the time intervals {AZ = (t,z) — (t,z—1), z=1, ...,N}, satisfy sup, A? 2.

The Generalized Synchronization scheme consists in choosing an arbitrary observa-
tion Y,} for the m—th asset between the time interval ((t,z—1),(t,2)]. The synchro-
nized data sets can be indicated as {Y(’t”z) with z = 1,...,]\7 andm=1,... M } In
particular, to overcome the limit of Refresh Time arising when assets with different
degree of liquidity are taken into consideration, Ait-Sahalia et al. (2010) propose to
design a synchronization scheme requiring each asset to lead in turn: for example, re-

2
quiring the first asset to lead, they set (¢,2(1)) = (t,NQ((t, DY+ 1) and for z > 2

(t,z) = (t, N? ((t, NY(t,z—1)+ 1)1> + 1)2. In both Monte Carlo simulation and em-
pirical application, we are going to adopt this scheme; we will refer to it as Modified
Refresh Time (MRT henceforth).

As the Generalized Synchronization scheme has no requirements on tick selection, the
estimator of integrated covariance based on it is robust to data misplacement error, as

long as these misplaced data points are within the same sampling intervals.
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The Previous Tick approach is recalled requiring (¢, z) to be equally spaced on [0, 1] and
by selecting for each grid time point the price immediately preceding the grid point while
the Refresh Time is obtained choosing (¢, z) recursively as (¢, z + 1) = maxi<m<nm { (¢, N{’;H)m}
where (t, 2(1)) = max {(t, DY ()2, (8, 1)M} with N™(.) being the number of obser-
vations for asset m before time ¢ and selecting those ticks that occur right before or at
(t,2)’s.

4.2.1.4 Hayashi and Yoshida (2005)

To deal with asynchronicity, Hayashi and Yoshida (2005) suggest working on common
trading intervals of two assets. We will refer to this approach as Intersection. The greatest
advantage of this method is that it makes use of all the possible data. Anyway Ait-Sahalia
et al. (2010) state that the synchronization approach embedded in Hayashi and Yoshida
(2005) method effectively deletes some data. For example, if three consecutive ticks of the
first asset form two intervals which share the same corresponding interval of the second
asset, then the middle observation of the first asset will not be used either.

To illustrate the idea about common trading interval, consider again two assets Y'!
and Y? respectively recorded on L N1 and Sy2 time scales both partitioning the interval
of interest [0, 1]. Hayashi and Yoshida (2005) estimator, called Cumulative Covariance, is
defined as:

L1 Sye

HY =373 0 (L) 2 (532) 1,5, 02) (45)
=0 s=0

Hayashi and Yoshida (2005) show that (4.5) is a consistent estimator of integrated covari-
ance matrix. The most serious drawback of (4.5) is that it does not deal with noise. In
successive works, Voev and Lunde (2007) provide a bias correction to the original Hayashi
and Yoshida (2005) estimator, although this new estimator does not achieve consistency.
Even Christensen et al. (2010) work on a microstructure noise robust version of (4.5)
based on pre-averaging.

From (4.5) it is clear that the embedded synchronization method consists in taking
into consideration just prices belonging to overlapping intervals of L, and Sy2 so that
even information concerning transaction times in the form of the indicator function enter

the estimation of covariance matrix.

4.2.2 Robust estimators

4.2.2.1 Realized Covariance

Barndorff-Nielsen and Shephard (2004) introduce the first generation of estimators of

integrated covariance, namely the Realized Covariance (RC henceforth).
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Barndorff-Nielsen and Shephard (2004) state that empirical covariance matrix does
not apply to high frequency data as, while the number of observations N on which it is
computed goes to infinity, the covariance matrix converges in probability to a matrix of

zeros. In a more formal way, under the assumption of synchronized data:

y L8 |8 '
NZ@ YtV — N;yt,z N;yt,z Zytzytz_ =Y. (46)

where y; ., (M x N — 1) matrix of observed log-returns.

Therefore Barndorff-Nielsen and Shephard (2004) introduce the realized covariance
which is a generalization of the idea underlying realized variance to the multivariate case
as it is based on the aggregation of N — synchronized and equally spaced prices

belonging to a non-stochastic time window [0, 1]. Realized covariance is defined as:

RC =) .y, (4.7)
2=0

Andersen et al. (2003) show that, as long as returns are linearly independent, the
realized covariance matrix in (4.7) will be positive definite. The choice of the resampling
frequency influences the properties of the realized covariance estimator as it both affects
the number of returns on which (4.7) is computed as well as the level of noise. In addition
to that, Hayashi and Yoshida (2005) state that realized covariance estimators can be
severally biased when the regular resampling frequency h is small relative to the frequency
of actual trades.

As stated in the introduction, the two main problems affecting realized covariance are
asynchronicity and microstructure noise. Martens (2004) proposes to solve the problem
of non-synchronicity by adding lead and lag terms in (4.7) along the lines of the Scholes
and Williams (1977) beta correction technique. This is obtained as:

N—=z
SW, q,(tsi = RCy; + Z (?/t i+ (w4+2) ?Jt itw T yt it+wt, z+(w+z)) (4.8)

z=1 w=1

LS

A drawback of the estimator in (4.8) is that it is not guaranteed to be positive definite.
Hayashi and Yoshida (2005) state that the downward bias of the realized covariance
matrix estimator derives from the fact that covariance increases just when and only when
both prices jump together during the interval of length h while all other cases, when
just one series jumps alone, are ignored. Such occasions of zero increments will become
dominant if A becomes finer while, when h gets too large, too many data are discarded

with the consequence that rapid movements of the return process are ignored.



Synchronization and Integrated Covariance Estimators 147

4.2.2.2 Two Scales Realized Covariance

The first estimator of integrated covariance robust to both asynchronous data and mi-
crostructure noise is the Two Scales Realized Covariance (TSCV henceforth) which was
proposed by Zhang (2011).

Having defined the average lag S covariance for two time series of synchronized log-

prices Y! and Y? as:

N
1
[Yl) Y2]S]\7 = g Z (}/t}z - Yt,lz—s) (Yfz - )/t?z—s) (49)
z=S
the TSCV estimator is given by:
TSCV[Y',Y? = ¢ <[Y1, YL - %[Yl, YQ]]JV> (4.10)
J

where 1 < J << K = O (]v 2/ 3) with J which can be fixed or go to infinity with
N (in the classical two scales setting J = 1); ny, = (]v - S+ 1) /S with S = K, J,

cy =1+0p <ZV -1/ 6) constant taking into account small sample precision.

The TSCV estimator presents two important limits. The first one is that, as it is
defined just for the bivariate case, when dealing with a number of assets greater than
two it is not guaranteed to be positive definite. In fact, when three or more assets are
considered, it is necessary to estimate the covariance for each pair of assets independently
and, relying on these results, build up the overall matrix. The second limit is that the

estimator is not efficient.

4.2.2.3 Modulated Realized Covariance

Christensen, Kinnerbrock and Podolskij (2010) introduce the so called Modulated Re-
alized Covariance (MRC henceforth) which basically consists in revisiting the realized
covariance estimator in (4.7) exploiting pre-averaging to deal with microstructure noise.
Pre-averaging, introduced by Podolskij and Vetter (2009) and Jacod et al. (2009) finds
a number of possible applications in finance, and it depends on a bandwidth parameter
that grows with the sample and dictates the amount of averaging to be carried out. The
choice of this tuning parameter controls the influence of microstructure noise. The MRC

for synchronized observed prices Y is given by (4.11):
7 ) N—kg+1 N -,

S v (v) (a1

z=0

MRC[Y] < = —
s N — kg +2¥okg

vN _ 1 k-1 kn/2-1 .
where Y > = 7= < kg /2 Yt,zgs — >0 Yﬁ,zﬁﬂ the pre-averaged returns; kg pre-

averaging window s.t. -~ =60+ o (Kf—l/‘l) depending on the tuning parameter 8; 1,
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parameter depending on the weight function chosen for computing pre-averaged values
that, in this case, corresponds to g(z) = min(z,1 — x) and consequently ¥, = 1/12. See
Christensen et al. (2010) for further details.

There is no general rule for selecting 6 and therefore in the following Monte Carlo and
empirical exercise we follow Christensen et al. (2010 - 2010b) and set § = 1. The reason
for that choice is that in general it is preferable to choose a high value for kg as it helps
to reduce the effect of price discreteness.

