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Abstract

The Two-Echelon Routing Problem constitutes a class of combinatorial op-
timization problems with applications in many different fields such as city
logistic planning, intermodal transportation, postal and parcel delivery distri-
bution systems and so on. This thesis contains:

- a survey of the main contributions related to the two-echelon routing, focus-
ing on the Two-Echelon Location Routing Problem, on the Two-Echelon
Vehicle Problem and on the Truck and Trailer Routing Problem;

- an analysis of a particular version of the Two-Echelon Location Routing
Problem with single source, referred as Single Vehicle Two-Echelon Loca-
tion Routing Problem, with two mathematical formulations and a heuris-
tic algorithm;

- some computational experiments aiming at test the effectiveness of the for-
mulations and the heuristic algorithm.

The thesis is divided in three parts:

• a literature review of the Two-Echelon Location Routing Problem, of
the Two-Echelon Vehicle Routing Problem and of the Truck and Trailer
Routing Problem. The Two-Echelon Location Routing Problem refers to
a class of problem directly derived from the well-known Location Routing
Problem in which two sets of facilities must be located and two levels of
routing have to be considered. The Two-Echelon Vehicle Routing Prob-
lem is derived from the Vehicle Routing Problem. In this class of prob-
lems the distribution of freight is managed through a set of satellites,
where operation of consolidation, and/or transhipment and/or storage
are performed. The Truck and Trailer Routing Problem models a dis-
tribution system in which a vehicle fleet, composed by truck units and
trailer units, is used to serve the demand of a set of customers, some of
which are accessible only by a truck without trailer;



• the description of the Single Vehicle Two-Echelon Location Routing
Problem with emphasis on its structure and its components, plus the
introduction of two integer programming formulations to determine the
optimal location and the optimal number of a set of capacitated facilities,
the assignment of customers to these facilities and the related routes.
Four sets of instances are adapted from the literature and the results
of proposed formulation are reported, comparing their performances in
terms of solution quality and computation times.

• the introduction of a heuristic algorithm to solve the problem. Five
variants of the algorithm are developed, differing from each other for the
assignment procedures of the customers to the satellites. The results
provided by such algorithm are compared with the optimal solutions, or
in some cases with the best lower bounds provided by CPLEX solving
the two integer models.

Keywords: Operations Research, Combinatorial Optimization, Heuristic,
Location, Two-Echelon, Transportation.
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Introduction

According to the definition provided by the Supply Chain Management Profes-
sionals [58], logistic management is that part of supply chain management that
plans, implements, and controls the efficient, effective forward and reverse flow
and storage of goods, services and related information between the point of
origin and the point of consumption in order to meet customers’ requirements.
This definition includes inbound, outbound, internal and external movements,
and return of materials for environmental purposes. In the last decades the
importance of the logistic management has been growing in several economic
and social areas. For instance, in the industrial sector, logistics helps the en-
terprises to optimise their production and distribution process, leading them
to become more efficient and competitive.

The element usually characterizing a logistic chain is the transportation
system, which joins the separate activities, providing better logistic efficiency,
reducing operation cost and promoting service quality. About one third to two
thirds of the expenses of enterprises’ logistics costs are spent on transportation,
see [35].

Not surprisingly, operations research has been applied for developing op-
timization methods for large-scale transportation and logistic problems. The
approaches often require the development of new models and algorithms, and
their implementation in real operating environments. Usually in the trans-
portation problems a set of vehicles has to satisfy the demand for goods (or
services) by a set of customers. Focusing on the way the freight reaches the
final destination, two main shipping strategies can be found in outbound lo-
gistics:

1. direct shipping, which consists of delivering freight directly from the
manufacturing plants (or origins) to the final destinations;

2. multi-echelon distribution, in which the freight, before reaching the final
destinations, has to pass through other facilities called satellites or stor-
age areas, where consolidation, transhipment and storage operations are
usually performed.

x



As concerns the multi-echelon distribution, in recent years companies have
been changing and improving their distribution strategies, to cope with the
changing demand, preferring the activity of consolidation to the activity of
storage. As González Feliu reports in [27] the following are several real life
applications of the multi-echelon transportation system:

• postal and parcel delivery distribution system, in which the freight is
transhipped or consolidated at some intermediate platforms;

• press distribution, in which national and regional platforms are used to
distribute the products to the retailers through a system of consolidation
platforms, where these products are repackaged;

• grocery distribution, home delivery service and e-commerce, activity that
are developing intermediary reception points;

• logistics system for urban freight transportation (i.e. city logistic) in
which some urban consolidation centers, located in the periphery, are
used to receive and tranship the freight in eco-friendly vehicles directed
to the city;

• multimodal transportation, in which the freight is delivered by two or
more means of transport, with no alteration during the operations of
cross-docking.

This thesis focuses on a particular case of multi-echelon transportation sys-
tems, the so called two-echelon transportation system. In such system only
two levels of facilities are involved: the origins (or depots), where the freight is
initially located, and the intermediate facilities (or satellites) where the freight
is transhipped and/or consolidated before reaching the final destinations (cus-
tomers). The links between the origins and the intermediate facilities consti-
tute the so called first echelon, whereas the links between the intermediate
facilities and the final destinations constitute the so called second echelon.
Two fleets of homogeneous vehicles are available, one for each level.

We survey the main contributions in the OR literature related to such
transportation system, in order to provide an organized framework that can
be useful for researchers and transport practitioners. The first chapter has been
divided into three separate sections in order to provide a simple and clear ac-
count of the two-echelon transportation system. The first section concerns the
Two-Echelon Location Routing Problem, the second the Two-Echelon Vehicle
Problem and the third the Truck and Trailer Routing Problem. In this re-
search work we are proposing two mathematical formulation and a heuristic



INTRODUCTION xii

algorithm to address the Single Vehicle Two-Echelon Location Routing Prob-
lem, a particular case of the Two-Echelon Location Routing Problem with a
single source and a single vehicle available at each facility (both depot and
satellites). In this problem some freights, available at a central depot, have
to be delivered to a set of customers through a set of intermediate satellites
which must be located. A large uncapacitated vehicle starts from the central
depot, performs a primary tour among the selected satellites and then returns
to the origin. Then a set of smaller capacitated vehicles (one for each satellite)
performs some secondary tours delivering the freights to the customers. The
goal of the problem is to minimize the total costs, i.e., the routing costs and
the fixed opening costs associated with the satellites, respecting the capacity
constraints and satisfying the customer demands.

The two mathematical formulation has been implemented using ILOG Con-
cert Technology 2.3 and CPLEX 12.1. Their performance is evaluated solving
four sets of instances adapted from those used for Two-Echelon Location Rout-
ing Problem with Single Source [44].

The proposed heuristic algorithm is characterized by a constructive phase
and an improvement phase. In the improvement phase the problem is divided
into three subproblems:

• the assignment of the customers to the satellites;

• the construction of the primary tour;

• the construction of the secondary tours.

In the improvement phase, five different local search procedures are applied.
Numerical results, reported in Chapter 3, show the effectiveness of the

algorithm which provides good quality solutions in very short time.
This thesis comprises four chapter: the first is devoted to the survey on the

most important problems related to the two-echelon transportation system;
the second chapter presents a description of the Single Vehicle Two-Echelon
Location Routing Problem and the two mathematical formulations used to
solve the problem using CPLEX; the third part describes the heuristic algo-
rithm and five different variants. The last chapter presents global conclusion
and future research perspectives.



Chapter 1

Literature review

Distribution refers to the transportation of freight from the origin stage (e.g.,
the supplier or the production plant) to the destination stage (e.g., the whole-
saler, the retailer or the final customer) in a supply chain. Freight transporta-
tion occurs between each pair of stages in the supply chain. Each pair of stages
represents one level of the distribution network and is usually referred to as
an echelon. Freight transportation is a key driver for strategic, tactical and
operational decisions of many companies since it affects considerably both the
product costs and the customer experience directly. Chopra and Meindl [11]
highlight that distribution-related costs make up about 10.5% of the US econ-
omy and about 20% of the cost of manufacturing. It is therefore not surprising
that such topic has attracted considerable efforts from the operational research
community aimed at developing innovative and effective optimization models
and solution algorithms capable to provide the necessary quantitative tools to
support the decision makers.

Freight transportation from its origin to its destination can be broadly
categorized into two classes according to the presence or not of one or more
intermediate stages. Direct shipping happens when the freight is delivered
directly from its origin to its destination, i.e., the network comprises only
one echelon. Conversely, indirect shipping happens when the freight is moved
through some intermediate stages (e.g., cross-docks or distribution centers) be-
fore reaching its destination, i.e., the network comprises more than one echelon.
In a multi-echelon distribution system the freight is delivered, usually compul-
sorily, by means of indirect shipments. Two-echelon distribution systems are
a special case of multi-echelon systems where the network is composed of only
two echelons. That is, after leaving its origin, the freight is first delivered to an
intermediate facility where storage, merging and/or consolidation operations
are performed. The freight is then moved from the intermediate facility to-
wards its destination. We define as two-echelon routing problems a wide class

1
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of problems that study how to optimally route freights in two-echelon dis-
tribution systems taking into consideration strategic and/or tactical planning
issues.

Area covered. Two-echelon routing problems can be classified according
to the type of decisions that are involved. Particularly, we consider:

• strategic planning decisions: they are long-term decisions that a company
takes once every some years to change its strategic organization. They
include decisions concerning the infrastructure of the network (e.g., the
number and the location of the facilities to open) and the type and
quantity of equipment to install in each facility;

• tactical planning decisions: they are decisions with a mid-term horizon
and include, among others, the routing of freight through the network,
the allocation of customers to the intermediate facilities, and the type of
service to be used.

In recent years, a considerable number of papers focusing on two-echelon
routing problems have been published in the literature. Some of them tackle
variants of the same basic problem, while others propose different solution
methods for the same problem. This chapter aims at providing a classification
and a systematic overview of the foremost contributions on two-echelon routing
problems. We survey the foremost contributions in the operational research
literature dealing with two-echelon routing problems where strategic and/or
tactical planning decisions are taken into consideration. Operational planning
issues (e.g., product planning, implementation and adjustment of schedules for
services) are not covered.

Terminology and classification used. We consider the following three
classes of two-echelon routing problems.

We refer to the Two-Echelon Location Routing Problem (2E-LRP, here-
after) when the problem definition involves both strategic (typically the loca-
tion of facilities) and tactical (typically the routing of freight and the allocation
of customers to the intermediate facilities) planning decisions. Specifically, in
the 2E-LRP goods available at different origins (called depots or, sometimes,
platforms) have to be delivered to the respective destinations moving manda-
torily through a set of intermediate facilities called satellites. An opening cost
is associated with each depot and each satellite. The depots, as well as the
satellites, to be open have to be selected from a set of possible depot (satellites)
locations.

We refer to the Two-Echelon Vehicle Routing Problem (2E-VRP, from
now on) when the problem definition involves only tactical planning decisions.
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Opening Costs
Problem Location for Depots, Satellites 1st Echelon 2nd Echelon
Class Decisions and Trailer Points Fleet Fleet
2E-LRP

√ √
Homogeneous Homogeneous

Vehicles Vehicles
2E-VRP Homogeneous Homogeneous

Vehicles Vehicles
TTRP νK Trucks and νK Trucks

νL ≤ νK Trailers

Table 1.1: A summary of the main characteristics of the three classes of prob-
lems surveyed.

Particularly, in the 2E-VRP only one depot is usually considered, the set of
satellites to use is given, and no cost is associated with the use of a satellite.

Finally, we consider the Truck and Trailer Routing Problem (TTRP, hence-
forth). In the TTRP freight transportation is managed by means of a set of
trucks and trailers. A subset of customers can be served by a complete vehi-
cle (i.e., a truck pulling a trailer) or by a truck alone, whereas the remaining
customers can only be visited by the truck alone.

The main characteristics of the three families of problems surveyed are
summarized in Table 1.

Applications. Due to the several real-life problems that can be modeled
as two-echelon distribution systems, an ever increasing number of examples of
design and implementation of this type of distribution system appear in the
literature. We mention, among other applications, city logistic, multimodal
transportation, postal and parcel delivery, press and grocery distribution.

City logistic is probably the most frequently cited application. Crainic et al.
[19] claim that “city logistic aims to reduce the nuisances associated to freight
transportation in urban areas while supporting their economic and social de-
velopment”. Indeed, freight transportation in urban areas is one of the main
reasons of congestion, disorder, pollution emissions and noises. Implementing
a two-echelon distribution system could be an effective response to these prob-
lems. In more details, in such systems each satellite corresponds to a facility
located, usually, in the outskirts of the city where large trucks are allowed to
arrive and where freights headed to different destinations are unloaded, sorted
and consolidated. Freights are then loaded onto smaller and environment-
friendly (also called eco-friendly) vehicles that are allowed to travel in the city
center and so they can serve the final customers. Several papers cited in this
chapter are related to this particular problem of urban management.

Although multimodal transport is not as cited as city logistic, it represents
a relevant application of freight distribution systems involving two or more
echelons. As a matter of fact, in recent years, the number of intermodal logis-
tic centers in central and south-west European countries increased significantly
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(e.g., see [32]). As an example we mention the ship-road multimodal distri-
bution system (e.g., see [31]) where the freight travels from the supplier to a
satellite by ship (i.e., the first echelon) and then it is loaded onto a truck that
delivers the freight to its final destination (i.e., the second echelon).

Surveys for related problems and structure of the chapter. Among
the related problems we mention the Location Routing Problem (LRP) and
the Vehicle Routing Problem (VRP). For an overview on the LRP we refer the
interested reader to the paper by Nagy and Salhi [42], whereas the survey by
Laporte [36] provides a summary of the most important studies on the VRP.
Two-echelon freight transport optimization problems are analyzed in González
Feliu [27] that aims at identifying its main concepts and issues. Papers deal-
ing with the presence of intermediate facilities in distribution networks are
surveyed in [28]. In the latter survey the focus is mostly put on the role of
the intermediate facilities in service network design problems within tactical
planning decisions, i.e., strategic planning decisions are not taken into consid-
eration and the focus is put more on the service network design aspects than
on the routing one. The reader should be aware that the scope of the latter
survey is partially overlapping with that of this chapter, in particular in what
concerns the 2E-VRP that is covered in both research works. Multi-echelon
issues that either are not explicitly related to the routing of freight or consider
the routing of freight but assuming the presence of more than two echelons,
and therefore not included in this survey, are considered, among others, in
Pirkul and Jayaraman [51], Tragantalerngsak et al. [59], Maŕın and Pelegŕın
[41], Crainic et al. [20], Ambrosino and Scutellá [1], and Hamidi et al. [29].

The structure of the chapter is as follows. Section 1.1 is devoted to the
description of the 2E-LRP and to review the related literature. The 2E-VRP
is considered in Section 1.2, while the TTRP is surveyed in Section 1.3.

1.1 The Two-Echelon Location Routing Prob-

lems

In this section, we first provide a brief introductory description of the 2E-LRP
and then review the most important papers tackling the problem.

1.1.1 Problem Description

Let us consider a two-echelon distribution network composed of three disjoint
sets of vertices corresponding to the depots (i.e., the origins), the satellites (i.e.,
the intermediate facilities), and the customers (i.e., the destinations), respec-
tively. Hence, the distribution network can be decomposed into two echelons.
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The first echelon comprises the links between the depots and the satellites, and
those connecting pairs of satellites. The second echelon connects the satellites
to the customers, and includes also the links between pairs of customers. Some
freights that are available at one or more depots have to be delivered to some
customers passing through the satellites, compulsorily. Freight transportation
is performed by two different fleets of vehicles, one at each echelon. Vehicles
are usually assumed to be capacitated and homogeneous within the same eche-
lon. Vehicles belonging to the first echelon are referred to as primary vehicles,
whereas those in the second echelon are called secondary vehicles. A fixed
opening cost is associated with each depot and each satellite. Additionally, a
fixed cost of usage is usually associated with each vehicle. A capacity limit
for each depot as well as each satellite, representing the maximum amount of
freight that can be handled in the facility, is also considered. An usual as-
sumption is that each open satellite has to be visited by exactly one primary
vehicle that routes from an open depot. Additionally, each customer has to
be generally served by exactly one secondary vehicle that routes from an open
satellite.

The 2E-LRP aims at finding the optimal set of location sites for the depots
and the satellites as well as the optimal set of vehicle routes that satisfy the
customer demands and do not violate the capacity requirements, while mini-
mizing the total cost of the system. The total cost is given by the sum of the
fixed opening costs, related to the facilities open, the usage cost of the vehicles
routed, if present, and the routing costs.

The main characteristic that differentiates the 2E-LRP from the 2E-VRP,
analyzed in Section 1.2, is that in the 2E-LRP location decisions are involved,
i.e., not all the facilities of first and second level (i.e., depots and satellites,
respectively) have to be necessarily open.

More formally, we assume the following definition of the 2E-LRP. We con-
sider a weighted undirected graph G = (N,E), where N = {Vd

⋃
Vs

⋃
Vc} is

the set of vertices and E is the set of edges (i, j), i 6= j, connecting vertex
i ∈ N and vertex j ∈ N . Particularly, Vd = {1, . . . , d} represents the set of
d potential locations where a depot can be open, Vs = {d + 1, . . . , d + m} is
the set of m possible satellites locations and Vc = {d+m+ 1, . . . , d+m+ n}
is the customer set. A nonnegative traveling cost cij is associated with each
edge (i, j) ∈ E. An opening cost oi and a capacity wi, i ∈ Vd

⋃
Vs, are given

for each depot and each satellite. Each customer j ∈ Vc has a known and
deterministic demand rj to be served by exactly one vehicle. A fleet of ho-
mogeneous primary vehicles with a capacity q1 is shared by the depots, while
a set of homogeneous secondary vehicles with a capacity q2 is shared by the
satellites. A fixed cost f1 is paid for each primary vehicle routed, whereas for
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Depot
Satellite
Customer
First echelon
Second echelon

Figure 1.1: An example of a 2E-LRP feasible solution.

the use of each secondary vehicle a fixed cost f2 is paid.
The 2E-LRP is NP-hard because it is a generalization of other well-known

NP-hard problems (see [44]): namely, the two-echelon facility location prob-
lem, the 2E-VRP (surveyed in Section 1.2), and the aforementioned LRP.

Figure 1.1 shows an example of a 2E-LRP feasible solution. The squares
represent the depots, the pentagons are the satellites, and the circles are the
customers. The routes belonging to the first echelon are represented as dashed
lines, whereas the routes belonging to the second echelon are depicted as solid
lines.

1.1.2 Literature Review

As the 2E-LRP has been introduced relatively recently, the related literature
is rather limited. A general overview of the main characteristics of the papers
included in this section is reported in Table 1.2, including some details on the
solution method proposed (heuristic and/or exact), on the optimization model
introduced, and some specific characteristics, if any, of the problem studied.

The 2E-LRP, as defined above, has been formally introduced in Boccia et
al. [8] where the authors study the problem of designing a two-echelon freight
distribution system in which the location of two types of facilities (depots and
satellites), the vehicle fleet size and the routes belonging to the two echelons
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Solution Optimization Specific
Reference Algorithm Model Characteristics
Boccia et al. [8] Heuristic
Crainic et al. [22] Solver MILP
Schwengerer et al. [57] Heuristic
Contardo et al. [13] Exact and Heuristic MILP
Nikbakhsh and Zegordi [46] Heuristic MILP Soft Time Windows,

No Routes on 1st Ech.
Dalfard et al. [23] Heuristic NLMIP Veh. Fleet Capacity, Max Route Length,

No Routes on 1st Ech.
Single Depot

Jacobsen and Madsen [33] Heuristic Delivery Time, Tour Length
Nguyen et al. [45] Heuristic ILP
Nguyen et al. [44] Heuristic MILP

Table 1.2: A summary of the papers on the 2E-LRP.

have to be simultaneously optimized. The authors implement a Tabu Search
(TS) algorithm based on algorithms originally designed for the LRP: namely,
the nested approach proposed by Nagy and Salhi [43] and the two-phase iter-
ative approach introduced by Tuzun and Burke [60]. In few words, the basic
idea of the the algorithm is, firstly, to decompose the original problem into two
LRP and, secondly, decompose each resulting LRP into a capacitated facility
location problem and a Multi-Depot Vehicle Routing Problem (MDVRP). An
initial feasible solution is computed by means of a simple heuristic that aims
at minimizing the number of facilities to open. Subsequently, the four sub-
problems resulting from the decomposition are solved and the solutions are
combined together to obtain a global feasible solution. The TS consists of two
main phases: a location phase, in which the number and the location of the
facilities are determined, and a routing phase, in which the routing component
is considered and possibly improved. A bottom-up approach is used. Specif-
ically, a second echelon solution is firstly built and then, given that solution,
a first echelon solution is computed and optimized. Computational experi-
ments are given for small (up to 4 depots, 10 satellites and 25 customers) and
large-scale (up to 5 depots, 20 satellites and 200 customers) instances. The
computational results show the effectiveness of the method both in terms of
quality of the solutions found and computing times, although the heuristic
requires an important tuning phase to perform well.

