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Abstract 

The present work deals with the application of optimization techniques to mechanical design. 

After an initial section devoted to a theoretical review of optimization algorithms in common 

use, the thesis consists of two parts. 

The first part is about the use of the adjoint method in the framework of aerodynamic shape 

optimization. After a theoretical review, the discrete adjoint method has been implemented in a 

research code based on the Discontinuous Galerkin (DG) method. This activity represents a new 

direction of development within the research group operating at University of Bergamo on DG 

methods for Computational Fluid Dynamics (CFD). Starting from the simple quasi-1D Euler 

equations, the implementation of the discrete adjoint method has been validated by comparing 

the values of computed adjoint variables with results of analytical solutions available in the 

literature. The method has then been applied to a shape optimization problem, using a gradient 

based algorithm with an inexact line search approach. The values of derivatives in the course of 

optimization were found to be in close agreement with those obtained by means of the finite 

difference approach. 

The second part of the thesis deals with the application of optimization techniques to an 

industrial problem. This activity has been carried out at the R&D Centre of TenarisDalmine 

S.p.A., one of the largest seamless steel pipe producers in the world. This work focuses on the 

optimization of the thermal cycle of the mandrel of a longitudinal mandrel mill, with the 

objective of reducing the peak temperature of the mandrel during the rolling phase. The mandrel 

is a very expensive component, whose life cycle has a significant impact on the final cost of the 

product, especially for mandrel mills devoted to the production of restricted ranges of pipe 

sizes. The activity for this part of the thesis required the preliminary set up of a number of 

computational tools for the analysis of the physical aspects involved in the problem. Such tools 

have then been integrated in a comprehensive optimization approach driven by the optimization 

tools available in the Optimization Toolbox of the commercial software Matlab. The results of 

optimization are encouraging, showing the possibility of a considerable increase of the mandrel 

life cycle and highlighting the advantages of using optimization techniques in the design 

process. 
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1 Introduction 
In the last 30 years the engineering design process has deeply changed, following the evolution of 

the involved tools. This evolution passed through different important steps. First of all, the 

development of computer aided design (CAD) techniques has allowed engineers to quickly manage 

components geometry and to handle very complex assemblies, something impossible even to think 

using the drawing board. Furthermore, the evolution of numerical simulations in each field made it 

possible to design each component without the need to execute expensive experimental tests. 

Currently tests are still used but with the aim to verify that the final designed configuration 

effectively matches the predefined target and to investigate unknown phenomena. This evolution 

supported engineers in increasing the performances of the designed components, reducing time and 

cost of the entire process. A further improvement of the design process is the use of the optimization 

techniques. These, starting from a determined configuration, are able to provide engineers with the 

system responses and to drive the design process automatically towards an optimal solution. This 

further step has allowed to increase the performances of very complex and multidisciplinary 

systems. The previously briefly described methods are still matter of research by many working 

groups looking for improved efficiency. 

The present work deals with the application of optimization techniques in the mechanical design 

process, focusing on the used optimization algorithms. 

1.1 Terminology used in Optimization 
What is meant by “optimization”? 

The online Cambridge Dictionary [1] provides the following definition: 

“the act of making something as good as possible”. 

The online Reference Dictionary [2] provides another useful definition: 

“a mathematical technique for finding a maximum or minimum value of a function of several 

variables subjected to a set of constraints”. 

The previous definitions are useful to introduce the topic of the optimization. Obviously the first 

one is more general but explains in absolute sense the effective goal of an optimization process. The 

second definition, instead, is much more practical and near to the real aspects involved in an 

optimization process. 

The present section introduces the topic of optimization by explaining the meaning of the words 

appearing in the two definitions. In this sense, keeping in mind the first definition, the second one 

will be taken as a reference: 

 variables: every problem has a set of input variables that provides one or more outputs. 

Thus, the term variables refers to the set of input variables of the optimization problem 

which can be changed, in order to obtain different configurations and, so, different outputs. 

Each set of input variables can be represented by a dot in the design space representing the 

domain of an optimization problem. Each single dot is a sample of the problem. For 

instance, in a problem of aerodynamic shape optimization, the variables are the set of 

geometrical parameters that controls the shape of an airfoil; 

 function: this function is referring to the objective function of an optimization problem. In 

the engineering framework, it is usually an engineering quantity to be improved (and hence 

to be optimized). The number of objective functions of an optimization problem can be one 

or more, creating, in the second case, a multi-objective optimization problem. The process 
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which starting from the input variables achieves the set of objected functions may be of any 

kind: a numerical simulation, an experimental test or others. Using the same example of 

aerodynamic shape optimization, the objective function may be the drag of an airfoil; 

 maximum or minimum value: the scope of an optimization problem is always the 

maximization or the minimization of the objective function under investigation. In the 

aerodynamic shape optimization example, the drag of an airfoil is the quantity to be 

generally minimized; 

 constraints: constraints are value limits of the input variables. Not only bound limits can be 

present but also more sophisticated limits can exist. In the aerodynamic shape optimization 

example, the dimension of an airfoil is in general subjected to some limits, such as 

maximum dimension allowed for the aircraft or minimum volume required for the fuel 

storage; 

 mathematical technique: it is referred to the technique and the relative optimization 

algorithm by which an optimizer varies the set of input variables in order to decrease (or 

increase) the objective function, reaching a better configuration. The technique itself 

represents the heart of the optimization framework. The most used techniques will be 

explained in detail in chapter 2 and the application of those to engineering problems is 

object of the present work. 

This is only a brief introduction to the topic of optimization, whose aim is to provide a basic idea as 

a starting point for a deeper study of the involved aspects. 

1.2 Different Phases of an Optimization Process 
The topic of optimization can be partitioned in the following three macro areas: 

 Design of Experiments; 

 Optimization Algorithms; 

 Robust Design Analysis. 

The present work focuses on the second area, relative to optimization algorithms. This paragraph 

anyway presents a general overview of the three areas with the aim to better understand how 

optimization algorithms are inserted in an optimization process.  

1.2.1 Design of Experiments and Response Surface Modelling 
The design of experiment (DOE) is not an optimization technique itself, but it is a technique used to 

identify which samples to choose in the design space, in order to get the maximum number of 

information using the minimum amount of resources. For a given number of samples, there are 

different ways of choosing an optimal sample arrangement for collecting different information. 

The DOE is generally followed by a response surface modelling (RSM), a technique used to 

interpolate or approximate the information obtained by DOE. Different RSM techniques exist, with 

different interpolation or approximation criteria. The advantage represented by using RSM 

techniques is the fact that optimization techniques can be used directly on the obtained interpolation 

model. This optimization is very quick since it is based on the analytical evaluation of the 

interpolating or the approximating function. 

The use of a DOE+RSM technique is cheaper than any optimization algorithm, since a lower 

number of samples is generally required. The drawback is represented by the fact that it’s not 

possible to know how the approximation process is accurate. 
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1.2.2 Optimization Algorithms 
As explained in the paragraph 1.1, optimization algorithms are mathematical algorithms used to 

change the set of input variables, in order to decrease (or increase) the objective function, towards a 

better configuration. The present work focuses on this aspect of the optimization topic: chapter 2 is 

devoted to a detailed description of the theory of optimization algorithms. In order to provide a 

general overview of optimization algorithms, in the present paragraph the following basic 

classification is presented: 

 deterministic optimization: it refers to algorithms where a rigid mathematical scheduling is 

followed and no random elements are present; 

 gradient-based optimization: it is a subset of deterministic optimization and it refers to 

algorithms that require the computation of the gradient of the objective function in the 

neighborhood of a sample; 

 stochastic optimization: it refers to algorithms where randomness is present in the search 

procedure; 

 evolutionary optimization: it is a subset of stochastic optimization and it refers to algorithms 

where the search procedure is carried out mimicking the evolution theory of Darwin; 

 genetic optimization: it is a subset of genetic optimization and it refers to algorithms where 

the input variables are discretized in binary strings; 

 unconstrained optimization: it refers to algorithms where the input variables are 

unconstrained; 

 constrained optimization: it refers to algorithms where the input variables are constrained; 

 single-objective optimization: it refers to algorithms where there is a single objective 

function; 

 multi-objective optimization: it refers to algorithms where there are more than one objective 

function; 

 local optimization: it refers to algorithms that can stop their search at local minima; 

 global optimization: it refers to algorithms that can overcome local minima; 

 convex optimization: it is a subset of gradient-based optimization and it refers to convex 

optimization problems; 

 discrete optimization: it refers to algorithms which are able to include non-continue 

variables; for instance variables with only integer values. 

1.2.3 Robust Design Analysis 
The robust design analysis (RDA) aims at evaluating how a small change of input variables reflects 

on the objective function. This analysis is motivated by the fact that an optimal solution could 

degrade its performance very quickly as soon as some incontrollable parameters (for example noise 

factors) enter the game. Two different RDA approaches are possible: multi-objective robust design 

optimization and reliability analysis. 

Multi-objective robust design optimization (MORDO) consists in further sampling with a given 

probability distribution the noise factors in the neighborhood of a sample. In this way it’s possible 

to evaluate the standard deviation of the objective function of interest. 

Reliability analysis (RA) consists in sampling with a given probability distribution the noise factors 

in the neighborhood of a sample too. However, this method aims to evaluate that the probability of 

the problem performance drops below a given minimum performance value, called failure 

probability. 

Figure 1-1 shows the elements involved in an optimization process. 
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Figure 1-1: Elements Involved in an Optimization Process 

 

1.3 Layout of the Thesis 
The present Thesis is structured as follows. 

Chapter 1 is an introduction to the topic of optimization. 

Chapter 2 is devoted to a first theoretical review of commonly used optimization algorithms. 

Section 2.1 contains a theoretical survey concerning algorithms used to perform deterministic 

constrained and unconstrained optimization; while section 2.2 is devoted to stochastic optimization 

algorithms. 

Chapters 3 and 4 deal with the application of optimization techniques to engineering problems. 

Chapter 3 is devoted to the use of the adjoint method in the framework of aerodynamic shape 

optimization. After a theoretical review, the discrete adjoint method has been implemented in a 

research code based on the Discontinuous Galerkin (DG) method. This activity represents a new 

direction of development within the research group operating at University of Bergamo on DG 

methods for Computational Fluid Dynamics (CFD). 

Chapter 4 deals with the application of optimization techniques to an industrial problem. This 

activity has been carried out at the R&D Centre of TenarisDalmine S.p.A., one of the largest 

seamless steel pipe producers in the world. This work focused on the optimization of the thermal 

cycle of the mandrel of a longitudinal mandrel mill, with the objective of reducing the peak 

temperature of mandrel during the rolling phase. The optimization has been implemented by the use 

of the Optimization Toolbox of the commercial software Matlab. 

Chapter 5 is devoted to conclusions of the present work. 
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2 Optimization Theory 
The present chapter is devoted to a general description of optimization algorithms: a theoretical 

review is provided with the aim to understand the choice of algorithms used in the present work. 

The reader should be aware that such description is far from being a complete review: it only 

mentions the main algorithms and their basic concept. 

About the references used in the review, in [3] a general overview of deterministic and stochastic 

optimization methods is present, while [4], [5] and [6] include a detailed description of algorithms 

concerning unconstrained and constrained deterministic cases. 

2.1 Deterministic Optimization 
Deterministic optimization is the classical branch of optimization algorithms in mathematics: it 

refers to algorithms where a rigid mathematical programming is followed and no random elements 

appear. Deterministic optimization algorithms are commonly based in the computation of the 

gradient and, in some cases, also the Hessian of the objective function of interest. Obviously, 

deterministic optimization has both advantages and drawbacks. An important advantage is that the 

convergence to a solution is much faster when compared to stochastic optimization algorithms; 

furthermore, being based on a rigorous mathematical formulation and not involving stochastic 

elements, the result of a deterministic optimization process is unequivocable and replicable. On the 

other hand, deterministic optimization algorithms reach steady points of the objective function; 

thus, the optimal solution found could be a local optimum and not the global optimum. Moreover, 

deterministic algorithms are intrinsically single objective. 

This chapter deals with a description of the two main aspects of deterministic optimization, namely 

unconstrained and constrained optimization. 

2.1.1 Introduction to Deterministic Optimization 
In this paragraph is present an introduction of the deterministic optimization topic, as explained in 

[5]. 

2.1.1.1 Basic Notions 
The present paragraph contains an overview of basic concepts useful in the optimization 

framework, as explained in [6]. 

First order derivatives of a real function 

Each assigned vector 
nRd not null defines a direction in 

nR , that makes possible to define the 

following quantities: 

 directional derivative: considering a generic function RR nf : ; f admits a directional 

derivative  dx ,Df    in a point 
nRx along the direction 

nRd if exists the following 

finite quantity: 

 

),(:
t

)()(
  

0
lim dx

xdx
Df

ftf

t





 

 

( 2-1 ) 

 partial derivative: considering a generic function RR nf : ; f admits a partial derivative 

  jxf  / x  in a point 
nRx in respect of the variable 

jx if exists the following finite 

quantity: 
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( 2-2 ) 

 gradient: considering a generic function RR nf :  and a point nx R . If exist the 

partial derivatives of f in x the gradient of f in x is the following vector: 

 

































nx

f

x

f

f

)(

...   

)(

:)(

1

x

x

x  

 

( 2-3 ) 

 differentiability: considering a generic function RR nf : ; f is differentiable ( by 

Frèchet, or in strong sense) in a point 
nRx if exists   ng Rx such that for each 

nRd :  

  
0

  

)()(
  

0  
lim 



 d

dxxdx

d

T
gff

 

 

( 2-4 ) 

The operator   RR ng :x  is called derivative (of Frèchet) of f in x . 

Notice that the existence of  xf  not implies, in general, the differentiability defined. 

It is demonstrated, nevertheless, that if  xf  exists and it is continuous respect to x , then 

f is differentiable in x and the Frèchet derivative of f in x  coincides with  Tf x . 

It is demonstrated that if f is differentiable in x , the directional derivative of f along 

every direction 
nRd is the following: 

 

dx
xdx Tf

ftf

t
)(:

t

)()(
  

0
lim 




 

 

( 2-5 ) 

Differentiability of a vector of functions 

Considering mn RR :g a vector with m components of real functions. It is possible to define the 

following quantities: 

 Jacobian matrix: considering a vector of functions mn RR :g and a point 
nRx . If 

exist the partial derivatives   ji xg  /x , with i=1, …, m and j=1, …, n in x . the Jacobian 

Matrix of g in x is the following: 
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( 2-6 ) 

 derivative of a vector of functions: considering a vector of functions mn RR :g and a 

point 
nRx ; g is differentiable ( by Frèchet, or in strong sense) in a point 

nRx if exists 

a matrix  xG  such that for each 
nRd :  

  
0

  

)()(
  

0  
lim 



 d

dxGxgdxg

d
 

 

( 2-7 ) 

The operator   mRR n:xG  is called derivative (of Frèchet) of g in x . 

It is demonstrated that if  xJ  exists and it is continuous in respect of x , then g  is 

differentiable in x and the Frèchet derivative of g in x  coincides with  xJ . 

Second order derivatives of a real function 

Considering a real function RR nf : . It is possible to define the following quantities: 

 Hessian matrix: considering a real function RR nf : and a point 
nRx . If exist the 

second partial derivatives   ji xxf  /2 x , with i=1, …, n and j=1, …, n in x . the Hessian 

Matrix of f in x is the following: 
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( 2-8 ) 

 differentiability of second order: considering a generic function RR nf : and a point 
nRx . f is twice differentiable ( by Frèchet, or in strong sense) in a point 

nRx if the 

first derivative,  Tf x , is differentiable in x . The first derivative of  Tf x is called 

second derivative (of Frèchet) of f . 

Notice that the existence of  xH  not implies, in general, the differentiability defined. 

It is demonstrated, nevertheless, that if  xH  exists and it is continuous in respect of x , 

then f is twice differentiable in x and the second order Frèchet derivative of f in x  

coincides with  x2f . 
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Mean value Theorem and Taylor’s formula: 

In case of differentiable functions is possible give the following results: 

 theorem of mean: considering a differentiable function RR nf : ; then for each nRh : 

 

hzxhx Tfff )()()(   
 

( 2-9 ) 

where 
nRz is an appropriate point (dependent by x andh ) such that hxz    with 

 1,0 . 

 Taylor theorem: considering a twice differentiable function RR nf : ; then for each 
nRh : 

 

hwhxhxhx )(
2

1
)()()( 2ffff TT   

 

( 2-10 ) 

where 
nRw is an appropriate point (dependent by x andh ) such that hxw    with 

 1,0 . 