Unfortunately MRC is a biased estimator of the integrated covariance as it can be
seen in (4.12):

¥y
0* ¢,
and therefore (4.11) needs to be corrected for the bias. The bias term depends from v,

1
MRC[Y]5 & /0 Yeds + Y (4.12)

and 1)y, equal to 1 and 1/12 respectively given the choice for g(x), while % is unknown

but can be approximated as:

!

~ 1 XM .
Iy =5z ;A{YZY (Aﬁzy) (4.13)

where Aﬁz time elapsed between two consecutive resampled prices.

Anyway, when accounting for bias, we loose the property of positive definiteness es-
pecially when working with small samples. Therefore, a positive-definite version of MRC
(MRC-Psd henceforth) is proposed which basically relies on increasing the bandwidth
parameter kg in (4.11) as per:

ky Nr—1/4468/2
N g4 (N ) (4.14)
N1/2+6

The MRC-Psd estimator is robust to bias without need of any correction; anyway

MRC-Psd converges at a lower rate to the true integrated covariance with respect to
(4.11), with the rate of convergence depending on §. The optimal choice for ¢ is shown

to be 0.1 resulting in a rate of convergence of N-1/5,

4.2.2.4 Multivariate Realized Kernel

Barndorff-Nielsen et al. (2011) introduce an estimator for the integrated covariance based
on synchronized data obtained applying the refresh time scheme described in Section 4.2.1.
This estimator is called the Multivariate Realized Kernel (MRK henceforth). In addition
to synchronization, they propose to apply jittering-end conditions consisting in averaging
w prices at the beginning and at the end of the day. This procedure is needed in order to

assure consistency. Jittering-end conditions can be defined as follows.
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Definition 6 Let 1,w € N such that ¢y — 1+ 2w = N and set the vector of observations
Y, Yy, Yy as Yy = Yiqy with z = 1,2, ¢ — L with Yy = L% |V, . and Yy, =
D Y. R wsir (t,z) being refresh times.

In Definition 6, w should be quite large although if small with respect to N in order
to average out the error.

Having defined the vector of synchronized high frequency log-returns as y, , = Y, . —
Y. withz=1,2,.., N , the class of positive semi-definite multivariate realized kernels

is defined as:

N
K(Y) = k <Hh+1> T (4.15)
Iy

where ['y, = Eiv:h 41 yfqzy;/’th with A > 0, the h-th realized autocovariance such that
Iy = F/_h for h < 0; k a non-stochastic weight (kernel) function; H the bandwidth
parameter controlling for the number of leads and lags used for all the series which needs
to increase with N quite quickly to remove the influence on the estimator of the noise.
Barndorff-Nielsen et al. (2011) define the bandwidth as H = ¢oN3/5. In the univariate
context, the minimum mean square error of the H = CON 3/5 estimator is achieved by
setting for the m-th component ¢y = 0*5%5]\73/5 with ¢* and £ be defined as:

]{,‘N 0 2 1/5 Qmm
o {kgo)} &2 - N (4.16)

where k%0 = fooo k(z)%dz; Q long run variance estimated by one of the possible high
frequency estimator (e.g. realized variance); I(Q) integrated quarticity defined in a mul-
tivariate context as fol {Z(u)X(u)} ZEZ% dz and usually approximated by fol Y (u)du and

estimated by a low frequency estimator (in their paper Barndorff-Nielsen et al. (2011)

use the debiased version of realized volatility by Bandi and Russel (2008) corrected by
the noise estimate as per Barndorff-Nielsen et al. (2008)).

As per the selection of the weighting function £(.), many kernels can be chosen such
as the Quadratic Spectral, the Parzen and the Fejér. In order to apply the most efficient

realized kernel, Barndorff-Nielsen et al. (2011) compare them in terms of the constant

" 1/5
k (0)(k0’0)2‘ ; that analysis suggests to use the Parzen kernel which is defined as fol-

lows:
1—622+623 0<2<1/2

k(z) =< 2(1—=x)* 1/2<z<1 (4.17)

0 r<Qorx>1

is equal to 12 and k%9 to 0.269 so that ¢* is 3.51.

In case of Parzen kernel ’k”(O)
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Turning now to the M —multivariate specification, Barndorff-Nielsen et al. (2011)
define the global bandwidth H starting from the bandwidth for the m-th asset H™
and then using some possible alternatives such as Hpy, = min(H?Y, ..., HM), Hpax =
max(H',...,HM) or H = §; Z%Zl H™. In their paper, Barndorff-Nielsen et al. (2011)
use H and therefore in both Monte Carlo and empirical application we proceed in the
same way.

The MRK is positive definite, consistent and robust to endogeneity, serial dependence
and semi-staleness of prices. The main drawback of that estimator is that it converges at a
relatively low rate N3/ °; moreover the bandwidth H selection is not that straightforward

in empirical applications.

4.2.2.5 QMLE Covariance

Ait-Sahalia et al. (2010) propose a consistent and efficient estimator for the integrated
covariance which is robust to market microstructure noise although still relying on syn-
chronized data.

To introduce their estimator, we recall the QMLE for univariate volatility proposed
in Xiu (2010). Let’s move from (4.3) and assume that the microstructure noise ¢; has
mean 0 and variance a? and that the volatility o, of the true price X in (4.1) is time
invariant. Under these two assumptions, log-returns of synchronized log-prices y; . =
Yi:—Y .1 withz=1,2, ..., N follow a MA(1) process so that the log-likelihood function

takes the form:

log L (y|a®, %) = —% log det (2) — glog (2m) — %ylﬁfly (4.18)
A + 2a? —a? 0 0
—a? oA + 2a? —a?
with Q = 0 —a? oA +2a® ... 0
—a?
0 0 —a? 02A +2a?

According to Xiu (2010), the QMLE of a? and 02 are consistent even when volatility
is stochastic, so that the assumption about its time-invariance is not too strict, and they
converge at optimal rate.

Under this setup, Ait-Sahalia et al. (2010) develop a covariance estimator which is
limited to the bivariate case. Starting from (4.3), they assume that F (thlde) = pdt
and that the noise ¢; in (4.3) is an ii.d. 2-dimension vector with mean 0, diagonal

variance-covariance matrix and finite fourth moment. The variance covariance estimator
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is then given by:
Cov (Y1, Y?) = i (Var (Y'+Y?) = Var (Y' = Y?)) (4.19)

where Var (.) denotes the QMLE of the quadratic variation that is obtained from (4.18).

The QMLE converges at a higher rate in comparison to both TSCV and MRK and it
has the advantage of not requiring to set any tuning parameters as it happens for both the
MRC and the MRK estimators. The main drawback of the QMLE estimator is that it is
not guaranteed to be positive definite. To enforce it, it is possible to project the resulting
symmetric matrix onto the space of positive semi-definite matrices, as already suggested
by Hayashi and Yoshida (2005), for instance applying the transformation ¢(p) = (p A1)V
(—1). In Hayashi and Yoshida (2005) it is stated that although this transformation can
induce an extra bias, due to the continuing mapping theorem, the transformed correlation

matrix is expected to properly estimate the true one on quite large samples.

4.2.2.6 Shephard and Xiu (2012)

Shephard and Xiu (2012) (SX henceforth) introduce an estimator for the covariance matrix
which is positive definite and deals explicitly with both market microstructure noise and
non-synchronicity. This estimator distinguishes itself from the previous ones as it does
not require any data pre-synchronization. We will refer to it as SX.

To introduce Shephard and Xiu (2012) estimator, let’s firstly define the ordered union
of the all distinct times of trades as (¢,i) with i = 0,1,..., N and a Z; matrix of
dimension M ; x M, 0 < M ;) < M, associated with each time (¢, 7) accounting for the
M assets traded at time (¢,7). Moreover, the error term £, ;) in (4.3) is assumed to follow
a normal distribution with zero mean and diagonal covariance matrix A.

Under this framework, Shephard and Xiu (2012) develop an estimator for the in-
tegrated covariance based on the maximization of a quasi-likelihood computed using a
Kalman filter and a disturbance smoother. The optimization is carried out by iterating
the EM algorithm until convergence.