Crainic et al. [22] propose three Mixed Integer Linear Programming (MILP)
formulations for the 2E-LRP. The first, using three-index variables, and the
third, adopting one-index variables, formulations are inspired to classical VRP
formulations available in the literature, whereas the second, using two-index
variables, derives from the MDVRP literature. The authors develop an in-
stance generator with the scope of reproducing a schematic representation of
a multi-level urban area and to test the effectiveness of the proposed formu-
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lations. Computational experiments are conducted solving two of the opti-
mization models (the third formulation is not considered in the experiments)
by means of the XPRESS solver and the formulations are compared in terms
of computing times, lower bounds provided and quality of the solutions. The
computational results show that the three-index formulation provides better
lower bounds and outperforms the two-index model solving medium-scale in-
stances.

Schwengerer et al. [57] present a Variable Neighborhood Search (VNS) for
the 2E-LRP drawing on a VNS algorithm proposed in [52] for the LRP. The
algorithm uses seven different general neighborhood structures parameterized
with several size perturbations leading to a total of 21 different specific neigh-
borhood structures. Two local search methods are applied to intensify the
search. Computational results are given for three sets of instances: two sets
introduced in Nguyen et al. [45], and the third generated according to Boccia
et al. [8]. The computational results show that the proposed VNS is compet-
itive with other approaches for the same problem previously proposed in the
literature.

As far as the solution method is considered, all the papers on the 2E-
LRP surveyed here propose a heuristic algorithm with the only exception of
the exact method designed in Contardo et al. [13]. The authors propose
a two-index vehicle flow formulation and develop a Branch and Cut (B&C)
algorithm able to solve small and medium-scale instances to optimality within
reasonable computing times. The mathematical formulation is a MILP model
that is strengthened by means of valid inequalities derived from the papers on
the LRP by Belenguer et al. [6] and by Contardo et al. [12]. Furthermore,
the authors introduce also an Adaptive Large Neighborhood Search (ALNS)
algorithm for the 2E-LRP. Both the exact and the heuristic algorithms are
based on the idea of decomposing the 2E-LRP into two LRP, one at each
echelon. This allows to apply algorithms proposed for the LRP at each echelon
and then combine the partial solutions to achieve a global feasible solution.
The exact and the heuristic algorithms are tested on five sets of instances,
amounting to a total of 147 instances. The first and second sets are taken
from [45]. These instances consider only 1 depot, and up to 10 satellites and
200 customers. The last three sets of instances are taken from Nguyen et al.
[44]. The number of depots in these instances ranges from 2 to 5, the number
of satellites from 3 to 20 and the number of customers from 8 to 200. They
differ in the location of satellites and depots. The ALNS has been able to find
the best-known solution for 133 instances out of 147, while the B&C solved
to optimality 75 instances out 147. Additionally, the comparison of the two
methods shows that the lower bounds obtained by the B&C lie on average no
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further than 3.06% below the solution values found by the ALNS.
Nikbakhsh and Zegordi [46] address a variant of the 2E-LRP where soft

time windows are associated with the customers and the routing on the first
echelon is neglected. The variant is called by the authors the 2E-LRP with soft
Time Window constraints (2E-LRPTW). The authors propose a four-index
MILP formulation and a heuristic composed by a construction phase followed
by an improvement phase. In the construction phase an initial solution is
created by means of a location-first, allocation-routing-second algorithm, and
then improved with an Or-opt heuristic (see [47]). Then, in the improvement
phase, the final solution is computed by exploring six neighborhoods of the
initial solution and using an Or-opt heuristic to possibly improve the routes.
A lower bound for the 2ELRPTW is computed based on an objective function
decomposition. To validate the heuristic the authors generate randomly 21
instances. The computational results show that the larger the instance size,
the larger the gap between the lower bound and the heuristic solution found.

Dalfard et al. [23] design two heuristics, namely hybrid genetic and Sim-
ulated Annealing (SA) algorithms, to solve another variant of the 2E-LRP
where vehicle fleet capacity (i.e., a maximum number of vehicles assignable to
a facility is considered) and maximum route length constraints are taken into
consideration. Similar to [46], the routing of the vehicles among the facilities
belonging to the first echelon is neglected. The authors propose a Non-Linear
Mixed Integer Programming (NLMIP) model based on a flow commodity for-
mulation. To assess the performance of the two heuristics they generate ran-
domly 20 instances. The former instances are also solved with the LINGO
solver. The size of the instances tested is up to 10 depots, 50 satellites and 100
customers. The computational experiments show that both algorithms outper-
form LINGO. Indeed, on the one hand, as far as the small-scale instances are
considered, both heuristics find slightly sub-optimal solutions in quite short
computing times. On the other hand, when the large-scale instances are taken
into account, LINGO is not able to find any feasible solution within the time
limit (the solver is stopped after 20 hours of computing time), whereas both
heuristics find feasible solutions in reasonable computing times given the size
of instances solved.

Each of the aforementioned papers addresses the 2E-LRP when several de-
pots are taken into consideration. Conversely, Jacobsen and Madsen [33] tackle
a variant of the 2E-LRP where a single depot is present. Hence, in this case,
decisions on the location of the depot are clearly not involved. The authors
consider a real-life problem concerning newspaper distribution in Denmark.
Particularly, newspapers that are available at a printing office (i.e., the only
origin) have to be delivered to some Sale Points (SP) through some Transfer
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Points (TP). The delivery has to adhere to a set of constraints regarding vehi-
cle capacities, length of the tours and delivery times. The decisions to be made
are: the locations of the TPs, the connections of the TPs with the printing
office to form primary tours, the connections of the SPs with the TPs to form
secondary tours and the sequencing of primary tours, that gives the order in
which the primary vehicles leave. As the size of the instances considered is large
(the number of SPs is around 4500), the authors do not attempt to compute
optimal solutions but design three different heuristics to solve the problem.
Specifically, the authors provide a comparison of three different algorithms:

1. a tour construction method with implicit TP location;

2. an alternate location-allocation procedure for the TP locations followed
by saving procedures for the routing of primary and secondary tours;

3. a saving procedure for the construction of secondary tours, a drop pro-
cedure for the location and a saving procedure for the primary tours.

Nguyen et al. [45] formulate the 2E-LRP with single depot as an Integer
Linear Programming (ILP) model with two-index decision variables. They
present four constructive heuristics and a Greedy Randomized Adaptive Search
Procedure (GRASP) complemented by a learning process and a path relinking
procedure to solve the problem. Path relinking is a procedure that aims at
improving the performance of a metaheuristic exploring the trajectory between
two solutions. Starting from one solution, it converts, step-by-step, the first
solution into a second one obtaining a pool of intermediate solutions to be
verified. The GRASP uses three greedy randomized heuristics to generate
trial solutions and two Variable Neighborhood Descent (VND) procedures to
improve them. Computational experiments are given for three sets of instances
involving up to 10 satellites and 200 customers. Computational results show
that the GRASP with learning process and path relinking outperforms the
other heuristics proposed in their paper. Additional experiments are conducted
on instances for the LRP and indicate that the GRASP is competitive with
other heuristics specifically designed for the the latter problem. Furthermore,
the authors compute a lower bound solving with CPLEX a relaxation of the
proposed ILP model obtained removing a set of constraints of exponential size
and including some simple cuts. The resulting lower bound is, on average, equal
to 80% of the solution value achieved by their metaheuristic. The same authors
propose in [44] a new MILP formulation for the 2E-LRP with single depot and
a multi-start Iterated Local Search (ILS) algorithm. The algorithm includes
some special features. The first feature is a multi-start procedure consisting
in restarting the search from another initial solution instead of restarting from
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Reference Solution Algorithm |Vd|max |Vs|max |Vc|max

Boccia et al. [8] TS 5 20 200
Crainic et al. [22] XPRESS 3 10 25
Schwengerer et al. [57] VNS 5 10 200
Contardo et al. [13] B&C, ALNS 5 20 200
Nikbakhsh and Zegordi [46] Two-Phase Heuristic 10 50 100
Dalfard et al. [23] Hybrid Genetic, SA 10 50 100

Single Depot
Jacobsen and Madsen [33] Problem Specific Heuristics 1 42 4510
Nguyen et al [45] GRASP with Learning Process and Path Relinking 1 10 200
Nguyen et al. [44] Multi-Start ILS with Tabu Lists and Path Relinking 1 100 200

Table 1.3: A summary of solution algorithms and maximum size instances in
each paper on the 2E-LRP.

the same solution. The second one consists in using cyclically three heuristics
to provide each ILS execution with a feasible solution. The third feature is
that a child (i.e., a successive solution) can be accepted only if its gap from the
best-known solution does not exceed a given threshold. The forth feature is
the coexistence of two improvement procedures. The first procedure involves
low complexity neighborhoods and is always performed; the second one is
used depending on the gap between the child and the best-known solution
and involves more complex moves, as for instance the switching of the status
open/closed of a satellite. The fifth feature is similar to a tabu list and is
based on storing recent visited solution. Finally, the sixth feature is based on
the alternation between two search spaces: the 2E-LRP solution space and
the space generated by the solutions of a Traveling Salesman Problem (TSP)
considering the main depot and the customers as vertices of a TSP instance.
The algorithm has been tested on benchmark instances for the 2E-LRP with
single depot, as well as on instances for the 2E-LRP involving up to 5 depots
and on instances for the LRP. Computational results show that the algorithm
outperforms other heuristics previously proposed for the 2E-LRP.

A summary of the solution methods proposed in each paper on the 2E-
LRP along with the maximum size instance solved is reported in Table 1.3.
|Vd|max denotes the maximum number of depots, |Vs|max denotes the maximum
number of satellites and |Vc|max denotes the maximum number of customers.

1.2 The Two-Echelon Vehicle Routing Prob-

lem

In this section, we first provide a brief introductory description of the 2E-VRP
and then review the most important papers tackling the problem.



CHAPTER 1. LITERATURE REVIEW 12

1.2.1 Problem Description

Consider a two-level distribution network where the delivery from a central
(and unique) depot to the customers is managed by routing and consolidating
the freight through some intermediate facilities. The first echelon comprises
one depot, where the freight originates, a set of intermediate facilities, where
the freight is firstly delivered by a fleet of primary vehicles, and all the links
connecting the depot with the intermediate facilities, on the one hand, and
each intermediate facility with the other intermediate facilities, on the other
hand. In the literature, the depot is sometimes called consolidation center,
whereas the intermediate facilities are referred to as distribution centers or,
when such distribution centers are smaller than a depot and/or have only
short-term inventory holding capacity, they are called satellite platforms, or,
simply, satellites (see [50]). To the sake of simplicity, henceforth we refer to
an intermediate facility shortly as satellite. The second echelon involves the
delivery of freight from the satellites to the customers by a fleet of secondary
vehicles. Direct shipments from the depot to the customers are not allowed.
Each customer has a known and deterministic demand and is usually served
by exactly one secondary vehicle, i.e., split delivery is not allowed on the
second echelon. Conversely, each satellite can usually be served by one or more
primary vehicles, so that the aggregated freight delivered to each satellite can
be split into two or more primary vehicles. Each primary vehicle can deliver the
freight of one or more customers, as well as can serve more than one satellite
in the same route. Capacity constraints on the vehicles and the satellites are
usually imposed.

The 2E-VRP aims at finding the optimal set of vehicle routes at both
levels such that the demand of all customers is satisfied, the satellites and
vehicles capacity constraints are not violated, while the total traveling cost is
minimized.

As mentioned above, the 2E-VRP differs from the 2E-LRP, surveyed in Sec-
tion 1.1, as no location decisions have to be taken and all the freight originates
at the unique depot.

More formally, we assume the following definition of the 2E-VRP. We con-
sider a weighted undirected graph G = (N,E), where N = {{0}

⋃
Vs

⋃
Vc} is

the set of vertices and E is the set of edges (i, j), i 6= j, linking vertex i ∈ N
with vertex j ∈ N . Particularly, vertex 0 represents the depot, Vs = {1, . . . ,m}
is the set of m satellites and Vc = {m + 1, . . . ,m + n} is the customer set. If
both endpoints of edge (i, j) ∈ E belong to set Vs, or one endpoint is the
depot and the other one is in set Vs, edge (i, j) pertains to the first echelon.
Conversely, if both vertices i and j belong to set Vc, or one is in set Vs and
the other one belongs to Vc, edge (i, j) pertains to the second echelon. A non-
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Depot
Satellite
Customer
First echelon
Second echelon

Figure 1.2: An example of a 2E-VRP feasible solution.

negative traveling cost cij is associated with each edge (i, j) ∈ E. A fleet of ν1

homogeneous and capacitated primary vehicles is located at the depot. Each
primary vehicle has a capacity q1 and starts and ends its route at the depot
after visiting one or more satellites. A fleet of ν2

l homogeneous and capacitated
secondary vehicles is available at each satellite l ∈ Vs to deliver the freight from
satellite l to the customers. Usually, at most ν2 <

∑
l∈Vs ν

2
l secondary vehicles

can be used. Each secondary vehicle has a capacity q2. Each customer j ∈ Vc
demands rj units of goods from the depot that cannot be split among different
secondary vehicles. Each satellite l ∈ Vs usually has a capacity wl that limits
the total customer demands that can be managed in the satellite. Moreover, a
handling cost hl for loading/unloading operations is sometimes paid for each
unit of freight managed in satellite l ∈ Vs.

The 2E-VRP is proved to be NP-hard via a reduction from the VRP
(see [50]), which is a special case of 2E-VRP arising when just one satellite
is considered. Finally, note that if an assignment of the customers to each
satellite is given, the 2E-VRP reduces to 1 + |Vs| VRPs, i.e., 1 for the first
echelon and |Vs| for the second echelon.

Figure 1.2 shows an example of a 2E-VRP feasible solution. The square
represents the depot, the pentagons are the satellites, and the circles are the
customers. The routes belonging to the first echelon are represented as dashed
lines, whereas the routes belonging to the second echelon are depicted as solid
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Solution Optimization
Reference Algorithm Model
Perboli et al. [50] Exact and Heuristic MILP
Crainic et al. [14] Heuristic
Perboli et al. [49] Exact
Crainic et al. [16] Heuristic
Hemmelmayr et al. [30] Heuristic
Crainic et al. [15] Heuristic
Jepsen et al. [34] Exact MILP
Baldacci et al. [3] Exact MILP

Table 1.4: A summary of the papers on the 2E-VRP.

lines.

1.2.2 Literature Review

A general overview of the main characteristics of the papers on the 2E-VRP
is reported in Table 1.4.

The 2E-VRP has been firstly formalized in Perboli et al. [50] where the au-
thors propose a MILP formulation along with two families of valid inequalities
and two matheuristics. The optimization model is inspired to the literature
on multi-commodity network design problems and uses the flow of freight on
each arc as main decision variable. The first family of valid inequalities is
derived from the subtour elimination constraints proposed for the TSP, while
the second family is based on the flow decision variables. The authors mention
that other cuts have been derived from the VRP literature in Perboli et al.
[49] but that, after performing some preliminary experiments, they verified
that the improvement after their introduction was quite marginal with respect
to the additional computational effort and, therefore, they decide to not con-
sider them. Matheuristics, sometimes also called math-based heuristics, are
optimization algorithms that combine elements of mathematical programming
with elements of metaheuristics. The matheuristics proposed in [50] are based
on information retrieved from the optimal solution of the linear relaxation of
the proposed model. Computational experiments are given for four sets of in-
stances: three sets are built from benchmark instances for the VRP, while the
fourth set is taken from Crainic et al. [17]. The authors also design the follow-
ing B&C algorithm to solve the 2E-VRP. The two matheuristics are applied
at the root node of the B&C tree only, and the best integer solution found is
the initial solution of the algorithm. Then, the proposed valid inequalities are
introduced when violated. As the authors found, in preliminary experiments,
that the effectiveness of the valid inequalities derived from the subtour elimi-
nation constraints involving more than 3 vertices is negligible, they do not use
a separation algorithm for them but adopt instead a direct inspection of the
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constraints up to cardinality equal to 3 to identify the violated inequalities.
The computational results show that the use of the proposed valid inequalities
often helps to improve the initial solutions, the lower bounds and computing
times.

Crainic et al. [14] introduce and compare two heuristics for the 2E-VRP
based on separating the first from the second level routing problems and ap-
plying an iterative procedure where the two resulting sub-problems are solved
sequentially. Particularly, the general idea of both heuristics is to solve the 2E-
VRP by means of a two-phase approach. In the first phase, a feasible solution
for the second level routing problem is computed giving a customers-to-satellite
assignment configuration. Subsequently, given that assignment configuration,
a feasible solution for the first level routing problem is computed. The first
level sub-problem is treated as a VRP in which each satellite is managed like a
customer whose demand is given by the sum of the demands of the customers
assigned to it. The feasible solution resulting from the first phase is possi-
bly improved in the second phase by some improvement procedures focusing
directly on the routes. The two heuristics proposed mainly differ in the ap-
proach used to tackle the second level routing problem in the first phase. The
first approach is based on the use of a clustering technique to decompose the
second level routing problem into a set of independent VRPs. The clustering
procedure assigns each customer to the nearest satellite on the basis of the
euclidean distance and considering the capacity restrictions, i.e., vehicle ca-
pacities and fleet size constraints. The resulting independent VRPs are solved
by means of the commercial solver ILOG Dispatcher. Given the second level
solution, a first level solution is computed consequently. An initial feasible
solution for the 2E-VRP is then obtained combining the solutions at the two
levels. A pseudo-greedy multi-start procedure is used to attempt to improve
the initial clustering solution. On the other hand, the second approach is based
on the idea of treating the second level routing problem as a MDVRP. Three
improvement procedures are presented for the second phase. Specifically:

• a split-large-route heuristic: it aims to avoid routes with excessively long
distances between two consecutive customers by increasing the number
of routes;

• an add heuristic: it moves one customer from its current route to another
route;

• an exchange heuristic: it swaps two customers within two different routes.

Computational results include a comparison of the performance of both
heuristics as well as an analysis of the impact of different customers-satellites
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distributions and satellite location patters on algorithmic efficiency and solu-
tion quality.

As mentioned above, Perboli et al. [49] propose several valid inequali-
ties derived from the VRP literature to strengthen the flow-based formulation
introduced in [50]. Additionally, the presence of the network flows in the math-
ematical formulation allows the authors to define some valid inequalities based
on the interaction between routing and arc activation variables. Other classes
of valid inequalities are derived from considering connectivity and feasibility
property of any feasible solution of routing problems. To validate the proposed
inequalities the authors implement a B&C.

The idea of separating the first and the second level routing problems is
also used in Crainic et al. [16] where a family of multi-start heuristics in which
the two sub-problems are sequentially solved is proposed. The main steps
of the heuristics are the following. The algorithms begin assigning each cus-
tomer to a satellite according to a distance-based greedy rule. Then, an initial
solution is computed by solving the resulting first and second level VRPs. Sub-
sequently, a local search algorithm based on changing one customer-to-satellite
assignment at a time is applied attempting to improve the initial solution. Fi-
nally, a multi-start procedure is run until a maximum number of iterations
has been performed in order to avoid being trapped in local optima. Gener-
ally speaking, given the best solution found, the multi-start strategy perturbs
the customer-to-satellite assignments according to some rules that take into
account the reassignment costs. If the new solution is infeasible, then a proce-
dure to recover the feasibility is applied. Conversely, if the solution is feasible
and promising, i.e., its value is better or within a given threshold from the
value of the best solution found, the aforementioned local search algorithm
is applied. The heuristics differ on the rule used to generate perturbed so-
lutions and on the strategies used to recover feasibility. The performance of
the proposed heuristics is compared with that of the matheuristics introduced
in [50] and validated using the lower bounds reported in [49]. Computational
results show that the tested heuristics are in general quite fast, and that the
best heuristic proposed improves some of the best results previously reported
in the literature.