Forms and quadratic functions 

Given a square and symmetric matrix A of dimension ( n x n ), the quadratic form associated to the 

matrix A is the following function: 

 


 


n

i

n

j
jiij

T xxa
1 1

 xAx  

 

( 2-11 ) 

A quadratic function is a function of the following type: 

 

  xcxAxx TTq   
2

1
 

 

( 2-12 ) 

The quadratic form xAx  T
and the matrix A associated to the quadratic form are defined as: 

 positive definite, if 0xxxAx    ,  0 nT R ; 

 positive semi-definite, if 
nT R xxAx   0 ; 

 indefinite, if for some 
nRx results 0 xAx T

and for some 
nRx results 0 xAx T

; 

 negative (semi-)definite, if xAx  T results positive (semi-)definite. 

Convex Optimization 

In the optimization framework there is interest in respect of the so called convex problems for 

reasons that will be explained in the present section. In this sense is important to give these 

definitions: 
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 convex set: a generic set nC R is convex if taken two points Czy , results also that 

  Czy , , having denoted with  zy ,  the segment that joins the two points, segment 

given by x point obtained by: 

 

    1 ,0    , 1   zyx  
 

( 2-13 ) 

It is verified that the intersection between a finite number of convex sets is a convex set too. 

 convex function: a function  xv  is convex on a convex set C  if taken two points Czy ,

results that: 

 

           1 ,0     ,  1  1   zyzy vvv  
 

( 2-14 ) 

 strictly convex function: a function  xv  is strictly convex on a convex set C  if taken two 

points zyzy  ,, C results that: 

 

           1 ,0     ,  1  1   zyzy vvv  
 

( 2-15 ) 

Geometrically a function is strictly convex if its graphic is always under every its secant. 

 concave function: a function  xv  is concave on a convex set C  if the function  xv  is 

convex on C . 

Definitions ( 2-14 ) and ( 2-15 ) allow to deduce important properties concerning first and second 

derivatives:  

 convex function: a function  xv  is convex on a convex set C  if, and only if, for each 

Czy , results that: 

 

       yzyyz 
T

vvv    
 

( 2-16 ) 

 strictly convex function: a function  xv  is strictly convex on a convex set C  if, and only if, 

for each zyzy  ,, C results that: 

 

       yzyyz 
T

vvv    
 

( 2-17 ) 

Geometrically a function is strictly convex if its graphic is always up every its tangent. 

 convex function: a function  xv  is convex on a convex set C  if, and only if, for each 

Cx results that: 
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  nT v R yyxy     ,0 
2

1 2  

 

( 2-18 ) 

 strictly convex function: a function  xv  is strictly convex on a convex set C  if, and only if, 

for each Cx results that: 

 

  nT v R yyxy     ,0 
2

1 2
 

 

( 2-19 ) 

 quadratic convex function: a function   xcxQxx TTq   
2

1
 is convex on a convex set C  

if, and only if, the matrix Q is positive semi-defined. 

 quadratic strictly convex function: a function   xcxQxx TTq   
2

1
 is strictly convex  on 

a convex set C  if, and only if, the matrix Q is positive defined. 

2.1.1.2 Problem Definition 
 

Problem Description 

Considering the problem of determine the value of a vector of decision variables 
nRx that 

minimize an objective function RR nf : , when x is required to belong to a feasible set 
nRF  ; that is we consider the following problem: 

 
)(  min x

x
f

F
 

 

( 2-20 ) 

Two cases are the main of interest: 

 if the feasible set nR F  is the problem ( 2-20 ) is unconstrained: 

 
)( min x

x
f

nR
 

 

( 2-21 ) 

 if the feasible set is described by inequality and/or equality constraints of the decision 

variables: 

 

  ,.....,1,0)( ;,.....,1 ,0)(: mjxhpigR ji

n  xxF  

 
( 2-22 ) 

then the problem ( 2-20 ) becomes: 
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0xh

0xg

x
x
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



)(          

)(          

)( min f
F

 

 

( 2-23 ) 

where: 

o mn RR :h is the set of equality constraints; 

o pn RR :g is the set of inequality constraints. 

The problem ( 2-23 ) is a Nonlinear Programming Problem ( NLP) when at least one of the 

problem functions f, gi ,hj is nonlinear in its argument x. 

In the following it will be assumed that the problem functions f, gi ,hj are at least continuously 

differentiable in R
n
. 

When f is a convex function and F is a convex set the problem ( 2-20 ) is a convex NLP problem. 

Solution Existence 

A point F*x is a global solution of the problem ( 2-20 ) if )()( * xx ff  , for all Fx ; it is a 

strict global solution of the problem if )()( * xx ff  , for all *  , xxx F . It is important 

distinguish these two cases: 

 constrained problem: a main existence result is that a global solution exists if F is compact 

(Weirstrass Theorem); 

 unconstrained problem: an existence result is that a global solution exists if is compact, for 

some finite α, the following level set: 

 

  )(:   xx fR nL  

 
( 2-24 ) 

A point F*x is local solution of the problem if there exists on open neighborhood Bx* of x
*
 such 

that )()( * xx ff  , for all *, xxx  *xBF ; it is a strict local solution of the problem ( 2-20 ) 

if )()( * xx ff  , for all *, xxx  *xBF . 

Solution Existence – Convex Optimization 

Following definitions given in 2.1.1 is possible give the following definition concerning the 

existence solution in case of convex optimization problems: 

 (strictly) convex problem: problem ( 2-20 ) is convex if the feasible set F  is a convex set 

and the objective function f  if convex on F  . If the objective function f  if strictly convex 

on F  the problem ( 2-20 ) is strictly convex. 

Convexity introduces some properties that simplify the analysis and the solution of a convex 

problem: 
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 a convex optimization problem or has not solution or has only global solutions; it cannot 

have exclusively local solutions; 

 in a strictly convex optimization problem the global solution, if exists, is unique; 

 constrained optimization problem ( 2-23 ) is convex if the objective function f  is a convex 

function in nR , inequality constraints are given by convex functions  xig  in nR  and 

equality constraints are given by affine functions j

T

j bxa  . 

2.1.1.3 Optimality Conditions 
In the present paragraph are illustrated the conditions concerning local optimum solution of 

problem ( 2-20 ). 

Unconstrained problem 

Local solution must satisfy the following necessary optimality conditions (  NOC): 

 NOC-order I: let x
*
 be a local solution of problem ( 2-21 ), then: 

 

0x  )( *f  
 

( 2-25 ) 

 NOC-order II: let x
*
 be a local solution of problem ( 2-21 ); if f is twice continuously 

differentiable, then: 

 
nT Rf  yyxy    0)( *2  

 
( 2-26 ) 

where y represents a generic direction. 

If a point F*x  satisfy the following sufficient optimality conditions (  SOC), then it is a local 

solution of the problem ( 2-21 ): 

 

0yyyxy  ,   0)( *2 nT Rf  
 

( 2-27 ) 

The condition ( 2-27 ) implies that )(2 xf is positive definite; thus x
*
 is a strict local solution of 

problem ( 2-21 ). 

Constrained problem 

For constrained problem ( 2-22 ), most of NOC used assume that at a local solution the constraints 

satisfy some qualification condition to prevent the occurrence of degenerate cases. These conditions 

are the so called constraints qualifications. 

Let F


x . An inequality constraint gi is active at 


x  if 0)( 


xig . The index set of inequality 

constraints active at 


x  is the following: 
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




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

0)(:   1 )( xx ia g, ..., p iI  

 

( 2-28 ) 

Obviously, an equality constraint hj is active in 


x . 

The simplest constraint qualification condition is the so called linear independence constraint 

qualification (  LICQ). At 


x . LICQ is the following: 

 

tindependenlinearly     )(   and  )( 


xhxaI  

 

( 2-29 ) 

Under LICQ, the NOC of problem ( 2-22 ) are stated making use of the Lagrangian function: 

 

)()()(),,( xhμxgλxμλx TTfL   
 

( 2-30 ) 

Where mp RR  μλ  , are called Lagrange Multipliers, or dual variables. 

Thus, local solution must satisfy the following NOC: 

 NOC-order I, called Karash-Kuhn-Tucker (  KKT) NOC: assume that x
*
 is a local solution 

of problem ( 2-22 ) and LICQ holds at x
*
, then multipliers **  ,0 μλ  exist such that: 

 

0xgλμλx  )(  ,0),,( *****

x

T
L  

 
( 2-31 ) 

 NOC-order II: if f, g, h are twice continuously differentiable, then: 

 

)(  ,0),,( ****
x

2 xyyμλxy N LT  
 

( 2-32 ) 

where: 

 

  0)( ,0)(: )( ***  yxhyxyx TTn gR IaN  

 
( 2-33 ) 

If a point F*x  satisfy the following SOC, then it is a local solution of the problem ( 2-22 ): 

assuming that F*x and **  , μλ satisfy the KKT condition. Assume further that: 

 

0yxyyμλxy   ),(  ,0),,( ****
x

2 NLT  
 

( 2-34 ) 

where: 
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  0 with )(,0)(,0)(: )( ***** 

i
TTn igR λxyxyx hyx ai IN

 
 

( 2-35 ) 

Then x
*
 is a strict local solution of problem ( 2-22 ). 

2.1.1.4 Performance of Algorithms 
 

Convergence 

Let F  be the subset of points that satisfy the NOC-order I of problem ( 2-20 ). 

Let   ... ,1 ,0 ,  kkx  be the sequence of points produced by an algorithm. Then, the algorithm is 

globally convergent if a limit point x
*
 of  kx  exist such that *x  for any starting point 

nR0x ; it is locally convergent if the existence of the limit point *x  can be established only 

if the starting point 0x belong to some neighborhood of  . 

The notion of convergence stated is the weakest that ensures that a point x
k
 arbitrarily close to Ω 

can be obtained for k large enough; in the unconstrained case this implies the following condition: 

 

0 )(  inf  lim
 




kf
k

x  

 

( 2-36 ) 

Stronger convergence properties con also be established. For instance, any sequence of  kx  

posses a limit point and any limit point of  kx  belongs to Ω; in the unconstrained case this 

implies the following condition: 

 

0 )(   lim
 




kf
k

x  

 

( 2-37 ) 

Rate of Convergence 

The most widely employed notion of rate of convergence is the Q-rate of convergence, that 

considers the ratio between two further iterates. Then, it is possible to define the following cases 

concerning the algorithms of common use: 

 Q-linear rate of convergence: 

 

r
k

k






   

   

*

*1

xx

xx
 

 

( 2-38 ) 

for k sufficient large and with   1 ,0 r . 

 Q-superlinear rate of convergence: 
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( 2-39 ) 

 Q-quadratic rate of convergence: 

 

R
k

k






2
*

*1

   

   

xx

xx
 

 

( 2-40 ) 

where R is a positive constant, not necessary less than 1. 

2.1.2 Introduction to Unconstrained Optimization 
In the present paragraph are described algorithms for solving unconstrained nonlinear problems like 

( 2-21 ). 

It will be assume for simplicity that the problem function f  is twice continuously differentiable in 
nR  even if not in all cases this condition is required and only once continuously differentiability is 

needed. 

It will be also assumed that the existence condition ( 2-24 ) of global solution holds. 

The algorithms treated in this paragraph generate a sequence kx , starting from 0x , by the 

following iteration: 

 
kkk dxx  1k 

 
 

( 2-41 ) 

where: 

 kd is a search direction; 

 k is a step size along 
kd . 

The search direction affects on the local behavior of an algorithm and its rate of convergence, 

whereas global convergence often depends on the choice of the step size. 

Exist two different approaches for the choice of the search direction and the step size: 

 line-search approach; 

 trust region approach. 

2.1.2.1 Line-search Approach 

Line-search algorithms keep fixed the search direction 
kd and determine the step size 

k along that 

direction in order to ensure that the algorithm ( 2-41 ) results to be globally convergent. The main 

criteria generally used for that evaluation are the following: 

 exact search: a first possibility is to set 
* k
equal to the value that minimizes the 

function f along the direction 
kd : 
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 kkf dx   minarg* 


  

 

( 2-42 ) 

However an exact line search is usually quite computationally costly and its use is not 

diffused. 

 approximated search: in case that  xf  can be computed and assuming that 
kd  is a 

descend direction for f at kx : 

 

  0  kTkf dx  
 

( 2-43 ) 

it can be illustrated the simplest approximated line-search method, called the Armijio’s 

Method, that find a step size 
k  that satisfies a sufficient decrease of the objective function 

in the following steps: 

o data: 

 

       , 0,1 , 0,1/2 , 0,1  c  
 

( 2-44 ) 

o step1: chose an initial step 
k  and set 

kk  ; 

o step2: verification of the sufficient decrease condition: if 

 
kTkkkk fff dxxdx  )(  )() (    

 
( 2-45 ) 

then  k
and stop;  

o step3: otherwise set    and go to step 2. 

Other approximated methods exist but are not presented in this context. 

2.1.2.2 Trust-region Approach 
In trust region the iteration ( 2-41 ) becomes the following: 

 
kk sxx 1k

 
 

( 2-46 ) 

Where the step 
ks is obtained by minimizing a quadratic model kq of the objective function, not on 

whole space 
nR but on a suitable trust region where the model is supposed to be reliable. The trust 

region is usually defined as a Euclidean-norm of the step. At each iteration k the step 
ks is obtained 

by solving 
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where ka is the trust region radius, iteratively updated. The idea is that when the approximation 

model kq is a good approximation of the objective function, the radius 
ka should be large in order 

to exploit the full step of the iteration method used (for example, the Newton’s Method). The 

updating rule of 
ka depends on the ratio between the current reduction    1 kk ff xx  and the 

expected reduction    kkk qf sx  . A possible scheme of a trust region algorithm is the following: 

o data: 

 

2121 10   ,10    
 

( 2-48 ) 

o step1: choose nR0x  and a radius 00 a , set k=0. 

o step2: find the step size: 
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( 2-49 ) 

o step3: if    kkk qf sx   stop. 

o step4: compute the ratio: 
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if 1 k  set 
kk sxx 1k

, otherwise set 
kxx 1k
. 

o step 5: update the radius: 
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( 2-51 ) 

o set k=k+1 and go to step 2. 
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2.1.3 Methods for Unconstrained Optimization 
In the following paragraph are described the main concepts concerning methods useful to solve 

unconstrained optimization problem, as explained in [5] and [6]. 

2.1.3.1 Gradient Method 
The gradient method (called also steepest descend method) is based on the use of a search direction 

equal to the anti-gradient direction of the objective function f at point x : 

 

 kk f xd    
 

( 2-52 ) 

Requiring only information about first order derivatives the method is very attractive because of its 

limit computational cost and storage requirements. Notice that from ( 2-52 ) results the following 

condition: 

 

    2

     kkTk ff xdx   

 

( 2-53 ) 

Hence, if   0x  kf the anti-gradient direction is always a descend direction. 

Thus, the iteration k of the gradient method is the following: 

 

 kkk f xxx  1k    
 

( 2-54 ) 

By an appropriate choice of the step size 
k , following a line-search criteria explained in 2.1.2.1 is 

possible obtain the global convergence of method. 

However, only a linear convergence rate can be reached. 

2.1.3.2 Conjugate Gradient Method 
The conjugate gradient method was originally introduced in order to solve minimization problems 

of strictly convex quadratic functions with the aim of accelerating the gradient method. 

Given the following convex quadratic function: 

 

  xxQxx TT af   
2

1
 

 

( 2-55 ) 

the principle on which the method is based is that the minimization of ( 2-55 ) on 
nR , with Q 

symmetric positive definite, can be split in n minimization over R , along n directions 10 ,..., ndd  
conjugate with respect the Hessian Q, direction such that: 

 

jiij  for    0   dQd  
 

( 2-56 ) 

Along each direction an exact line search is performed.  
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The method described correspond to the so called conjugate directions algorithm (  CDA): the 

algorithm finds the global minimizer of a strictly convex quadratic functions in at most n finite 

iterations. 

In respect of the CDA, in which the conjugate directions are given, in the conjugate gradient 

algorithm (  CGA) the n conjugate directions are generated iteratively according to the following 

rule: 
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( 2-57 ) 

The scalar k is chosen in order to enforce the conjugacy among the directions; here is presented 

the Fletcher-Reeves Formula: 
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( 2-58 ) 

When f is not a quadratic function the choice of parameter  is different and a inexact line-search 

is performed to determine the step size 
k . 

2.1.3.3 Newton’s Method 
The Newton’s method is one of the most powerful algorithms for the solution of unconstrained 

optimization problems. It relies on the following quadratic approximation of the objective function 

in the neighborhood of the current iterate 
kx : 

 

)( )( )( 
2

1
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( 2-59 ) 

The method requires the computation of  xf  and  xf2  at each iteration k. 