Starting from (4.3) and indicating with X o)., ) = (X(t70)’ ceey X(t,N))/ the vector of
true efficient prices not contaminated by microstructure noise, the complete log-likelihood

is defined as follows:

108 f (Yit,0):6,8)| X (1,0): (6,305 M) 4 10g f (X1,0):(6,3); 2t) =

C_*Zlog)z(tz)At (t,) Z%z) ZiyMiZ5))

1 1
_i(N — 1) log | — 52 AN )Y(t )2t Y (4.20)
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where Aé\t[ 0 distance between two consecutive time ticks.
From the log-likelihood function (4.20), the two EM updates for the covariance matrix

of prices 3 and noises A are obtained as:

N
= 1 1 N W
=N ; AN, {Teaiem s em + Ueoiem b (4.21)
. N -1 T
diag <At) B (Z Z(t’i)Z(t’i)> e <Z Zt.) {at,m(umg(m)\(uN) + D(t,m(t,N)} Z(tﬁ)
=0 1=0

(4.22)
where quantities ¥ ;)(t,n) Uwi)|t,8)> Eti)|t,N) and Dy e n) are obtained from the
Kalman filter and the disturbance smoother that we briefly summarize. In the first step

the Kalman filter is run forward in time taking the form:

Etd) = Yti) — L) (L)
Fiogy = Za (P +Ar) Zig)
Ky = PonZnFui

Laiy = 1= KiZt

Trirn) = Zag) + Keie
Piiyy = P(t7i)L(t,i)+A%;,i+1)Zt

The disturbance smoother (Durbin and Koopman (2001)) is then run backward through
the data and it is specified as follows:
Hey = ZanhiZe

’

Seaemy = Hon (Fehewn = Karan)
Diajeny = Hei = He (F R LS (m’)) H)
N Ag,i)xtr(t,i—l)
Uga)eny = A{L)Et - (Af\{,i)) i YR 1)
T(ti-1) = Zét,i)F(;%)v(tvi) + L/(t,i)r(t’i)

! —1 !
R = Z(t,i)F(t,i)Z(tvi) + L(t,i)R(tﬁi)L(tﬁi)

Shephard and Xiu (2012) show that according to their methodology, synchronization is
not needed as the distortion due to non-synchronicity is less important than the presence
of noise, a result which is stated even in the univariate work by Ait-Sahalia et al. (2005)
and Ait-Sahalia and Mykland (2003). Moreover, in their Monte Carlo experiment they
show that besides being robust to microstructure noise and asynchronicity, their estimator

works well in presence of assets with different degrees of liquidity.
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4.3 Monte Carlo simulation

4.3.1 Simulation design

Following Barndorff-Nielsen et al. (2011) and Christensen et al. (2010), we consider the

following bivariate factor stochastic volatility model:
dX(py = p"d(t,0) + p" ol ydBiy + /1= (pm)20ﬁ7i)dW(t’i) m=1,2 (4.23)

where F (dW(t,i)dB(T,z‘)) =0; pma?;i)dBZZi) the idiosyncratic component; 1/1 — (pm)2a@,i)dW(t,i)

the common factor whose strength is determined by p™. The spot volatility is modeled

as o7} ) = exp (55" n 5’1”@;;;724)) with dof} ) = a™gf? d (t,i) + dBJ} ) being an Ornstein-

Uhlenbeck process. This implies that there is perfect correlation between the innovations
pmaai)dezi) and o’(?’i)while the correlation between dXEzi) and dg?;’i) is given by p".
The magnitude of correlation between the two underlying process X(lt ) and X(2t 0 is

V1= Py1- [0

The simulations are based on the following parameters ™ = 0.03, fg' = —5/16, g1 =
1/8, o™ = —1/40, p™ = —0.3 for m = 1,2 and are the same as in Barndorff-Nielsen et
al. (2011) and Christensen et al. (2010). According to these parameters it follows that
E (fol [am]2d3> =1

S

We generate 1,000 possible daily paths for X(T,z’)? m = 1,2, using a standard Euler
scheme, each simulation being started at of' ~ N(0,(—2a™)~!). Moreover, in order
to avoid discretization errors, we employed the exact discretization for the Ornstein-
Uhlenbeck (see for instance Glasserman 2004 p. 110). For simulation purposes, we con-
sider a trading day of 7.5 hours, in line with the dataset used in the empirical exercise,
and simulate prices at second frequency leading to 27,000 observations per day.

Once efficient prices were generated, we add microstructure noise simulated as:

N
Uy <agi),ngi)) ~ N(0,wp) with wy = €2, | N"1Y "o ((i/N) m=1,2 (4.24)
=0

where £ the signal-to-noise ratio accounting for the amount of microstructure noise. Eq.
(4.24) implies that the variance of the noise process increases with the level of volatility
of X (T,i) as documented in Bandi and Russel (2006).

The time series of synchronized prices generated up to now can be affected by noise
simply adding U(TZi) in (4.24) to thi) in (4.23). Finally, to introduce asynchronicity,
we rely on two independent Poisson process sampling schemes with intensity A\; and Ao,

determining the average time elapsed between two consecutive prices.
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4.3.2 Results

In our Monte Carlo experiment we are interested in comparing the performance of the al-
ternative estimators presented in Section 4.2.2 combined with the synchronization schemes
described in Section 4.2.1. Moreover we want to carry out this comparison we respect to
alternative data generation assumptions, considering pairs of assets affected by a different
degree of microstructure noise and with different degrees of liquidity.

With this purpose, our Monte Carlo exercise is organized as follows. We evaluate the
behavior of the alternative integrated covariance estimators considering three different
levels of microstructure noise: no noise, low noise and high noise obtained by setting &>
in (4.24) to 0, 0.001 and 0.01 respectively . For all of these levels of signal-to-noise ratio,
we carry out a full Monte Carlo comparison respectively reported in Tables 4.3.1 (52 =0,
no noise), 4.3.2 (€2 = 0.001, low noise) and 4.3.3 (¢2 = 0.1, high noise). We evaluate
the estimates obtained for the variance of X! and X2, 0%1 and J%Q, their covariance,
019, and their correlation, p;5, under the assumption of different degrees of liquidity
which are obtained by varying the values for the parameters A; and Ay of the Poisson
process sampling schemes. In particular we firstly evaluate the case of two assets with
the same degree of liquidity by setting both A; and As to 120, 10 and 3 implying one
transaction every 120, 10 and 3 seconds respectively. In addition to that, we compare
the behavior of the alternative estimators in presence of assets with different degrees of
liquidity considering all the possible combinations of A; and A2 obtaining (120,10), (120,3)
and (10,3). For all the quantities of interest, 02;, 02,, 012 and p; and all the possible
degrees of liquidity, we consider the synchronization schemes discussed in Section 4.2.1,
namely Previous Tick, Refresh Time, Modified Refresh Time and Intersection, combined
with the integrated covariance estimators presented in Section 4.2.2, namely RC, TSCV,
MRC, MRK and QMLE. Apart we evaluate the SX estimator as it does not require data
to be pre-synchronized. We avoid reporting the MRC-Psd as it roughly behaves like MRC.
In all the Tables, the estimator with the lowest RMSE is highlighted in grey.
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Starting from Table 4.3.1, we provide evidence that, in absence of microstructure
noise, the best estimator for the two variances o3 and 03, is the RC by Barndorff-
Nielsen and Shephard (2004) combined with the Modified Refresh Time synchronization
scheme for all the alternative degrees of liquidity taken into consideration. When moving
to the covariance o192, the RC is no longer the best estimator as the QMLE presents now
the lowest RMSE for almost all the alternative degrees of liquidity evaluated, exception
made for the case of (A =120, Ay =3) and (A = 10,2 = 3) when the RC and the
SX estimator are the best ones respectively. Even for the case of covariance, the best
synchronization schemes are the two versions of Refresh Time. Finally, focusing on the
correlation coefficient p;5, the SX estimator is the one with the lowest RMSE for all
the possible values of A\; and Ay exception made for the case of two assets with the same
average elapsed time between two transactions equal to 3 seconds. It is interesting to note
that, when considering the two variances, the SX estimator has a relative large RMSE
due to a negative bias while, when evaluating the correlation coefficient, this estimator
becomes the preferred one as the bias is averaged out. In addition to that, we want to
highlight the fact that neither the Previous Tick nor the Intersection resampling schemes
are ever selected by the RMSE criteria.