Hemmelmayr et al. [30] present an ALNS algorithm for the 2E-VRP as well
as for the LRP. Indeed, the authors point out that the LRP can be seen as a
special case of the 2E-VRP in which the vehicle routing is performed only at the
second echelon. To model the LRP as a special case of the 2E-VRP the authors
suggest to introduce a dummy vertex representing the 2E-VRP depot. The set
of potential facilities in the LRP instance corresponds to the set of satellites
in a 2E-VRP instance. Then, the cost of each edge connecting the 2E-VRP
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depot with each satellite is set equal to the opening cost of the corresponding
potential facility in the LRP instance. The main difference of this special case
with respect to the standard 2E-VRP is that the first level consists only of
single customer routes. The main idea of the ALNS algorithm is to remove,
at each iteration, a subset of customers from the current solution by means of
a destroy operator and, then, re-insert the customers in other positions using
a repair operator. Each operator is associated with a score and is selected
randomly from a probability distribution function built on its past success.
In other words, an operator that has found several improving solutions has a
higher score than other operators, and thus a higher probability to be chosen.
The destroy operators proposed in the paper are divided into two classes: those
that change the configuration of the current solution by closing or opening a
satellite, and those that affect a more restricted area of the search space,
for instance removing a small number of customers and keeping the current
satellite configuration unchanged. The destroy operators of the first class are
used whenever a given number of iterations have been performed without any
improvement. Every time that one of these operators is used, a local search is
performed on the new solution. It is worth pointing out that the search is not
restricted to only the feasible solutions. Indeed, violations of the constraints
on the vehicle capacity, the number of vehicles available and the capacity
limits at the satellites are allowed. A weighted penalty term is included in
the objective function to consider those violations. Computational results are
given for three sets of instances for the 2E-VRP introduced in [50] and [17],
three sets of instances for the LRP tested in [53], [60] and [5], respectively,
and a new set of instances obtained adapting the LRP instances introduced
in [53] to the 2E-VRP. Computational results show that the proposed ALNS
heuristic improves several best-known solutions previously published in the
literature for the 2E-VRP, while competitive results are obtained for the LRP
instances.

Crainic et al. [15] propose a hybrid heuristic to solve the 2E-VRP that
combines a GRASP algorithm with a path relinking procedure. Similarly to
other approaches previously proposed by the same authors (see [14] and [16]),
the 2E-VRP is tackled decomposing it into two sub-problems. The hybrid al-
gorithm consists of four main phases: a GRASP is used to generate solutions
in the first phase; a feasibility search phase is applied if the solution is infea-
sible; a local search phase that aims at improving the solution and, finally, a
path relinking phase. Particularly, the algorithm begins computing an initial
customer-to-satellite assignment by means of the clustering heuristic presented
in [16]. The corresponding solution for the 2E-VRP is obtained solving the
resulting VRPs, given the customer-to-satellite assignment, by means of the
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hybrid heuristic proposed in Perboli et al. [48]. At each iteration, a new assign-
ment is computed by means of the GRASP procedure, and the corresponding
2E-VRP solution is evaluated. If the solution is infeasible a repair procedure,
referred to as feasibility search, is performed to recover the feasibility. Con-
versely, if the solution is feasible and promising (see reference [16] above), an
intensification step composed by a local search and a path relinking heuristic
is applied, otherwise it is discarded. Computational experiments are given for
a set of instances originally introduced in [17] that comprises 50 customers and
5 satellites. The performance of the GRASP heuristic with path relinking is
compared with the multi-start heuristic introduced in [16], the matheuristics
proposed in [50], and the B&C designed in [49]. The GRASP with path relink-
ing outperforms both the multi-start and the matheuristics, and finds slightly
sub-optimal solutions with considerable savings in terms of computing time
with respect to the B&C proposed in [49].

Jepsen et al. [34] show, by means of an example, that the optimization
model proposed in [50] for the 2E-VRP may not provide correct upper bounds
when more than two satellites are selected in the solution. Hence, the au-
thors introduced a new MILP formulation for the 2E-VRP that overcomes
the limitations of the formulation introduced in [50]. The mathematical for-
mulation is based on the observation that if the assignment of customers to
satellite is given, then the 2E-VRP can be decomposed into two sub-problems:
a Split Delivery Vehicle Routing Problem (SDVRP, see Archetti and Speranza
[2] for a survey) on the first echelon, and one VRP for each satellite that is
in use on the second echelon. Hence, in the proposed formulation, the rout-
ing in the first echelon is modeled as a SDVRP, whereas the modeling of the
second level routing is based on a one-commodity flow formulation for the MD-
VRP. However, the authors highlight that the proposed optimization model is
highly symmetric and its linear relaxation tends to provide poor lower bounds.
Therefore, they propose an alternative MILP formulation that turns out to be
a relaxation for the 2E-VRP but provides better lower bounds and eliminates
the symmetries. The new formulation is based on the relaxation for the SD-
VRP suggested by Belenguer et al. [7] in the first echelon, whereas a modified
version of the optimization model for the LRP introduced in Contardo et al.
[12] is used in the second echelon. Even if the proposed optimization model
has four sets of constraints of exponential size, the authors show that three
out of the four sets can be optimally separated in polynomial time and that
the constraints in the fourth set are NP-hard to separate. Additionally, since
the proposed relaxation provides lower bounds for the 2E-VRP but not neces-
sarily feasible solutions, the authors devise a feasibility test and a specialized
branching scheme to obtain feasible integer solutions. A B&C algorithm is
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Reference Solution Algorithm |Vs|max |Vc|max

Perboli et al. [50] B&C, Matheuristics 5 50
Crainic et al. [14] Two-Phase Heuristics 5 150
Perboli et al. [49] B&C 5 50
Crainic et al. [16] Multi-Start Heuristics 5 50
Hemmelmayr et.al. [30] ALNS 10 200
Crainic et al. [15] GRASP with Path Relinking 5 50
Jepsen et al. [34] B&C 5 50
Baldacci et al. [3] Problem Specific Exact Algorithm 6 100

Table 1.5: A summary of solution algorithms and maximum size instances in
each paper on the 2E-VRP.

developed to solve the 2E-VRP using the specialized branching rule. Compu-
tational experiments are given for the instances tested in [50]. The experiments
are conducted setting a computational time limit equal to 10,000 seconds. The
computational results show that the proposed B&C algorithm outperforms the
B&C tested in [50]. Indeed, the proposed exact method solves 47 instances
out of 93 to optimality within the time limit.

In a recent paper, Baldacci et al. [3] introduce a new mathematical for-
mulation for the 2E-VRP that is used to derive both continuous and integer
relaxations. The authors present a new bounding procedure based on dynamic
programming, a dual ascent method, and an exact algorithm that decomposes
the 2E-VRP into a limited set of MDVRPs with side constraints. Then, the
optimal solution for the 2E-VRP is obtained by solving the set of MDVRPs
generated. The proposed exact method consists of three main steps:

1. the set of first level routes is enumerated, and a lower and an upper
bounds on the 2E-VRP are computed by means of a bounding procedure;

2. the set of all possible subsets of first level routes that could be used in
any optimal 2E-VRP solution (denoted as P) is generated. Bounding
functions and dominance criteria are used to limit the size of set P ;

3. for each subset of first level routes M ∈ P a MDVRP with side con-
straints is obtained fixing to 1 all the binary variables related to the first
level routes in set M and, conversely, to 0 all those in M\M . The re-
sulting MDVRP with side constraints is solved by means of an extension
of the algorithm proposed in Baldacci and Mingozzi [4].

The exact algorithm is tested on 207 instances, taken both from the lit-
erature and newly generated, with up to 6 satellites and 100 customers. The
new exact algorithm solves to optimality 144 out of the 153 instances from
the literature and closed 97 of theme for the first time. The comparison with
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previous exact algorithms shows that they are outperformed by the new ex-
act method in terms of both size of the instances solved, number of problems
solved to optimality and computing times.

A summary of the solution methods proposed in each paper on the 2E-VRP
along with the maximum size instance solved is reported in Table 1.5.

1.3 The Truck and Trailer Routing Problem

In this section, we first provide a brief introductory description of the TTRP
and then review the most important papers tackling the problem.

1.3.1 Problem Description

In the TTRP a set of trucks and trucks pulling a trailer have to serve a set
of customers with the following restrictions. The set of customers is divided
into two subsets: one subset comprises the customers that have be served by a
truck alone (without any trailer), while the other subset includes the customers
that can be served either by a truck pulling a trailer or by a truck alone. The
rationale of separating the customer set is related to the presence of real-life
logistic constraints. Indeed, some customers might be located in inaccessible
areas for a truck pulling a trailer, but they can be reached by the truck alone.
Some examples are customers located in countryside, in mountain areas or in
city centers where it is often forbidden to drive large vehicles.

The TTRP aims at finding the optimal set of vehicles routes serving each
customer by a compatible vehicle, while minimizing the total routing cost,
respecting the capacity of the allocated vehicles and using a number of trucks
and trailers not greater than the number of vehicles available.

More formally, we assume the following definition of the TTRP. We consider
a weighted undirected graph G = (N,E), where N = {{0}

⋃
Vc} is the set of

vertices and E is the set of edges (i, j), i 6= j, connecting vertex i ∈ N with
vertex j ∈ N . The depot corresponds to vertex 0, whereas Vc = {1, 2, . . . , n} is
the customer set. A nonnegative traveling cost cij is associated with each edge
(i, j) ∈ E. A fleet of νK trucks and νL trailers, with νL ≤ νK , is available at the
depot to serve the customers. Each truck alone has a capacity qK , whereas the
capacity of each trailer is qL. Hence, a complete vehicle (i.e., a truck pulling
a trailer) has a capacity equal to qK + qL. In its essence, the trailer is used
as a “mobile depot” that increases the capacity of its truck. A known and
deterministic demand rj is associated with each customer j ∈ Vc. Customer
set Vc is partitioned as follows: set V K

c comprises those customers, referred to
as truck customers, that can only be served by the truck alone, while set V L

c
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contains those customers,called vehicle customers, that can be served by the
complete vehicle or by the truck alone. Three types of routes can be identified
in a feasible solution of the TTRP: pure truck routes, pure vehicle routes, and
complete vehicle routes. A pure truck route visits customers in V K

c and V L
c

by a truck alone. A pure vehicle routes visits customers in V L
c by a complete

vehicle and without any sub-tour. Finally, a complete vehicle route consists
of a main tour, starting and ending at the depot and traveled by a complete
vehicle, and one or more sub-tours, traveled by a truck alone. Each sub-tour
starts and ends at a vehicle customer location visited in the main tour where
the trailer is temporarily parked. Particularly, at a customer in V L

c visited in
the main tour the trailer is unhooked from the truck. Then, the truck alone
serves some customers in V K

c and returns to the customer where the trailer
is parked. The trailer is hooked to the truck that can continue its main tour.
For every route there might be a restriction on total route length. Finally, it
is usually allowed to transfer loads between a truck and its trailer but a cost
h per units of load moved is sometimes paid.

We point out that the nature of the TTRP is that of a two-echelon routing
problem since in a complete vehicle route the first level routing is represented
by the main tour traveled by the complete vehicle among the vehicle customers,
whereas the second level routing is represented by the sub-tours among truck
customers starting and ending at a vehicle customer location.

Depot
Truck customer
Vehicle customer
Complete vehicle
Truck only

Figure 1.3: An example of a TTRP feasible solution.
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Solution Optimization Specific
Reference Algorithm Model Characteristics
Chao [10] Heuristic
Scheuerer [56] Heuristic
Caramia and Guerriero [9] Heuristic
Lin et al. [38] Heuristic
Villegas et al. [62] Heuristic
Villegas et al. [63] Heuristic ILP
Lin et al. [39] Heuristic No Fleet Size Constraints
Villegas et al. [61] Heuristic ILP Single Vehicle, No Vehicle Customers,

Trailer Points
Lin et al. [40] Heuristic Hard Time Windows
Drexl [25] Exact and Heuristic MILP Trailer Points, Hard Time Windows,

Heterogeneous Fleet,
Fixed Cost for Vehicles

Derigs et al. [24] Heuristic Hard Time Windows,
With and Without Load Transfer

Table 1.6: A summary of the papers on the TTRP.

As the TTRP can be seen as an extension of the VRP, then the TTRP is an
NP-hard problem. Indeed, the TTRP reduces to the classical VRP if there are
only truck customers (see [10]), i.e., V L

c = ∅ and Vc = V K
c . Conversely, if only

vehicle customers are present, i.e., V K
c = ∅ and Vc = V L

c , the problem could
still be solved as a VRP (with an heterogeneous fleet of vehicles if νL < νK),
as there is no need for uncoupling the trailers (see [56]).

In Figure 1.3 an example of a TTRP feasible solution is depicted. The
square represents the depot, the octagons are the truck customers, and the
circles are the vehicle customers. The edges traveled by the complete vehicle
are represented as dashed lines, whereas those traveled by the truck alone are
represented as solid lines.

1.3.2 Literature Review

A general overview of the main characteristics of the papers on the TTRP is
reported in Table 1.6.

The TTRP has been formally introduced in Chao [10] where the author
also proposes the following heuristic to solve it. The algorithm consists of a
procedure computing an initial feasible solution for the TTRP followed by an
improvement phase based on a TS heuristic. The procedure computing the ini-
tial solution is composed of three steps: a relaxed generalized assignment step,
followed by a route construction step, and then a descent improvement step.
In the first step, the procedure allocates the customers to a route type solving
a relaxed generalized assignment problem. Its solution assigns one route type
(i.e., either pure truck, or pure vehicle, or complete vehicle routes) to each
customer, but allows the presence of infeasible configurations. The feasibility,
if needed, is recovered in the remaining steps in which a penalty function is
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used. In the second step, the three types of routes are treated as TSPs routes
that are constructed by means of a cheapest insertion heuristic. In the descent
improvement step, customers are moved from one route to another trying to
obtain a feasible solution from an infeasible one. The improvement phase is
based on a TS algorithm combined with a deviation concept from determinis-
tic annealing to improve upon the initial solution generated. Computational
results are given for 21 instances adapted from the VRP literature comprising
up to 17 trucks, 9 trailers and a total of 199 customers, partitioned in different
ways among truck customers and vehicle customers.

Scheuerer [56] designs two constructive heuristics and a TS algorithm to
solve the TTRP. The first constructive heuristic, called T-Cluster, is a cluster-
based sequential insertion procedure where routes are constructed one-by-one
up to full vehicle utilization. The second constructive heuristic, called T-
Sweep, is based on the classical sweep algorithm, i.e., feasible routes are con-
structed by rotating a ray centered at the depot and customers are gradually
added to the current route. The TS algorithm works as follows. The best
solution found by the T-Cluster heuristic is used as the initial solution for the
TS. A shifting penalty approach is incorporated into the TS to allow the visit
of intermediate infeasible solutions during the search (e.g., solutions where one
or more vehicle capacity constraints are violated). At each iteration, random
sampling is used to reduce the number of moves to evaluate. Furthermore,
to intensify the search in promising regions of the solution space, every time
that the TS performs a certain number of iterations without improvements,
the search is restarted from the current best solution. Computational results
for the 21 instances introduced in [10] show that the TS proposed in [56] out-
performs the algorithm designed by Chao [10]. The author also reports some
sensitivity analysis of the TS algorithm changing different parameter settings.

Caramia and Guerriero [9] propose an approach based on the solution of
two mathematical formulations and a local search procedure. The two formu-
lations, solved sequentially, model two different sub-problems: the Customer-
route Assignment Problem (CAP) and the Route Definition Problem (RDP).
The goal of the CAP is to minimize the number of vehicles used to serve the cus-
tomers, whereas the RDP aims at minimizing the total route length given the
set of customers assigned to each vehicle in the CAP. Since the solution of the
CAP can return infeasible solutions, a local search procedure is implemented
in order to recover feasibility. The mathematical formulations and the local
search work iteratively, embedded into a multiple restarting mechanism able
to diversify the search. Differently from previous approaches, and in particu-
lar from Chao [10], the CAP is not followed by a route construction heuristic;
rather they use RDP to accomplish such a task. The heuristic is tested on
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the set of instances introduced in Chao [10]. The computations results show
that this approach is competitive with the previous methods available in the
literature and produces, on average, a smaller total tour length.

A SA algorithm to solve the TTRP is introduced in Lin et al. [38]. The
authors propose a standard SA procedure with a random neighborhood struc-
ture that features three types of moves, namely insertion, swap, and change of
vehicle type used for the vehicle customers (e.g., change from the truck alone
to the complete vehicle). Computational results are given for the 21 instances
introduced in [10] and show the effectiveness of the proposed solution algo-
rithm. Indeed, the SA found 11 new best solutions with respect to the results
reported in [10] and in [56].

Villegas et al. [62] propose a route-first, cluster-second procedure embedded
within a hybrid metaheuristic based on GRASP, VNS (hybrid GRASP/VNS,
hereafter) and path relinking to solve the standard TTRP. The VNS com-
ponent plays the role of an improving mechanism for feasible solutions, and
of a repairing operator for infeasible solutions since, during the search, the
hybrid algorithm is allowed to explore infeasible solutions. The authors ex-
plore different hybridization alternatives for the path relinking component.
Specifically, path relinking is tested as a post-optimization procedure, as an
intensification mechanism, and within evolutionary path relinking. Compu-
tational experiments are given for the 21 instances introduced in [10] and
show that the proposed hybrid GRASP/VNS with evolutionary path relink-
ing performs better than previously published heuristics for the TTRP. The
computational results also show that the GRASP/VNS with path relinking
used as a post-optimization mechanism is, on average, significantly faster than
the GRASP/VNS with evolutionary path relinking achieving slightly worse
solutions.

The same authors propose in [63] a matheuristic to solve the standard
TTRP. Particularly, the authors combine a set partitioning formulation for
the TTRP with a hybrid metaheuristic. The resulting matheuristic follows
an iterative two-phase approach. In the first phase, a GRASP algorithm is
used to populate a pool of routes with a subset of all possible routes, and
an ILS procedure is used to improve the quality of the routes found. Then,
in the second phase, the set partitioning formulation is solved on the subset
of routes previously identified to obtain a feasible solution. Two variants are
proposed: the first variant considers a large pool of routes, while the second
one contemplates a small pool of routes. The matheuristic is tested on the
benchmarks instances proposed by Chao [10] and those originally proposed for
the RTTRP by Lin et al. [39] (see below for the details) including the data
about the available fleet size. The first variant finds, slightly worse solutions
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than the best-known ones (the average error is 0.22 %) with computing times
that are comparable to the previous methods. The second variant spends
one third of the running time taken by the large variant and finds solutions
with an average gap which is smaller than 0.5% compared to the best-known
solutions in the literature. Finally, a set of computational experiments tested
on instances for the RTTRP shows that this method outperforms the algorithm
introduced in [39] both in terms of solutions quality and computing times.

A relaxation of the TTRP is studied in Lin et al. [39]. The authors begin
their study pointing out that in the standard TTRP there are limitations on
the number of trucks and trailers available at the depot and that no fixed
costs are associated with the use of those vehicles. Thus, their study aims at
determining if it is possible to construct better routes by utilizing more ve-
hicles than those available or allowing that a vehicle takes on multiple trips.
A second goal of their research is that of determining a better fleet mix in
terms of optimal number of trucks and optimal number of trailers. To these
aims, they relax the fleet size constraint in the TTRP and call the resulting
problem the Relaxed TTRP (RTTRP). A SA is developed to solve the RT-
TRP. To evaluate the impact of relaxing the fleet size constraint, the authors
compare the heuristic solutions found by their SA for the RTTRP with the
best-known solutions for the TTRP available in the literature for the 21 in-
stances introduced in Chao [10]. The authors highlight that, for this set of
instances, the objective function value of an RTTRP solution found by the
SA is, on average, 1.33% smaller than the value of the best-known solution to
the TTRP. Computational experiments are also given for 36 further instances
generated by the authors converting benchmark instances taken from the VRP
literature. For this second set of instances, the RTTRP solutions obtained by
the proposed SA heuristic are compared with the TTRP solutions obtained
running the SA heuristic described in Lin et al. [38]. For this second set of
instances, the value of a feasible solution for the RTTRP is, on average, 5%
smaller than the value of a feasible solution for the TTRP. More importantly,
the authors highlight that for most test problems the number of trucks used in
a RTTRP solution is less than or equal to that selected in the corresponding
TTRP solution. Conversely, the number of trailers selected in a RTTRP solu-
tion is larger than or equal to that used in the corresponding TTRP solution.
Consequently, in RTTRP solutions, the ratio trailer/truck is usually closer to
one than in TTRP solutions, which the authors claim to be more consistent
with the common practice in the truckload industry.