Newton’s direction 
kd is obtained as a steady point of kq , that is a solution of the following 

system: 

 

 )( )(    0 )( 2 kkkk ffq xdxs   
 

( 2-60 ) 

provided that  kf x2  is non-singular, Newton’s direction is given by: 

 

  )(   )(  12 kkk ff xxd    
 

( 2-61 ) 

and the basic algorithmic scheme is defined by the following iteration: 
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  )(   )( 121 kkkk ff xxxx    
 

( 2-62 ) 

If the starting point 0x is close enough to the solution *x , then the sequence generated converges 

superlinearly to the solution. 

However, Newton’s method presents some drawbacks:  kf x2  may be singular, and hence 

Newton’s direction cannot be defined; furthermore the starting point can be such that the iteration 

generated does not converge and even convergence to a maximum point can be occur. Therefore, 

Newton’s method requires some modification that enforces the global convergence to a solution. In 

this sense, the application of line-search approach or trust region approach ensures this requirement. 

2.1.3.4 Quasi-Newton Method 
Quasi-Newton methods were introduced in order to obtain efficient methods that do not require the 

evaluation of second order derivatives. 

They are obtained by setting the direction 
kd as the solution of the following system: 

 

)( kkk f xdB   
 

( 2-63 ) 

with 
kB is a n x n symmetric and positive definite matrix which is adjusted iteratively in such a way 

that the direction 
kd tends to approximate the Newton direction. Formula ( 2-63 ) is referred to a 

direct quasi-Newton formula, in turn the inverse quasi Newton formula is the following: 

 

)( kkk f xHd   
 

( 2-64 ) 

where 
1BH . 

The idea at the basis of quasi-Newton method is to obtain the curvature information not from the 

Hessian but only from the values of the function and the gradient. The matrix  11  kk HB  is 

obtained as a correction of  kk HB  , namely  kkkkkk HHHBBB   11  . The 

correction  kk HB   is chosen such that: 

 

    kkkkkkkk γHHδγδBB       ,  
 

( 2-65 ) 

where 

 

)()(   ,  11 kkkkkk ff xxγxxδ    
 

( 2-66 ) 

Exist different rules to update the matrix 
kH , here is presented the Broyden-Fletcher-Goldfarb-

Shanno formula (  BFGS) which is combined with a line-search approach: 
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( 2-67 ) 

As deals with convergences properties of quasi-Newton methods, satisfactory results exist for the 

convex case, while in the non- convex case only partial results exist. 

2.1.3.5 Derivative-free Methods 
Derivative free methods neither compute nor approximate derivatives of f . They are useful when 

f  is either unavailable, or unreliable (for example due to noise) or computationally too expensive.  

Exist different kinds of methods. In this section will be described only the main features of the 

direct search methods, in order to provide a basic idea of the concept followed by their algorithms. 

Direct search methods try to investigate the behavior of the objective function in the neighborhood 

of the current iterate by means of samples of the objective function along a set of directions by 

which span 
nR : 

 

   1  with ,..., 1  nrrk ddD  
 

( 2-68 ) 

A possible choice of 
kD is the following: 

 

    ,...,1, j njk  eD  

 
( 2-69 ) 

where 
je  is the j-th column of the Identity matrix. 

In case of Pattern Search algorithm at every iteration is built a pattern containing the set of 

candidates for the next iteration:  

 

   with , 1 kjjkkkk DP   ddxx   
 

( 2-70 ) 

Hence, the step 
jkk ds   is chosen so as to satisfy a simple reduction of the objective function: 
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( 2-71 ) 

2.1.3.6 Simplex Method 
The Simplex Method was firstly introduced by Spendley in 1962. A simplex is the k-dimensional 

analogue to a triangle or, in other words, a geometrical figure enclosed within k+1 vertices in a k-

dimensional space. The simplex is said regular if the length of the edges connecting the vertices is 

the same. 

The Spendley simplex method starts from a set of k+1 samples, locating a regular simplex in the 

design space. The vertice associate to the worst sample, with the highest value of objective function, 
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is then reflected in respect of the centroid of the other k vertices. If after this operation that vertice is 

again the worst, then is reflected the vertice with the second value of the objective function. After a 

certain number of function evaluations and reflections, the simplex is contracted in respect of the 

oldest vertices. 

A series of modified and much more efficient methods have been proposed from 1962. Here is 

presented the Nelder and Mead simplex: they allow irregular simplexes and use different 

mechanism for moving the simplex. Denoting 1kx the point to be reflected and 0x the centroid of 

other vertices: 

 Reflection: reflection of the worst sample, then evaluation of the objective function at the 

reflection point: 

 

 100    kr xxxx   
 

( 2-72 ) 

 if after reflection the sample is still the worst, the simplex is contracted moving 1kx to: 

 

 101     knc xxxx   
 

( 2-73 ) 

 if after reflection the sample is the best so far, the reflected sample is pushed further along 

the direction
1 kr xx : 

 

 100    kc xxxx   
 

( 2-74 ) 

 if a certain point 
1x is sufficiently old, the simplex is shrinked: 

 

  1,...,21     ,  11  kii xxxx   
 

( 2-75 ) 

 ,,, are respectively the reflection, contraction, expansion and shrinking coefficients. Typical 

values are the following: 
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1
,2,
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1
,1    

 

( 2-76 ) 

2.1.4 Introduction to Constrained Optimization 
In the following paragraph are described the main concepts concerning methods useful to solve 

constrained optimization problems, as explained in [4], [5] and [6]. 

First of all, in order to provide a general overview of possible cases involved, it is presented a 

general classification of constrained optimization problems; each of which requires the application 

of different kind of algorithms: 
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 linear programming: the objective function and all the constraints are linear functions; 

 nonlinear programming: both the objective function and some of the constraints are 

nonlinear or generally smooth functions; 

 linearly constrained optimization: all the constraints are linear functions; 

 bound constrained optimization: the only constraints of the problem impose lower and upper 

bounds on some design parameter; 

 convex programming: the problem is a convex optimization problem. 

The mathematic laying behind constrained optimization is very complex. In the following section it 

will provide just some basic idea on it and a discussion of the main common methods and 

algorithms concerning the fields of linear and nonlinear programming, branches to which belong 

two cases analyzed in the present work. 

2.1.5 Methods for Constrained Optimization: Linear Programming 
In this section are described the main concepts concerning methods useful to solve linear 

programming constrained optimization problems. 

2.1.5.1 Duality 
A linear programming optimization problem is a convex optimization problem too. The NOC 

explained in 2.1.1.3 allow deduce many important results concerning the theory of linear 

programming, results known like Duality Theory, treated in [6]. 

Referring for simplicity to the following linear primal problem:  
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where: 

 A is a p x n matrix; 

 c is a vector of dimension n; 

 b is a vector of dimension p; 

Considering the following linear dual problem:  
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( 2-78 ) 

Due to the convex nature of the problems, for both the primal and dual problem the KKT conditions 

( 2-31 ) are necessary and sufficient of global optimum. 

It is demonstrated that the KKT conditions ( 2-31 ) are the same for both primal and dual problem: 

this leads to the result that the optimal solution of primal and dual problem is the same. 

This is an important result that will be exploit in the first application treated in the present work. 
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2.1.5.2 Interior Point 
This paragraph contains a description of the Interior Point method, as explained in [7]. Here is 

presented the method applied to a linear programming optimization problem but the method can be 

used to other cases, too. 

Considering the following linear programming problem: 
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where: 

 A is a m x n matrix; 

 c is a vector of dimension n; 

 b is a vector of dimension m; 

The Lagrangian function associated to the problem is the following: 

 

  xsbxAyxcsyx TTTL   ),,(  
 

( 2-80 ) 

where 
nRx is the vector of parameters involved and np RR  sy  , are called Lagrange 

Multipliers. 

The KKT conditions ( 2-31 ) of ( 2-79 ) are the following: 
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With some arrangement the KKT condition becomes the following: 
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( 2-82 ) 

where: 

  nssdiag ,...,1S ; 

  nxxdiag ,...,1X ; 

  T1,...,1e ; 
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In reality, in the Interior Point method the complementarity relation 0XSe  is modified 

introducing a perturbation or duality gap parameter  : 

 

eXSe   
 

( 2-83 ) 

Furthermore is introduced a centering parameter 10  : 

 

eXSe   
 

( 2-84 ) 

Thus, the Interior Point system is resolved by the Newton’s method with a line-search parameter  , 

chosen in order to satisfy the feasibility (from here the name on interior method). 

In conclusion, Newton’s method is applied to the following perturbed system: 
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Notice that when 0 system ( 2-85 ) coincides with ( 2-82 ). It is demonstrate that when k

the duality gap 0 . 

2.1.6 Methods for Constrained Optimization: Non Linear Programming 
In this section are described the main concepts concerning methods useful to solve Non linear 

programming constrained optimization problems (  NLP problems). 

As reported in [5], two main approaches have been developed: 

 unconstrained minimization methods: the first approach is based on the transformation of 

the constrained problem in a sequence of unconstrained problems, or even in a single 

unconstrained problem. The main unconstrained minimization methods are the following: 

o quadratic penalty method; 

o logarithmic barrier method; 

o augmented Lagrangian method; 

o exact penalty method; 

 simpler constrained methods: the second approach is based on the transformation of the 

constrained problem in a sequence of simpler constrained problems. The main simpler 

constrained methods are the following: 

o sequential quadratic programming; 

o elimination method; 

o active set method. 

2.1.6.1 Quadratic Penalty Method 

Considering the constrained optimization problem ( 2-23 ), and let   RR npp :, x be a 

continuous function such that   0xp for all Fx ,   0xp for all Fx with F is the 
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feasible set. Then, it is possible to associate the constrained problem ( 2-23 ) to the following 

unconstrained problem: 
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where 0 . The function  
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parameterized by the penalty parameter   is called a penalty function of problem ( 2-23 ) and it is 

obtained by adding to the objective function of the original problem a term that penalizes the 

constraint violation. Since the minimizer is usually exterior to the feasible set F , the function to 

minimize is called exterior penalty function. The constraint violation is more severe as the penalty 

parameter  is smaller. Given a sequence of positive numbers   ... ,1 ,0 ,   , 0 k  k such that 

0 lim , k

k

1  

  kk

 
the exterior penalty method developed for solving ( 2-23 ) is the 

following: 

o data:  k    such that 0 lim , k

k

1  

  kk . 

o step1: choose 
ns Rx  and set k=0. 

o step2: starting from 
sx  minimize the following unconstrained problem: 
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o step3: if kx  is a KKT point, then stop. 

o step4: set 1,s  kkkxx and go to step 2. 

It is demonstrated that limit point of the sequence  k    are local solution of the constrained 

problem ( 2-23 ). 

The quadratic penalty method suffers from the disadvantages that, as   becomes small, the Hessian 

matrix  ,2 xP  becomes ill-conditioned, so the method becomes difficult and slow. 

2.1.6.2 Logarithmic Barrier Method 
The logarithmic barrier method can be employed for the solution of NLP constrained optimization 

problems with only inequality constraints: 
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Furthermore it is assumed that the strictly feasible region 
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is nonempty. 

The logarithmic barrier method is built by adding a barrier term to the objective function of the 

original problem: let be   xv  a continuous function defined in 0F , such that   xv as 0Fx

approaches to the boundary F . Then, it is possible to associate the constrained problem ( 2-89 ) to 

the following unconstrained problem: 
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where 0 . The function  

 

)( )(),( xxx vfV    
 

( 2-92 ) 

parameterized by   is called a barrier function of problem ( 2-89 ). The barrier term prevents that a 

descent path for V starting in the interior of F crosses the boundary. The algorithms generated is 

called interior point algorithm because the sequence that are produced are interior to the strictly 

feasible region. The barrier is as sharper as the barrier parameter  is larger.  

Given a sequence of positive numbers   ... ,1 ,0 ,   , 0 k  k such that 0 lim , k

k

1  

  kk the 

barrier function method developed for solving ( 2-89 ) is the following: 

o data:  k    such that 0 lim , k

k

1  

  kk . 

o step1: choose 0Fsx  and set k=0. 

o step2: starting from 
sx  minimize the following unconstrained problem: 
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o step3: if kx  is a KKT point, then stop. 

o step4: set 1,s  kkkxx and go to step 2. 

It is demonstrated that limit point of the sequence  k    are local solution of the constrained 

problem ( 2-89 ).  

The most important barrier function used is the logarithmic barrier function and the corresponding 

method is called the logarithmic barrier method: 
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Like for the quadratic penalty method, also the logarithmic barrier method suffers from the 

disadvantages that, as   becomes small, the Hessian matrix  ,2 xP  becomes ill-conditioned, so 

the method becomes difficult and slow. 

2.1.6.3 Augmented Lagrangian Method 
The augmented Lagrangian method can be employed for the solution of NLP constrained 

optimization problems ( 2-23 ). 

Considering the following NLP constrained optimization problems with only equality constraints: 
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The Lagrangian function of problem ( 2-95 ) is the following: 

 

)( )(),( xhμxμx  fL  
 

( 2-96 ) 

By adding to L the quadratic penalty term for the constraint violation, the augmented Lagrangian 

function of problem ( 2-95 ) is the following: 
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It is demonstrated that to a local solution of problem ( 2-95 ) corresponds a local solution of the 

following problem: 
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where the parameter  *,0   . Thus, the augmented Langrangian function can be employed in the 

quadratic penalty method without requiring that 
k  decreases to zero, mitigating the ill-

conditioning when   tends to zero. However, since μ is not known in advance, an iterative 

procedure for its evaluation must be included in the method. The simplest update formula is the 

following: 
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Given a sequence of positive numbers   ... ,1 ,0 ,   , 0 k  k the augmented Lagrangian method 

developed for solving ( 2-95 ) is the following: 

o step1: choose 00 ,μx  and 
ns Rx  and set k=0. 

o step2: starting from 
sx  minimize the following unconstrained problem: 
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o step3: if  kk μx ,  is a KKT pair, then stop. 

o step4: choose a penalty parameter  k ,01k  . 

o step5: update the multiplier estimate 1kμ . 

o step6: set 1,s  kkkxx and go to step 2. 

2.1.6.4 Exact Penalty Method 
Exact penalty methods attempt to solve NLP problems by means of a single minimization of an 

unconstrained function rather than by means of a sequence of unconstrained minimizations. In  this 

section is present a general description in order to explain the basic idea present behind the method. 

Like for previous methods, these methods are based on the construction of a function depending on 

a penalty parameter  0 . It is possible to subdivide the exact penalty methods in two classes: 

 methods based on exact penalty functions: the variables of the unconstrained problem are 

the same of the original constrained problem; 

 methods based on exact augmented Lagrangian functions: in addition to the variables of the 

original constrained problem are introduced the Lagrange multipliers. 

The function used possesses different exactness properties, depending on which kind of 

correspondence can be established between the solution of the original constrained problem and the 

unconstrained problem. 

For example, continuously differentiable exact penalty function can be obtained from the 

augmented Lagrangian function described in 2.1.6.3 by substituting the multiplier vectors μλ,  by 

continuously differentiable multiplier functions    xμxλ ,  with the property that 

    **** , μxμλxλ  whenever the triplet *** ,, μλx satisfies the KKT condition. 

For the equality constrained problem ( 2-95 ) a multiplier function is the following: 
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The associate Fletcher’s exact penalty function is the following: 
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Other exact penalty functions exist for different cases; with respective advantages and drawbacks. 

Their detailed debate is not reported in the present work. 

2.1.6.5 Sequential Quadratic Programming Method 
The sequential quadratic programming approach ( SQP), is a generalization to constrained 

optimization of Newton’s method for unconstrained optimization. 

For simplicity, considering the following equality constrained problem: 
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The Lagrangian function of problem ( 2-103 ) is the following: 
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As shown in ( 2-31 ), the KKT condition leads to a minimization of the Lagrangian function: 
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where *μ is the KKT multiplier associated to the solution *x of ( 2-107 ). 

Considering the following quadratic approximation of the Lagrangian function: 
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Then, in case of linear equality constraints, the associate quadratic programming problem of ( 

2-105 ) is the following: 
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The Newton iteration for the solution of ( 2-108 ) leads to the following system of equations : 
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where η is a multiplier vector for the linear equality constraints of problem ( 2-107 ). 

Employing an iteration based on the solution of problem ( 2-107 ) is obtained the sequential 

quadratic programming approach for the case of linear equality constraints. As in the Newton’s 

method for unconstrained optimization problems, the evaluation of the Hessian matrix 

 kk

x L μx , 
2

  can be avoided with a Quasi-Newton approximation. 

Different cases, not presented here, lead to other different system of equations. 
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2.1.6.6 Elimination Method 
The elimination method is generally used for solving constrained optimization problems in which 

the objective function is a quadratic function. The basic idea on which the method is build is 

described in the present section. 

Considering the following quadratic programming problem with k variables and l equality 

constraints: 
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where  

 Q  is positive or semi-positive definite k x k matrix; 

 ax , are k x 1 vectors; 

 b is l x 1 vector; 

 A is k x l matrix. 