Moving now to Table 4.3.2, we evaluate the behavior of the alternative estimators and
resampling schemes when some degree of noise is introduced by setting &2 to 0.001. The
first result to be highlighted is that when some noise is added, the RC is no longer the
best estimator, neither for the two variances. This result was almost expected as we know
that RC is not robust to microstructure noise. Instead, the two best estimators turned
out to be the QMLE and the SX. In particular, focusing on variances 0%, and 03,, we see
that the SX estimator performs particularly well in presence of two assets with the same
high degree of liquidity (A1 = 3, A2 = 3) and when two assets have a different degree of
liquidity equal to (A; = 120, Ay = 10). In all the other cases the QMLE presents the
smallest RMSE. Similarly to Table 4.3.1, we can see that the main drawback of the SX
estimator is that it is downward bias in most cases while the bias becomes positive for
(A = 120, A2 = 10) and (A1 = 10, Ay = 3). Moving to the covariance 12, we identify
a clearer pattern in favour of the SX estimator as more data become available, although
it remains biased; in fact this estimator presents the lowest RMSE for (A = 3, A2 = 3),
(A1 =120, A2 = 10) and (A = 10, A2 = 3) while for (A\; = 120, Ay = 120) and (A1 = 10,
A2 = 10) the best estimator turned out to be the QMLE one and for (A = 120, A2 = 3)
the MRK. Finally, when considering the correlation coefficient p;5, the SX estimator is
always the best one regardless from the degree of liquidity of the assets. Note that here
the bias becomes extremely low confirming the idea that when computing p;5 the bias
affecting variances and covariance is averaged out. As per the synchronization schemes,

even in Table 4.3.2 we never find support to the Previous Tick nor to the Intersection
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scheme.

Finally, in Table 4.3.3 we analyze the case of high noise obtained by setting £2 = 0.1.
The Monte Carlo simulations show results which are very close to those already discussed
in Table 4.3.2. In fact, the two estimators presenting the lowest RMSE are still the
QMLE and the SX. In particular, the two estimators are almost equivalent when focusing
on variances as, for the six alternative degrees of liquidity, they alternate themselves as
the best estimator with the SX still showing some bias problems. Anyway, when moving
to covariance, the SX dominates the QMLE when the two assets are either very liquid
(A1 = 3,X2 = 3) or when they show a high degree of asynchronicity (A = 120,y =
10), (A1 = 120, A2 = 3) and (A\; = 10, A2 = 3). Finally, as already seen in the case of no
and low noise, when turning to the correlation coefficient the SX estimator is by far the
best one. Again, neither the Previous Tick nor the Intersection synchronization schemes
are ever selected.

The overall Monte Carlo exercise gives us some very useful insights about the alter-
native synchronization schemes and integrated covariance estimators. Firstly, Refresh
Time schemes dominate by far both the Previous Tick as well as the Intersection schemes
indicating that when adopting one of the integrated covariance estimator requiring syn-
chronized data, the Refresh Time schemes should be adopted. In addition to that, we
provide evidence that regardless from the degree of microstructure noise affecting asset
prices and the different degrees of liquidity, the SX estimator is the one providing the best
estimate for the correlation coefficient. Anyway, when focusing on variances and covari-
ances, the SX estimator is found to be biased, result which was shown even in Shephard
and Xiu (2012) where it is claimed that a more sophisticated model of market microstruc-
ture noise is needed. In the cases when the SX fails, two other estimators turned out to
be the best ones in terms of the lowest RMSE that are the Realized Covariance, in the
case of absence of noise, and the QMLE in case of low and high noise. The other three
integrated covariance estimators, namely the MRC, the TSCV and the MRK are clearly
dominated by the RC, the QMLE and the SX, each one in the cases just described.

4.4 Empirical application

In order to compare the alternative integrated covariance estimators, we now propose an
application aimed at assessing their performance in a comprehensive risk management
exercise.

With this purpose, the first step is to compute the profit and loss distribution. Given
that we are evaluating 10-year benchmark government bonds rather than specific bonds
for each country, we cannot use the price time series as we would face the issues connected

to the change in the benchmark bond during the time-span analyzed. Therefore we use
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a “zero-coupon bond approximation” consisting in treating the set of coupon bonds as if

they were zero-coupon bonds and get prices through the standard yield-to-price formula:
100 = Y™ (1 + YT M™)'° (4.25)

where YT M, is the closing yield to (constant) maturity at day ¢ for country m.
Given the time series of daily price Y;, we consider a portfolio constituted by one bond

for each country so that the portfolio value at each time ¢ is given by:

M
=Y v (4.26)
m=1

and the profit and loss distribution can be obtained as the simple difference between the
daily values of the portfolio.
To compute the Value at Risk (VaR) of Y}*, we have to compute the VaR of each bond

position m that is given by:
VaR" (o) = Y/"MD"o"® (1 — a) (4.27)

where M Dj" is the modified duration of the benchmark bond in country m at day ¢;
oy" is the standard deviation obtained from one of the possible integrated covariance
estimator taken into consideration; ®~1(1 — «) denotes the (1 — )-th percentile of the
normal distribution. Given the value-at-risk for the position in the m-th bond, VaR™,

the VaR* portfolio can be computed as
VaR! (a) = VaR, (a) % VaR, (o) (4.28)

where ¥ is the correlation matrix obtained from one of the possible integrated correlation

estimators.

4.4.1 Backtesting procedures
4.4.1.1 Unilevel VaR tests

We start by recalling the most famous backtesting procedures for the Value-at-Risk,
namely the unconditional coverage (uc), the independence (ind), the conditional coverage
(cc) and the Weibull duration tests introduced by Christoffersen (1998) and Christoffersen
and Pelletier (2004).
The uc, ind, and cc tests. Given the vector of log-returns y; = Y; — Y;_1, the hit
sequence of VaR violations defined as
1 ifyy < —VaRy(«)

I; = (4.29)
0 otherwise
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In the uc test, the null hypothesis under investigation is that the sequence I; is i.i.d.
Bernoulli with parameter (1 — a) against the alternative that Bernoulli parameter is
71, where 71 is the empirical ratio of violations 71/T where T'1 number of days with
violations. If the VaR method is correct, then the empirical failure rate 7 must be equal
to (1 — «). As the likelihood function of a Bernoulli variable z with parameter p is given
by:

L(zp) = (1 —p)"Tp™ (4.30)

the likelihood ratio test of the uc test is then defined as:
LRy =2(InL(z7m) —InL(z;p)) ~ X3 (4.31)

The ind test explicitly evaluates the assumption of independence of the hit sequence
I
Ho,ing : mo1 = ™11 (4.32)
where 7,5 is the probability of a r at day ¢t — 1 being followed by a s at day t.
The alternative hypothesis here is that the hit sequence I; follows a first-order Markov
sequence with switching probability matrix:

1—mo1 mo1
I —

l—m1 7™
The test statistic is then defined as:
LRing = 2(In L(2;To1,711) — In L(2;71)) ~ X2 (4.33)

where

T0-T01,_T01
mor (1 —

L(z;mo1,m11) = (1 — mo1) my) T g (4.34)

with 7T number of observations with a r followed by a s; o1 = 701/70; 717, = T'11/T1.

Neither the uc test nor the ind tests are complete on their own, the first one evaluating
whether on average the coverage rate o of the VaR model is correct, while the second
focusing just on the clustering effect on the failures sequence. The cc test combines both

assumptions testing the null hypothesis:
Hoce:mo1r =711 = a. (4.35)
The likelihood ratio test for the conditional coverage test is given by
LRe. = 2(InL(2; 701, 711) — In L(2;p)) ~ X3 (4.36)

Christoffersen and Pelletier (2004) propose a generalization of the ind test considering

a broader alternative with respect to the Markov first-order. Therefore, to apply this test
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we should firstly define the duration between two VaR violations (i.e., the no-hit duration)
as:
D = t(Is) - t(Is—l) (4'37)

where t(I5) denotes the time interval of the s-th violation.
Under the null hypothesis that the risk model is correctly specified, the no-hit duration
should have no memory and a mean duration of 1/p time intervals; the distribution

satisfying the memoryless property is the exponential distribution:

Jexp(D;p) = pexp(—pD) (4.38)

while the Weibull distribution is selected as alternative distribution as it both allows for

duration dependence as well as being a generalization of the exponential:
fweivuan(D;p) = a"bD" exp (~(aD)") (4.39)
We will refer to this test as the DurW. The hypothesis we want to test is therefore:
Hopurw :b=1 (4.40)

While the large-sample distribution of the LR tests described above is the chi-squared,
the dearth of violations of 1% VaR make the effective sample size rather small, even
when the nominal size is large. To overcome this problem and to obtain p-values robust
to finite sample scenarios, we employed the Monte Carlo tests of Dufour (2006) as in
Christoffersen and Pelletier (2004). This procedure consists in generating S independent
realizations, 1,000 in our case, for each one of the four test statistics: LR type,s = 1,..., 5,
type = uc,ind, cc, DurW. The cases LRg type corresponds to the calculated test statistic.