A variant of the TTRP that deserve particular notice is the Single TTRP
with Satellites Depots (STTRPSD) introduced in Villegas et al. [61]. Instead
of considering a fleet of vehicles as in the TTRP, in the STTRPSD only one
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complete vehicle is available to serve the set of customers. Additionally, there
are only customers to be served only by the truck alone, i.e., Vc = V K

c . A set
of trailer points (sometimes also called parking locations or satellite depots)
is available, where it is possible to unhook the trailer and transfer loads be-
tween the truck and the trailer. The STTRSD differs from the TTRP since the
trailer points do not correspond to customer locations. The authors mention
that the STTRPSD reduces to the MDVRP when all distances between park-
ing locations are null. The authors mention that, among others applications,
milk collection can be modeled as a STTRPSD. Indeed, in milk collection cus-
tomers (i.e., farms) are usually visited by a single tanker with a removable
tank trailer. Trailer points are in general parking locations located on main
roads, whereas farms are often located in areas that can be reached only driv-
ing on narrow streets that are inaccessible for the vehicle with the trailer. The
authors point out that farms are usually clustered based on their geographical
location, and each cluster is then assigned to one vehicle. In the STTRPSD
the following two levels of routing are involved. The first level route is per-
formed by the complete vehicle, it starts and ends at the depot and links the
selected trailer points. Each second level route starts and ends at one selected
trailer point, and is performed by the truck alone that visits the subset of
customers assigned. Thus, the total load in a second level route must not
exceed the truck capacity. The authors propose an ILP formulation and two
metaheuristics for the STTRPSD. The two metaheuristics are a GRASP al-
gorithm hybridized with a VND procedure (hybrid GRASP/VND hereafter)
and a multi-start evolutionary local search, respectively. Both methods are
tested on 32 randomly generated instances comprising up to 200 customers
and 20 trailer points. The computational experiments show that the multi-
start evolutionary local search is more accurate, faster, and scales better as
the number of customers increases than the hybrid GRASP/VND algorithm.
To provide some further insights on the overall performance of the multi-start
evolutionary local search, the authors perform computational experiments on
some benchmark instances for the MDVRP. The computational results show
that the multi-start evolutionary local search is competitive with respect to
state-of-the-art heuristics for the MDVRP.

The TTRP with Time Windows (TTRPTW) is introduced in Lin et al.
[40]. Drawing on the SA algorithm proposed in [38] for the TTRP, the authors
design a SA heuristic to solve the TTRPTW that can also be used to tackle the
VRP with Time Window (VRPTW). Two sets of computational experiments
are performed. In the first set, some benchmark instances for the VRPTW are
solved with the proposed SA heuristic to validate its effectiveness in comparison
with the best-known solutions available in the literature. In the second set of
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Reference Solution Algorithm |V K
c |max |V L

c |max

Chao [10] TS 49 150
99 100
149 50

Scheuerer [56] Constructive Heuristics, TS Inst. in [10]
Caramia and Guerriero [9] Matheuristic with Local Search Inst. in [10]
Lin et al. [38] SA Inst. in [10]
Villegas et al. [62] Hybrid GRASP/VNS with Inst. in [10]

(Evolutionary) Path Relinking
Villegas et al. [63] Matheuristic with GRASP and ILS Inst. in [10] and [39]
Lin et al. [39] SA 37 113

75 75
113 37

Villegas et al. [61] Hybrid GRASP/VND, 200 0
Multi-Start Evolutionary Local Search

Lin et al. [40] SA 50 150
100 100
150 50

Drexl [25] Branch and Price, Heuristic Variants Inst. in [10]
Derigs et al. [24] Hybrid Local Search and Inst. in [10] and [40]

Large Neighborhood Search

Table 1.7: A summary of solution algorithms and maximum size instances in
each paper on the TTRP.

experiments, some benchmark instances for the VRPTW are used to generate
54 instances for the TTRPTW that are solved with the proposed SA approach.

Drexl [25] introduces the Generalized TTRP (GTTRP) as a generalization
of the TTRP in the following senses. Trailers can be parked and loads can
be transferred between truck and trailer at vehicle customers locations, as in
the TTRP, but also at trailer points, as in the STTRPSD. Additionally, in the
GTTRP fixed costs for using the vehicles are considered, all customers and
trailer points have hard time windows associated with them, and the fleet is
composed of heterogeneous vehicles. The author propose a MILP formulation
for the GTTRP based on binary arc-flow variables, and design a Branch and
Price algorithm, based on a path-flow reformulation of the MILP model, as well
as some heuristic variants of the exact algorithm. Computational experiments
are given for randomly generated instances structured to resemble real-world
situations (the motivating application is also here milk collection) and on the
benchmark instances for the TTRP introduced in [10]. The computational
results show that the instances of realistic structure and size can be solved
in short computing times with high solution quality with a heuristic column
generation approach. Conversely, the results on the benchmark instances for
the TTRP are not so successful.

Derigs et al. [24] study the following two variants of the TTRP: the
TTRPTW (also studied in [40] described above), and the TTRP with and
without the option of load transfer between the truck and the trailer. The
authors present a hybrid algorithm which combines local search and large



CHAPTER 1. LITERATURE REVIEW 28

neighborhood search moves guided by two simple metaheuristic control strate-
gies. The authors claim that the approach is quite flexible and that it can
be applied to different variants of the TTRP after small modifications. Com-
putational results are given for the standard TTRP solving the benchmark
instances introduced in [10] along with a comparison of the performance of the
proposed heuristic with the hybrid heuristic designed in [62]. Further computa-
tional experiments are provided on the benchmark instances for the TTRPTW
introduced in [40]. Finally, computational results are also given for the two
variants of the standard TTRP and the TTRPTW where load transfers are not
allowed. The computational results show that the method proposed is com-
petitive with other heuristics previously proposed for the TTRP, whereas it
outperforms the previous methods when time windows are taken into consider-
ation. Finally, the authors claim that the benchmark instances for the TTRP
available in the literature are not exploiting the complexity of the problem be-
cause they do not consider costs and consumption of time in several situation.
For instance, no costs are considered to transfer loads between the truck and
the trailer, and also to hook and unhook the trailer en-route. Additionally,
the authors claim that the benchmark instances for the TTRPTW available in
the literature, which have been constructed from benchmark instances for the
VRPTW by clustering the customers into the two classes of truck and vehicle
customers, are not appropriate since some instances do not offer the oppor-
tunity to perform sub-tours, therefore being almost equivalent to VRPTW
instances.

A summary of the solution methods proposed in each paper on the TTRP
along with the maximum size instance solved is reported in Table 1.7.



Chapter 2

The Single Vehicle 2E-LRP

2.1 Introduction.

One of the most important and natural applications of the multi-echelon trans-
portation system is intermodal transportation. It can be defined as a chain
made up of several coordinated transportation modes that interact in inter-
modal terminals in order to ensure the delivery of freight from the origin to the
final destinations. Distances play an important role as the longer the distance,
the more likely an intermodal transport chain will be used. Distances over 500
km (longer than one day of trucking) usually require intermodal transporta-
tion, see [54]. This is usually suitable for intermediate and finished goods in
load units of less than 25 tons. The most common intermodal transportation
units are represented by containers, large metal boxes of standard dimensions
and measured in twenty-foot equivalent units. In this way, the freight, cram
in the containers, moves from mode to mode without reloading the shipper
container.

There are five basic modes of transportation service: ship, barge rail, truck,
air and pipeline. It is well known that the most expensive mode is air transport,
whereas the ship represents the cheapest mode when long distance are involved
(more than 750 Km). There is, in fact, a strict relationship between transport
costs, distance and the mode of transportation chosen. Road transport is, usu-
ally, convenient when short distances are involved (until 500 Km) whereas the
railway is convenient when average distances (between 500 and 750 Km) are in-
volved. The basic modes can generate several combinations of transportation.
For example air-truck transportation, rail-truck transportation and ship-truck
transportation. It is important to underline that the intermodal transporta-
tion has a considerable importance both in Italy and Europe, as a tool capable
to balance the percentage of freights transported by the different modes. In

29
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fact, the development of the intermodality allows to relieve congestion in the
traffic areas, and consequently relieve pollution, improve the service transport
quality and, at the same time, improve the competitiveness of the underdevel-
oped areas. In Europe rail intermodal services are becoming well-established
among the major ports, such as Rotterdam, southern Germany, and between
Hamburg and Eastern Europe, see [54]. The limits of intermodality are rep-
resented by factors of space, time, form, pattern of the network, the number
of nodes and linkages, and the type and characteristics of the vehicles and
terminals. Italy, for its natural geographic configuration, facilitates the use
of this kind of transportation, even for the national north-south transporta-
tion. Despite this, the ship-truck combination is available only on about thirty
seaports on a total of one hundred and thirty seaports active in Italy. The sea-
port terminals play the role of exchange hubs where containers are moved from
ships to trucks. The location of sites where the modal exchange takes place is
another important element when evaluating the competitiveness of intermodal
transport.

In this context Infante et al. [31] proposed a heuristic algorithm to tackle
the ship-truck Intermodal Transportation Problem (ITP ). Their study deals
with the selection of seaport terminals where containers move to/from the
hinterland by truck; the origin/destination points in the hinterland are special
logistic centers (for example, distribution centers or manufacturing/assembly
plants) located in different places. Specifically, their ship-truck ITP can be
described as follows: a ship starts from the initial seaport terminal carrying
containers that must be delivered to certain logistic centers. The ship then
arrives at some intermediate seaport terminals where it unloads the containers
that have to be transported by truck to the logistic centers, and loads contain-
ers coming from the logistics centers, directed to the initial seaport terminal, to
which the ship returns at the end of its tour. The objective is to minimize the
total cost of transportation. The following factors are known to the transport
operators: the initial seaport terminal, the set of intermediate seaport termi-
nals, the set of logistic centers, the number of containers to deliver/pickup
at each logistic center, the transport costs between seaport terminals (inde-
pendent of the number of containers transported by the ship), and the cost
for moving one container from/to each intermediate seaport terminal to/from
each logistic center.

In the following we will analyze and study a similar problem, different only
in some aspects compared to the one proposed in [31]. Originally our problem
was conceived as an intermodal problem, then after analyzing thoroughly the
structure we decided to present it as a particular version of 2E-LRP, called
The Single Vehicle 2E-LRP. In the first version we considered the distribution
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of freight using the ship-truck combination mode. It can be described in the
following way. Given a primary seaport, where the freight is available, a set
of intermediate seaports to be located and a set of customers with a known
demand, the freight has to be delivered to the customers passing through the
intermediate seaports. In particular, a ship, where the freight is loaded at
the primary seaport, has to perform a tour among the selected intermediate
seaports (first echelon) and a set of trucks (one for each selected seaports)
has to deliver the freight to the customers (second echelon). Every customer
has to be served by one vehicle that starts and ends its route at the same
intermediate seaport. The goal of the problem is to select a subset of seaports
through which the freight is delivered, minimizing the total cost given by the
fixed costs associated with the selection of each intermediate seaport and the
total routing costs. In the next section we present the problem in its definitive
version contextualizing it in the 2E-LRPs area.

2.2 Description and Mathematical Formulations

In the following we introduce the basilar assumptions necessary to define and
describe the problem in the 2E-LRP contest.

2.2.1 Problem Introduction

The principal components involved in our problem are a depot, a set of satellites
and a set of customers. They interact among themselves by means of an
uncapacitated vehicle performing deliveries in the first echelon, and by means
of a set of smaller vehicles performing deliveries in the second echelon.

1. Depot or primary facility : large capacitated facility generally located
far from the customers. At this facility the freight is loaded on a large
uncapacitated vehicle which performs the distribution among satellites
and then returns to the depot. The vehicle performs only one tour,
therefore it does not travel back to the depot before having served all
the satellites. In the ship-truck intermodal application aforementioned
the depot is represented by the primary seaport.

2. Satellites or secondary facilities : small facilities, closer to the customers
compared to the depot, used to tranship or consolidate the freight. At
each secondary facility a small capacitated vehicle is available. Each ve-
hicle performs a tour among a subset of customers, delivers the freight
and travels back to the satellite. In the aforementioned ship-truck inter-
modal application the satellites correspond to the intermediate seaport.
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3. Customers : end-points of the distribution, usually located in inaccessible
places for big vehicles (for example city centers, country sides, mountains
and so on). Each customer is served by only one vehicle belonging to the
second echelon.

In this work we do not consider other parameters, constraints and rela-
tionships that could be considered in a two-echelon distribution system. In
the following we provide a list of possible features characterizing a two-echelon
distribution system:

• freight typology. The freight flow could be constituted by a heteroge-
neous type of goods;

• time constraints. Two types of time constraints could be considered:
classical time windows constraints involving satellites and customers, and
synchronization constraints requiring the synchronization between fleets
of first and second echelon;

• time dependency. A distribution system could consider single period
(static problem) or multi-period horizon (dynamic problem);

• data uncertainty. In some case part of input data could not be deter-
ministic, but stochastic.

In this thesis we consider a problem with:

- a freight constituted by a single commodity, required in deterministic quan-
tity by customers, in a single planning period;

- a central depot where the freight is available and from which it cannot be
delivered directly to the customers. In particular, the first echelon route
starts at the central depot, pass through the open satellites and returns
to the starting point. The second echelon routes start from an open
satellite, pass through a subset of customers and return to the satellite;

- a set of customers that have to be served by secondary vehicles belonging to
open satellites;

- vehicles belonging to the second echelon with different capacities, larger than
the demand of each customer;

- no time windows and synchronization constraints.

Thus, in the problem one can take the following decisions:
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• location decisions: define number and location of satellites;

• allocation decision: assign each customer to an open satellite;

• routing decisions.

2.2.2 Problem Settings

The Single Vehicle 2E-LRP can be stated as follows. A central depot, 0, a
set P = {1, 2, . . . ,m} of m intermediate satellites, and a set J = {m+ 1,m+
2, . . . ,m+n} of n customers are given. A vehicle with capacity wp is available
at each satellite p ∈ P , and each customer j ∈ J requires a quantity qj of
goods, that is available at central depot 0. A vehicle, with a capacity w1 large
enough to transport the total demand of goods required by the customers, is
available at the central depot 0. This vehicle starts from the central depot,
stops at some intermediate satellite where a quantity of goods is unloaded to
be transported by smaller vehicles to the customers, and then returns to the
central depot. Each customer is served only by one satellite and each secondary
vehicle starts from a selected satellite, visits the customers to which it must
deliver the goods, and ends its route at the starting satellite. The objective is
to minimize the total cost.

Figure 2.1: Scheme of the problem.

A general scheme of the problem is illustrated in the Figure 2.1. The blue
rhombus represents the central depot, the white squares represent the satellites
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and the red circles represent the customers. The first echelon, i.e. the primary
tour, is marked with the dashed arrows, whereas the second echelon (routes
connecting customers and satellites) is depicted with solid line. As shown in
the figure, a single second echelon route starts from every open satellite. The
open satellites are included both in the first and second echelons, whereas the
closed satellites are included neither in the first nor in second echelon.

2.2.3 Flow Based Formulation

In the following an integer programming formulation inspired by the one pro-
posed in [50] for the 2E-VRP is presented. The problem is represented on a
graph G = (V,A), where V = {0} ∪ P ∪ J is the set of nodes (central depot,
satellites and customers) and A = {(i, j) : i and j ∈ V } is the set of arcs.
Fp is the fixed cost to open the satellite p ∈ P , and cij represents the travel
cost between the nodes i ∈ V and j ∈ V . It is assumed that cji = cij, ∀ j
and i ∈ V , and cjj = 0, j ∈ V and that the triangular inequality holds. Let
yp be the binary variable taking value 1 if satellite p is open, 0 otherwise. Let
zij be the binary variable taking value 1 if the uncapacitated vehicle uses arc
(i, j) belonging to the first echelon, 0 otherwise. Let xpij be the binary variable
taking value 1 if vehicle p uses arc (i, j) belonging to the second echelon, 0 oth-
erwise. Let vpj be the binary variable taking value 1 if customer j is assigned
to satellite p, 0 otherwise.

We define the flow of freight passing through each satellite p:
Qp =

∑
j∈J qjvpj.

Let Q1
ij and Q2

ijp be the flow of freight passing through arc (i, j) belonging to
the first echelon and the flow of freight passing through arc (i, j) and satellite p
belonging to the second echelon respectively. These quantities are constrained
to be not negative.

This formulation will be referred as flow based formulation because it is
based on the flow of freight passing through each selected arc.

The problem can be formulated as follows:

Min
∑

i∈P∪{0}

∑
j∈P∪{0},i 6=j

cijzij +
∑
p∈P

∑
i∈J∪{p}

∑
j∈J∪{p},i 6=j

cijx
p
ij +

∑
p∈P

Fpyp (2.1)

y0 = 1 (2.2)

∑
p∈P\{0}

z0p = 1 (2.3)
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∑
j∈P\{i}

zij =
∑

j∈P\{i}

zji ∀i ∈ P (2.4)

∑
j∈P

zpj = yp ∀p ∈ P (2.5)

∑
j∈P

zjp = yp ∀p ∈ P (2.6)

∑
j∈J

xppj = yp ∀p ∈ P \ {0} (2.7)

∑
j∈J

xpjp = yp ∀p ∈ P \ {0} (2.8)

∑
j∈J

xppj =
∑
j∈J

xpjp ∀p ∈ P (2.9)

∑
i∈P\{j}

Q1
ij −

∑
i∈P\{j}

Q1
ji =

{
Qj if j is not the depot,∑

i∈J −qi otherwise
∀j ∈ P (2.10)

Q1
ij ≤ w1zij ∀i, j ∈ P, i 6= j (2.11)

∑
i∈J∪{p},i 6=j

Q2
ijp −

∑
i∈J∪P

Q2
jip =

{
vpjqj if j is not a satellite,

−Qj otherwise
∀j ∈ P ∪ J

(2.12)

Q2
ijp ≤ wpx

p
ij ∀i, j ∈ P, i 6= j (2.13)

∑
i∈P

Q1
i0 = 0 (2.14)

∑
j∈J

Q2
jpp = 0 ∀p ∈ P (2.15)

xpij ≤ vpj ∀i ∈ P ∪ J,∀j ∈ J,∀p ∈ P (2.16)

xpji ≤ vpj ∀i ∈ P ∪ J,∀j ∈ J,∀p ∈ P (2.17)
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∑
i∈P∪J

xpij = vpj ∀p ∈ P, ∀j ∈ J (2.18)

∑
i∈P∪J

xpji = vpj ∀p ∈ P, ∀j ∈ J (2.19)

∑
p∈P

vpj = 1 ∀j ∈ J (2.20)

xppj ≤ yp ∀p ∈ P, ∀j ∈ J (2.21)

xpij ∈ {0, 1} ∀(i, j) ∈ A ∀p ∈ P (2.22)

zij ∈ {0, 1} ∀(i, j) ∈ A (2.23)

yp ∈ {0, 1} ∀p ∈ P ∪ {0} (2.24)

Q1
ij ≥ 0 ∀(i, j) ∈ A (2.25)

Q2
ijp ≥ 0 ∀(i, j) ∈ A, ∀p ∈ P (2.26)

The objective function comprises three terms, the first one represents the
length of the first echelon trip, the second one the total length traveled by the
vehicles belonging to the second echelon and the third one is the sum of the
fixed costs of opening the satellites. Constraints (2.2) assures that the central
depot is always open. Constraints (2.3) assures that only one vehicle starts a
tour from the central depot. Constraints (2.4) with (2.5) and (2.6) guarantee
that, in the first echelon, exactly one arc enters and one arc exits for each
node associated with open satellite. Constraints (2.7), (2.8), and (2.9) are the
corresponding constraints for the second echelon. Constraints (2.10) and (2.12)
indicate that the flow balance for each node corresponds to the demand of the
node, with exception for the central depot in the first echelon (in which the flow
balance is equal to the total demand of the customers) and for the satellites in
the second echelon (where the balance flow of each satellite is equal to the total
demand of the customers assigned to this satellite). As Perboli et al. explain
in [50], these constraints forbid also the presence of subtours. Constraints
(2.11) and (2.13) are capacity constraints. Constraints (2.14) guarantee that
the entering flow in the central depot is equal to zero, as well as the constraints
(2.15) guarantee that, in the second echelon, the entering flow in each open
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satellite is zero. Constraints (2.16) and (2.17) state that for a generic customer
j the entering arc in node j and the exiting arc from j belong to an open
satellite. Constraints (2.18) and (2.19) are degree constraints on the customer
nodes. Constraints (2.20) assure that each customer can be served only by
one satellite. Constraints (2.21) state that the generic second echelon arc can
assume value 1 only if the respective satellite is open. Finally, (2.22)-(2.26)
specify the domains of the variables.