With direct elimination method are used the constraints to eliminate the variables, creating the 

following partition: 
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where  

 
11 ,ax  are l x 1 vectors; 

 22 ,ax  are ( k - l ) x 1 vectors; 

 
111 ,QA  are l x l matrix; 

 
212 ,QA  are ( k - l ) x l matrix; 

 12Q  is l x ( k - l ) matrix; 

 22Q  is ( k - l ) x ( k - l ) matrix. 

Hence, the constraint can be written in the following form: 

 

   2211 xAbAx
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Substituting ( 2-111 ) in  xf  is obtained the following unconstrained optimization problem of a 

quadratic function: 
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( 2-112 ) 
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Solving the problem is obtained the optimal 
*

2x , by substituting in ( 2-111 ) is obtained the optimal 
*

1x and the Lagrangian multipliers are obtained by solving the following system of equations: 

 

  **   λAx f  
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Different cases concerning constraints involved, not presented here, lead to other different system 

of equations. 

2.1.6.7 Active Set Method 
Active set methods are methods for treating inequality constraints. 

The most common is the direct active set method. The main phases on which the method is based 

are the following: 

 The constraints included in the active set A  are treated as equality constraints and the 

method iteratively adjusts this set; 

 At iteration k a feasible point 
kx satisfying the current active set 

kA is known. The solution 

to the equality constraint problem in which only the active constraints occur is sought; 

 Calling 
kδ the correction to 

kx : 

o in case 
kk δx  is feasible respect the constraints not in 

kA , the next iteration is 
kkk δxx 1
; 

o otherwise a line-search is performed along 
kδ to find the best feasible point; 

o if the search terminates at a point where an inactive constraints becomes active, 
kkkk x δxx 1

; 10  k  is updated and the constraint is added to the active 

set; 

o if the solution to the equality constraints problem yields 0δ k
, Lagrange 

multipliers must be computed to check whether an active inequality constraints has 

become inactive  0i ; if this happens the constraint which has become inactive is 

removed from the active set; 

o if the solution to the equality constraints problem yields 0δ k
 and no constraints 

to be removed from the active set is found, the optimization terminates and 
kxx *

is the optimal solution. 

2.2 Stochastic Optimization 
The present paragraph is devoted to a description of the theory of stochastic optimization 

algorithms, as explained in detail in [3]. 

2.2.1 Introduction to Stochastic Optimization 
Stochastic optimization framework is referred to optimization methods where randomness is 

present inside the criteria used to carry out the search. 

In respect of deterministic optimization methods, stochastic optimization methods have the 

following features: 

 are lower mathematically complicated; 

 include randomness processes; 

 are more slower towards the reaching of the optimal solution; 
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 are more robust being able to a better spanning of the design space and allowing to reach the 

global optimum solution and to overcome local minima; 

 are useful to solve multi-objective optimization problems. 

Important concepts commonly used in stochastic optimization methods are the following: 

 population: stochastic optimization processes usually start from a set of samples in the 

design space. According to different rules this set evolves through several iterations. The set 

of samples is called population; 

 individual: an individual is each sample of a population. The number of individuals 

composing the population is called size and is kept constant during the iterations. As a rule 

of thumb, the size should be at least 16 and possibly more than twice the input variables 

times the number of objectives. 

2.2.2 Multi-Objective Optimization 
An important feature of stochastic optimization methods deals with the possibility to solve multi-

objective optimization problems. Also deterministic optimization algorithms are used to solve 

multi-objective optimization problems, considering a single objective function obtained by the 

average of the different objective functions involved in the problem. On the other hand, stochastic 

optimization methods are able to solve true multi-objective optimization problems, keeping the 

involved objective functions separated. 

In this context must be defined the concept of Pareto Optimality. Considering a multi-objective 

optimization problem with l objective functions and let       Tlff xxxf ,...,1 be the vector of 

values of the objective functions at the point  Tkxxx ,...,1 in the design space. Due to the 

conflict between objectives, there is not a single solution 
*x that would be optimal for all objectives 

simultaneously: any objective vector can be better than others and solutions exist where none of the 

components of objective vector can be improved without deteriorating at least one of the other 

components. In this sense it is important to introduce the following definition: a point in the design 

space 
*x is Pareto Optimal if the vector of the objective functions  *xf  is non-dominated. A 

vector  1xf  is said to dominate  2xf  if and only if     iff ii   21  xx  , and at least a j exists for 

which    21 xx jj ff   . The Pareto Frontier is the plot of the objective functions in the solution 

space whose vectors   xf  are non-dominated. The corresponding values of the input variables in 

the design space  x  form the set of the optimum solutions. Hence, the result of a multi-objective 

optimization problem is the set of the designs whose objective functions are non-dominated by any 

other design tested. 

2.2.3 Methods for Stochastic Optimization 
The main Stochastic optimization methods currently used in practical cases are the following: 

 simulated annealing: this method simulates the annealing heat treatment process of steel; 

 particle swarm optimization: this method emulates the social behavior of birds flocking; 

 game theory-based optimization: this method simulates a game between different players, in 

which each player tries to reach his own objective; 

 evolutionary algorithm: this method emulates the evolution of the species following the 

Darwin’s theory; 

 genetic algorithm: this method emulates the evolution of the species similarly to EA, of 

which they are considered a subcategory, due to the fact that they use different criteria for 

the emulation of the evolution of species. 
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2.2.3.1 Simulated Annealing 
Simulated Annealing (  SA) is an optimization technique that reproduces the annealing process 

exploited in metallurgy: the process consists in an initial heating of a material and a further 

controlled cooling in order to increase the size of crystals, reducing defects. 

Annealing process starts from high temperature, at which the mobility of the atoms of material and 

their internal energy are high; further, by mean of a slow cooling, during which in first assumption 

the thermal equilibrium is kept, the material reaches a lower internal energy state than the initial 

one. 

An SA optimization process starts from a randomly chosen point of the design space, at which is 

evaluated the objective function of interest  1xf . Further a decrease law of temperature is 

imposed so that the temperature decreases to zero during the iterations: many laws exist, here is 

presented the following: 
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where: 

 1T is the initial temperature; 

 k is the current iteration; 

 
MAXk is the maximum number of iteration, which is used as a stopping criteria of the process; 

 1p is the annealing coefficient. 

Also a law relative to the variation of parameters involved is imposed. This is done based on the 

value of the current temperature, in order to keep the variation high at the start of process and low at 

the end, making a sort of final refinement of the solution. A possible law for the control of the 

variation of parameters imposed is the following: 
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where ir and is are random numbers chosen in the range  1,0 . 

In SA the objective is thought like the internal energy of the steel during the annealing process ad 

whose process aims to minimize. At each iteration, if the new objective function is better than the 

previous, the new configuration is accepted; otherwise, although its internal energy is higher, the 

new configuration has a certain probability of being accepted. A possible criteria for the solution 

selection is the following: 
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where t is a random number chosen in the range  1,0 . 
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Many variation of the algorithm exist, here has been presented only a base version of method in 

order to illustrate its logic. 

In conclusion, the effectiveness of SA is due to the fact that when the temperature is high new 

samples are accepted even though they are not improving the performance of the system, allowing 

to overcome local minima. 

2.2.3.2 Particle Swarm 
Particle swarm optimization algorithms (  PSO) emulate the social behavior of birds flocking 

during the search of food, that has made following the leader of the flock, the bird that has found 

where the food is. 

In a PSO process each individual is a bird in the design space; at each iteration every bird shifts 

with a certain velocity in a direction that is function of the global location found so far by the 

swarm and the personal best location found so far by the bird. Method for avoiding collisions and 

for introducing craziness in the flock can be added, in order to overcome local minima.  

Here is presented a basic idea of a PSO algorithm. The position ix of individual i at iteration k is 

changed according to its own experience and that of its neighbours: 
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where iv is the velocity of individual i. 

The velocity reflects the social exchanged information: 
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where: 

 ix  is the personal best location; 

 ix~  is the global best location; 

 
1C is the cognitive learning factor, representing the attraction of the individual towards its 

own success; 

 2C is the social learning factor, representing the attraction of the individual towards the 

success of its neighbours; 

 W is the inertia factor; 

 1r  and 2r  are random numbers chosen in the range  1,0 . 

2.2.3.3 Game Theory 
Game theory (  GT) is an optimization technique employed exclusively for multi-objective 

optimization problems. Each single objective function is assigned to a player which tries to 

minimize it. The input variables are subdivided between the players. At each turn of the game the 

player has at his disposal a number of iterations to be carried out in the design subspace on the input 
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variables assigned to him, trying to minimize his objective function. At the end an equilibrium is 

met between the objectives since the strategy of each player is affected by the other players. 

A base GT algorithm is presented. Considering a minimization problem with two objective 

functions  x1f  and  x2f . The input variables 
1x  are assigned to the first player and 

2x  are 

assigned to the second player. 

In a simultaneous competitive game the player operate at the same time choosing their strategies, 

influencing the results obtained by the other player. The procedure is repeated through the turns of 

the game until the equilibrium is met. In this case, the equilibrium is called Nash equilibrium: 
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that is, if each player, given the optimum solution found by the opponent, could not found any 

better arrangement for the input variables he controls. 

2.2.3.4 Evolutionary Algorithms 
Evolutionary algorithms (  EA) are optimization algorithms based on the Darwin’s theory relative to 

the evolution of species, by which the individuals of a population evolve creating better further 

populations. Each individual consists of a series of real values associated to the values of design 

variables involved. The main steps of an EA are the following: 

 initialization: the initial population is created and evaluated; 

 mutation: a mutant individual is created for each individual in the population; 

 cross-over: the mutant individual is combined with its parent creating a trial individual; 

 evaluation: the objective function of the trial individual is evaluated; 

 selection: the best between the trial individual and its parent is selected to survive in the 

next generation. 

Apart from the initialization, all steps are repeated until stopping criteria are met. EA are mainly 

based on the mutation operator. 

Different approaches to EA exist: here is presented the approx of differential evolution (  DE). 

Calling 
k

ix  a real valued vector of the input variables of individual i and generation k, with m is the 

size of the population, in DE a mutant individual is represented by the following vector: 
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where: 
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   ,...,1,1,...,1 ,, miicba   are individuals randomly chosen, each one different from 

others; 

 F  is the mutation constant; 

 K  is the scaling factor. 

Notice that each individual has the same probability to be chosen for the creation of the mutant 

individual. 

Hence, the trial individual 
1k

iu  is created from the mutant individual and its parent: 
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where: 

 
1

,

k

jiu  is the component j of the trial individual i at generation k+1; 

 
1

,

k

jir  is a uniformly distributed random number in the range  1,0 ; 

  1,0C  is the cross-over constant; 

 
1

,

k

jis  is the component j of vector 
1k

is  which is a random permutation of the vector 

 Tn,...,1 ; 

Thus, a trial individual consists of some components of the mutant individual and at least one 

component of the parent vector. 

The objective function of the trial individual is evaluated and compared with its parent. The better 

individual is selected to enter the next generation following the present criteria: 
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Whenever the best individual does not change from a generation to the further, it could be displaced 

towards a better location in the design space through a steepest descend step. 

2.2.3.5 Genetic Algorithms 
Genetic algorithms (  GA) are an evolutionary optimization technique principally based on cross-

over operations and in which the input variables are encoded in binary strings. 

In GA each individual consists of a string of binary data enconding the value of its input variables. 

The input variables are called genes, the set of genes unambiguously determining the individual in 

called chromosome or DNA, and the single bit of the string is called allele. We refer to the coding of 

the variables as genotypes; and to the variables themselves as phenotypes. Like in EA, the iteration 

is called generation, the individuals of a generations are chosen as parents for generating the new 

individuals, offspring or children, which will form the next generation. 

In GA the design space has to be discretized, possibly in such a way that the number of value the 

variables can attain is an integer of power of 2, letting possible a binary representation of the input 
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variable. For instance, considering an optimization problem with three input variables 

 Txxx 321 ,,x  with each variable distributed in the range  1,0 . Let the range of 
1x  be discretized 

in 2
2
=4 nodes, 

2x  in 2
3
=8 nodes,

 3x  in 2
4
=16 nodes. The discretized design space allows 

512222 432   possible solutions. Binary representations of the variables are now conceivable: 

 

Table 2-1: GA - Input Variables - Chromosome 

Thus, the chromosome of the individual is a string of nine bits (or nine allele). For instance, an 

individual whose chromosome is 101100101 has genotypes 10, 110, 0101 and phenotypes 

x1=0.667, x2=0.857 and x3=0.333. 

The main steps of a GA are the following: 

 initialization: initialization of a population of m individuals and evaluation of the objective 

function of each individual of the population; 

 generation: at a generic generation k the following steps are repeated for the creation of a 

couple of offspring up to when m children have been generated: 

o selection of a pair of parents; 

o cross-over: application of the cross-over operator pc , giving the birth of two 

children. The cross-over probability is in general quite high: 9.0cp ; 

o mutation: application of the mutation operator to the two offspring with probability 

pm . The mutation probability is in general low: 01.0mp since it is applied to every 

allele and not to the whole individual; 

 after the creation of a series of couple of offspring the new population is created, replacing 

completely the previous. 

The selection of the parents is random but the probability to be chosen is not the same for all 

individuals: in fact, generally it depends on the value of the objective function of the single 

individual. 

Different cross-over operators are applicable; the most common are the following: 

 one point cross-over; 

 two point cross-over; 

 uniformly cross-over. 

Figure 2-1 shows the mechanism of the three operators: 
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Figure 2-1: GA - Cross-Over Operators 

Mutation operator acts simply swapping the allele on which it is applied. Figure 2-2 shows the 

effect of mechanism: 

 

 

Figure 2-2: GA - Mutation Operator 

 

Different operators exist, but they are not described in the present work. 
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3 Shape Optimization with Adjoint Method 
The first part of the present work deals with the application of the adjoint method in the framework 

of aerodynamic shape optimization. 

3.1 Overview of the Work 
This activity represents a new direction of development within the research group operating at 

University of Bergamo on DG methods for Computational Fluid Dynamics (CFD). 

The present work concerns the application of the discrete adjoint method, an efficient approach 

used to solve both shape optimization and grid-adaptivity problems. The method, useful to solve 

local constrained optimization problems, has been applied in the present context to solve a shape 

optimization problem. 

The present chapter is structured as follows: 3.2 includes an overview of tools and methods 

generally employed in the design process and contains a description of optimization techniques 

currently used in the framework of aerodynamic shape optimization; 3.3 deals with a theoretical 

review of the discrete adjoint method; 3.4 describes the validation of the implementation of the 

discrete adjoint method; 3.5 concerns the application of the method to a shape optimization 

problem, while 3.6 includes conclusions and considerations about the activity. 

3.2 Introduction 

3.2.1 Aeronautical Design Process – Tools and Methods 
The past 30 years have seen a revolution in the engineering design process: computational 

simulation has come to play an increasingly dominant role. As explained in [8], most important 

CAD methods have replaced the drawing boards as main tool for definition and control of design 

configuration. Now, software systems such as CATIA and UNIGRAPHICS provide solid modeling 

capabilities that enable designers to prepare and manage complex layouts, without the need to build 

prototypes. 

Similarly, in the field of aeronautical design, structural analysis is now almost entirely carried out 

by computational methods. Commercially available software systems such as NASTRAN and 

ANSYS have been progressively developed and augmented with new features. Currently, engineers 

place complete confidence in their results and structural testing is limited to the role of verification 

that the design truly meets its specified requirements. 

Computational simulation of fluid flow has not yet reached the same level of maturity. While 

commercial software for the simulation of fluid flow is offered by numerous vendors, aircraft 

companies continue to make investments in the in-house developments of their own methods. At 

the same time there are major ongoing efforts to develop the science of CFD in government 

research agencies, all of which are a source of industrially used computer programs. This reflects 

the fact that fluid is more complex and harder to predict than the behavior of structures. 

Furthermore, in order to exploit computational simulation in the overall design process, currently 

are made many efforts to integrate optimization techniques in the design process. At the moment are 

numerous the commercial software, like MODEFRONTIER or ISIGHT, that allow to interface 

different tools, applying optimization techniques on design process. The number of simulations 

necessary to explore possible configurations is very high and the CPU time required for the entire 

process too. 

For these reasons, currently there is a high interest in the scientific community towards an 

increasing of the efficiency of the optimization algorithms. In the recent period has became popular 

the adjoint method, a deterministic technique useful to solve efficiently local constrained 
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optimization problems. This method exploits the mathematics of the governing equations of the 

problem of interest, requiring a dedicate implementation, and allow the evaluation of gradient of 

interest independently from the number of parameters involved. The present work is focused on that 

method. 