The Monte Carlo p-value pg(LRyp) is given by:

~

Gs(LRy) +1

ps(LRo) = = (4.41)
where
S S
Gs(LRy) = S — > I(LR, < LRo) + Y I(LR, = LRy)L(U, > Uj) (4.42)
s=1 s=1

where I(-) indicator function and Us, s = 0, ..., S are independent realizations of a Uniform

distribution on the [0,1] interval.

4.4.1.2 Expected shortfall and Tail Risk tests

Berkowitz and O’Brien (2002) test for Expected Shortfall (ES). To introduce
this test, let first define the following truncated distribution:
VaRy(a) if I} =1

yr = _ (4.43)
Yt if It =0
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Log-returns are assumed to be normally distributed with parameters p and o2. Therefore
the MLE estimators of y and o2 can be obtained maximizing the log-likelihood of y;

which, being a truncated normal distribution, can be written as:

L (M?U‘y:) = Z (;ln (27‘1’0’2) — % (yz< — ,UJ)Q) +

Yy <VaRi(a)

Y o (1 ~ <VaRtETO‘)_“>> (4.44)

y;=VaR (o)

This likelihood function can be used to construct a LR test for the null hypothesis
that 4 = 0 and 02 = 1:

LRyait =2 [L (,6%) = L(0,1)] ~x3 (4.45)

Wong (2010) test for Tail Risk (TR). The tail risk (TR) statistic is defined as
the sum of the sizes of all exceptions in excess of VaR divided by the sample size. The

TR measure at a-level is defined as:
T
TRa=—=3 (3 — VaRi(@) I (3 — VaRi(a)) (4.46)
o T - Yt t Yt t .

The reason why we use TR in addition to ES is that the latter assumes the expected
loss as being in the tail interval, whereas the former measures the unconditional expected
loss. The implication for backtesting is that a risk model that passes the ES test can
be rejected by TR because of inaccurate T'1. Although T'1/T is approximately (1 — «)
for large T', under the null hypothesis T'1 can be too small or too large when the VaR
forecasts are inaccurate. For further details see Wong (2010). The test is based on the
saddlepoint technique which is adopted to approximate the distribution of the sample

mean of y; the null hypothesis is:

Hy: TR=TRy vs Hy:TR > TRy (4.47)

4.4.1.3 Multilevel VaR tests

The tests discussed up to now are defined unilevel as they are based on a single coverage
probability a. Berkowitz et al. (2011) show that these tests have small power which can
be overcome by multilevel procedures.
Given a coverage probability «, the VaR («) for day t + 1, given the information set
up to time %, satisfies:
P(y < —VaRy ()|l t) = @
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Consider K different critical levels a; > ag > ... > ax with associated VaRs in opposite

monotonic order:
VaRy yj(a1) < VaRyyp(a2) < ... < VaRy i (ak).
For each VaR measure, an indicator variable is constructed as follows:

L if —VaRpp (k1) < Y1 < —VaRypqp (o)

Jis1 (4.48)

0 otherwise

where {Jk7t+1}kK:1 are Bernoulli distributed with probability 8, = o — agy1 under the

null hypothesis that the VaR model is unconditionally accurate. J can be expressed as:

Jepr1 = Igtr1 — Igyre01 kK=1,., K

where I} ; indicator function taking value 1 when there was a violation of coverage rate
k at time ¢t and 0 otherwise, as already defined in (4.29).

Perignon and Smith test. The Perignon and Smith test (2008) is basically a
multivariate version of the unconditional coverage test for the null hypothesis that the
empirical failure rates m = (mg,m1,..., i) significantly deviate from the theoric 6 =
(0o, 01, ...,0K) . The test statistic is:

K 70\ T
_ 2
PSLRy. =2 (kzo In <0k> ) ~ x% (4.49)

with 71, = % maximum likelihood estimator of the k—th component of .
Hurlin and Tokpavi test. Hurlin and Tokpavi (2006) jointly test the absence of
autocorrelation and cross-correlation in the vector of hit sequences for K various coverage

rates. Their null hypothesis is:
Hy:E[(Irt—ap) (Isg—r —ag)] =0 Vz=1,...m Vr,s=1,..,K

The Authors propose using the multivariate portmanteau statistic of Li and McLeod
(1981), which is a multivariate extension of the Box and Pierce test. The elements of the

hits covariance matrix at the lag z can be estimated by

T
. 1
7= T_. Z (It — ar) (Lsp—z — ) (4.50)
t=z+1
The test statistic is:
m

Qulm) = T(T+2) "

z=1
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where R, is the cross-correlation matrix whose element at position (r,s) is defined as:

-~rSs

R® = Yz gy rs=1.,K

~T,T~5,5

Yo Yo

Markov tests. In Leccadito et al. (2013) two Markov tests are proposed, one
being a generalization of the independence test to the multilevel case the other being
a generalization of the unilevel coverage test. Both the two Markov tests specify the
transition matrix as:

II = |7 4] (4.51)

r,s=0,...,K

where 7, s = P (Jp41 = 1101 = 1).

The null hypothesis for the conditional coverage test can be formulated as:
Hyee :mos =mT1s=...=7gs =05 fors=0,..,K—1.

where 0 = (0o, ...,0K). The test statistic is a likelihood ratio test taking the following
form:
K K K
MLR..=?2 (Z Y Treln(Fre) = Y Tiln (ek)> ~ X%s (4.52)
r=0 s=0 k=0

. . . . ~ T,
where T;. s number of observations in the sample of T" with s following an r; 7. s = -5

maximum likelihood estimator of the (r, s)-th element of matrix II.
Pearson’s x? tests. The Markov test just described is powerful only against the
first-order Markov alternative. Therefore in Leccadito et al. (2013) the Pearson’s x? test

is introduced. Consider the bivariate distribution:

pNt,Nt,z(xay) = P(Nt = 'CC7Nt—Z = y)

K
where Ny = I} t+1. Under the null of the conditional coverage test, it holds that:
k=1

DPN¢,N;_, (;U:y) =P (Nt = ','U)P(Ntfz = y) = ew‘gy Vm,y

The test statistic for a sample of T" observations can be defined as:
m
X =) X° (4.53)
z=1

here X* = (rt3—tr—e0,) The distribution of (4.53) i dard and th
where X* =3 T—2y5.9, - Lhe distribution o (4.53) is not standard and there-

fore critical values are computed via simulation.
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4.4.2 Data description

We use data for the 10-year government bonds of Belgium, France, Germany, Italy, Spain
and the Netherlands over the period 1st June 2007 - 31st May 2012. We consider bid
data. The 10-year bonds are bond market benchmarks at the most active maturities.
Morningstar provided us with this unique tick-by-tick dataset. The trading period con-
sidered is 8 a.m. - 3:30 p.m. coordinated universal time (UTC). We detect and remove
outliers by applying a filter which is a modification of the procedure to remove outliers
proposed in Brownlees and Gallo (2006) that we implement following the steps suggested
by Barndorff-Nielsen et al. (2011, p. 156), that we summarize below.

Let p(;) be a tick-by-tick time series of prices, where ¢ denotes day and i the time

interval of day ¢, then an observation is removed if:

‘p(t,i) — Pe.i) (kL)‘ > max {4M Dy, ;) (k),nv} A ‘p(t,i) = Pt.i) (kR)) > max {4M Dy ;) (k), n}

(4.54)
where k the bandwidth; p ;) (k:L) and Py ;) (k‘R) sample medians of the k/2 observations
respectively before (L for left) and after (R for right) (¢,7); M ADy; (k) mean absolute
deviation from the median of the whole neighborhood; A intersection operator; v mean
of the k absolute returns; n y—multiplier. The advantage of this rule lies in the separate
comparison of the (¢,7) —th trade against the left and right neighbors while the measure
of dispersion is calculated on the whole bunch of k trades. This approach is specifically
designed to avoid detecting jumps as false outliers.