The flow based formulation can be used to solve both symmetric and asym-
metric problems. It requires a large number of variables, but a smaller number
of constraints compared to the formulation containing Sub-tour Elimination
Constraints (SECs).

Flow Constraints
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Allowed configuration (a) Forbidden configuration (b)

customer

satellite

Figure 2.2: Allowed and forbidden configurations for the flow based formula-
tion.

In Figure 2.2 an example of a feasible configuration (a) and an example of
an infeasible configuration (b) for a vehicle tour are depicted. In both config-
urations the capacities of the vehicles are equal to 15, the amount of freight
required by each satellite is given in the squares, the binary variables corre-
sponding to the arcs shown all take value 1 and the amount of freight passing
through each arc is reported on the side of the arc. As the constraints (2.12)
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impose, for each customer the difference between the entering flow of freight
and the exit flow is equal to the customer demand. Configurations of type
(b), in which sub-tours can be present, are prevented by the flow constraints
combined with the constraints (2.15) which impose that the entering flow of
freight in each satellite has to be equal to zero (whereas in the configuration
(b) is 5).

2.2.4 Symmetric Formulation

We present a second model, which is defined on an undirected graph and will
be referred to as the symmetric model. This formulation is similar to the
one presented in Belenguer et al. [6] for the Capacitated Location Routing
Problem.

Let G = (V,E) be an undirected graph, where V = {0} ∪P ∪ J represents
the set of nodes and E represents the set of edges. E ′ = {(i, j) ∈ E, i, j ∈
{0} ∪ P} is a subset of E referring to the edges belonging to the first echelon,
whereas the subset E\E ′ represents the edges belonging to the second echelon.
δ(i) refers to the edges with one endpoint in the generic node i, E ′(U) and
E \E ′(U) are the subsets of edges with both endpoints in the subset of nodes
U and belonging to set E ′ and set E \ E ′(U) respectively. As in the previous
model, qj and wp denote the demand of the customer j and the capacity of the
satellites p, and yp represents the binary variable associated with the use of
satellite p. yp in this case is not a proper variable because it can be obtained
in the following way:

2yp = 2z̄0p + z(δ(p)) ∀p ∈ P \ {0};
2yp = 2x̄p(δ(p)) + xp(δ(p)) ∀p ∈ P ;
We also define the following variables:
zij = 1 iff the uncapacitated vehicle uses edge (i, j) ∈ E ′ only once;
z̄0j = 1 iff the uncapacitated vehicle uses edge (0, j) ∈ E ′ twice;
xpij = 1 iff the vehicle p (i.e. located at satellite p) uses the edge (i, j)i, j ∈

E \ E ′ once;
x̄ppj = 1 iff the vehicle uses edge (p, j)p ∈ P , j ∈ J twice;

Thus, the problem can be formulated as follows:

Min
∑

(i,j)∈E′
cijzij + 2

∑
j∈P

c0j z̄0j +
∑
p∈P

∑
(i,j)∈E\E′

cijx
p
ij + 2

∑
p∈P

∑
j∈J

cpjx̄
p
pj +

∑
p∈P

Fpyp

(2.27)

y0 = 1 (2.28)
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2z̄0j + z(δ(j)) = 2yj ∀j ∈ P \ {0} (2.29)

z(E ′(U)) ≤ |U | − 1 ∀U ⊂ P \ {0} 3 ≤ |U | ≤ |P | − 1 (2.30)

∑
p∈P

(2x̄ppj + xp(δ(j))) = 2 ∀j ∈ J (2.31)

∑
p∈P

(x̄ppj + xppj) ≤ 1 ∀j ∈ J (2.32)

∑
p∈I1

xpjk +
∑
p∈I2

xpkl ≤ 1 ∀j, k, l ∈ J ∀I1 ⊂ P, I2 = P \ I1 (2.33)

xp(E \ E ′(U)) ≤ |U | − 1 ∀U ⊂ J : q(U) ≤ wp, ∀p ∈ P (2.34)

2x̄p(δ(p)) + x(δ(p)) = 2yp ∀p ∈ P (2.35)

∑
j∈J

qjx
p
pj +

∑
i∈J

∑
j∈J

qjx
p
ij ≤ wp ∀p ∈ P (2.36)

z̄ij ∈ {0, 1} ∀(i, j) ∈ E (2.37)

zij ∈ {0, 1} ∀(i, j) ∈ E (2.38)

x̄pij ∈ {0, 1} ∀(i, j) ∈ E ∀p ∈ P (2.39)

xpij ∈ {0, 1} ∀(i, j) ∈ E ∀p ∈ P (2.40)

yp ∈ {0, 1} ∀p ∈ P ∪ {0} (2.41)

The objective function represents the total cost which is defined like in the
previous formulation as the sum of routing costs and fixed opening costs. As
in the previous formulation, constraint (2.28) imposes that the central depot
is open. Constraints (2.29) concern the first echelon and impose, for each
node representing a satellite, that the degree is equal to 2 if the satellite j
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is selected, 0 otherwise. Constraints (2.30) are the SECs for the first eche-
lon. Constraints (2.31) are the degree constraints for the node representing
the customers, whereas constraints (2.32) force each customer to use either
one variable x̄ppj or one variable xppj, and oblige each customer to be served at
maximum by one satellite. Constraints (2.33) serve to prevent that a node,
belonging to the set of the customers, is included in the routes of two different
satellites. It is important to notice that this number of constraints is expo-
nential. Constraints (2.34) are the SECs for the second echelon. Constraints
(2.35) concern the second echelon and are degree constraints for the nodes rep-
resenting the selected satellites. Constraints (2.36) are capacity constraints.
Constraints (2.37)-(2.41) specify the domains of the variables.

The symmetric formulation is very flexible and can be extended easily to
take into account other possible feature of the problem, as time windows,
maximum length constraints and so on. On the other hand it is difficult to
solve because involves a large number of constraints and variables.

Exponential Constraints

In this formulation three sets of exponential constraints are used:

1. the SECs on the first echelon (2.30);

2. the SECs on the second echelon (2.34);

3. the constraints used to prevent the formation of tours starting from a
satellite and ending to another one (2.33).

The SECs on the first echelon (2.30) are inserted into the formulation in
the classic way, imposing that for each subset of satellites U ∈ P the number of
edges with both endpoints in U must be less than or equal to the cardinality of
U minus 1. The SECs on the second echelon (2.34) are structured in a slightly
different way. We do not know in advance the number of customers assigned
to each satellite and consequently we do not know the maximum cardinality of
U for which we have to implement the SECs constraints. In order to remedy to
this problem we consider all the possible subsets U with cardinality comprised
between 2 and |J |. The most important feature is the fact that we consider
only the edges connecting the customers, excluding the edges connecting the
satellites with the customers. In Figure 2.3 a feasible configuration containing
only one tour (c), and an infeasible configuration (d) containing two sub-
tours are depicted. In (c), the tour visits a satellite and four customers. The
number of edges connecting only the customers among themselves is equal to
three. For each subset U of customers the SECs inequalities are verified. For
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Figure 2.3: Allowed and forbidden configurations with SECs for the symmetric
formulation.

instance when U = {1, 2, 3, 4} the following inequality holds: 3 =
∑

(i,j)∈J x
p
ij ≤

|U | − 1 = 3. In (d) an example of an infeasible solution is depicted. This
solution is infeasible because there are two sub-tours: (p−1−5) and (2−3−4).
Let us consider the sub-tour of length 3. If we take U = {2, 3, 4} we can verify
that the number of edges connecting the customers among themselves is equal
to three, as well as the cardinality of U . Consequently the sub-tour constraint∑

(i,j)∈J x
p
ij ≤ |U | − 1 is violated for a such U , in fact we have 3 ≤ 2.

The use of SECs avoid the presence of sub-tours, but we have to consider
another set of constraints (2.33) in order to avoid the presence of tours starting
from a satellite and ending to another one. In figure 2.4 an example of tour
including two satellites is illustrated. Two edges belonging to two different
satellites are incident to vertex k. The first edge, to which the variable x1

jk

is associated, connects j and k and belongs to satellite 1; the second edge, to
which the variable x2

jk is associated, connects k and l and belongs to satellite
2. Obviously this solution is infeasible and impossible to employ in a real life
application. The constraints (2.33) avoid the presence of similar solutions.
Given a partition of the set of satellites in two subset, I1 and I2, they state
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Figure 2.4: Forbidden configuration.

that for a triple of nodes j, k, l, the sum on the satellites belonging to I1, of
the edges going from j to k, plus the sum over the satellites belonging to I2 of
the edges going from k to l, has to be less than or equal to one. This must hold
for all the possible partitions of the set P into two subsets. In other words
they avoid routes in which for a generic node k we have an incident vertex to
k belonging to a satellite and another one belonging to a different satellite.

2.3 Computational Results

In this section the performance of the two formulations in terms of solution
quality and computational efficiency is analyzed. The 2E-LRP problems are
weel known in literature, but the Single Vehicle 2E-LRP is introduced in this
thesis for the first time. Four sets of instances adapted from a set in literature
called Nguyen (introduced for the 2E-LRP by Nguyen et al. [45] and avail-
able at http://prodhonc.free.fr/) are used in this chapter. Since the size of
the Nguyen set ranges from 5 satellites and 25 customers to 10 satellites and
200 customers respectively, in order to obtain instances with smaller sizes, we
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considered only the first n satellites and m customers, where in each instance
n and m are the sizes of satellites and customers respectively. Moreover, for
every set, we considered the satellite capacities of the Nguyen set as capacities
of our vehicles. We do not use the capacities of the second fleet vehicles of
the Nguyen set because they are too small and they would make infeasible
our instances. The first three sets contain small (3 satellites and 6 customers),
medium (4 satellites and 8 customers) and large (5 satellites and 10 customers)
instances. They are called Cu s, Cu m and Cu l respectively. They are built
adapting the first 24 instances contained in the Nguyen set. The fourth set,
composed by the first 18 instances contained in the Nguyen set, covers up to
19 nodes (4 satellites and 15 customers) and are called Cu. It is composed by
instances of different sizes. The tests reported in this section have been per-
formed on an Intel(R) Xeon (R) CPU W3680, 3.33GHz, 12 GB RAM personal
computer. The formulations have been implemented in C++ and solved by
means of the CPLEX 12.1 solver, setting a computing time limit of 7200 sec-
onds. The results of the computational experiments are summarized in Tables
2.1-2.4. Each table contains the instance name, the number of satellites and
the number of customers in columns 1, 2 and 3. Columns 4, 5, 6 and 7 refer to
the symmetric formulation. Columns 4 and 5 contain the lower bounds and the
percentage gaps compared with the upper bounds. Columns 6 and 7 contain
the percentage gap of the upper bounds compared with the best lower bounds
provided among the two formulations, and the computing time expressed in
seconds. Finally columns 8, 9 and 10 are referred to the flow based formula-
tion. Column 8 contains the lower bounds, column 9 contains the percentage
gaps between the upper bounds and the lower bounds and column 10 contains
the computing times in seconds. The instances marked with an asterisk are
not optimally solved by the symmetric formulation because of the computing
time limit, although the upper bounds provided by the symmetric formulation
coincide, unless some very slight variations, with the upper bounds provided
by the flow based formulation. The evaluation of the gap for a generic instance
is computed with the following expression:

GAP (%) =
upper bound− lower bound

lower bound
· 100

On the first set (small instances) both formulations perform well, solving opti-
mally all the instances. The computing times are very short, all less than 0.5
seconds.

Also all the instances belonging to the second set (medium instances) are
optimally solved. Since the size of this set is larger than the previous one,
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Table 2.1: Comparison of the two models, small instances
Instance details Symmetric formulation Flow based formulation

Name satellites customers LB U. B. GAP GAP w.r.t. CPU time LB U. B. GAP CPU time
w.r.t L.B. BEST L.B w.r.t L.B.

Cu s 1 3 6 9937.5 0.00% 0.00% 0.343 9937.5 0.00% 0.436
Cu s 2 3 6 11820.8 0.00% 0.00% 0.327 11820.8 0.00% 0.297
Cu s 3 3 6 14560.1 0.00% 0.00% 0.343 14560.1 0.00% 0.202
Cu s 4 3 6 11982.8 0.00% 0.00% 0.327 11982.8 0.00% 0.343
Cu s 5 3 6 11173.8 0.00% 0.00% 0.390 11173.8 0.00% 0.436
Cu s 6 3 6 9650.8 0.00% 0.00% 0.296 9650.8 0.00% 0.327
Cu s 7 3 6 17440.8 0.00% 0.00% 0.280 17440.8 0.00% 0.358
Cu s 8 3 6 11392.8 0.00% 0.00% 0.343 11392.8 0.00% 0.483
Cu s 9 3 6 15156.8 0.00% 0.00% 0.327 15156.8 0.00% 0.390
Cu s 10 3 6 18578.3 0.00% 0.00% 0.343 18578.3 0.00% 0.405
Cu s 11 3 6 14779.6 0.00% 0.00% 0.265 14779.6 0.00% 0.390
Cu s 12 3 6 14232 0.00% 0.00% 0.296 14232 0.00% 0.375
Cu s 13 3 6 9902.7 0.00% 0.00% 0.374 9902.7 0.00% 0.327
Cu s 14 3 6 7016 0.00% 0.00% 0.265 7016 0.00% 0.265
Cu s 15 3 6 11649.3 0.00% 0.00% 0.343 11649.3 0.00% 0.249
Cu s 16 3 6 7134.9 0.00% 0.00% 0.327 7134.9 0.00% 0.312
Cu s 17 3 6 10794.2 0.00% 0.00% 0.296 10794.2 0.00% 0.312
Cu s 18 3 6 13344.9 0.00% 0.00% 0.343 13344.9 0.00% 0.343
Cu s 19 3 6 17562.1 0.00% 0.00% 0.265 17562.1 0.00% 0.343
Cu s 20 3 6 9749.9 0.00% 0.00% 0.381 17616.9 0.00% 0.218
Cu s 21 3 6 7929.3 0.00% 0.00% 0.39 7929.3 0.00% 0.249
Cu s 22 3 6 11511.4 0.00% 0.00% 0.546 11511.4 0.00% 0.421
Cu s 23 3 6 19155.3 0.00% 0.00% 0.405 19155.3 0.00% 0.218
Cu s 24 3 6 8568.7 0.00% 0.00% 0.327 8568.7 0.00% 0.202

the number of constraints in the symmetric formulation grows faster than
the number of constraints in the flow formulation. This fact is reflected by
computing times. The symmetric formulation is rather slower than the other
one, even if the worse computing time is about 39 seconds (no too long). The
flow based formulation is very fast, presenting computing times no larger than
2.2 seconds.

The third set further underlines the differences between the two formula-
tions both in terms of computing times and solution quality. The symmetric
formulation could not optimally solve 7 instances out of a total of 24 because of
the computing time limit. However, also for these seven instances, the formu-
lation provides good upper bounds that coincide with the optimal solutions.
The flow based formulation solves optimally all the instances with computing
times very short (max 13 seconds).

On the fourth set we can notice a considerable difference between the upper
and lower bounds provided by the symmetric formulation. The gap is zero
up to 15 nodes, whereas it increases dramatically when the number of nodes
is larger than or equal to 16. Given the complexity of the formulation and
in particular the number of integer variables and constraints involved, it is
not surprising that the solver does not provide reasonable lower bounds in
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Table 2.2: Comparison of the two models, medium instances
Instance detalis Asymmetric formulation Flow based formulation

Name satellites customers LB U. B. GAP GAP w.r.t. CPU time LB U. B. GAP CPU time
w.r.t L.B. BEST L.B w.r.t L.B.

Cu m 1 4 8 15328.5 0.00% 0.00% 31.138 15328.5 0.00% 1.341
Cu m 2 4 8 16820.6 0.00% 0.00% 30.591 16820.6 0.00% 0.936
Cu m 3 4 8 20286.1 0.00% 0.00% 16.036 20286.1 0.00% 0.811
Cu m 4 4 8 19488 0.00% 0.00% 36.457 19488 0.00% 2.293
Cu m 5 4 8 11355.2 0.00% 0.00% 23.088 11355.2 0.00% 1.185
Cu m 6 4 8 9819.4 0.00% 0.00% 18.298 9819.4 0.00% 0.593
Cu m 7 4 8 20945.1 0.00% 0.00% 23.524 20945.1 0.00% 1.575
Cu m 8 4 8 17177 0.00% 0.00% 31.450 17177 0.00% 1.950
Cu m 9 4 8 22231.9 0.00% 0.00% 23.353 22231.9 0.00% 0.686
Cu m 10 4 8 18743.5 0.00% 0.00% 19.016 18743.5 0.00% 1.123
Cu m 11 4 8 24194.3 0.00% 0.00% 29.671 24194.3 0.00% 2.184
Cu m 12 4 8 12001.3 0.00% 0.00% 6.084 12001.3 0.00% 0.687
Cu m 13 4 8 10206.3 0.00% 0.00% 23.166 10206.3 0.00% 0.717
Cu m 14 4 8 11548.3 0.00% 0.00% 26.067 11548.3 0.00% 0.624
Cu m 15 4 8 11778.3 0.00% 0.00% 10.670 11778.3 0.00% 0.234
Cu m 16 4 8 11815 0.00% 0.00% 37.596 11815 0.00% 2.434
Cu m 17 4 8 18848.2 0.00% 0.00% 13.369 18848.2 0.00% 1.092
Cu m 18 4 8 13656.2 0.00% 0.00% 20.046 13656.2 0.00% 0.562
Cu m 19 4 8 23468.3 0.00% 0.00% 9.11 23468.3 0.00% 1.185
Cu m 20 4 8 17616.9 0.00% 0.00% 9.11 17616.9 0.00% 0.561
Cu m 21 4 8 17637.1 0.00% 0.00% 38.719 17637.1 0.00% 0.53
Cu m 22 4 8 11511.4 0.00% 0.00% 19.387 11511.4 0.00% 0.826
Cu m 23 4 8 19774.4 0.00% 0.00% 26.41 19774.4 0.00% 0.546
Cu m 24 4 8 15460 0.00% 0.00% 38.422 15460 0.00% 0.514

Table 2.3: Comparison of the two models, large instances
Instance detalis Asymmetric formulation Flow based formulation

Name satellites customers LB U. B. GAP GAP w.r.t. CPU time LB U. B. GAP CPU time
w.r.t L.B. BEST L.B w.r.t L.B.

Cu l 1 5 10 4250 0.00% 0.00% 397.110 4250 0.00% 0.280
Cu l 2 5 10 17519.7 0.00% 0.00% 2805.340 17519.7 0.00% 12.027
Cu l 3 5 10 24361.8 0.00% 0.00% 4369.610 24361.8 0.00% 1.591
Cu l 4 5 10 19958.1 0.00% 0.00% 3436.830 19958.1 0.00% 13.010
Cu l 5* 5 10 994.902 1707.94% 0.00% 7200.300 17987.2 0.00% 5.242
Cu l 6* 5 10 1503.89 815.54% 0.00% 7200.210 13768.7 0.00% 2.402
Cu l 7 5 10 24789.7 0.00% 0.00% 4038.490 24789.7 0.00% 1.404
Cu l 8 5 10 16909.9 0.00% 0.00% 5476.940 16909.9 0.00% 9.453
Cu l 9 5 10 30196.7 0.00% 0.00% 4710.380 30196.7 0.00% 11.341
Cu l 10 5 10 25640.5 0.00% 0.00% 2189.230 25640.5 0.00% 11.529
Cu l 11 5 10 24416.9 0.00% 0.00% 2827.930 24416.9 0.00% 1.435
Cu l 12 5 10 17954.9 0.3% 0.00% 6293.480 17954.9 0.00% 1.887
Cu l 13 5 10 12038.3 0.0% 0.00% 7047.720 18975.2 0.00% 4.102
Cu l 14* 5 10 1417.38 1119.9% 0.00% 7200.230 17290.2 0.00% 5.584
Cu l 15* 5 10 2154.68 780.7% 0.00% 7200.230 18975.2 0.00% 5.444
Cu l 16* 5 10 2449 387.7% 0.00% 7200.190 11943.9 0.00% 2.434
Cu l 17 5 10 26716.7 0.0% 0.00% 2993.100 26716.7 0.00% 3.962
Cu l 18 5 10 17873.6 0.0% 0.00% 7135.380 17873.6 0.00% 5.679
Cu l 19 5 10 31636.8 0.0% 0.00% 2330.68 31636.8 0.00% 5.818
Cu l 20 5 10 17616.9 0.0% 0.00% 6978.32 17616.9 0.00% 3.963
Cu l 21* 5 10 875.756 1938.08% 0.00% 7200.23 17848.6 0.00% 0.951
Cu l 22 5 10 12128.4 0.00% 0.00% 4356.06 12128.4 0.00% 2.683
Cu l 23 5 10 19801.2 0.00% 0.00% 5619.76 19801.2 0.00% 0.858
Cu l 24* 5 10 1967.47 599.10% 0.00% 7200.23 13754.5 0.00% 2.106
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Table 2.4: Comparison of the two models, Cu set
Instance details Symmetric formulation Flow based formulation

Name satellites customers LB U. B. GAP GAP w.r.t. CPU time LB U. B. GAP CPU time
w.r.t L.B. BEST L.B w.r.t L.B.