3.2.2 Aerodynamic Shape Optimization – Methods Overview 
The present section deals with a general description of the use of optimization techniques in the 

framework of aerodynamic shape optimization. The reader should be aware that such description is 

far from being a complete review: it only mentions that has had a relevant impact on the present 

work. 

Traditionally the process to select design variations has been carried out by trial and error, relying 

on the experience and intuition of the designer. In order to take full advantage of the possibility of 

examining a large design space, the numerical simulations have been combined with automatic 

search and optimization procedures. As explained in [8], this has lead to automatic design methods 

which will fully realize the potential improvements in aerodynamic efficiency. 

3.2.2.1 Optimization by Genetic Algorithm 
An approach that has become increasingly popular is to carry out a search over a large number of 

variations via a genetic algorithm. As explained in [8], this technique is generally used in a first 

phase of an optimization process and may allow the discovery of (sometimes unexpected) optimum 

design choices in very complex multi-objective problems. On the other hand, the technique 

becomes extremely expensive when each evaluation of the cost function requires intensive 

computation, as is the case in aerodynamic problems. Hence, the use of a genetic algorithm is 

possible only with a reduction of the number of design variables, which requires the use of 

geometry parameterization techniques. 

3.2.2.2 Gradient-based Optimization 
A different approach is represented by a gradient-based optimization technique. Initially developed 

in the field of structural engineering optimization problems, this technique employs the gradient of 

the objective function to drive the design in a direction of improvements and allows to reach a local 

minimum point. As explained in [9], due to the local nature of the method, it is usually employed in 

a final refinement phase of the optimization process. 

A survey of approaches concerning the framework of gradient-based optimization is present in [10]. 

3.2.2.3 Gradient-based by Finite Difference 
Initially the gradient has been evaluated by finite differences technique, using the flow solver like a 

black-box. As explained in [9], black-box gradient-based optimization methods appeared to be 

effective, nevertheless they also appeared to be extremely expensive, impractical for computing-

intensive cases such as flow around a 3D wing. The computation of gradient was and is again 

currently the cause of the large cost: using finite difference technique it requires at least one 

additional evaluation for each design variable. In the case of N design variables, N+1 flow 

computations are required to compute the gradient. A rule of thumb says that an optimization 

problem converges in N steps, which means that the overall cost of the optimization problem scales 

with N
2
. This explains why such an approach is impractical for 3D wings, which may requires 

hundreds or thousands of design variables. Also in this case, the use of parameterization techniques 

has been very important but didn’t resolve completely the problem. 

3.2.2.4 Gradient-based by Adjoint Method 
Since the computation of gradient represented the main obstacle in using gradient-based 

optimization methods, researchers have tried to find ways of computing the gradient efficiently by 

the adjoint method. 
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As explained in [9], two main different approaches relative to the method exist: the continuous and 

the discrete adjoint method. In [11] is present a detailed description of both the continuous and 

discrete adjoint approach. 

The Continuous Adjoint Method 

Antony Jameson [12] proposed a method based on control theory to derive the sensitivities of flow 

equations with respect to shape parameters, for application of the compressible potential flow 

equations and the Euler equations. The sensitivity analysis employs dual variables which are solved 

by additional equations. The solution method is similar to the one used for the flow equations. The 

additional equations are called the adjoint equations. 

Jameson and co-workers have developed the continuous (analytic) adjoint method, initially for the 

potential flow equation, then for the Euler equations and finally for the RANS equations. Airfoils as 

well as wing have been successfully optimized. The aerospace community has been impressed by 

the applications and several research groups have started working on the method. 

In [13] and [14] is present a detailed description of the continuous adjoint solution for a quasi-1D 

Euler case. 

In [10] there is a description of the continuous adjoint method applied to a 2D Euler case. 

In [15] is present a description of the continuous adjoint method applied to a 3D viscous case. 

Drawbacks of continuous adjoint method appeared. As explained in [9], the differentiation of the 

equations followed by discretization can lead to an inconsistency on the gradient obtained; 

furthermore boundary conditions for the dual variables, which have to be provided in order to solve 

the equations, are not very easy to define because the dual variables do not have an immediate 

physical interpretation. 

The Discrete Adjoint Method 

An alternative of the continuous adjoint method is the discrete adjoint method, obtained by 

performing the sensitivity analysis directly on the discrete code. As explained in [9], the method is 

relative straightforward to understand: only basic algebra is involved and the boundary conditions 

of the dual variables are not an issue because they unfold naturally. Moreover, the direct 

differentiation of the discrete flow equations, if performed exactly, implies a consistent gradient. 

In [14] is present a description of the discrete adjoint solution for a quasi-1D Euler case. 

In [9], [10], [16] and [17] there is a description of the use of discrete adjoint method for viscous 

shape optimization problems. 

Drawbacks of the method are the storage requirements and the difficulty to differentiating large 

implementations. The storage requirements have to be carefully considered because several 

matrices appear in the derivation, but not of all need to be stored and some may be evaluated on-

the-fly. Differentiating large implementations may be a very difficult activity: in order to simplify 

the derivation of the adjoint code a methodology known as Automatic Differentiation (AD) may be 

applied. AD uses basis linearization rules to manipulate source code and to create the sensitivity 

code. 

Discrete versus Continuous Adjoint 

The scientific community has investigated the difference between the continuous and the discrete 

adjoint method. 
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In [14] is present a comparison between the continuous and the discrete adjoint method for a quasi-

1D Euler case. 

[10] includes a comparison between the continuous and the discrete adjoint method for a 2D Euler 

case. 

[18] concerns a comparison between the continuous and the discrete adjoint method for a 2D 

viscous case. 

3.2.2.5 Shape Parameterization Techniques 
As introduced in 3.2.2.1, the use of geometry parameterization techniques is necessary to reduce of 

the number of design variables involved in the optimization process. The use of the techniques is 

not a topic of the present work.  

In [9] is present a list of parameterization techniques generally used in aerodynamic shape 

optimization problems. 

3.3 Discrete Adjoint Approach in Aerodynamic Design 

3.3.1 Sensitivity Analysis - Linearised Objective Function 
The goal of an optimization problem is the minimization (or maximization) of a determined 

objective function. In the field of aerodynamic design optimization the objective function is in 

general a nonlinear function of a set of discrete flow variables. For example, the lift of an airfoil can 

be expressed like a function of discrete flow variables, solution of an approximation of flow 

equations: 

 

)(ULL   
 

( 3-1 ) 

where 

 L is the scalar function indicating the lift; 

 U is the vector of flow variables, solution of flow equations. 

In design optimization framework the main interest deals with the evaluation of the variation of the 

objective function due to a perturbation of the geometry and, hence, in the flow field. This 

evaluation is called sensitivity analysis. Focusing on the sensitivity term related to the flow 

perturbation, the reader will understand later the reason of this, the evaluation of the quantity is the 

following: 
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where 

 
U




LTg   is the sensitivity of the objective function in respect of the flow variables; 

 u  is the perturbation in the flow field satisfying the flow equations. 

Hence, the goal is the evaluation of the quantity g
T
 u. 
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3.3.2 Theory of Duality – Adjoint Variables 
In this section is invoked the theorem of duality, mentioned in 2.1.5.1. , with the aim to understand 

the adjoint approach. 

Primal Problem 

Suppose that one wish to solve a primal problem and evaluate the following quantity: 

 

ug T  
 

( 3-3 ) 

 where u satisfies the following linear system of equations: 

 

fuA   
 

( 3-4 ) 

where 

 A is a generic matrix; 

 f  is a generic vector. 

Dual Problem 

The dual form of the primal problem is to evaluate the following quantity: 

 

fψ T  
 

( 3-5 ) 

 where ψ is the adjoint variable and satisfies the following linear system of equations: 

 

gψ AT   
 

( 3-6 ) 

It’s interesting to note the used of the transpose matrix A
T
 and the interchange in the roles of vectors 

f and g. 

The equivalence of the two forms is the following: 

 

  uguψAAuψ fψ TTTTT   
 

( 3-7 ) 

Hence, solving the primal or the dual problem allows to obtain the same result. Furthermore, in case 

of single f and single g the use of primal or dual form requires the same computational effort, so 

there is no difference between two methods. 

Indeed, suppose that we want to solve the problem for p different values of f and for m different 

values of g. The choice would be to do either p different primal calculations or m different dual 

calculations. When the dimension of the system is very large the computational cost of the vector 
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dot product becomes negligible in respect of the cost for the solution of the linear system of 

equations, hence: 

 the primal approach is much cheaper when p << m; 

 the dual or adjoint approach is much cheaper when m << p. 

It will see in the next paragraph that, in case of aerodynamics shape optimization problems, the dual 

form is much cheaper than the primal form. 

3.3.3 Sensitivity Analysis: Direct Approach 
 

Problem Description 

In aerodynamics shape optimization framework the problem to be solved is the following: 

 

) (min ,J U  
 

( 3-8 ) 

where 

 J  is a scalar objective function; 

 U is the vector of flow variables, solution of flow equations, at discrete grid points; 

 α is a set of design variables which controls the geometry to be designed. 

This minimization is subject to the constraint that the discrete flow equations and boundary 

conditions are all satisfied: 
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where N  is the set of discrete flow equations of problem. 

Linearization 

For a single design variable we can linearise the problem about a base solution U0: 
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where 

 α is the single design variable; 

 
d

dJ
  is the sensitivity of the objective function in respect of the design variable; 

 
U

J
  is the partial sensitivity of the objective function in respect of the flow variables; 

 


J
  is the partial sensitivity of the objective function in respect of the design variable; 
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 
d

dU
  is the flow sensitivity; 

Subject to the constraint that the flow sensitivity satisfies the linearized flow equations: 
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where 

 α is the single design variable; 

 
U

N




  is the partial sensitivity of the flow equations in respect of the flow variables; 

 


N
  is the partial sensitivity of the flow equations in respect of the design variable. 

 

Defining: 
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problem becomes the following: 

 

 




J

d

dJ Tug  

 

( 3-13 ) 

subject to the constraint: 
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( 3-14 ) 

 

3.3.4 Sensitivity Analysis: Adjoint Approach 
The theory of duality applied to the direct approach leads to the following equivalence: 
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Explicit each term the equivalence becomes the following: 
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It is evident that the linear system of the adjoint method doesn’t depend by the design variable α: in 

case of a large number of shape parameters, and so a large number of design variables, the adjoint 

approach becomes much cheaper than the direct approach due to the fact that the linear system of 

equation needs to be evaluated only once, while in the direct approach is necessary to solve each 

linear system of equations for each design variable. Other mathematical operations are only vector 

dot products.  

3.3.5 Sensitivity Analysis: Lagrangian Viewpoint 
An alternative description of the adjoint approach arises using the terminology of Lagrange 

Multipliers associated with constrained minimization. In this framework, adjoint variables are 

Lagrange multipliers, written as λ, and are introduced in an augmented objective function to enforce 

the satisfaction of the discrete flow equations: 
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where 

 I  is the augmented objective function; 

 λ is the vector of Lagrange multipliers. 

Linearizing the augmented objective function: 
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where 

 dU is a general perturbation of flow variables; 

 dα is a general perturbation of design variable. 

If λ is chosen to satisfy the adjoint equation: 
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then 
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and thus dI / dα is obtained. 

The final equation is the same that obtained from a duality point of view. 

3.3.6 Nonlinear Optimization 
As explained in the previous paragraphs, the sensitivity analysis computed by the direct or the 

adjoint approach, allows to evaluate the gradient of the objective function in respect of parameters 

representing the shape configuration. 

After the evaluation of gradient dJ / dα , an iterative procedure can be used in order to reach the 

local minimum. As explained in chapter 5, different methods exist, like a steepest descent by 

gradient method or more fast methods, like Newton or Quasi-Newton method, each of one has own 

advantages and drawbacks. 

Referring to the present work, an inexact line search approach with a steepest descent (gradient-

based) algorithm has been used: 
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where 

 Δα is the single step variation of the design variable α; 

 Δ is a parameter that controls the step size. 

3.4 Discrete Adjoint Validation 
This paragraph deals with the validation of the implementation of the discrete adjoint method. As 

explained, this activity represents a new direction of development within the research group 

operating at University of Bergamo on DG methods for Computational Fluid Dynamics (CFD). 

Starting from the simple quasi-1D Euler equations, the discrete adjoint method has been 

implemented in a research code based on the DG method. 
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Numerous are the scientific articles concerning the validation of the adjoint solution on the quasi-

1D Euler case. 

In [13] is present a description of the continuous (analytic) adjoint solution for a quasi-1D Euler 

case. 

In [14] there is a comparison between the analytic and the discrete adjoint solution for a quasi-1D 

Euler case, using the finite volume method. 

[9], [10], [16] and [17] concern the use of the discrete adjoint method for viscous shape 

optimization problems. 

The validation of the implementation of the method has been carried out by comparing the values of 

computed adjoint variables with results of analytical solutions obtained by the author of [13]. 

3.4.1 Quasi-1D Steady Euler Equation 
 

Equations 

As explained in [13], Quasi-1D Steady Euler Equation for flow in a duct of cross-section h(x) is the 

following: 
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where 

 R(u,h) is the residual vector; 

 h is the cross-section of duct; 

 ρ is the density; 

 q is the velocity, 

 p is the static pressure; 

 E is the Total Energy per unit mass; 

 H is the Total Enthalpy per unit mass. 

Note: the case is called quasi-1D because the behavior of quantities along the cross-section of duct 

is constant. 

3.4.2 Discontinuous Galerkin Discretization 
The governing equations have been discretized by the use of the DG method. 
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As explained in [19] concerning to 2D Euler Equations, the phases of the DG discretization are the 

following. 

Starting from analytic equations described in 3.4.1, by multiplying by a test function, integrating 

over the domain and performing and integration by parts has been obtained the weak statement of 

the problem: 

 

        


 vvvv        0               d
dx

dh
dhdh uPnuFuF  

 

( 3-23 ) 

where  

 v is the test function; 

 Ω is the domain; 

 

 
denote the boundary of Ω. 

A discrete form of the weak statement of the problem has been obtained by subdividing the entire 

domain Ω in a series of nonoverlapping elements {E} and by considering functions uh and vh, 

defined within each element, given by the combination of n shape functions i : 
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where the expansion coefficients Ui and Vi are the degrees of freedom of the numerical solution and 

of the test function for a generic element E. Notice that there is no continuity requirement for uh and 

vh across element interface. 

By splitting the integral over domain Ω in the sum of integrals over the elements E and by admitting 

only the functions uh and vh has been obtained the semi-discrete form of the problem relative to a 

generic element E: 
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where E
 
denote the boundary of element E. 

The semi-discrete form must be satisfied for any element E and for any test function vh. Due to the 

fact that, within each element, the vh are a linear combination of n shape function, the semi-discrete 

form is equivalent to the following system of equations: 
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The system of n equations obtained is sufficient to determine the n degrees of freedom Ui of the 

unknown solution uh. 

Due to the discontinuity of approximated solution, flux terms are not uniquely determined at the 

element interfaces. Following techniques usually used in finite volume schemes the flux function 

appearing in the second term is replaced by a numerical flux function: 
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where 

 h is the numerical flux function; 

 uh
-
 is the internal interface state; 

 uh
+
 is the interface state on the neighboring element; 

 n is normal direction to the interface. 

In order to guarantee the formal accuracy of the scheme the numerical flux must be satisfy the 

consistency condition and the directional consistency condition: 
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Several numerical fluxes that satisfy the above criteria exist: in the present work has been used the 

Godunov scheme. 

About the geometry treatment, as common practice in the finite element method has been 

introduced a reference element in a non-dimensional space and a geometric transformation which 

maps the reference element onto the real element in the physical space. The mapping from the 

reference element to the real element is a polynomial function of order less than or equal to m 

defined in the space of the reference element for each independent variable. In order to guarantee 

the geometric continuity between neighboring elements the mapping has been expressed in terms of 

polynomial functions and coefficients, function of nodal coordinates on physical space:  
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where 

 


E  is the reference element; 

   is the independent coordinate on the reference element; 

 xh_N is the nodal coordinate on physical space; 

 ai are the coefficients function of nodal coordinates; 

 
m

iP


are polynomials of degree less than or equal to m within the reference element. 

Also functions uh and i  are defined as polynomial functions on the reference element: 

 






 Ei
n

i

k

ih       )( )(
1

Uu  

 

( 3-30 ) 

where 

 h



u  is function uh evaluated on the reference element; 
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 
k

i



  are polynomials of degree less than or equal to k within the reference element. 

The function of uh and i  for a generic real element E has been formally obtained as: 
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where  hx   is the inverse of the mapping. 

Effectively, the integrals have been evaluated in the space of the reference element by means of 

numerical quadrature formulae. As a consequence the quantities have been evaluated directly 

solving integrals on the reference element and computing the determinant of the inverse Jacobian 

matrix of the transformation at each quadrature point. 