Data selecting procedure is summarized in Table 4.4.1:

Table 4.4.1: Data selection and descriptive statistics on government bond yields

DE IT FR ES BE NL
No. ticks 3,077,442 978,261 1,096,247 978,357 841,854 657,249
Limiting trading time 2,928,107 917,455 1,027,268 969,129 831,094 645,773
No. trades per day: Mean (SD) 2,345 (1,889) 736 (526) 828 (596) 764 (512) 659 (481) 513 (378)
Trade duration: Mean (SD) [s] 14.2 (44.4) 42.9 (97.1) 38.0 (88.6) 38.1 (90.3) 47 (115.7) 60.4 (123.4)
Bid YTM
Mean (SD) [%] 3.2 (0.8) 47 (0.7) 3.6 (0.6) 46 (0.7) 4.0 (0.5) 3.5 (0.8)
Median (Ist - 99th pet) [%] 3.2 (1.5 - 4.6) 4.6 (3.8-7.0) 3.6 (2.5-4.8) 4.4 (3.8-6.4) 4.1 (3.0-5.0) 3.5 (2.0 - 4.8)
Bid-Ask Spread of YTM
Mean (SD) bps] 0.6 (0.1) 0.6 (0.1) 0.8 (0.1) 0.8 (0.1) 1.0 (0.1) 0.7 (0.1)
Median (Ist - 99th pet) [bps] 0.6 (0.6 - 0.8) 0.6 (0.5-0.8) 0.8 (0.7-0.9) 0.8 (0.7-0.9) 1.0 (0.9 - L.1) 0.7 (0.7 - 0.9)

Table 4.4.1 reports the data procedure selection on government bond yields together with some descriptive statistics. Limiting trading time
means removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described
in (4.54) in the text. In square brackets is the unit of measurement. Pct stands for percentile.

For each time series, we report the overall number of ticks available from which we
remove holidays, weekends and trades occurred outside the trading period 8 a.m. - 3:30
p.m. UTC. We remove outliers following the description in (4.54) which lead us to detect
percentage of outliers ranging from 0.09% for Germany to the 0.16% for Belgium. In
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addition, we also report some descriptive statistics to get useful insights about market
liquidity. In particular, we compute the mean number of trades per day and the time
elapsed between two consecutive trades; both statistics indicate that the most liquid
market is the German one with a daily average number of trades of 2,345 and a trade
duration of 14.2 seconds, followed by France (828 trades, 38 seconds), Spain (764 trades,
38 seconds), Italy (736 trades, 43 seconds), Belgium (659 trades, 47 seconds) and the
Netherlands (513 trades, 60 seconds). In Table 4.4.1, we also report descriptive statistics
about yields: Italy has the highest average yield equal to 4.7%, while Germany has the
lowest equal to 3.2%. Of course, the information that the average indicator offers is limited
in the light that government bond yields vary a lot throughout our sample period as can

be seen from Figure 4.4.1.
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Jun 2007 Dec 2007 Jun 2008 Dec 2008 Jun 2009 Dec 2009 Jun 2010 Dec 2010 Jun 2011 Dec 2011
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Figure 4.4.1: 10-year government bond yields

Figure 4.4.1 reports the benchmark 10-year government bond yields for Italy, France, Spain, Belgium, the
Netherlands and Germany over the period 1st July 2007 - 31st May 2012.

Government bond yields move very closely until May 2010, when markets start to pay
more attention to sovereign debt risk in correspondence with the burst of Greek crisis.
In May 2010, Greek government deficit was revised and estimated to be 13.6% of GDP
with a correspondent decrease in international confidence in Greece’s ability to repay its
sovereign debt. As consequence, despite the first rescue package approved by Eurozone
countries and the IMF, concerns about Euro countries solvability began to raise together
with the difference in yields of the most distressed countries, as Italy, Spain and Belgium,

with respect to the safest ones as France, the Netherlands and Germany.
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4.4.3 Results

4.4.3.1 Preliminary insights

In Figure 4.4.2 we compare the alternative synchronization schemes. With this purpose,
we selected a couple of countries, Italy and France, and report their pairwise daily corre-
lation for all the alternative integrated covariance estimators namely MRC, QMLE, RC,
MRC, MRC-Psd and TSCV, computed on synchronized data obtained under the four syn-
chronization schemes presented in Section 4.2.1, namely Previous Tick (black diamond),
Refresh Time (grey square), the Modified Refresh Time (blue cross) and the Intersection
approach (pale blue diamond).
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Figure 4.4.2: IT-FR synchronization schemes

Figure 4.4.2 plots Italy-France correlations for the alternative integrated covariance estimators computed
on synchronized data obtained under Previous Tick (black diamond), Refresh Time (grey square), Modified
Refresh Time (blue cross) and Intersection approach (pale blue diamond) synchronization schemes.
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From Figure 4.4.2 we can get some preliminary insights about the alternative syn-
chronization schemes and integrated correlation estimators. Firstly, the synchronization
scheme which deviates the most from the others is the previous tick one. This evidence
is particular relevant when the QMLE and the RC estimators are taken into considera-
tion and it can be justified by the fact that previous tick is notoriously known to discard
a higher number of observations with respect to the other synchronization schemes. In
addition to that, the two versions of the refresh time scheme do not deliver very different
results, regardless from the integrated correlation estimator used, while the intersection
scheme deviates quite noticeably from refresh time and this is quite evident for the QMLE
estimator. Turning now to the estimators, we can see that the identified pattern is sim-
ilar for all the six estimators evaluated as in all the cases the correlation between Italy
and France is decreasing through the time span considered. Anyway, it is interesting to
note that in case of RC, the evolution of correlation seems to remain quite flat while for
the positive definite version of the MRC and for the TSCV, the correlations are more
widespread.

To get some more clear ideas about the behavior of the alternative integrated covari-
ance estimators, we selected a synchronization scheme, the modified refresh time, and
report in Figure 4.4.3 the correlation patterns for the same couple of countries, Italy and

France.



Empirical application

171

1.0

T

-0.5

-1.0 T T T T T T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11
1.0

0.0

-1.0 T T T T T

T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

RC

Ll

-1.0

-0.5

T T T T T T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

MRCPsd

”W M

-0.5

-1.0 T T T T T T

T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

QMLE

1.0

ik il WWWWMM

-0.5

-1.0 T T T T T T

T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

MRK

1.0

AT

0.5 -

0.0 -

-1.0 T T

T T T T T
Jun-07 Dec-07 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11

TSCV

Figure 4.4.3: IT-FR integrated covariance estimators

Figure 4.4.3 plots Italy-France correlations for the alternative integrated covariance estimators computed
on synchronized data obtained under the Modified Refresh Time.
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From Figure 4.4.3 we can almost draw the same conclusions as from Figure 4.4.2. In
fact, the correlation between Italy and France started to decrease in correspondence to
the beginning of the sovereign crisis which is a result somehow deviating from classical
contagion literature in which it is stated that during turmoil periods, assets tend to
behave in a more similar manner (see for instance Bekaert et al. (2005)) with respect to
stable periods. This result is anyway supported from the fact that during the burst of
the sovereign crisis, local investors decided to buy their own country’s debt in order to
support their country; this behavior determined correlations among European countries
to decrease. In addition to that, sovereign crisis is a systemic event which involved,
although if at different extents, all the European countries decreasing the benefits of
portfolio diversification. This fact prevented investors to diversify their portfolio leading
in turn to decrease bond correlations.

In order to get an insight about the correlation patterns between all the pairs of
countries taken into consideration, we depict in Figures 4.4.4-4.4.6 the pairwise corre-
lations obtained applying the Shephard and Xiu (2012) estimator that we remind is
synchronization-free and which resulted to provide the most precise estimates for cor-

relation in our Monte Carlo analysis.
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Figure 4.4.4: Countries pairwise correlations

Figure 4.4.4 plots pairwise correlations obtained by the Shephard and Xiu (2012) estimator.
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Figure 4.4.5: Countries pairwise correlations

Figure 4.4.5 plots pairwise correlations obtained by the Shephard and Xiu (2012) estimator.
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Figure 4.4.6: Countries pairwise correlations

Figure 4.4.6 plots pairwise correlations obtained by the Shephard and Xiu (2012) estimator.