Cu 1 3 5 6416.07 0.00% 0.00% 0.27 6416.07 0.00% 0.186
Cu 2 3 7 12411.2 0.00% 0.00% 0.42 12411.2 0.00% 0.362
Cu 3 3 9 15474.3 0.00% 0.00% 10.19 15474.8 0.00% 0.482
Cu 4 3 11 14799.2 0.00% 0.00% 498.96 14799.2 0.00% 0.851
Cu 5* 3 13 1797.48 702.68% 0.00% 7200.18 14428.3 0.00% 0.870
Cu 6* 3 15 2002.41 565.97% 1.08% 7200.55 13192.3 1.08% 4.346
Cu 7 4 5 13174.9 0.00% 0.00% 0.13 13174.9 0.00% 0.277
Cu 8 4 7 11097.1 0.00% 0.00% 0.93 11097.1 0.00% 0.251
Cu 9 4 9 15269.2 0.00% 0.00% 50.86 15268 0.00% 0.639
Cu 10 4 11 13439.8 0.00% 0.00% 1774.91 13439.9 0.00% 1.052
Cu 11* 4 13 2297.65 561.30% 0.10% 7200.22 15179.7 0.10% 2.101
Cu 12* 4 15 2236.23 1021.83% 0.27% 7200.47 25018 0.3% 14.432
Cu 13 5 5 10072.6 0.00% 0.00% 0.19 10072.6 0.0% 0.416
Cu 14 5 7 11494.9 0.00% 0.00% 4.57 11494.9 0.0% 0.595
Cu 15 5 8 11778.9 0.00% 0.00% 14.40 11778.9 0.0% 0.299
Cu 16 5 9 11859.1 0.00% 0.00% 329.61 11859.1 0.0% 1.128
Cu 17 5 10 19107.1 0.00% 0.00% 901.61 19107.1 0.0% 1.339
Cu 18* 5 11 1134.87 1941.60% 0.00% 7200.14 23169.5 0.0% 9.745

2 hours. Despite this fact the asymmetric formulation optimally solves 11
instance out of a total of 18 within the computing time limit. The flow based
formulation, instead, optimally solves all the benchmark instances, with very
short computing times (at most 14 seconds).

According to the results, the flow based formulation dominates the sym-
metric formulation. The results of the latter formulation are not satisfactory
when the number of nodes increases. It should be interesting to remove the
constraints whose number is exponential and introduce cuts within the frame-
work of a Branch and Cut algorithm.



Chapter 3

Heuristic Algorithm

3.1 Description

The problem described in the previous chapter is NP-hard and is solved using
a two-phase heuristic algorithm. In the first phase of the algorithm, referred to
as Constructive Phase, a feasible solution is built by decomposing the problem
into sub-problems and by solving each of them in order to generate an initial
solution. An obvious way to decompose the problem is to divide it into three
sub-problems. The first sub-problem is based on customer-to-satellite assign-
ment decisions, that can be seen as the Variable Cost and Size Bin Packing
Problem (VCSBPP), see [18], where all customers (items) must be assigned
(loaded) to heterogeneous satellites (bins) that can be selected among several
types, differing in capacities and fixed costs. The total assignment cost is com-
puted as the sum of the fixed costs of the open satellites. The objective of the
problem is to select satellites to pack all the customer requests at minimum to-
tal assignment cost. The second sub-problem consists in building the primary
tour, joining the central depot and the open satellites. The third sub-problem
consists in building the vehicle routes, each of them joining an open satellite
and its assigned customers. Building the primary tour and the vehicle tours
corresponds to solving several Travelling Salesman Problem (TSP), one for
each tour. In the second sub-problem the central depot can be seen as the
starting city of the salesman, whereas the satellites can be seen as the cities
that the salesman has to visit. In the third sub-problem each satellites can be
seen as a starting city of a salesman, whereas the customers assigned to each
satellites represent the cities. In the second phase of the algorithm, referred to
as Improvement Phase, the current solution is improved iteratively by using
several local search procedures. A basic two-phase algorithm will be formally
described, and then five different variants will be designed, each of one differ-

47
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ing from the others on the calculation of the estimate of the cost to assign a
customer to a satellite. Summarizing the problem consists of:

• assigning each customer j ∈ J to a satellite. The subset Js ⊆ J of cus-
tomers assigned to each satellite s must satisfy the capacity constraint,
i.e. Qs ≤ ws, the union of the customers assigned to each satellites must
be equal to set J and each customer j must be served only by a single
satellite ∪p∈PJp = J , and Jp ∩ Js = ∅. Let S = {p ∈ P : Jp 6= ∅} be
the set of open satellites, and P\S the set of closed satellites;

• designing a vehicle tour Ts connecting {s}∪Js, for each s ∈ S (the tours
of the closed satellites are empty), and

• designing a primary tour T for the uncapacitated vehicle connecting the
satellites in {0} ∪ S,

so that the total cost, including the fixed costs of the open satellites, the
primary tour cost, and the vehicle tour costs, is minimized.

Let σ(S, T , J ′ps, T ′ps,Q′ps) be a feasible solution of the problem, including
the set S of open satellites, the primary tour T , and for each p ∈ S the subset
Jp of customers assigned to each satellite p, the vehicle tour Tp and the quantity
Qp of goods loaded in the vehicle at satellite p. The total fixed cost is f(S) =∑

s∈S Fs, the cost of primary tour T is represented by f(T ) =
∑

(i,j)∈T cij,

(the notation (i, j) ∈ T indicates that j ∈ {0} ∪ S immediately follows the
satellite i ∈ {0} ∪ S in the tour T ), and the cost of each vehicle tour Ts is
f(Ts) =

∑
(i,j)∈Ts cij (again, (i, j) ∈ Ts indicates that j ∈ {s} ∪ Js immediately

follows i ∈ {s} ∪ Js in the tour Ts).
The total cost of the solution σ is given by

f(σ) = f(S) + f(T ) +
∑
s∈S

f(Ts). (3.1)

In the following we report a general outline of the algorithm with a very
short description of the local search procedures.

• Constructive phase

Step 1. Rank the customers in non increasing order of their demand.

Step 2. For each customer j = 1, 2..., n

∗ Implement a procedure called assign to evaluate the insertion
cost of j in vehicle tour Ts;
∗ Implement a procedure called insert to insert j in the tour Ts;
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- if s is selected for the first time then

· Use insert to insert s in the primary tour T .

• Improvement phase

Step 3. Use procedure RC (Removing a Customer) to remove a customer
from a route and insert it into another one with sufficient capacity;

Step 4. Use procedure STC (Swap two Customers) to swap two customers
belonging to two different tours;

Step 5. Use procedure EOS (Eliminate an Open Satellite) to eliminate an
open satellite and reassign its customers to another satellite;

Step 6. Use procedure STOS (Swap Two Open Satellites) to swap the cus-
tomers belonging to two different satellites.

Step 7. Use procedure SOCS (Swap an Open with a Closed Satellite) to
swap an open satellite with a closed satellite with sufficient capacity.

3.1.1 Constructive Phase

Once the customers are ranked in non-increasing order of their requests, a
feasible solution of the problem is built in the following way. At each iteration
a partial solution is available. When the customer j ∈ J is considered, it is
assigned to the satellite s ∈ P at which corresponds the minimum assignment
cost ∆jp. Then customer j is inserted into the vehicle tour Ts and the satellite
s is inserted into the primary tour T if necessary (i.e if s is selected for the
first time).

At the end of the iterative process, a feasible solution σ(S, T , J ′ps, T ′ps,Q′ps)
is obtained.

Constructive Phase

Step 0. Consider the set J sorted in non-increasing order of customer de-
mands q′js, and the set P . Set the primary tour T = ∅, the set of open
satellite S = ∅ and, for each satellite p ∈ P , set Jp = ∅, Tp = ∅, and
Qp = 0.

Step 1. For each customer j = 1, 2, ..., n:

- for each p ∈ P compute an estimate of the assignment cost, ∆jp;

- select the satellite s = arg minp∈P{∆jp};
- insert j in Ts, set Qs = Qs + qj and Js = Js ∪ {j};
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- if s /∈ S then insert s in T and set S = S ∪ {s}.

Step 2. Return σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S) + f(T ) +
∑

s∈S f(Ts).

3.1.2 Improvement Phase

The local improvement procedure helps us to improve a given solution by
exploring solutions in its neighborhood. We can classify them as:

a intra-route local improvement heuristics (equivalently, a tour improvement);

b inter-route local improvement heuristics (equivalently, an improvement through
the change of the assignment of the customers).

The intra-route local improvement heuristics focus on the improvement of tours
without involving changes in the assignment of customers to satellites. For ex-
ample any local exchange heuristic proposed for a TSP belongs to this category
(λ-Opt exchange operator, or Or-Opt operator and so on). In this algorithm
we use the 2-Opt exchange operator which replaces a set of two edges in a
route by another set of two edges.

Any local exchange heuristic involving two tours for the classical VRP be-
longs to the inter-route category. In the following we describe accurately five
local search procedures which aim at moving one or more customers from a ve-
hicle tour to another one. Obviously, in this case, the assignment of customers
to satellites is changed if an improvement in the solution value is achieved.

The first improvement procedure, referred to as Eliminating an Open Satel-
lite (EOS ), iteratively eliminates the satellite p ∈ S if

∑
j∈S\{p}(wj−Qj) > Qp,

and re-assigns each customer j ∈ Jp to the remaining open satellites if the ca-
pacity constraints are not violated. If a new feasible solution is obtained and
an advantage has been identified then the new solution becomes the incumbent
one. In this case the number of open satellites decreases.

Procedure EOS

Step 0. Consider the current solution σ(S, T , J ′ps, T ′ps,Q′ps) and its cost f(σ) =
f(S) + f(T ) +

∑
s∈S f(Ts).

Step 1. Set S = {p : p ∈ S and
∑

j∈S\{p}(wj −Qj) > Qp}.

Step 2. If S = ∅ go to Step 3 else choose an open satellite p from S:
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- set S ′ = S\{p}, T ′p = ∅, J ′p = ∅, Q′p = 0. For k ∈ S ′, set T ′k = Tk,
J ′k = Jk and Q′k = Qk. Let T ′ be the primary tour obtained by
removing p from T ;

- for each j ∈ Jp:
a. set S ′′ = {k : k ∈ S ′ and Qk + pj ≤ wk}, if S ′′ = ∅ go to Step 2,

b. for each k ∈ S ′′ compute an estimate of the assignment cost,
∆jk,

c. select the satellite s = arg mink∈S′′{∆jk},
d. insert j in T ′s, and set Q′s = Q′s + qj and J ′s = J ′s ∪ {j};

-if f(σ′) < f(σ) then update σ by setting S = S ′, T = T ′, Tp = ∅,
Jp = ∅, Qp = 0, and for k ∈ S, set Tk = T ′k, Qk = Q′k and Jk = J ′k,
and go to Step 1 else go to Step 2.

Step 3. Return σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S) + f(T ) +
∑

s∈S f(Ts).

The second procedure, referred as Swapping Two Open Satellites (STOS ),
iteratively swaps two open satellites and reverses their vehicle routes if the
capacity constraints are not violated. If an advantage has been identified,
then the new solution is the incumbent. In this case the number of open
satellites does not change.

Procedure STOS

Step 0. Consider the current solution σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S)+
f(T ) +

∑
s∈S f(Ts).

Step 1. For each p ∈ S:

- for each s ∈ S\{p} such that Qp ≤ ws and Qs ≤ wp:

a. let T ′p be the vehicle tour obtained by removing p from Tp,
b. let T ′s be the vehicle tour obtained by removing s from Ts,
c. insert s in T ′p,
d. insert p in T ′s,
e. if f(T ′s) + f(T ′p) < f(Ts) + f(Tp) then set Ts = T ′p, Tp = T ′s,
Qs = Qp, Qp = Qs, Js = Jp, and Jp = Js and repeat Step 1.

Step 2. Return σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S) + f(T ) +
∑

s∈S f(Ts).
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The third procedure, referred as Swapping an Open with a Closed Satellite
(SOCS ), iteratively considers an open satellite p, reverses the vehicle tour
Ts to a closed satellite if the capacity constraint is verified. Once all closed
satellite have been examined, the closed satellite that yields the smallest cost
is considered to be open and the open satellite p is closed if an advantage has
been identified. In this case the number of open satellites does not change.

Procedure SOCS

Step 0. Consider the current solution σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S)+
f(T ) +

∑
s∈S f(Ts).

Step 1. For each p ∈ S:

- set CS = f(Tp) + f(T ) + Fp;

- for each s ∈ P\S such that Qp ≤ ws:

a. let T ′p be the vehicle tour obtained by removing p from Tp,
b. let T ′ be the primary tour obtained by removing p from T ,

c. insert s in T ′p,
d. insert s in T ′,
e. if f(T ′p) + f(T ′) + Fs < CS then set s∗ = s, CS = f(T ′p) +
f(T ′) + Fs, T ′s∗ = T ′p and T ∗ = T ′;

- if (CS < f(Tp) + f(T ) + Fp) then set T = T ∗, S = S ∪ {s∗}\{p},
Qs∗ = Qp, Ts∗ = T ′s∗ , Js∗ = Jp, Qp = 0, Tp = ∅, and Jp = ∅ and
repeat Step 1.

Step 2. Return σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S) + f(T ) +
∑

s∈S f(Ts).

The fourth procedure, referred as Removing a Customer (RC ), iteratively
removes a customer from an open tour and re-assigns it to another open tour
with a sufficient remaining capacity. If an advantage has been identified, then
the new solution is the incumbent.

Procedure RC

Step 0. Consider the current solution σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S)+
f(T ) +

∑
s∈S f(Ts).

Step 1. For each p ∈ S:

- for each j ∈ Jp:
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a. let T ′p be the vehicle tour obtained removing j from Tp, and
set Q′p = Qp − qj and J ′p = Jp \ {j},

b. if T ′p = ∅ then let T ′ be the primary tour obtained by removing
p from T and set S ′ = S \ {p} else set T ′ = T and S ′ = S,

c. for each k ∈ S compute an estimate of the assignment cost,
∆jk,

d. select the satellite s = arg mink∈S{∆jk},
e. insert j in T ′s, and set Q′s = Qs + qj and J ′s = Js ∪ {j},
f. if f(T ′p)+f(T ′s)+f(T ′)+f(S ′) < f(Tp)+f(Ts)+f(T )+f(S)

then set Qs = Qs + qj, Qp = Qp − qj, Js = Js ∪ {j}, and
Jp = Jp \ {j}, compute f(σ) = f(S) + f(T ) +

∑
s∈S f(Ts) and

return to Step 1.

Step 2. Return σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S) + f(T ) +
∑

s∈S f(Ts).

The fifth procedure, referred as Swapping Two Customers (STC ), itera-
tively swaps two customers from different open vehicle tours if their capacity
constraints are verified. If an advantage has been identified the new solution
becomes the incumbent.

Procedure STC

Step 0. Consider the current solution σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S)+
f(T ) +

∑
s∈S f(Ts).

Step 1. For each p ∈ S:

- for each j ∈ Jp:
- for each s ∈ S \ {p}:

- for each i ∈ Js such that Qs+qj−qi ≤ ws and Qp−qj+qi ≤
wp:

a. let T ′p be the primary tour obtained removing j from Tp,
set Q′p = Q′p − qj and J ′p = J ′p\{j},

b. let T ′s be the primary tour obtained removing i from Ts,
set Q′s = Q′s − qi and J ′s = J ′s\{i},

c. insert j in T ′s, set Q′s = Q′s + qj and J ′s = J ′s ∪ {j},
d. insert i in T ′p, set Q′p = Q′p + qi and J ′p = J ′p ∪ {i},
e. if f(T ′p) + f(T ′s) < f(Tp) + f(Ts) then set f(Tp) =
f(T ′p), f(Ts) = f(T ′s), Qs = Q′s, Js = J ′s, Ts = T ′s,
Qp = Q′p, Jp = J ′p, and Tp = T ′p, compute f(σ) =
f(S) + f(T ) +

∑
s∈S f(Ts) and repeat Step 1.
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Step 2. Return σ(S, T , J ′ps, T ′ps,Q′ps) and f(σ) = f(S) + f(T ) +
∑

s∈S f(Ts).

Great importance is given to the order in which the improvement proce-
dures are performed. Based on pilot experiments, the improvement Phase is
organized as follows:

Improvement Phase: Apply RC→ STC→ EOS → STOS→ SOCS.

3.1.3 Implementing the Basic Algorithm

The rule used to insert a center (customer or satellite) into a tour (primary or
vehicle tour), the rule to remove a center from a tour, and the rule to estimate
the cost to assign a customer to a satellite are critical to the success of the
heuristic algorithm. In the implementation of the heuristic, the procedure
Insert is used to insert a center in a tour, and the procedure Remove is used
to remove a center from a tour. Moreover by specifying how to estimate the
cost to assign a customer to a satellite, five different variants (A1, A1B, A2,
A2B and A3) are designed in this chapter. The first variant to estimate the
cost to assign a customer to a satellite uses the procedure Assign1, the second
uses the procedure Assign1B, the third variant uses Assign2, the fourth uses
Assign2B and the fifth uses Assign3.

Inserting a center into a tour

The following procedure is used during the algorithm to insert the center e into
the tour X , see [55]. In what follows, once a visit direction on the current tour
X has been chosen, k+ and k− represent, respectively, the center that follows
and that precedes the center k in X .

Procedure Insert

- If X = ∅ then X = {x, e, x}, where x represents a satellite, in particular
x = 0 if X = T or x = s if X = Ts. The insertion cost is ic(e,X ) = 2cxe.

- else

- delete arc (u, u+) = argmin(cie + cei+ − cii+) and insert arcs (u, e)
and (e, u+).
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Figure 3.1: Insertion of e between the customers i and i+.

Removing a center from a tour

The following procedure is used to remove a center e from a given tour X .
When e is removed from X , its incident arcs are deleted. Then, one at a time
the remaining arcs are deleted from X and the two resulting chains are recon-
nected to form a new tour, as in the two arc interchange algorithm (see [37]).
Once all arcs have been examined, the reconnection that yields the shortest
tour is considered to be the new current tour. The cost of removing the city e
from tour X is equal to the sum of the travel costs of the arcs that are inserted
minus the sum of the travel costs of the arcs that are deleted from X in order
to obtain the tour.

Procedure Remove

- If X consists of only the two arcs incident to e then set X = ∅.

- If X consists of more than two arcs, then remove the arcs (e−, e) and (e, e+)
and arc (l∗, l∗+) = arg minl∈X ,l 6=s{ce−l+ce+l+−ce−e−ce+e−cll+}. Introduce
arcs (e−, l), (e+, l+), and invert the orientation of the path between the
nodes l+ and e+.
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Figure 3.2: Removing a center e from a tour

Estimating the assignment cost

Five different procedures, Assign1, Assign1B, Assign2,Assign2B and Assign3,
are used to estimate the cost to assign customer j ∈ J to satellite p ∈ P .

Assign1 estimates the assignment cost ∆jp, of customer j ∈ J to satellite
p ∈ P by considering only the ratio Fp/wp, that represents the fixed cost per
unit of freight, and by ignoring the insertion cost of customer j into the vehicle
tour Tp, and the insertion cost of p into the primary tour T .