The number of quadrature point used has been chosen in order to integrate exactly on the reference 

element polynomials of order 2k. 

Hence, by assembling together all the element contribution the system of ordinary differential 

equations which govern the problem has been written as 

 

  0UR      
 

( 3-32 ) 

where R is the residual vector. 

The solution of the system of equations has been obtained by an implicit backward Euler scheme, as 

explained in [9], which can be written as: 
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where 

 M is the Mass Matrix; 

 Δt is the time increment; 

 ΔU = U
n+1

- U
n
 is the variation of solution of current instant U

n+1
 and previous instant U

n
; 

 
 
U

UR

 

  



 n

 
is the exact Jacobian of residual in respect of the solution, evaluated at previous 

instant. 

Imposing the initial conditions and obtaining the following condition: 

 

  0UR     
 

( 3-34 ) 

the steady value of flow field variables has been determined. 
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3.4.3 Discrete Adjoint System 
As for flow variables, a discretization of the adjoint variable has been carried out, considering the 

function ψh given by the combination of n shape functions i : 

 

Ei
n

i
ih 



xxψx       )( )(
1
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( 3-35 ) 

where the expansion coefficients ψi are the degrees of freedom of the adjoint numerical solution.  

Obviously, considerations about the geometry treatment on the reference element explained for the 

flow field hold for the adjoint system too. 

As explained in 3.3.5, the discrete adjoint system to solve is the following: 
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( 3-36 ) 

As explained in [20] and [9], in the present work the solution of the discrete adjoint system has been 

obtained using an iterative strategy, in order to introduce minor changes in the original routines for 

the solution of the flow filed: the strategy consists on employing the same implicit scheme as the 

one used for the flow equations, treating the sensitivity equations as non-linear equations. The 

incremental formulation used is the following: 
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( 3-37 ) 

where Δψ = ψn+1
- ψn

 is the variation of solution of current instant ψn+1
 and previous instant ψn

; 

Defining the adjoint residual vector: 
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the system of equation solved is the following: 
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Notice the equivalence with the system of equations solved for the resolution of the flow field. 

We are interested to the evaluation of the steady adjoint variables; hence, during the time marching 

the quantities relative to the flow filed are kept fixed on their steady value U
st
: 
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Imposing the initial condition and obtaining the following condition: 
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  0ψR     
 

( 3-41 ) 

the steady value of adjoint variables has been determined. 

3.4.4 Adjoint Validation 
The validation of the implementation of the method has been carried out by comparing the values of 

computed adjoint variables with results of analytical solutions obtained by the author of [13]. 

3.4.4.1 Quasi-1D Case Description 
 

Geometry 

The geometry of the duct of the present case is the following: 
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( 3-42 ) 

Figure 3-1 shows the geometry of duct: 

 

Figure 3-1: Adjoint Validation - Duct Geometry  
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Boundary conditions 

As explained in [13], subsonic dimensionless boundary conditions imposed to the equations are the 

following: 

 Hin = 4 (inlet Total Enthalpy per unit mass); 

 P0_in = 2 (inlet Total Pressure); 

 pout = 1.98 (outlet Static Pressure). 

Objective function 

As reported in [13], the adjoint variable has been evaluated respect to the following J objective 

function: 

 


1

1-

 dxpJ  

 

( 3-43 ) 

where p is the static pressure. 

3.4.4.2 Flow Field Solution 
The flow solution has been computed by solving the system of flow field equations with the 

following parameters: 

 number of elements: 500; 

 approximation order: m = k = 1 (isoparametric elements); 

 initial conditions imposed: 

 

5.0  ,1  ,1 000  qTp  
 

( 3-44 ) 

Figure 3-2 shows the steady static pressure obtained: 

 

Figure 3-2: Adjoint Validation - Flow Field Solution - Static Pressure 
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3.4.4.3 Adjoint Solution 
The adjoint solution has been computed by solving the system of adjoint equations with the 

following parameters: 

 number of elements: 500; 

 approximation order: m = k = 1 (isoparametric elements); 

 initial conditions imposed: 

 

0ψ0   
 

( 3-45 ) 

Figure 3-3 shows the steady adjoint solution obtained: 

 

Figure 3-3: Adjoint Validation - Adjoint Variables 

The discrete adjoint solution is in close agreement to the analytic adjoint solution. 

Each single adjoint variable shows the relation between the sensitivity of a single flow equation in 

respect of all the flow variables and the sensitivity of the objective function in respect of all the flow 

variables too. In ( 3-46 ) the adjoint system has been reported, without the aspects due to the used 

discretization: 
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where 

 Ri is the i-th equation of the flow field; 

 ui is the i-th flow variable. 
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3.5 Shape Optimization Application 
The method has then been applied to a shape optimization problem. 

3.5.1 Case Description 
The shape optimization has been performed on a simple quasi-1D Euler case, exploiting the activity 

carried out for the validation of the implementation.  

Initial Shape 

A duct of constant cross-section, equal to the inlet cross section of the validation case, has been 

chosen as initial shape. 

Shape Parameterization 

The parameterization of geometry has been carried out by a single design parameter α, used to 

modify the duct cross-section: 
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( 3-47 ) 

where 

 α is the design parameter; 

 Δ is a fixed quantity defined as 

 

    sin1 2 2 x  
 

( 3-48 ) 

The described parameterization leads to the following condition: 

 initial shape: αstart = 0  constant cross section duct; 

 final (target) shape:   αtarget = 1  duct equal to the validation case. 

Figure 3-4 shows the initial shape ( A ) and the final (target) shape ( Atgh ).  

Objective function 

The objective function followed to modify the shape is the following: 
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( 3-49 ) 

where 

 p is the static pressure along the duct, evaluated at the current configuration; 
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 ptgh is the target static pressure, equal to the static pressure distribution of the validation 

case. 

Boundary conditions 

The same boundary conditions imposed on the validation case have been used: 

 Hin = 4 (inlet Total Enthalpy per unit mass); 

 P0_in = 2 (inlet Total Pressure); 

 pout = 1.98 (outlet Static Pressure). 

Figure 3-5 shows the initial static pressure ( p ) and the final (target) static pressure ( ptgh ) 

distribution. 

 

Figure 3-4: Adjoint - Shape Optimization - Shape Parameterization 

 

Figure 3-5: Adjoint - Shape Optimization – Initial and Target Static Pressure 
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3.5.2 Optimization Process 
In the present paragraph the main aspects of the optimization process are resumed: 

 optimization algorithms: as explained in 3.3.6, the variation of the design parameter α has 

been obtained by a line search approach with a steepest descent (gradient-based) algorithm: 
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( 3-50 ) 

 gradient: as explained in 3.3.4, the sensitivity of the objective function in respect of the 

design parameter has been evaluated by solving the discrete adjoint system: 
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 step length: as explained in 2.1.2.1, the length of the step Δ used at each iteration has been 

evaluated by an inexact line search approach, with the aim to satisfy the Armijo condition: 
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( 3-52 ) 

 


R
: the derivative of residual in respect of the design parameter has been computed by 

means of the forward finite difference formula: 
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( 3-53 ) 

 

where h is the increment parameter, equal to 0.000001.  

 

 validation of derivative: as suggested in [17], the values of derivatives computed by the 

adjoint approach have compared to those computed by means of the central finite difference 

formula: 
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where h is the increment parameter, equal to 0.000001.  

3.5.3 Results 
Results obtained in the optimization process are the following: 

 the target objective function has been reached in less than 10 iterations; 

 the values of derivatives in the course of optimization were found to be in close agreement 

with those obtained by means of the finite difference approach. 

Figure 3-6 and Figure 3-7 show respectively the evolution of the shape and of the static pressure 

during the optimization process. 

 

Figure 3-6: Adjoint - Shape Optimization - Shape Evolution 

 

Figure 3-7: Adjoint - Shape Optimization – Static Pressure Evolution 
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Figure 3-8 shows the evolution of the objective function, the derivatives evaluated by means of the 

adjoint approach and those obtained by means of the finite difference approach. 

 

Figure 3-8: Adjoint - Shape Optimization – Validation of Derivative 

Table 3-1 shows a comparison of derivatives evaluated by means of the adjoint approach and those 

obtained by means of the finite difference approach at each iteration. 

 

dJ/dα 

ITERATION ADJ DF (ADJ-DF)/DF 

1 -0.000294486202 -0.000294486246 -0.000000149413 

2 -0.000337435228 -0.000337435184 0.000000130395 

3 -0.000392597790 -0.000392597847 -0.000000145187 

4 -0.000479806263 -0.000479806238 0.000000052104 

5 -0.000196644963 -0.000196644990 -0.000000137303 

6 -0.000011074630 -0.000011074632 -0.000000207682 

7 0.000001845356 0.000001845356 0.000000059744 

8 -0.000000328360 -0.000000328360 -0.000000111806 

9 0.000000057814 0.000000057814 0.000000243263 

10 -0.000000010198 -0.000000010198 0.000000760401 

 

Table 3-1: Adjoint - Shape Optimization – Validation of Derivative 
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Figure 3-9 shows the evolution of the adjoint variables value during the optimization at iterations 1, 

3, 5 and 10. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Conclusion 
A new direction of development within the research group operating at University of Bergamo on 

DG methods for Computational Fluid Dynamics has been started. 

The present work is about the use of the adjoint method in the framework of aerodynamic shape 

optimization. The adjoint approach allows to solve local constrained optimization problems 

efficiently: the solution of only one linear system related to the constraint is required, independently 

from the number of the involved design parameters. The technique is applied to shape optimization 

and grid adaptivity problems for CFD applications, where the number of the involved parameters is 

generally high. 

Starting from the simple quasi-1D Euler equations, the implementation of the discrete adjoint 

method has been validated by comparing the values of computed adjoint variables with results of 

analytical solutions available in the literature. 

Figure 3-9: Adjoint – Shape Optimization – Adjoint Variable 
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The method has then been applied to a shape optimization problem with a single design variable, 

using a gradient based algorithm with an inexact line search approach. The sensitivity of the 

objective function in respect of the design parameter has been evaluated by solving the adjoint 

system, while the length of the step at each iteration has been quantified requiring the satisfaction of 

the Armijo condition. The derivative of residual in respect of the design parameter has been 

computed by means of the finite difference approach. The target value of the objective function has 

been reached in less than 10 iterations and the values of derivatives in the course of optimization 

were found to be in close agreement with those obtained by means of the finite difference approach. 

The application of the method to practical shape optimization problems requires further 

developments: the extension to other objective functions, the introduction of surface 

parameterization techniques, in order to deal with more complex geometries, the extension of the 

analysis to 2D-3D cases and to viscous and unsteady cases. 
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4 Thermal Cycle Optimization of a Mandrel Mill Component 
The second part of the thesis deals with the application of optimization techniques to an industrial 

problem. 

4.1 Overview of the Work 
This activity focused on the optimization of the thermal cycle of the mandrel of a longitudinal 

mandrel mill devoted to the production of seamless steel pipes, with the objective of reducing the 

peak temperature of the mandrel during the rolling phase. 

The present chapter is structured as follows: 4.2 includes a general description of the analyzed case, 

referring to the involved aspects; 4.3 deals with a description of the used tools and of the performed 

optimization; 4.4 concerns a description of the obtained results and 4.5 includes conclusions of the 

work. 

4.2 Case Description 

4.2.1 Production Cycle of Seamless Steel Pipes 
The production cycle of seamless steel pipes includes the following phases: 

 Heating: a filled billet has heated in a furnace, with the aim to achieve a sufficient 

temperature for the further hot processes. The billet temperature at the exit of furnace is of 

1250°C; 

 Piercing: the central cavity is produced by a piercer, through a hot plastic deformation 

process. A pierced cylindrical pipe, called shell, is obtained from a billet. The process takes 

place through external cylinders, called rolls, that trail longitudinally the billet on a central 

plug, creating the central cavity; 

 Rolling: a specific geometry is conferred to the pipe. External rolls trail longitudinally the 

shell, pressing it on a central cylinder, called mandrel. The process occurs along subsequent 

rolling stands, producing a progressive variation of the geometry. The product at the exit of 

the mandrel mill is called tube. 

 Reheating: the tube is reheated further, in order to achieve a sufficient temperature for the 

subsequent hot processes; 

 Calibration: the geometry is calibrated, with the aim to obtain the final geometry of the 

product, called pipe. The process takes place through external rolls, that trail longitudinally 

the tube, giving it the desired geometry. 

 Cooling: final cooling of the pipe on a cooling bed. 

After these phases other thermal treatments and cool phases follow, in order to obtain the final 

features of the product. These phases are not relevant for the activity carried out in the present 

work; hence, their description is not presented. 

A scheme of the described production cycle is present in Figure 4-1. 
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Figure 4-1: Seamless Steel Pipes Production Cycle 

In the Thesis, from this point the shell will be called pipe. 

4.2.2 Thermal cycle of the mandrel during the Rolling Phase 

4.2.2.1 Thermal Loads 
In order to obtain a thickness reduction, during the rolling phase the pipe is trailed and pressed by 

external rolls on the mandrel. The effective phase when the thickness reduction takes place 

concerns instants when the pipe is in contact with rolls (from this point called rolling phase), while 

during instants between the stands (from this point called inter-stand phase) there is not a thickness 

reduction. The thermal cycle of the mandrel is due to the following phenomena: 

 effective thickness reduction phase (rolling phase): during this phase, the mandrel is 

subjected to thermal loads due to: 

o conduction: in the entire rolling process the temperature of pipe is of 1100°C, while 

at the beginning of the phase the temperature of the mandrel is of 90°C. This 

difference of temperature causes a conduction heat flux during the contact phases. 

Further, the high contact pressure increases the heat exchange thermal coefficient. 

Treating the conductive thermal flux present on the surface of the mandrel like an 

equivalent convective flux, on each stand the conductive heat flux acting on the 

mandrel is the following: 

 
 MPeqeqCONVCOND TThqq  _

 

 
( 4-1 ) 

where 

 qCOND is the conduction heat flux between the pipe and the mandrel; 

 qCONV_eq is the equivalent convective heat flux acting on the mandrel; 

 heq is the equivalent convective heat transfer coefficient; 

 TP is the pipe temperature; 

 TM is the mandrel temperature; 

 

o friction: the thickness reduction of the pipe causes a reduction of its cross section. 

Hence, along the mandrel mill the pipe speed progressively increases, while the 

mandrel speed is constant: there is always a sliding between the pipe and the 

mandrel, due to the difference of speed. Further, the high contact pressure causes a 

high share stress component. These aspects lead to a high friction thermal flux. In 

addition, not all of the generated friction heat flux enters in the mandrel but only a 
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portion of it. Hence, on each stand the friction heat flux acting on the mandrel is the 

following: 

 
  ABSMPFR vvq %  

 
( 4-2 ) 

where 

 qFR is the friction heat flux generated by the sliding between the pipe and the 

mandrel; 

 τ is the contact shear stress between the pipe and the mandrel; 

 vP is the pipe speed; 

 vM is the mandrel speed; 

 %ABS is the % fraction of friction heat flux that enters in the mandrel; 

 

 inter-stand phase: in this phase the mandrel is subjected to thermal loads due to: 

o conduction: despite the absence of external rolls in these phases, however contact 

zones between the pipe and the mandrel are present, with lower pressures respect to 

the rolling phase. On each stand, the conduction heat flux present on the mandrel is 

evaluated like explained for the rolling phase, but the values of the heat exchange 

coefficients present are different; 

o radiation: in the areas where there is not contact, the pipe radiates the mandrel. On 

each stand, the radiation heat flux acting on the mandrel is the following: 

 
 44

MPRAD TTFq    
 

( 4-3 ) 

where 

 qRAD is the radiation heat flux present on the mandrel; 

 F is a geometric parameter; 

 ε is the pipe emissivity; 

 σ is the Stephan Boltzmann constant. 

Due to the high contact pressure present and the difference between the pipe and the mandrel speed, 

the most critical phase is the rolling phase. Under each stand, during these phases the temperature of 

the mandrel increases more quickly, reaching the higher values. 

4.2.2.2 Rolls disposition on Stands 
An important aspect of the mandrel thermal cycle concerns the circumferential disposition of rolls 

along the mandrel mill. In this sense, it is useful to define these two different sections: 

 bottom gorge section: it is the circumferential section corresponding to the axis of symmetry 

of rolls; 

 intermediate section: it is the circumferential middle section between the bottom gorge 

section of consecutive rolls of a single stand. 

In order to guarantee a uniform section of the pipe along the mandrel mill, the circumferential 

position of rolls is not the same between a stand and its subsequent. There is an angular shift in such 

a way as to ensure that a section that has not rolled on the current stand, will see the bottom gorge 

section of rolls of the subsequent stand. 
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Hence, each circumferential section of the mandrel sees different thermal cycles. In the present 

work the section considered for the evaluation of the mandrel thermal cycle are the following: 

 bottom gorge section of odd stands; 

 bottom gorge section of even stands; 

 intermediate section (equal for odd and even stands). 