Figures 4.4.4-4.4.6 support results already discussed when focusing on Italy and France
as all the possible pairs of countries almost experienced a decrease in pairwise correlations
during the sovereign crisis. In addition to that, we identify a sharp drop in correlations
for all the countries analyzed with Germany during the period December 2010 - July
2011, corresponding to the worst period of the sovereign crisis. Firstly we would like to
point out that this evidence is exactly specular to the increase in spreads correlations
identified in Chapter 3. Anyway, Figures 4.4.4-4.4.6 are more informative as they allow
us to understand what was behind the change in correlations. In fact we guess that
the sharp drop in correlations among all the countries and Germany is dictated by the
safe heaven status gained by Germany during the sovereign crisis which lead investors
to undertake different positions on German and ex-German bonds. The trading activity

during that period was very much sentiment driven and for instance, in correspondence



176 Comparing alternative integrated covariance estimators

to negative macroeconomic releases such as those discussed in Chapter 2, investors sold
ex-German bonds and bought German bonds. This trading behavior was very likely the
reason behind the sharp drop in correlations between Italy, France, Spain, Belgium and
the Netherlands with respect to Germany. An additional analysis, not reported here,
shows that this change in the correlation patterns between all countries and Germany is
not present when using daily data indicating that the movements in government bond
yields at high frequency scale were very much dictated by a sentiment driven trading

activity.

4.4.3.2 Risk management results

After having described the correlation patterns which characterized European government
bonds, we now turn to the proper risk management exercise aimed at identifying empir-
ically the best integrated covariance estimator. In Table 4.4.2 we report the unilevel
backtesting procedures described in Section 4.4.1.1 for the alternative estimators pre-
sented in Section 4.2.2 combined with the synchronization schemes described in Section
4.2.1 following the Monte Carlo exercise. In grey are highlighted all the cases when the
tests allow not to reject the null hypothesis that the model is correctly specified. Starting
from the unconditional coverage test, we see that the MRK, the QMLE and the SX es-
timator provide the best performance. In particular, coherently with the findings about
the upward bias of the SX estimator in the Monte Carlo simulation, we show that this
estimator succeeds just at the 99% confidence level. A similar pattern is evident for the
most important unilevel test, the conditional coverage, while for the independence test
we see that all the estimators perform quite well. Finally, as per the Duration test based
on the Weibull distribution (DurW), we detect a dominance of the MRK and the QMLE
associated with one of the refresh time resampling schemes.

In all the unilevel tests, the RC estimator does not allow not to reject the null hy-
pothesis that the model is correctly specified as, as it is expected, our data are affected
by some microstructure noise. In addition to that, we can see that the MRK based on
synchronized data obtained by both previous tick and the intersection approach perform
quite well while, in Monte Carlo comparison, we never find evidence in favour of previous
tick nor intersection.

A clearer pattern is evident when the tail risk measures are analyzed in Table 4.4.3.
In fact the SX estimator is the only one allowing not to reject the null hypothesis that the
model is correctly specified for both tail risk and Berkowitz test, at both 95% and 99%
confidence level. This finding is particularly relevant and coherent with results obtained
for the unilevel test procedures as it denotes the ability of SX estimator to capture extreme
events.

Finally, in Table 4.4.4 we report the backtesting exercise involving multilevel proce-
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dures. Starting from the most comprehensive one, the Pearson x? test, we find that the
best estimators are the MRK and the QMLE based on synchronized data obtained from
refresh time resampling schemes. The dominance of these two estimators is supported
even by the Perignon and Smith test and by the Markov test while when focusing on
the Hurlin and Topkavi test, a less clear figure emerges. In fact, according to this last
test, almost all the estimators perform equally well exception made for the TSCV and
the SX which do not allow not to reject the null hypothesis that the models are correctly
specified. Note that the SX estimator never succeeds as the multilevel tests are based
on two confidence levels, 95% and 99%, and in Table 4.4.2 we show that this estimator

performs well at the 99% confidence level but not at the 95%.
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Overall, results shown in Tables 4.4.2-4.4.4 allow us to draw a very clear picture
indicating that the best integrated covariance estimators are the MRK and the QMLE
based on synchronized data obtained from the refresh time schemes. By the way, when
focusing on tail risk or on just extreme percentiles, the SX estimator dominate all the other
competitors. This result is coherent with the finding from the Monte Carlo comparison
about the upward bias affecting the SX (in presence of high noise) estimator and indicates

that although it is very promising, it still needs some improvements.

4.5 Conclusions

In this Chapter we carried out a very comprehensive comparison among the integrated
covariance estimators and the synchronization schemes proposed in the literature. Both
the Monte Carlo exercise and the empirical application allow us to draw a clear picture
about the topic of properly estimating the integrated covariance matrix in a framework
characterized by two very big issues that are microstructure noise and asynchronicity. In
fact we provide evidence that both the Two Scales Realized Covariance by Zhang (2011)
and the Modulated Realized Covariance by Christensen et al. (2010) lead behind other
estimators. Instead, the QMLE by Ait-Sahalia et al. (2010) shows a good performance in
both Monte Carlo and empirical exercise. In addition, the most promising estimator, the
Shephard and Xiu (2012), by far dominates all the other ones when focusing on correlation
estimates and in the backtesting exercises involving extreme events, namely VaR at 99%
confidence level and tail risk measures. Anyway it suffers from some upward bias resulting
in a non optimal estimation of variances and covariances in the Monte Carlo exercise and
in VaR estimation at the standard 95% confidence level. The estimator proposed by
Shephard and Xiu (2012) is the most appealing one even from a theoretical point of view
as it does not suffer from any drawbacks such as non-positive definiteness, as the QMLE
by Ait-Sahalia et al. (2010) does, nor by non-optimal convergence, as it is the case for
the MRK by Barndorff-Nielsen at al. (2011). Therefore we think that, as suggested in
a final part of their paper, some job should be carried out aimed at generalizing the
noise model underlying their framework in order to deal with the bias. Finally, although
the Multivariate Realized Kernel by Barndorff-Nielsen at al. (2011) does not perform
particularly well in the Monte Carlo exercise, the same cannot be said in the empirical
application where it shows a similar performance with respect to the QMLE. In addition
to that, as per the synchronization schemes, we show that the previous tick as well as the
intersection approach embedded in the Hayashi and Yoshida (2005) are clearly dominated

by the refresh time resampling schemes.
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Chapter 5

Conclusions and further works

The recent sovereign crisis led to a sharp increase in European government bond yields
determined by a renewed ability of markets to exercise a discipline through the price of
risk embedded in alternative assets. The question is whether the price of risk is accurate
in terms of properly reflecting countries fundamentals or whether, especially for peripheral
bonds, high yields are the sign of an increasing risk aversion. In addition to that, during
sovereign crisis concerns about evidences of contagion and increasing systemic risk, espe-
cially in the Euro area, have risen. In fact, in a very integrated market as the European
one is, shocks to one country are very likely going to affect other countries.

To this purpose, we evaluated the impact of macroannouncements and time varying
macroeconomic fundamentals on European government spreads of Italy, France, Spain,
Belgium and the Netherlands with respect to Germany. The overall findings confirm
the high sensitivity of government bond markets to macroeconomics, both in terms of
macroannouncements as well as countries fundamentals. In particular, in Chapter 2, we
provided evidence of the high sensitivity of spreads to US and European macroannounce-
ments releases, with strong relevance of those concerning real economy, together with the
ECB Introductory Statement and with news regarding Germany and Spain. In addition
to that, we evaluated the impact of government bond auctions and rating actions too,
reporting evidences supporting the high sensitivity of spreads to auctions held in two of
the most distressed and biggest countries in our sample, Italy and Spain, while we did
not find any evidence for rating actions. We interpret that result in light of the loss in
reliability that rating agencies suffered after the subprime crisis together with the high
predictability of their actions which therefore did not bring to markets any surprise.

As per macroeconomic fundamentals, we showed the existence of a strong linkage be-
tween spreads volatility and the difference of industrial production with respect to the
German one, as well as with economic sentiment and unemployment. Anyway, when

considering correlations, there is evidence of a sharp increase in all pairwise spread corre-
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lations during the period December 2010-July 2011 as a signal of the increasing systemic
risk inside Furope rather than linked to macroeconomic fundamentals.

In order to estimate consistently correlations, we made advantage of recent develop-
ments in financial econometrics, in particular to the techniques introduced alternative
estimators robust to both microstructure noise and asynchronous trading. In Chapter
4, we carried out an extensive Monte Carlo simulation exercise to compare the perfor-
mance of the available estimators jointly with the alternative synchronization methods.
The numerical analysis undertaken in Chapter 4 allowed us to identify two estimators,
the Shephard and Xiu (2012) and the Ait-Sahalia et al. (2010) combined with refresh
time synchronization method, as the optimal for correct inference. In addition, we also
report a variety of risk-management applications implementing the alternative estimators
on European yields. Very importantly, the empirical application helped us to identify the
reason underlying the sharp increase in correlations of government bond spreads identified
in Chapter 3. Estimating correlations on yields, we identified a similar but reverse pattern
in pairwise correlations between all the countries and Germany and this evidence can be
interpreted as result of nervousness in the markets during the burst of the sovereign crisis
which led Germany to gain the safe heaven status and traders to undertake completely
opposite positions on German and ex-German bonds.