Procedure Assign1

∆jp =


Fp/wp Tp = ∅, and Qp + qj ≤ wp

0 Tp 6= ∅, and Qp + qj ≤ wp

∞ if Qp + qj > wp

Assign2 estimates the assignment cost ∆jp, of customer j ∈ J to each satellite
p ∈ P by considering the ratio Fp/wp, the insertion cost ic(i, Tp) of customer
j into the vehicle tour Tp, and the insertion cost ic(p, T ) of p into the primary
tour T if p is not used.

Procedure Assign2
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∆jp =


Fp/wp + ic(p, T ) + ic(j, Tp), if Tp = ∅, and Qp + qj ≤ wp

ic(j, Tp) if Tp 6= ∅, and Qp + qj ≤ wp

∞, if Qp + qj > wp.

Assign3 estimates the assignment cost ∆jp, of customer j ∈ J to each satellite
p ∈ P by considering the insertion cost ic(p, T ) of p in the primary tour T
and the insertion cost ic(j, Tp) of customer j in the vehicle tour Ts if p is not
used, and by ignoring the fixed cost.

Procedure Assign3

∆jp =


ic(p, T ) + ic(j, Tp) if Tp = ∅, and Qp + qj ≤ wp

ic(j, Tp) if Tp 6= ∅, and Qp + qj ≤ wp

∞, if Qp + qj > wp.

Procedure A1B and A2B differ from A1 and A2 respectively because they
consider only the fixed cost Fp instead of the ratio Fp/wp.

3.2 Computational Results

The heuristic described in previous section has been implemented in Fortran
and run on an Intel Core (TM) i5−2400 CPU, 3.10 GHr, 6 GB RAM personal
computer. The mathematical formulation has been implemented in C++ using
ILOG Concert Technology 2.3 and CPLEX 12.1 and run on an Intel(R) Xeon
(R) CPU W3680, 3.33GHz, 12 GB RAM personal computer. The goals of the
experiments are:

- to obtain optimal solutions for small instances using the flow formulation;

- to test the effectiveness of the heuristic algorithm;

- to compare the different assignment procedures of the heuristic algorithm.

We tested our methods adapting the instances used by Nguyen et al in
[45], containing only one depot at the first level (as in our problem). The first
set, called ”Prodhon”, contains 30 instances with 20-200 customers and 5-10
satellites. The second set, called ”Nguyen”, contains 24 instances with 25-200
customers and 5-10 satellites. From these instances we built three sets, by
changing only the vehicle capacities. The first one, called Ca, is obtained tak-
ing the first four instances of the Prodhon set and the first four instances of the
Nguyen set (i.e., the instances with the smaller number of nodes). We used the
capacity of the second echelon fleet of vehicles in Prodhon and Nguyen as the
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capacity of our vehicles. In order to differentiate the instance set, we created
16 more instances by decreasing and then increasing the vehicle capacities of
each instance by 5%, obtaining in total 8 · 3 = 24 different instances. On set
Ca we tested 5 variants of our algorithm and compared the results provided by
them with the optimal solutions (or in some case with the upper bounds) pro-
vided by CPLEX. The second set, called Na, is made by adapting the Nguyen
set. Since the capacities of the second echelon fleet in the Nguyen set led to
infeasibility and the capacities of the first echelon fleet and of the satellites
resulted not binding, we built the capacities of our second echelon vehicles
multiplying the capacity of the satellites in the Nguyen set for a ratio. This
ratio is obtained from the Nguyen set dividing the sum of the second echelon
vehicle capacities by the sum of the satellites capacities. Also in this case, in
order to differentiate the instances we multiplied the capacity obtained in this
way by 5, 6 and 7, obtaining 24 · 3 = 72 instances. The third set, called Pa, is
obtained considering the Prodhon set and it is made in the same way as Na
(for the same reasons). The set contains 30 · 3 = 90 instances. Set Na and Pa
were used only to compare the variants of the algorithm.

3.2.1 Comparison with CPLEX

Table 3.1 presents the results obtained on instance set Ca. The sizes of the
instances ranges from 20 to 25 customers and 5 satellites. The first column
shows the name of the instance. Instances 1-8, 9-16 and 17-24 are with vehicle
capacities multiplied by 1, 2 and 3 respectively. The second and the third
columns show the size of the instances. The following five columns report the
results achieved by the five variants of the heuristic. The last column reports
the results of the model implemented in CPLEX. The relative errors commit-
ted by the five variants, compared with CPLEX, are shown in columns 4-8 in
the left section, whereas the computing times expressed in seconds appear in
the right section. The average relative errors, the average computing times,
the maximum errors, the number of optimal solutions and the number of best
solutions found by each variant of the heuristic are reported at the bottom
of the columns. A few instances could not be optimally solved. These in-
stances are marked with an asterisk and report the upper bound instead of
the optimal value. In the column on the customer size, we can observe that
the instances not optimally solved have 25 customers, whereas the instances
with 20 customers are all optimally solved. Table 3.1 allows us to comment
on the performance of the heuristic. We can observe that the best variant
of the heuristic performs as good as the results of CPLEX out of 9 instances
on 24 and does not fail more than 0.25% on average. The average error of
the five variants is 1.79%, 1.79%, 0.78%, 1.79% and 0.68% respectively. The
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Table 3.1: Relative errors

A1 A1B A2 A2B A3 CPLEX

Problem m n e% t e% t e% t e% t e% t z t

Ca 1 5 20 .05 .05 .05 .05 .10 .05 .03 .05 .07 .05 44354.30 23.15

Ca 2 5 20 .14 .03 .14 .03 .00 .03 .20 .03 .00 .03 27900.30 17.93

Ca 3 5 20 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 6731.90 538.96

Ca 4 5 20 .03 .03 .03 .03 .09 .03 .00 .03 .09 .03 23253.20 17.88

*Ca 5 5 25 1.13 .04 1.13 .04 .39 .04 1.59 .04 .39 .04 21710.00 7811.00

Ca 6 5 25 1.47 .03 1.47 .03 5.54 .03 5.54 .03 .00 .03 18630.20 532.58

Ca 7 5 25 6.20 .04 6.20 .04 1.90 .04 1.47 .04 1.90 .04 25483.50 6056.10

*Ca 8 5 25 .87 .03 .87 .03 1.56 .03 1.76 .03 1.56 .03 17895.00 8839.00

Ca 9 5 20 .10 .05 .10 .05 .10 .05 .06 .05 .06 .05 44354.00 701.00

Ca 10 5 20 .15 .03 .15 .03 .00 .03 .00 .03 .00 .03 27900.30 15.28

Ca 11 5 20 .00 .05 .00 .05 .01 .05 .19 .05 .00 .05 6731.90 313.14

Ca 12 5 20 .00 .03 .00 .03 .14 .03 .14 .03 .14 .03 23258.20 31.56

*Ca 13 5 25 -5.98 .04 -5.98 .04 -6.83 .04 -6.63 .04 -6.83 .04 23301.00 559.00

Ca 14 5 25 1.56 .03 1.56 .03 .78 .03 .78 .03 6.00 .03 18630.20 303.00

Ca 15 5 25 23.32 .05 23.32 .05 6.14 .05 4.26 .05 6.14 .05 26101.00 13252.00

Ca 16 5 25 1.93 .03 1.93 .03 2.38 .03 1.65 .03 2.38 .03 17949.10 3537.75

Ca 17 5 20 .07 .05 .07 .05 .00 .05 .00 .05 .06 .05 44344.60 557.27

Ca 18 5 20 .48 .02 .48 .02 .48 .02 .43 .02 .47 .02 15824.80 11.39

Ca 19 5 20 .02 .05 .02 .05 .09 .05 .09 .05 .02 .05 46727.30 638.92

Ca 20 5 20 .04 .02 .04 .02 .04 .02 .04 .02 .02 .04 14208.30 14.88

*Ca 21 5 25 2.29 .04 2.29 .04 1.82 .04 3.75 .04 1.82 .04 21295.00 2611.00

Ca 22 5 25 4.95 .03 4.95 .03 .78 .03 .78 .03 3.39 .03 18630.20 537.23

Ca 23 5 25 2.59 .04 2.59 .04 .00 .04 .00 .04 .00 .04 25357.40 4014.11

Ca 24 5 25 1.53 .03 1.53 .03 .95 .03 .15 .03 .95 .03 17804.00 860.76

average 1.79 0.4 1.79 0.4 0.78 0.4 1.79 0.4 0.68 . 0.4 27432.32 2158.12

max e% 23.32 23.32 6.14 4.26 6.14
n. opt. sol. 3 3 5 5 6
n. best sol. 4 4 6 5 7

average computing time required by each variant of the heuristic is very short
(0.4 seconds) compared with CPLEX (2158.12 seconds). Analyzing in deep
the solutions of the instance presenting the larger gaps, we noticed that these
gaps are due to the assignment of customers to the satellites, and consequently
to the routes performed by each vehicle. Conversely the satellites open by the
heuristic variants coincide with the satellites open by CPLEX. The same thing
holds for the primary tours, that are identical both in the solutions provided
by CPLEX and in the solutions provided by the five variants of the heuristic.
However, in general, we can observe a satisfactory behaviour of the heuristic
algorithm, which provides good solutions in very short times.

3.2.2 Comparison of the Five Variants

The way in which the assignment cost is estimated influences the performance
of the heuristic algorithm. It is interesting to compare the different variants
in order to establish which one performs better.

Table 3.2 is referred to the Na instances set and shows, for each variant,
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the relative error committed compared to the best variant, and the computing
times. The results provided by the best variant are reported in the last column
of the table. At the bottom of the table the average relative errors, the average
computing times, the number of best solutions (i.e. the number of solutions for
which a variant performs better if compared with the others) and the maximum
error committed by each variant are reported.

The size of this set of instances ranges from 25 to 200 customers and from
5 to 10 satellites. Instances 1-24, 25-48 and 49-72 are instances with capacities
multiplied by 5, 6 and 7 respectively. The results show that the procedure
A3 slightly outperforms the other variants yielding 37 best solutions out of
72 instances and presenting the smallest average objective function value, the
second shortest average computing time and the smallest average relative error.
Also in this case we analyzed the solutions of the instances presenting a large
gap. For example variants A1, A2 and A2B present a large gap on the instance
Na 34 compared with the variants A3 and A2. This gap is due to the fact that
in the solutions provided by A1, A1B and A2B one more satellite is selected
compared with the unique satellite selected by procedures A2 and A3. In the
instance Na 44, although the number of selected satellites is the same for each
variant, we noticed a gap equal to about 12% between the variants A1, A1B
and A3 compared with A2B (the best). In this case, the customer assignment
changes variant by variant and the local search procedures cannot perform
moves capable to obtain better results. In particular since the procedure STOS
cannot swap an open satellite with a closed satellite when the capacity of the
latter one is not large enough, there are solutions in which the appropriate
satellites are not used. Allowing the swap of two satellites without considering
the capacity constraints, and trying to restore the feasibility with designed ad
hoc procedures could represent a remedy to this issue. The same considerations
can be extended to the other instances reporting considerable gaps between
the best variant and the others ones.

Table 3.2: Na Inst.: results

A1 A1B A2 A2B A3 Abest

Problem m n s t s t s t s t s t s

Na 1 5 25 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 7319.6
Na 2 5 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8321.3
Na 3 5 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 8337.8
Na 4 5 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7664.4
Na 5 5 50 0.00 0.09 0.00 0.09 0.20 0.18 0.20 0.19 0.20 0.18 15567.9
Na 6 5 50 0.67 0.19 0.67 0.18 0.00 0.16 0.00 0.17 0.00 0.16 12699.8
Na 7 5 50 0.98 0.19 0.98 0.19 24.94 0.16 0.00 0.33 24.94 0.16 13666.8
Na 8 5 50 0.00 0.09 0.00 0.08 0.54 0.10 0.00 0.08 0.54 0.10 13466.8
Na 9 10 50 2.56 0.23 2.56 0.23 0.00 0.09 2.48 0.27 0.00 0.09 18735.5

Na 10 10 50 1.48 0.10 1.48 0.08 0.00 0.06 1.48 0.09 0.00 0.06 15093.7
Na 11 10 50 1.67 0.12 1.67 0.13 0.00 0.16 1.81 0.17 0.00 0.16 17076.5
Na 12 10 50 0.00 0.19 0.00 0.18 0.31 0.11 1.38 0.17 0.31 0.11 14181.4
Na 13 5 100 0.00 3.22 0.00 3.22 0.86 1.08 1.80 1.11 0.86 1.08 28624.3
Na 14 5 100 4.17 1.80 4.17 1.79 0.00 0.89 1.40 1.60 0.00 0.88 23750.5
Na 15 5 100 0.32 2.53 0.32 2.53 0.43 1.06 1.40 2.02 0.00 3.21 33184.1

Table 3.2: continue
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A1 A1B A2 A2B A3 Abest

Na 16 5 100 2.08 1.27 2.08 1.27 0.00 1.54 2.40 1.38 2.90 1.27 22048
Na 17 10 100 0.00 4.19 0.00 4.18 12.39 1.93 1.10 1.32 13.69 0.79 31635.4
Na 18 10 100 3.59 1.85 3.59 1.85 0.00 1.11 2.96 2.05 0.00 1.10 23982.6
Na 19 10 100 2.43 2.41 2.43 2.40 0.00 2.67 3.64 1.28 0.00 2.65 33456.8
Na 20 10 100 2.95 3.01 2.95 3.00 2.49 1.67 0.00 1.85 2.49 1.67 20843.6
Na 21 10 200 2.71 62.07 2.71 61.88 0.99 54.49 2.51 68.60 0.00 73.95 64026.7
Na 22 10 200 3.56 77.56 3.56 77.32 0.00 88.40 2.48 56.14 0.00 88.26 42233.71
Na 23 10 200 0.33 79.12 0.33 79.27 3.50 34.23 0.00 46.38 3.50 34.22 61944.7
Na 24 10 200 0.09 68.58 0.09 68.78 0.00 43.45 0.05 94.03 0.00 43.32 36322.9
Na 25 5 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7319.6
Na 26 5 25 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 8321.3
Na 27 5 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 8337.8
Na 28 5 25 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7664.4
Na 29 5 50 1.99 0.13 1.99 0.13 0.00 0.10 0.00 0.10 0.00 0.10 15194.3
Na 30 5 50 3.82 0.01 3.82 0.01 0.00 0.01 17.90 0.02 0.00 0.01 10332.21
Na 31 5 50 0.00 0.11 0.00 0.10 1.26 0.12 2.07 0.15 1.26 0.13 13467.6
Na 32 5 50 0.83 0.00 0.83 0.01 0.00 0.01 0.83 0.00 0.00 0.01 8959.9
Na 33 10 50 2.66 0.17 2.66 0.17 0.00 0.08 2.66 0.18 0.00 0.08 18578.8
Na 34 10 50 50.44 0.10 50.44 0.09 0.00 0.01 48.01 0.10 0.00 0.00 10117
Na 35 10 50 3.81 0.10 3.81 0.10 2.99 0.24 0.00 0.15 2.99 0.24 12819.3
Na 36 10 50 0.00 0.02 0.00 0.02 0.97 0.01 0.00 0.01 0.97 0.01 10566.4
Na 37 5 100 0.00 2.60 0.00 2.60 3.38 1.58 0.56 2.07 3.38 1.58 22355.7
Na 38 5 100 3.53 1.10 3.53 1.10 3.90 0.94 0.00 1.06 3.90 0.95 18040.9
Na 39 5 100 0.00 3.26 0.00 3.27 1.03 3.47 2.04 2.21 4.11 3.63 24479.8
Na 40 5 100 0.15 2.18 0.15 2.19 0.40 1.74 1.36 1.28 0.00 1.90 17199.4
Na 41 10 100 2.67 4.24 2.67 4.26 27.85 1.11 1.25 2.30 0.00 1.38 23210.5
Na 42 10 100 0.00 1.15 0.00 1.14 1.57 1.53 0.46 1.05 1.57 1.52 15633.6
Na 43 10 100 0.00 3.08 0.00 3.08 2.14 2.03 1.24 2.38 2.14 2.03 27349.5
Na 44 10 100 12.35 3.52 12.35 3.53 12.08 1.60 0.00 4.75 12.08 1.60 15269.4
Na 45 10 200 7.02 72.20 7.02 72.35 10.35 52.11 2.35 92.55 0.00 27.92 51186.9
Na 46 10 200 0.00 89.01 0.00 89.23 1.93 30.77 1.08 19.35 1.93 30.62 35498.5
Na 47 10 200 4.67 72.14 4.67 72.35 4.36 34.42 0.00 23.87 4.36 34.39 51079.81
Na 48 10 200 1.77 19.06 1.77 19.12 3.63 55.27 0.00 40.72 3.63 55.13 30126.4
Na 49 5 25 0.00 0.01 0.00 0.01 1.58 0.00 1.58 0.01 1.58 0.01 11439.8
Na 50 5 25 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 8321.3
Na 51 5 25 2.28 0.01 2.28 0.01 0.00 0.00 0.46 0.01 0.00 0.00 13193.3
Na 52 5 25 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 7664.4
Na 53 5 50 0.00 0.16 0.00 0.16 1.67 0.16 3.72 0.09 1.67 0.16 21781.8
Na 54 5 50 0.00 0.14 0.00 0.14 1.42 0.14 1.42 0.15 1.42 0.14 12784.5
Na 55 5 50 0.00 0.22 0.00 0.22 0.68 0.10 0.95 0.14 0.68 0.11 20907.3
Na 56 5 50 0.48 0.08 0.48 0.08 0.20 0.14 0.00 0.09 0.20 0.14 13829.7
Na 57 10 50 1.77 0.22 1.77 0.21 0.16 0.06 2.40 0.16 0.00 0.09 25716.3
Na 58 10 50 0.00 0.16 0.00 0.16 0.94 0.20 0.38 0.12 0.94 0.19 15106
Na 59 10 50 0.00 0.15 0.00 0.14 7.43 0.14 1.20 0.14 7.43 0.13 20840.8
Na 60 10 50 5.05 0.10 5.05 0.10 0.00 0.13 1.61 0.19 0.00 0.13 14244.1
Na 61 5 100 0.00 2.09 0.00 2.10 3.01 1.71 0.30 3.77 3.01 1.70 37492.4
Na 62 5 100 0.00 6.39 0.00 6.41 2.45 3.26 2.76 3.38 2.18 4.50 24845.2
Na 63 5 100 0.15 4.24 0.15 4.24 2.17 1.07 0.04 2.65 0.00 1.55 42244.81
Na 64 5 100 0.00 3.68 0.00 3.69 3.08 1.53 0.92 2.11 3.51 0.82 21906.7
Na 65 10 100 0.00 4.36 0.00 4.38 15.09 2.52 3.40 2.40 14.06 2.86 37778
Na 66 10 100 2.11 1.41 2.11 1.41 0.89 0.87 1.91 1.86 0.00 2.98 32030.99
Na 67 10 100 12.01 4.52 12.01 4.53 2.89 1.33 0.00 6.53 2.89 1.32 43043.91
Na 68 10 100 1.77 2.53 1.77 2.53 0.00 3.24 3.30 2.99 0.00 3.22 24713.29
Na 69 10 200 7.01 60.52 7.01 60.51 0.00 92.05 6.95 55.29 2.19 52.89 89070.41
Na 70 10 200 3.45 40.60 3.45 40.65 8.00 42.27 1.37 57.77 0.00 58.77 61561.01
Na 71 10 200 0.00 58.29 0.00 58.40 0.43 21.02 12.84 24.91 6.27 45.68 88886.21
Na 72 10 200 0.43 89.41 0.43 89.58 0.00 74.95 0.67 47.16 0.00 74.64 50781.09

average 2.25 11.98 2.25 11.99 2.45 9.97 2.18 9.52 1.94 9.29
max e% 50.44 50.44 27.85 48.01 24.94

n. best sol. 33 33 30 23 37

Tables 3.3 gives some details on the nature of the solutions. In the first row,
for each variant, the ratio between the capacities of the active vehicles and the
total demands is reported. This ratio provides a measure of the average loading
of each vehicle. A ratio equal to one means that the vehicle corresponding to
the selected satellites have a capacity exactly equal to the customer demand.
High values of this ratio mean that the capacity of the vehicle is hardly used
to the limit. The table shows that there is no significant difference among
the five variants. The ratio between set-up costs of the active vehicles and
the total demand of the customers is reported in the second row. This ratio
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gives a measure of the set-up cost for each unit of freight transported by the
active vehicles. The total set-up cost for the active vehicles are reported in the
last row of the table. We notice neither significant differences among the five
variants, nor correspondence between low total set-up costs and good objective
function values. This consideration suggests that, on this set of instances, the
routing has an importance greater than the full loading of the vehicles. Finally,
the last row shows, for each instance, the number of active vehicles (one for
each selected satellites).