 

Figure 4-2 shows the position of the bottom gorge and of the intermediate sections. 

 

Figure 4-2: Bottom Gorge and Intermediate Section 

 

Figure 4-3 shows the position of the bottom gorge and the intermediate sections of a single roll, in 

respect of the contact area between the pipe and the mandrel. 

 

Figure 4-3: BG and INT Section in respect of Contact Area  
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Images concerning the rolling phase and contact areas involved are present in Figure 4-4. 

 

 

 

 

 

 

 

 

Images concerning the rolling phase and contact pressure on each roll are shown in Figure 4-5. 

 

 

 

 

 

 

 

Images concerning the temperature behavior of the mandrel surface during the rolling phase, in 

respect of a single circumferential section, are present in Figure 4-6. Notice the peaks of 

temperature corresponding to the rolling phases. 

 

Figure 4-6: Single Circumferential Section - Temperature of the Mandrel Surface Behavior 

  

Figure 4-4: Mandrel Mill with 3 Rolls – Single Stand - Rolling Phase - Contact Areas 

Figure 4-5: Singe Stand - Rolls-Pipe and Pipe-Mandrel Contact Pressure 
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4.2.3 Effects of the Thermal Cycle on the Mandrel  
The mandrel is a very long cylinder composed by AISI H13 steel, with an external coating 

composed by electrodeposited hard Chromium. The chemical composition of mandrel steel is 

reported in Table 4-1: 

 

AISI H13 STEEL 

C [%] Si [%] Cr [%] Mo [%] V [%] 

0.4 1 5.2 1.4 1 
 

Table 4-1: Chemical Composition of Steel of the mandrel 

The thermal cycle causes the following effects on mandrel steel: 

 Hardness reduction: if the temperature exceeds the discovery temperature, the steel hardness 

decreases; this leads to a softening of the coating basement;  

 Austenitizing: if the temperature exceeds the start austenitizing limit, a variation of metal 

structure of steel occurs; this leads to a damage of the coating basement. 

The mandrel life depends strictly on the integrity of the coating of the mandrel: a damage of the 

external coating causes a waste of the component. For this reason it is important to avoid a 

softening and a damage of the coating basement and, for the reasons explained, limit the peak of 

temperature of the mandrel surface. 

4.2.4 Approach to the Problem 
The peak of temperature of the mandrel is reached during the rolling phase. Due to high gradients of 

temperature present on the first 3-5 mm deep and due to the high speed of the involved phenomena 

(speed of temperature variation higher than 1000°C/s) is not possible to measure the real evolution 

of the mandrel temperature. Hence, it has been decided to deal with the problem numerically. Tools 

used in the analysis are the following: 

 Preset Model for the evaluation of setup of the mandrel mill; 

 Finite Element Model for the simulation of the rolling process; 

 Finite Difference Model for the simulation of the mandrel thermal evolution; 

 Micro structural Model for the prediction of the hardness fail.    

4.2.5 Case Object of the Work 
The case object of this work refers to a mandrel mill of TenarisDalmine S.p.A. with 6 stands; each 

of one has 3 external rolls.  

Due to reasons concerning the TenarisDalmine’s industrial secret policy, all data and results 

concerning the problem are not mentioned directly but they are presented in dimensionless form, in 

respect of a reference case, not mentioned. 

4.3 Optimization Process 

4.3.1 Parameters and Constraints 
Parameters involved in the process are the following: 

 number of stands (N): number of stands present in the mandrel mill; 

 stand elongation (λ): parameter that describes the elongation of the pipe under each single 

stand. This quantity is function of rolls position, that determines the thickness variation of 
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the pipe, having effects on contact area (A), on contact length (l) and on contact pressure 

distribution (p) between the pipe and the mandrel. The elongation is defined as the ratio of 

the transversal area of the pipe, between the inlet and the outlet of the stand: 

 

)(tan__ 

)(tan__ 

)(tan

idsOUTPIPEtrasv

idsINPIPEtrasv

iids
A

A




   

 

( 4-4 ) 

 mandrel speed (νM): velocity of the mandrel during the rolling phase. This parameter has 

effect on the relative speed (νr) between the pipe and the mandrel; 

 pipe outlet speed (νP): velocity of pipe at the exit of the last stand of the mandrel mill. This 

quantity has effect on the relative speed (νr) between the pipe and the mandrel; 

 rolls diameter (D): diameter of external rolls. This parameter has effects on contact area and 

on contact length between the pipe and the mandrel; 

 inter-stand distance (d): distance between two consecutive stands. This quantity has effects 

on time (t) during which a mandrel section passes from a stand and its subsequent. 

Constraints present in the analysis are the following: 

 bound constraints: a part the number of stand, fixed in this analysis, each parameter has an 

own range of values. The reasons of each constraint present are presented: 

o stand elongation: 

 MIN: each single stand must lead to a minimal reduction of the transversal 

area of pipe; 

 MAX: there is a limit on mechanical loads of each stand; 

o mandrel speed: 

 MIN: in order to limit friction components, there is a limit on the minimum 

relative speed between the pipe and the mandrel; 

 MAX: there is a limit on the maximum length of the mandrel; 

o pipe outlet speed: 

 MIN: a limit on the minimum productivity is present; 

 MAX: there is a limit on the installed motors power; 

o inter-stand distance: 

 MIN: due to the dimension of each stand; 

 MAX: a limit on the total dimension of  mandrel mill is present. 

 other constraints:  

o pipe dimension: in order to obtain a determined dimension of the pipe, the total 

elongation of all the mandrel mill must be kept constant: 
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( 4-5 ) 

o inlet mandrel speed: due to engineering aspects of the mandrel mill, the mandrel 

must be always pulled by the pipe. Hence, mandrel speed must be always lower than 

the pipe speed. The lowest value of pipe speed is present on the first stand, hence: 

 
1tan dSPM vv   

 
( 4-6 ) 
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4.3.2 Tools Description 
This section concerns a general description of tolls available at R&D Centre of TenarisDalmine 

S.p.A., used for the problem solution. 

4.3.2.1 Preset Model 
The Preset Model is a software developed at the R&D Centre of TenarisDalmine S.p.A., in order to 

identify the correct setup configuration of the mandrel mill for the production of a determined 

product. 

The Preset Model includes several calculation modules that are briefly described in next paragraphs, 

concerning the analysis carried out in the present work.  

Geometrical module 

The Preset Model is able to calculate, in correspondence of each working stand, the following data:  

 spatial position of the rolls and pass data; 

 external / internal material profile at the outlet section; 

 circumferential distribution of the wall thickness of the pipe; 

 pipe cross sections, pipe outer diameter, pipe perimeter, circumferential contact angles 

between rolls and mandrel, elongations; 

 rolls position by which obtain a determined wall thickness at the outlet of the mandrel mill. 

Kinematics module  

The Preset Model is able to calculate, in correspondence of each working stand, the following data, 

according to several plant and technological constrains: 

 stands kinematics: 
o pipe length and speed; 

o rolls and motors rotational speed; 

 mandrel kinematics: 

o mandrel speed;  

o mandrel front abscissa; 

 pipe kinematics: 

o pipe front abscissa; 

o pipe speed. 

 

Dynamics Module 

The Dynamics Module has been carried out using the flat rolling equivalence, with the aim to 

simplify the approach to the problem. The Preset Model is able to calculate, in correspondence of 

each working stand, the following data: 

 material-roll relative speeds; 

 material–mandrel relative speeds. 

Details about each module are presented in the next sections. 

Geometrical module  

Figure 4-7 shows a simplified logical flow of geometrical calculus in the Preset Model. 
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Figure 4-7: Geometrical Module - Flow Chart 

A description of the criteria used for the setup definition is presented, concerning the present work. 

Setup evaluation is divided by two sequential steps: 
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 finishing stands setup (N-1 up to Nstand): setup is obtained by adjusting rolls position of the 

same quantity, until the relation ( 4-7 ) is satisfied: 

 
toleranceobjoutave WTWTWT    ,

 

 
( 4-7 ) 

where 

o WTobj is the scheduled wall thickness at mandrel mill exit; 

o WTtolerance is the adopted tolerance, equal to 0.001 mm; 

o WTave,out is the average wall thickness evaluated at each i-th stand outlet, according to 

the following formula: 
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( 4-8 ) 

where WT(θ) is the wall thickness evaluated at θ circumferential angle. 

 

 roughing stands setup (1up to N-2 stand): different possible option are available. In this 

work has been used the ‘distributed elongation with fixed reference values’ option: setting 

of the roll position on the roughing stands based upon reference deformation distribution 

along the mandrel mill. Basically rolls position at each stand is calculated in order to obtain 

a particular elongation λwork@i , according to the following formula: 

 
kw

irefiwork @@    

 
( 4-9 ) 

where 

o λref@i isa reference average elongation at stand i; 

o kw is a generic coefficient evaluated by the total elongation in both conditions, 

working and reference: 
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( 4-10 ) 

The coefficient kw modifies each stand elongation, ensuring that the real elongation 

distribution produces the target total elongation. 

Notice that in this point the Preset Model satisfies the constraint on the total 

elongation of the mandrel mill. 

Kinematics module  

Concerning the present work, a description of the definition of the following quantities is presented: 

 pipe speed: based on the pipe speed of subsequent stand, the pipe speed at the outlet of each 

stand is obtained as explained in ( 4-11 ): 
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 rolls rpm: rolls speed of each stand is obtained as explained in ( 4-12 ): 
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( 4-12 ) 

where 

o Dpitch@i isthe Roll Pitch Diameter of stand-i, used to consider the variation of roll 

diameter along the circumferential direction: 
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( 4-13 ) 

 

Figure 4-8: Roll Pitch diameter 

o ODeq@i is the Material Equivalent Outer Diameter of stand-i, calculated in respect of 

the cross section area and the average wall thickness; 

o Pitch Coefficient: coefficient [0,1]. 

 

 Mandrel speed: mandrel speed is defined by the following formula: 

 

100
*

CVMP
VMRVMR start  

 

( 4-14 ) 

where 
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o VMR: mandrel retaining speed; 

o CVMP: master percentage applied to the initial value of the mandrel retaining speed 

[0, 100%]; 

o VMRstart: initial value of the mandrel retaining speed that the Preset Model uses for 

the mandrel kinematics calculation, according to the following formula: 
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( 4-15 ) 

where 

 VMRmax is the maximum mandrel retaining speed, depending on plant limits; 

 
2

10   outout VV
is the average shell speed under the first stand; this condition is 

necessary to satisfy the technological constraints by which mandrel speed < 

material speed during rolling. 

If the mandrel retaining speed VMR satisfies the boundary on the first stand, the Preset Model 

accepts this value, otherwise it progressively reduces this value, until the boundary satisfaction. 

Notice that at this point the Preset Model satisfies the constraint on the retaining mandrel speed of 

the mandrel mill. 

Dynamics Module 

Concerning the present work, a description of the methodology used by the Preset Model to 

calculate relative speeds is presented. 

Flat Rolling Equivalence 

In order to have a simplified two-dimensional approach to the problem of the mandrelmMill 

dynamics, the Preset Model uses the “flat rolling equivalence”, considering the rolling of a flat 

plate. 

The first step of the Dynamics Module is to evaluate the flat plate and the roll geometry to use in 

following calculation steps. According to Figure 4-9, for each i-th working stand it is possible to 

define the following correspondences between geometrical parameters in plate and the rolling of 

pipe. 
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Figure 4-9: Flat Rolling Equivalence - Calculation of Flat Plate and Roll  

The wall thickness of the plate before and after the rolling stage is assumed to be equal to the wall 

thickness of the pipe in the rolled zone: 
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( 4-16 ) 

The plate width is evaluated depending on the wall thickness of the plate and the average contact 

angle: 

 

 iFPoutmandiavecontiFPout WTRWidth @@,@ *   

 
( 4-17 ) 

where 

o Rmand is the mandrel radius; 

o θcont,ave@i is the average contact angle (this calculation is not presented in this 

document). 

In correspondence of each stand, the flat roll diameter is defined as: 
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( 4-18 ) 

Relative speeds 

This section concerns formulas and hypothesis made by the preset model to the evaluation of 

relative speeds between material, roll and mandrel at contact interfaces. 

 

Figure 4-10: Calculation of Relative Speed 

According to Figure 4-10 it is easy to understand that the mandrel speed is always constant and 

equal to the retaining speed VMR. 

The definition of the material speed in correspondence of each linear position Z is made by 

assuming that the material flow, during the rolling of the flat plate, is the same of the corresponding 

stand of the mandrel mill. In other words, the assumption is that inlet and outlet speeds are the 

same.  

In order to make this condition verified, the preset model considers in correspondence of each 

position Z a cross section composed by two contributes: a deformed area ACS_defFP(Z) and a non-

deformed area (constant along the contact zone) ACS_indefFP@i. 

The non-deformed area is determined according to material flow conservation: 
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( 4-19 ) 

where ACSFP@i is the total outlet cross section area in correspondence of the i-th stand: 
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( 4-20 ) 

Hence 
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( 4-21 ) 

Once the non-deformed area has been fixed, it is possible to evaluate the speed of material in each 

subdivision of the contact zones: 
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( 4-22 ) 

where ACSFP(Z) is the cross section area in correspondence of the linear position Z of considered 

stand (its calculation is not presented in the present work). 

Hence, it is possible to calculate relative speeds on internal surface of the flat plate in 

correspondence of each Z position of the contact zone: 
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( 4-23 ) 

Out of the contact zone, after the stand exit in the inter-stand area, the relative speed between 

material and mandrel is:  

 

mandioutiSE VVV  @@int_
 

 
( 4-24 ) 

The relative speed between mandrel and pipe, output of the preset model, is the average of relative 

speeds values calculated in each contact length subdivision. 

 

4.3.2.2 FEM Model 
The Rolling Process has been simulated by a Finite Element Model (FE), using the commercial 

code ABAQUS EXPLICIT, currently supplied at the R&D Centre of TenarisDalmine S.p.A.. The 

FE model receives as input the values of the mandrel mill setup from the Preset Model, the flow 

stress curves of the pipe material, the temperature of the pipe and tribological laws concerning pipe-

roll and pipe-mandrel contact. 

In a previous phase of the present work, the FE model has been calibrated on rolling loads measured 

on plant and on the pipe geometry obtained at the exit of each stand, requiring the cutting of pipes 

during the rolling process. 

The FE model is an axial symmetric model: only a circular sector equal to half roll cylinder is 

simulated, exploiting the circumferential symmetry of the mandrel mill. In addition, the FE model 

simulates each single stand separately: not all the pipe is simulated but only a shorter piece; the 

outlet geometry from a stand determines the inlet geometry of the subsequent stand. The simulation 

is referred to the steady rolling phase, with the aim to evaluate contact lengths and contact pressure 

between the pipe and the mandrel in that condition. Figure 4-11 represents a circular sector equal to 

an entire roll cylinder, highlighting contact areas and contact pressures. In respect of Figure 4-11, 

the FE model simulates only the half portion of the shown configuration. 
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Each FE analysis simulates stands 1, 2, 3, 4, requiring about 1.2 hours of CPU time. 

At the end of the FE analysis, contact lengths and contact pressures between the pipe and the 

mandrel have been extracted. For each stand the extraction has been carried out longitudinally, in 

correspondence of the bottom gorge and the intermediate circumferential sections, where the 

thermal analysis has then been done. 

In order to make automatic the extraction, a specific Abaqus-Phyton Script has been created. 

4.3.2.3 Friction Model 
The contact between the pipe and the mandrel occurs under pipe plasticization in presence of 

lubricant composed by a mixture of glass and borax. In these conditions is necessary to model the 

friction following appropriate laws. The validity of these laws has been calibrated on the tribometer 

present at the R&D Centre of TenarisDalmine. These laws have been introduced in the FE model of 

the rolling process and in a Friction Model, with the aim to obtain contact shear stress components 

from contact pressures. A brief description of involved principles is presented. 

In plastic deformation processes, contact pressure present is in general high and one of two bodies 

in contact undergoes an intense plastic deformation. Is observed empirically that increasing contact 

pressure (p), initially contact shear stress (τ) increases too: plastic deformation is confined to the 

contact asperities and the materials in contact are subjected to a macroscopic elastic deformation. 

Increasing again contact pressure, contact shear stress reaches a limit value (τlim) after which 

remains constant: the extension of real contact areas has reached a limit value in which there is an 

intense superficial plastic deformation and contact is fully plastic. Possible presence of lubricant 

causes a friction coefficient reduction (µ); this action deals with both the two macro areas:  

 in the macroscopic elastic deformation region the lubricant affects on friction coefficient 

value: 

 

)lubricant  (    
 

( 4-25 ) 

 in the fully plastic deformation region the lubricant affects on shear stress limit value: 

Figure 4-11: FE Model: Pipe-Roll and Pipe-Mandrel Contact Area and Contact Pressure 
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where 

o m is a coefficient function of lubricant present: 
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( 4-27 ) 

o K is the limit shear stress of material subject on plastic deformation. 