There are a number of interesting developments that the findings in this disserta-
tion open the route to. First, it will be important to understand why spreads of some
countries are higher with respect to other countries, despite better fundamentals of the
former country. A possible explanation may be related to the political stability together
with government ability to set up proper and credible measures to introduce reforms and
stimulate economic growth. This is for instance the case of Italy characterized by per-
sistent political instability. On the other hand, this is the case of Portugal and Spain
for instance, there are some countries whose private debt has sharply grown during re-
cent years, probably contributing in boosting government bond spreads. Second, from
a trading mechanisms and policy point of view, it would be interesting to understand
what kind of measures governments and monetary authorities could undertake to prevent
that trading mechanisms that could led government bond yields to increase so sharply
with the effect of contributing to put countries, already experiencing financial difficulties,
in an even more dangerous and unstable situation. In fact, increasing government bond
yields directly impact on public debt, rising the amount of interests payment a country
has to face; in addition, when yields are rising, coupons of newly issued bonds will rise
too implying that a current pressure on bonds will last for a long span in the future. The
main issue the European union has to face in this sense is, as already broadly discussed,
a fiscal union besides a monetary union.

Though this dissertation mainly focused on insightful empirical issues on the European



A Frequency-Specific Factorization to Identify Commonalities with an Application to the European Bond
Markets 189

government bond market, it also offers some methodological contributions. In particular,
in Chapter 3, we extended the MIDAS approach to the case of high-frequency data by
introduced a model able to estimate correlations in presence of data sampled at different
frequencies, where the low frequency component captures the macroeconomic fundamen-
tals of countries. Further, Chapter 4 is devoted to evaluate and sort existing estimators
for integrated covariance matrix. Follow up of these two methodological developments
have already been explored and the main findings are summarized in the following three

papers.

5.1 A Frequency-Specific Factorization to Identify Com-
monalities with an Application to the European Bond
Markets

This paper, joint with Jan Novotny and Giovanni Urga, introduces a new framework for
modelling mixed-frequency multivariate time series with respect to the MIDAS approach
described in Chapter 3. The proposed methodology is specifically built to treat com-
monality of rare events identified at high-frequency, namely price jump arrivals, across a
large portfolio of time series and link them to macroeconomic fundamentals measured at
a lower frequency. In particular, the link between cojumps in financial markets and the
real economy is established through the evaluation of the dependence of co-arrival and
cojump based measures on the real economy indicators, namely unemployment, industrial
production and economic sentiment, observed at monthly frequency, and the aggregate
monthly surprise carried by macro-announcements and government bond auctions. The
notions of co-arrivals and cojumps are based on the cofeatures introduced by Engle and
Granger (1987) and Engle and Kozicki (1993). Full details can be found in Novotny and
Urga (2013).

The dataset is the same used throughout the previous chapters although here we focus
our attention on 10-year government bond yields, rather than spreads, of Belgium, France,
Germany, Italy, the Netherlands and Spain from 1st June 2007 to 31st May 2012 sampled
at 5-minute frequency. As per macroannouncements and government bond auctions, we
analyzed the same indicators as in Chapter 2 while the macroeconomic indicators are
those adopted in Chapter 3.

The most relevant result is the assessment of statistically significant difference between
idiosyncratic and common jump arrivals, with idiosyncratic arrivals being more sensitive
to financial distress. In particular, we provide evidence of strong statistical evidence that
the commonality feature of the jump arrivals are explained by news announcements from
the US, the European Monthly Bulletin, the Spanish GDP and unemployment, and the
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Greek unemployment. In both the subprime crisis of 2008/2009 and the European debt
crisis in 2011, 10-year European yields show a low level of commonality as well as a low
level of correlation in jump arrivals. This finding contrasts the evidence from asset returns
(see, e.g., Bekaert (2005)), of a persistently higher correlation during distressed periods
with respect to the tranquil ones. In particular, the measure of commonality, bounded
between 0 and 1, during the financial crisis of 2008/2009 is about 0.3 while jumped to
0.6 in the aftermath of the crisis. This means that the probability to observe a common
jump during the crisis was half the probability immediately afterwards. Another measure
introduced in the paper indicated that during the 2008 crisis if jump occurred then up
to two countries were affected by the same jump, while in the aftermath of the 2008
crisis, if jump occurred more than three countries were affected. In correspondence to the
European debt crisis, both measures decreases to the levels around the 2008,/2009 crisis.

During the subprime crisis of 2008, the overall number of jump arrivals increased which
was not observed during the European debt crisis. Further, for the European debt crisis,
we observed a significant change in the structure of common jumps in yields providing
clear evidence that Euro area was hit by country specific risks. Finally, from October
2010 to July 2011, the behaviour of German yields showed a completely different pattern
compared to the rest of the countries. In this period, we observed a significant change in
correlation between German yields and yields from any other country in the sample. We
like to interpret this finding as a supportive evidence for the increase of the risk-awareness
of investors, who favoured the German bonds serving as a safe heaven.

The paper has been submitted for possible publication.

5.2 Co-arrivals and Information Flow in the European Debt
Market

This paper, joint with Jan Novotny and Giovanni Urga, extends the univariate frame-
work of Lee (2012) to a multivariate setup. In Lee (2012), the dynamics and predictability
of jumps is investigated by introducing a two-stage semi-parametric jump predictor test
aimed at identifying covariates that determine jump occurrences. In the first stage, jumps
are detected by applying the Lee and Mykland (2010) test while in the second step, the
estimation based on the maximum partial likelihood inference is carried out. The sec-
ond step allows to identify the covariates that impact more on jump arrivals through a
logit parametrization. In our paper, we generalize the parametrization in Lee (2012) by
proposing a Probit specification, which allows for more versatile multivariate approach.
This new framework is empirically illustrated using the 10-year European government
bond benchmarks in order to identify the most relevant drivers of jumps and cojumps.

In particular, we estimate a number of alternative specifications, considering first all the
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available jumps to focus later on pure idiosyncratic jumps and on common jumps (co-
jumps). Finally, we also propose several empirically relevant extensions of the theoretical
likelihood framework, which aims to estimate the financial phenomena like market pres-
sure and systemic drops.

The paper has been submitted for possible publication.

5.3 Evaluating the Accuracy of Value-at-Risk Forecasts: New
Multilevel Tests

The paper, joint with Arturo Leccadito and Giovanni Urga, proposes independence and
conditional coverage tests aimed at evaluating the accuracy of Value-at-Risk (VaR) fore-
casts from the same model at different confidence levels. The proposed procedures are
therefore named multilevel tests and were used in the empirical section of Chapter 4
to compare alternative estimator of the correlation matrix for a portfolio of government
bonds. The multilevel setup presents two big advantages with respect to standard unilevel
testing procedures. First it is able to overcome the reduced power of the unilevel tests
in presence of small samples; second they make the best use of the limited amount of
information regarding the return distribution made available by banks or financial insti-
tutions in general to assess their risk exposure. In addition to that, as econometricians
usually estimate quantiles for two or more different probability levels, multilevel tests are
intuitively more efficient, and statistically more powerful, than to use separate unilevel
tests.

The first test introduced in this paper, the Markov test, is a generalization of the
Christoffersen (1998) independence and conditional coverage test to the multilevel case
which anyway is powerful only against the first-order Markov independence alternative
hypothesis. Therefore a more general test is introduced, the Pearson’s x? test, which is
designed to detect whether the average number of violations at different confidence levels
is correct and to check for independence in number of violations at different confidence
levels with respect to its lags up to a specific lag m.

In a comprehensive Monte Carlo exercise, where returns were generated under alter-
native GARCH models with skewed and leptokurtic innovations, and where VaR were
estimated using models commonly used in practice (i.e. Normal, HS, Hybrid HS and
RM), the new multilevel tests showed higher power than both the multilevel uncondi-
tional test of Perignon and Smith (2008) and the multilevel conditional tests of Hurlin
and Tokpavi (2006). The superiority of the new introduced tests is particularly strong
when small samples, that are even the most common in practice, are considered. Via an
empirical application using daily returns on 15 MSCI world indices, we implemented the

available multilevel tests and we showed that in some cases different tests deliver different
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conclusions.

The paper is forthcoming in the International Journal of Forecasting.
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