Table 3.3: Na Inst.: Average statistics.
A1 A1B A2 A2B A3

average capacity of active vehicle/total demand 1.22 1.22 1.21 1.23 1.22
average set-up costs of active vehicles/total demand 12.52 12.52 12.78 12.45 12.69
average number of active vehicles 3.04 3.04 3.01 3.07 3.04

Tables 3.4 and 3.5 are structured in the same way as Tables 3.2 and 3.3.
They show the results obtained by considering the Pa instance set. The size of
this set ranges from 20 to 200 customers and from 5 to 10 satellites. Table 3.4
shows that the variant A2B finds the largest number of best solutions (35).
A1, A1B, A2 and A3 find 33, 33, 34 and 32 best solution respectively, out
of 90 instances. It is interesting to notice that the variant A2B improves the
number of best solutions found on the Pa instance set compared with the Na
instance set (where it finds only 23 best solutions out of 72). Although this
variant finds the largest number of optimal solutions, it also obtains the largest
average objective function value and the largest average relative error. The
same considerations already done for the Na set, concerning the structure of
the solutions and the gaps between the different variants, holds for the Pa set.

Table 3.4: Pa Inst.: results

A1 A1B A2 A2B A3 Abest

Problem m n s t s t s t s t s t s

Pa 1 5 20 0.09 0.00 0.09 0.01 0.09 0.01 0.00 0.01 0.09 0.00 6365.90
Pa 2 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7216.00
Pa 3 5 20 0.00 0.00 0.00 0.01 0.07 0.00 0.07 0.00 0.00 0.01 6871.50
Pa 4 5 20 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 6108.90
Pa 5 5 50 0.01 0.17 0.01 0.16 0.00 0.18 0.27 0.07 0.00 0.18 15200.10
Pa 6 5 50 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 5407.80
Pa 7 5 50 0.02 0.15 0.02 0.15 0.02 0.15 0.00 0.17 0.10 0.13 18436.30
Pa 8 5 50 0.05 0.01 0.05 0.01 0.00 0.01 0.00 0.01 0.05 0.01 9313.90
Pa 9 5 50 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 6013.60

Pa 10 5 50 0.00 0.09 0.00 0.08 0.03 0.14 0.03 0.14 0.03 0.10 11104.70
Pa 11 5 50 0.18 0.13 0.18 0.13 0.00 0.09 0.06 0.13 0.12 0.11 11148.10
Pa 12 5 50 0.02 0.00 0.02 0.01 0.00 0.01 0.02 0.01 0.00 0.01 5517.30
Pa 13 5 100 0.01 7.01 0.01 7.03 0.04 3.13 0.02 2.42 0.00 2.80 179519.80
Pa 14 5 100 0.03 1.70 0.03 1.71 0.00 2.92 0.04 1.42 0.00 2.09 87703.00
Pa 15 5 100 0.00 2.89 0.00 2.90 0.03 4.12 0.04 2.71 0.00 1.44 199580.50
Pa 16 5 100 0.00 2.78 0.00 2.79 0.01 1.02 0.01 1.02 0.01 1.01 89009.89
Pa 17 5 100 0.01 2.47 0.01 2.48 0.00 0.85 0.03 2.43 0.01 2.07 182081.30

Table 3.4: continue
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A1 A1B A2 A2B A3 Abest

Pa 18 5 100 0.00 1.20 0.00 1.21 0.01 1.60 0.00 1.33 0.00 3.11 86751.30
Pa 19 10 100 0.02 2.96 0.02 2.96 0.02 5.18 0.04 4.00 0.00 1.38 196891.70
Pa 20 10 100 0.00 1.57 0.00 1.58 0.00 1.07 0.01 2.07 0.02 1.02 96384.01
Pa 21 10 100 0.89 2.93 0.89 2.93 0.90 7.23 0.00 6.11 1.94 1.85 189345.60
Pa 22 10 100 0.00 1.30 0.00 1.30 4.46 1.45 0.00 2.96 4.46 1.44 91102.82
Pa 23 10 100 0.00 4.29 0.00 4.29 0.00 5.94 0.01 4.68 2.30 1.95 179799.60
Pa 24 10 100 0.01 2.01 0.01 2.01 0.00 3.06 0.02 2.25 0.00 1.13 87491.31
Pa 25 10 200 0.03 74.02 0.03 74.19 0.03 44.23 0.03 36.19 0.00 20.44 746847.80
Pa 26 10 200 0.02 91.07 0.02 91.43 0.03 35.71 0.02 40.13 0.00 44.63 318418.00
Pa 27 10 200 0.21 92.25 0.21 92.27 0.21 107.78 0.00 107.82 0.21 80.13 864319.10
Pa 28 10 200 0.01 42.43 0.01 42.59 0.00 34.19 0.00 61.35 0.37 42.62 390804.80
Pa 29 10 200 0.01 45.60 0.01 45.55 0.00 72.93 0.01 48.71 1.86 37.88 764342.30
Pa 30 10 200 0.01 97.21 0.01 97.49 0.00 72.65 0.01 24.23 9.24 15.73 323065.60
Pa 31 5 20 0.09 0.00 0.09 0.00 0.09 0.00 0.00 0.00 0.09 0.00 6365.90
Pa 32 5 20 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 7216.00
Pa 33 5 20 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.00 0.00 0.00 6871.50
Pa 34 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6108.90
Pa 35 5 50 0.05 0.10 0.05 0.10 0.00 0.09 0.00 0.09 0.00 0.09 15200.40
Pa 36 5 50 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 5407.80
Pa 37 5 50 0.01 0.08 0.01 0.08 0.00 0.11 0.00 0.10 0.00 0.11 18446.20
Pa 38 5 50 0.05 0.01 0.05 0.01 0.00 0.01 0.00 0.01 0.05 0.01 9313.90
Pa 39 5 50 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 6013.60
Pa 40 5 50 0.02 0.11 0.02 0.12 0.01 0.08 0.01 0.12 0.00 0.11 11104.40
Pa 41 5 50 0.00 0.09 0.00 0.09 0.00 0.08 0.01 0.08 0.00 0.08 11156.00
Pa 42 5 50 0.02 0.00 0.02 0.01 0.00 0.01 0.02 0.01 0.00 0.01 5517.30
Pa 43 5 100 3.94 3.36 3.94 3.36 0.01 2.60 0.02 2.50 0.00 3.68 179507.00
Pa 44 5 100 0.00 1.77 0.00 1.77 0.02 2.67 0.01 1.38 0.02 1.03 87707.67
Pa 45 5 100 0.00 4.05 0.00 4.04 0.02 1.69 0.02 1.70 0.00 2.11 199619.00
Pa 46 5 100 0.00 0.98 0.00 0.98 0.01 1.22 0.01 1.22 0.01 1.20 89012.39
Pa 47 5 100 0.01 3.03 0.01 3.04 0.00 2.57 0.00 1.68 0.01 1.82 182096.90
Pa 48 5 100 0.02 1.37 0.02 1.38 0.02 1.39 0.02 1.39 0.00 3.87 86756.22
Pa 49 10 100 0.01 2.56 0.01 2.56 0.01 1.11 0.01 1.83 0.00 2.17 196920.90
Pa 50 10 100 0.00 1.05 0.00 1.06 0.00 1.10 0.00 1.10 0.00 1.05 96392.31
Pa 51 10 100 0.00 4.74 0.00 4.74 7.23 2.41 29.17 1.86 0.00 1.53 146591.60
Pa 52 10 100 0.04 1.81 0.04 1.81 4.46 1.11 0.00 2.09 4.46 1.11 91097.63
Pa 53 10 100 29.13 1.80 29.13 1.79 0.00 3.73 28.41 5.29 9.50 1.75 139989.40
Pa 54 10 100 0.01 2.41 0.01 2.40 0.02 1.85 0.00 0.99 0.02 1.84 87497.88
Pa 55 10 200 0.03 57.78 0.03 57.83 0.03 65.51 0.04 27.78 0.00 24.11 634169.30
Pa 56 10 200 0.00 124.97 0.00 125.19 3.14 115.09 0.01 60.75 3.12 59.43 246903.50
Pa 57 10 200 0.02 60.17 0.02 60.04 0.01 34.00 0.01 28.57 0.00 40.11 741616.30
Pa 58 10 200 1.92 52.83 1.92 52.57 0.00 10.83 0.00 106.29 1.91 51.35 277121.90
Pa 59 10 200 0.00 44.36 0.00 44.14 1.77 25.21 0.00 98.59 0.66 53.07 646790.50
Pa 60 10 200 0.01 30.33 0.01 30.30 0.00 75.19 0.01 29.64 14.89 12.85 235318.30
Pa 61 5 20 0.09 0.00 0.09 0.00 0.09 0.00 0.00 0.00 0.09 0.00 6365.90
Pa 62 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7216.00
Pa 63 5 20 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.00 0.00 0.00 6871.50
Pa 64 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6108.90
Pa 65 5 50 0.00 0.23 0.00 0.22 22.83 0.20 22.99 0.08 22.83 0.20 20584.80
Pa 66 5 50 0.00 0.01 0.00 0.01 0.09 0.01 0.00 0.01 0.09 0.01 10113.80
Pa 67 5 50 0.17 0.11 0.17 0.11 0.08 0.20 0.19 0.09 0.00 0.21 29747.00
Pa 68 5 50 0.17 0.09 0.17 0.09 0.17 0.09 0.17 0.09 0.00 0.12 18407.40
Pa 69 5 50 0.74 0.08 0.74 0.08 0.74 0.08 0.00 0.03 0.74 0.08 11998.40
Pa 70 5 50 0.00 0.12 0.00 0.12 0.29 0.27 0.29 0.19 0.29 0.28 16877.20
Pa 71 5 50 0.11 0.13 0.11 0.13 0.07 0.11 0.06 0.16 0.00 0.20 21824.70
Pa 72 5 50 0.06 0.01 0.06 0.01 0.00 0.00 0.02 0.00 0.00 0.01 5517.30
Pa 73 5 100 0.03 3.07 0.03 3.07 0.00 3.49 0.01 3.03 0.02 2.03 232358.00
Pa 74 5 100 0.01 3.66 0.01 3.65 0.23 1.73 0.00 1.41 0.02 1.16 133484.20
Pa 75 5 100 0.03 2.65 0.03 2.64 0.03 1.93 0.00 3.22 0.03 1.93 257915.50
Pa 76 5 100 0.00 4.42 0.00 4.39 0.07 0.80 0.07 0.55 0.07 0.79 97179.91
Pa 77 5 100 0.04 2.39 0.04 2.37 0.00 4.47 0.00 4.46 0.00 0.77 236060.40
Pa 78 5 100 0.05 1.40 0.05 1.39 0.00 1.57 0.03 1.23 0.00 2.40 131365.00
Pa 79 10 100 0.00 5.62 0.00 5.59 2.43 6.02 0.02 5.46 1.13 1.35 250062.40
Pa 80 10 100 0.00 2.09 0.00 2.08 0.01 5.83 0.00 3.82 0.02 4.81 96383.70
Pa 81 10 100 0.81 6.52 0.81 6.49 1.07 3.35 0.00 8.46 3.43 3.02 239717.10
Pa 82 10 100 0.00 0.49 0.00 0.49 7.35 1.31 46.89 1.22 7.35 1.30 95236.63
Pa 83 10 100 0.02 5.05 0.02 5.02 1.86 1.91 0.00 3.46 0.02 2.34 228976.20
Pa 84 10 100 0.00 3.02 0.00 3.01 9.81 2.23 0.02 2.36 0.04 4.03 87465.40
Pa 85 10 200 1.24 75.11 1.24 74.62 1.25 60.46 0.00 74.63 1.23 27.65 860822.50
Pa 86 10 200 13.19 44.30 13.19 44.05 0.00 54.52 13.19 41.96 14.18 25.10 371847.90
Pa 87 10 200 0.00 61.80 0.00 61.77 0.00 81.52 0.00 98.88 0.00 38.43 988844.80
Pa 88 10 200 26.89 55.77 26.89 55.80 0.00 81.75 26.88 71.16 26.88 25.19 398714.00
Pa 89 10 200 0.14 81.06 0.14 80.96 0.14 104.86 0.00 56.84 0.00 62.29 883517.10
Pa 90 10 200 21.06 48.45 21.06 48.57 0.00 60.56 21.06 22.44 0.00 66.36 352931.30

average 1.13 14.26 1.13 14.26 .79 13.72 2.12 12.59 1.49 8.89
max e% 26.89 26.89 22.83 46.89 26.88

n.best sol. 33 33 34 35 32

Table 3.5 does not show significant difference concerning the behaviour of
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the five variants. The ratio between the capacity of the active vehicles and the
total demand is almost the same in the five variants. A2B is also the variant
with the largest total set-up cost per unit of freight and the greatest number
of total active vehicles.

Table 3.5: Pa Inst: Average statistics.
A1 A1B A2 A2B A3

average capacity of active vehicle/total demand 1.31 1.31 1.31 1.31 1.31
average set-up costs of active vehicles/total demand 82 82 81.30 82.55 82.11
average number of active vehicles 3.06 3.06 3.03 3.1 3.05

Finally, Table 3.6 provides, for each instance set, a comparison of the five
variants. In the first column is reported the name of the instance set consid-
ered, whereas in column 2, 3, 4, 5 and 6 are reported the results achieved by
the five different variants. For each of them the average total error is shown
in the left section, and the CPU time (expressed in seconds) is shown in the
right section. At the bottom of the table the average total error and the av-
erage total computing time of each variant is reported. Variants A1 and A1B
provide almost identical results and are characterized by the worse total aver-
age computing times. A2 is the variant that provides the lowest average total
error, whereas A2B provides the largest. The difference is due to the fact that
A2 in the insertion procedure considers the fixed costs of the satellites divided
by their capacity, whereas A2B considers only the fixed costs. A3 is the fastest
variant, considering both the average total computing time and the average
computing times for each set of instances, but does not perform well on the Pa
instance set. Thus, in our numerical experiments, we do not notice significant
difference among the five variants. The use of different instances generates
different performance of the variants. We remark that although procedures
A1 and A1B have deficiency of geographic information utilizations (they do
not consider the insertion cost of the customers into the vehicle tour and the
insertion of the satellite into the primary tour) it does not imply that an ini-
tial solution from A1 is inferior than one from A2, A2B or A3 (i.e. it is also
possible that the initial solution from A1 could lead to better final solution
than one from A2, A2B or A3 after the application of the main local search
procedures).

At any rate, the computational results suggest that all the variants perform
well, with very short computational times.
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Table 3.6: Comparison among the five variants on the three sets of instances
A1 A1B A2 A2B A3

Instance set e% CPU (sec) e% CPU (sec) e% CPU (sec) e% CPU (sec) e% CPU (sec)
Ca 1.79 0.4 1.79 0.4 0.78 0.4 1.79 0.4 0.68 0.4
Na 2.25 11.98 2.25 11.99 2.45 9.97 2.18 9.52 2.94 9.29
Pa 1.13 14.26 1.13 14.26 0.79 13.72 2.12 12.59 1.49 8.89

Total 1.72 8.88 1.72 8.88 1.34 8.03 2.03 7.50 1.70 6.19



Chapter 4

Conclusions

The delivery of freight from its origin to its destination is often managed mov-
ing the load through one or more intermediate facilities where storing, merging
and/or consolidation activities are performed. This type of distribution system
is commonly called multi-echelon, where each echelon refers to one level of the
distribution network. Multi-echelon distribution systems are often adopted by
public administrations in their transportation and traffic planning strategies
as well as by private companies to design their distribution networks. City
logistic and multi-modal transportation systems are the most cited examples
of multi-echelon distribution systems. Two-echelon distribution systems are
a special case of multi-echelon systems where only two levels of the distri-
bution network are taken into consideration. In the last years, two-echelon
distribution systems have inspired an ever growing body of literature creat-
ing a new large family of combinatorial optimization problems that we called
Two-Echelon Routing Problem. The study of these problems has been much
motivating not only for the important help that specific optimization tech-
niques can provide in real-life applications, but also because designing efficient
route solutions can lead to reduction of air polluting emissions.

In this thesis, we have provided an extensive overview of the operations re-
search literature on two-echelon routing problems, that is a class of problems
that study the optimal routing of freights in two-echelon distribution systems.
This research area is relatively new and is attracting an increasing attention
both from practitioners and academics due to the relevant real-life applications
that are related (among others, city logistics and multi-modal transportation)
and the intellectual challenges that their study poses. We classified the lit-
erature on two-echelon routing problems into three classes: the two-echelon
location routing problem, the two-echelon vehicle routing problem and the
track and trailer routing problem. For each class, we have provided a general
description of the problem, identified the main variants studied in literature
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and reviewed the exact and heuristic solution approaches of such problem.
All the problems we considered have been introduced in the literature only
recently, so this research area is still relatively unexplored. Most of the contri-
butions cited in Chapter 1 focus on the basic problems and propose heuristic
solution approaches. Hence, promising research directions are, on the one side,
the study of more realistic variants of the basic problems and, on the other
hand, the design of efficient exact solution algorithms. Additionally, only few
papers deal with time-dependent variants of the basic problems. For instance,
only some authors have studied variants of the problems with soft and/or hard
time windows, or variants where a limit on the total duration of each route is
given. Other variants that are worthwhile to investigate are the two-echelon
location routing and the two-echelon vehicle routing problems with satellite
synchronization constraints. In these variants, time constraints are considered
on the arrival of the vehicles at a satellite such that once a first echelon vehicle
has unloaded its load, it is immediately loaded onto a second echelon vehicle.
An interesting variant of the two-echelon vehicle routing problem is its multi-
depot version, i.e. more than one depot serve the satellites in the first echelon.
As concerns the truck and trailer routing problem, more realistic versions of
the problem should consider a cost (and/or the time spent) for transferring
loads between a truck and its trailer, and also to hook and unhook the trailer.
On the other hand, the development of exact solution methods is, at the mo-
ment, very limited and could also be a valid research area. Finally, the study
of dynamic versions of the problems and stochastic models also seems to be a
promising research directions.

We also studied the Single Vehicle 2E-LRP a particular version of the 2E-
LRP with a single source. The problem concerns a two-echelon transport
system with limited capacity, in which some freights, available at a central
depot, have to be delivered to a set of customers through a set of intermediate
satellites which must be located. We proposed a integer linear programming
formulation (referred as symmetric formulation ) and a mixed integer pro-
gramming formulation (referred as flow based formulation) extending and/or
adapting known LRP and 2E − V RP models. The proposed formulations
assume as known the position of the depot and the of customers and are able
to find the optimal or sub optimal locations for the satellites. The formula-
tions have been tested on test instances of different size by CPLEX 12.1. The
result obtained are good, especially as concerning the flow formulation that
encourage us to go ahead with the work in this research field. On the other
hand the development of specific valid inequalities for the symmetric formula-
tion could lead to improve the performance of the formulation, allowing us to
tackle problems of larger size.
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Moreover, a heuristic algorithm with five different procedures used to esti-
mate the assignment cost of customers to satellites have been presented and
tested using 3 sets of instances adapted from the literature. On the first set,
called Ca and containing up to 25 customers and 20 satellites, we compared
the results of our heuristic with the results obtained by CPLEX using the flow
based formulation. The model solved exactly 19 instances out of 24 and the
best variant of our heuristic found 9 optimal solutions. The other two instance
sets, called Na and Pa, have been used to compare the five variants of our
heuristic. The results of the comparison have shown that the best variants
do not lie more than 1.34 on average with an average computing time shorter
than 8 seconds. Therefore, on all instance sets, the five variants performed in
very short running times, even on the largest instances with 200 customers and
10 satellites. Future directions of research could consist in developing meta-
heuristics and a branch and cut algorithm able to solve medium instances.

Despite the good results achieved by our heuristic algorithm, it should
be possible improve some of the methods presented in this thesis. It would
be interesting to study valid inequalities to be included on a branch and cut
algorithm for our problem and to be added to our formulations, and to identify
strategies to further improve the performance of our heuristic. It would be
useful to extend the method proposed in this thesis to tackle other and more
general two-echelon location routing problems. Finally, natural extensions like
the 2E-LRP with time windows, 2E-LRP with limit on the total duration
of each route or heterogeneous trucks and trailers could be addressed in the
future.
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