Figure 4-12 and Figure 4-13 show respectively the difference between elastic and plastic contact 

and the effect of lubricant on the maximum shear stress transmissible. Values present in figures are 

only indicative and are not referred to the case analyzed in the present work. 

 

Figure 4-12: Friction Model - Elastic and Plastic Contact Region 

 

Figure 4-13: Friction Model - Effect of Lubricant on Maximum Transmissible Shear Stress 



4 - Thermal Cycle Optimization of a Mandrel Mill Component 

 

84 

 

Following these laws and using appropriated coefficient values from literature, the friction model 

determines under each stand the average contact shear stress present, based on contact pressure 

distribution. 

4.3.2.4 Thermal Model 
The Thermal Model determines the evolution of the mandrel temperature during the rolling process 

and its hardness fail at the end of the process. The model has been calibrated on the hardness fail 

measured on mandrels used in the production. 

As explained, in the preset work the mandrel temperature is evaluated on the following three 

longitudinal sections of the mandrel: 

 bottom gorge section of even stands; 

 bottom gorge section of odd stands; 

 intermediate section. 

Each section crosses all stands of the mandrel mill during rolling phase. At each section, the peak 

temperature of the mandrel is obtained. Hence, the peak temperature reached by the mandrel is 

determined by the average of peak temperatures reached on the three circumferential sections 

considered. 

Concerning the history evolution of the mandrel temperature, the rolling process is divided in single 

phases, when conditions remain the same. At each phase thermal equations referred to sections of 

interest are solved, applying its (constant) boundary conditions. At each stand, phase involved on 

the rolling process are the following: 

 under-stand phase: in this phase the mandrel is under the roll and the thickness reduction 

occurs. Boundary conditions applied on the thermal model are the following: 

o contact under-stand: contact between the pipe and the mandrel; 

o friction: friction between the pipe and the mandrel; 

 inter-stand phase: in this phase the mandrel is between two subsequent rolls. Boundary 

conditions applied on the thermal model are the following: 

o contact inter-stand: partial contact between the pipe and the mandrel; 

o radiation: radiation between the pipe and the mandrel. 

This paragraph includes a brief description of the model, explained in [21]. 

The evolution of temperature 

The equation that describes the heat conduction in an isotropic material in cartesian coordinates is 

the following: 
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( 4-28 ) 

where: 

 T is the temperature; 

 k is the thermal conductivity of material; 

 k is the thermal diffusivity of material; 

 t is the time; 

 H is the internal power generation per unit volume. 
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In cylindrical polar coordinates the equation begins the following: 
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where 

 r is the radial coordinate; 

 θ is the circumferential coordinate; 

 z is the third coordinate. 

Figure 4-14 shows a cylindrical polar coordinates system: 

 

Figure 4-14: Cylindrical Polar Coordinate System 

The thermal analysis is made under the assumption that the temperature distribution depends only 

on the radial coordinate, hence the equation of problem is the following:  
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Using a central finite difference spatial discretization scheme and an explicit time integration 

scheme, the equation of problem becomes the following: 
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where: 

 T(k,j) is the temperature on k-th node and j-th instant; 

 T(k+1,j) is the adjacent inner node to k-th node and j-th instant; 

 T(k-1,j) is the adjacent outer node to k-th node and j-th instant. 

Figure 4-15 shows the described cylindrical polar coordinates grid: 
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Figure 4-15: Cylindrical Polar Coordinates – Regular Grid 

The high gradient present on the external surface of the mandrel requires an introduction of an 

irregular discretization grid. Hence, the equation of the problem becomes the following: 
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where: 

 se is an outer grid scale coefficient [0÷1]; 

 sw is an inner grid scale coefficient [0÷1]; 

 se+sw=1 

Figure 4-16 shows the described irregular cylindrical polar coordinates grid: 

 

Figure 4-16: Cylindrical Polar Coordinates – Irregular Grid 
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Concerning boundary treatment, initially the method referred on cartesian system coordinates is 

presented. The equation of problem solved on the k-th boundary node is the following: 
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where: 

 TAMB is the temperature of ambient; 

 Fo is Fourier number: 
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 Bi is Biot number: 
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( 4-35 ) 

where h is the convective heat transfer coefficient. 

Radiation and Conduction boundary conditions are considered as a convection, using an equivalent 

heat convection coefficient. 

Friction boundary condition is applied separately, by adding to the thermal equation of the 

boundary node a temperature variation. This variation is evaluated by an energy balance at the 

boundary, imposing on it the friction thermal flux. 

Hence, the equation solved on the boundary node with cylindrical polar coordinate system and 

irregular grid is the following:  
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where: 

 DR(k) is the size of the grid on k-th node; 

 DEST is the diameter of the mandrel; 

 BiEST is the Biot number calculated on the boundary k-th node; 

 TEST is the external temperature; 

 ΔTFR is the increasing of temperature due to friction; 

 ABSFR is a coefficient concerning a repartition of the energy friction between inner and outer 

regions. 
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Hardness fail 

The hardness fail is evaluated by the Dorn law: 
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( 4-37 ) 

where: 

 Dp is the Dorn Parameter concerning the hardness fail; 

 NCYC is the number of rolling cycles considered in the hardness fail evaluation;  

 ENDCYC is the end time of the single rolling phase simulated; 

 QACT is the activation energy for tempering phenomena activation; 

 R is the universal constant of perfect gases; 

 T is the instant temperature of the mandrel; 

 t is the time. 

4.3.3 Optimization 
This paragraph concerns a description of the optimization process. 

4.3.3.1 Flowchart building 
The optimization has been carried out by the use of  the commercial software Matlab, available at 

the R&D Centre of TenarisDalmine S.p.A.. Initially has been necessary to automate the entire 

process, making the following activities: 

 building of Matlab scripts for the connection of each used tool; 

 development of Matlab scripts for the transfer of data to the cluster for the FE analysis; 

 building of an Abaqus Script for the extraction of contact pressures between the pipe and the 

mandrel from FE analysis results. 

Figure 4-17 shows the flowchart of involved variables and each tool used to their evaluation. 

 

Figure 4-17: Flowchart of Variables and Used Tools  
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4.3.3.2 Design of Experiment (DOE) 
The first phase of the optimization has been a Design of Experiment (DOE), with the aim to identify 

the set of most influential parameters on the objective function. First of all, the range of each single 

parameter has been defined, based on technological and engineering aspects explained in 4.3.1, 

referring to the case analyzed. The effect of each parameter has been investigated considering every 

possible combination of variables, with a full factorial scheme, with two levels for each parameter 

and three levels for the elongation. In sequence, configurations investigated are the following: 

 inter-stand distance (D): 

I. DMIN = DREFERENCE CASE; 

II. DMAX = 1.1 x DREFERENCE CASE; 

 roll diameter of stand 4 (d): 

I. dMIN = dREFERENCE CASE; 

II. dMAX = 1.2 x dREFERENCE CASE; 

 pipe outlet speed (νP): 

I. νP MIN = 0.8 x νP REFERENCE CASE; 

II. νP MAX = 1.2 x νP REFERENCE CASE; 

 mandrel speed(νM) - limit values vary in respect of the pipe outlet speed, for the constraint 

present on the first stand: 

I. νM MIN:  

 νP MIN νM MIN = 0.6 x νM REFERENCE CASE 

 νP MAX νM MIN = 0.8 x νM REFERENCE CASE; 

II. νM MAX:  

 νP MIN νM MAX = 0.85 x νM REFERENCE CASE 

 νP MAX νM MAX = 1.15 x νM REFERENCE CASE; 

 elongation distribution (λ): 

I. λIN: λ concentrated towards the mandrel mill outlet; 

II. λFLAT: λ uniformly distributed along the mandrel mill; 

III. λOUT: λ concentrated towards the mandrel mill inlet; 

Figure 4-18 shows the three configurations concerning the tested real elongation distribution: 

 

Figure 4-18: DOE - Tested Real Elongation Distribution   
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Table 4-2 show a resume of tested experiments and the obtained  mandrel peak temperature: 

 

CASE 
INTERSTAND 

DISTANCE 
S4 ROLL 

DIAMETER 
PIPE OUTLET 

SPEED 
MANDREL 

SPEED 
ELONGATION 

DISTRIBUITION 
T MAX                            

[T MAX / T MAX_REF]  

1 

1 

1 

0,8 

0,6 

OUT 1,18 

2 FLAT 1,10 

3 IN 1,17 

4 

0,85 

OUT 1,01 

5 FLAT 0,95 

6 IN 0,99 

7 

1,2 

0,85 

OUT 1,26 

8 FLAT 1,23 

9 IN 1,34 

10 

1,15 

OUT 1,07 

11 FLAT 1,03 

12 IN 1,12 

13 

1,2 

0,8 

0,6 

OUT 1,18 

14 FLAT 1,10 

15 IN 1,17 

16 

0,85 

OUT 1,01 

17 FLAT 0,95 

18 IN 0,99 

19 

1,2 

0,85 

OUT 1,26 

20 FLAT 1,23 

21 IN 1,34 

22 

1,15 

OUT 1,07 

23 FLAT 1,03 

24 IN 1,12 

37 

1,1 1,2 

0,8 0,6 

OUT 1,17 

38 FLAT 1,10 

39 IN 1,16 

46 

1,2 1,15 

OUT 1,06 

47 FLAT 1,02 

48 IN 1,12 
 

Table 4-2: DOE - Tested Cases and Results 

Concerning the configuration of maximum inter-stand distance, only cases with the maximum roll 

diameter on fourth stand and extreme mandrel speeds have been tested. 
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Inter-stand distance influence 

Figure 4-19 shows the influence of the inter-stand distance on the mandrel peak temperature: 

 

 

Figure 4-19: DOE – Inter-Stand Distance Influence 

 

 

Roll diameter of stand 4 influence 

 

Figure 4-20 shows the influence of roll diameter of the fourth stand on the mandrel peak 

temperature: 

 

  

 

Figure 4-20: DOE – Roll Diameter on Fourth Stand Influence 
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Pipe outlet speed influence 

Figure 4-21 shows the influence of pipe outlet speed on the mandrel peak temperature: 

 

 

Figure 4-21: DOE - Pipe Outlet Speed Influence 

 

 

Mandrel speed influence 

 

Figure 4-22 shows the influence of the mandrel speed on the mandrel peak temperature: 

 

 

  

 

Figure 4-22: DOE - Mandrel Speed Influence 
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Elongation distribution influence 

Figure 4-23 shows the influence of elongation distribution on the mandrel peak temperature: 

 

 

 

 

Figure 4-23: DOE: Elongation Distribution Effect 

 

 

 

In conclusion, DOE Analysis has shown that pipe outlet speed, mandrel speed and elongation 

distribution have a significant influence on the peak temperature of the mandrel, while inter-stand 

distance and roll diameter of the fourth stand have no significant influence on the mandrel peak 

temperature. 
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4.3.3.3 Optimization Problem 
After the DOE analysis, the optimization has been carried out excluding variables with no relevant 

influence on the objective function. Not all of the influence variables have been considered: the 

optimization has been carried out keeping fixed the pipe outlet speed, with the aim to find an 

optimal configuration corresponding to a determined productivity of the mandrel mill. Furthermore, 

only elongations of stands 1-2-3-4 have been considered, keeping fixed the elongation of last 5-6 

finishing stands. 

Hence, the main features of the optimization problem are the following: 

 objective: reduction of the peak temperature of the mandrel ( TMAX ); 

 influence parameters: 

o elongation of roughing stands ( λ1, λ2, λ3, λ4 ); 

o mandrel speed ( νM); 

 constraints: bound constraint on all variables ( Table 4-3 ) 

 

Table 4-3: Optimization - Range of Input Parameters 

As explained previously, constraints on the elongation distribution and on the mandrel speed are 

considered directly by the Preset Model. 

Figure 4-24 shows the flowchart of variables involved in the optimization process: 

 

 

Figure 4-24: Optimization - Flowchart 
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4.3.3.4 Choice of the Optimization Algorithms 
In order to find the best solution, the optimization has been carried out in two steps: a first step, 

using an appropriate algorithm with the aim to find the global solution, and a second step, with an 

algorithm adapt to a solution refinement. 

The Matlab Optimization Toolbox ( M-OPT) includes different algorithms: their use is advised in 

function of the problem under investigation. The case object of the present work has the following 

main features: 

 single objective; 

 smooth - non linear objective function; 

 bound constraints on all parameters. 

Table 4-4 shows a list of algorithms available in the M-OPT: 

 

Table 4-4: Matlab Optimization Toolbox – Available Algorithms 

 

As suggested by the Matlab Documentation, the algorithms chosen for the analysis are the 

following: 

 global solution search: as shown in Table 4-4, under the section ‘single global solution’ 

different algorithms were available. Due to the fact that there were not experience on the 

behavior of the objective function of interest, the chosen algorithm has been the Genetic 

Algorithm, the only stochastic available. 

 local solution search: for the refinement phase the algorithm has been chosen with the aim 

to obtain major information on the objective function behavior on the region under 

investigation. The global search algorithm has been discharged because it makes a selection 

on the start points, based on obtained objective function. This approach is efficient for the 

evaluation of a single global solution, but it is not so good for a detailed (complete) analysis 

of a function around a determined point. Hence, the Multistart algorithm has been chosen, 

because it doesn’t make any selection of its start point during the optimization, spanning all 

the neighborhood of a point. Concerning the solver used in each local solution analysis, the 
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Interior Point Algorithm has been chosen, as suggested by Matlab Documentation as the 

first choice to try. 

4.3.3.5 Global Solution by Genetic Algorithm 
The global solution has been searched by a genetic algorithm (GA).  

Algorithm setup 

GA has been used exploiting default settings provided by M-OPT. Concerning the present work, the 

following quantities are mentioned: 

 size of population (number of individuals): as explained in [3], in order to guarantee the 

algorithm convergence, a general rule for its determination is the following: 
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( 4-38 ) 

where: 

o NGA_INDIVIDUALS is the number of individuals composing a single population; 

o NGA_OBTV is the number of objective functions of the problem; 

o NPAR is the number of parameter design of the problem. 

Concerning the present case, the more strictly condition on population size is that 

NGA_POPULATION ≥ 16. Considering the available CPU time and having not concrete 

experience about the convergence speed, the default value provided by the M-OPT, equal to 

20, has been used; 

 Population composition: the GA population used is the population provided by default by 

M_OPT; Table 4-5 shows the population composition: 

GA - POPULATION COMPOSITION 

Total Individuals [nr] 20 

Elite Individuals [nr] 2 

Crossover  Individuals [nr] 14 

Mutation Individuals [nr] 4 
 

Table 4-5: Opt by GA - Population Composition 

 Other setup parameters: for details about other setup parameters and their meaning see [22]. 

Using described parameters and considering that each FE analysis has required about 1.2 hours of 

CPU time, an estimate of the analysis duration is the following: 

OPT ANALYSIS - DURATION ESTIMATE 

Generations  [nr] 20 

Function Evaluations  [nr] 420 

CPU time [days] 20 
 

Table 4-6: OPT by GA: Estimate of Duration  
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Optimization – parameters evolution 

Figure 4-25 shows the evolution of input parameters and the peak temperature during the 

optimization: 

 

Figure 4-25: OPT by GA: Input Parameter Evolution 

Figure 4-26 shows the evolution of real parameters after the correction by the preset model and the 

peak temperature during the optimization: 

 

Figure 4-26: OPT by GA: Real Parameter Evolution  
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Considerations about the parameter evolution are the following: 

 after a first phase of space spanning, the algorithm has converged towards stable values of 

involved parameters;  

 inside the “stable value zone” samples with different value are evident, due to mutation 

operations on individuals; 

 the number of used population has been sufficient to reach a stable value of involved 

parameters. 

Figure 4-27 shows the evolution of real elongation on stand 1 and the peak temperature during the 

optimization; the algorithm has been progressively increased the elongation on stand 1: 

 

Figure 4-27: OPT by GA: Stand 1 - Real Elongation Evolution 

Figure 4-28 shows the evolution of real elongation on stand 2 and the peak temperature during the 

optimization; the algorithm has been progressively decreased the elongation on stand 2: 

 

Figure 4-28: OPT by GA: Stand 2 - Real Elongation Evolution 
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Figure 4-29 shows the evolution of real elongation on stand 3 and the peak temperature during the 

optimization; the algorithm has been progressively increased the elongation on stand 3: 

 

Figure 4-29: OPT by GA: Stand 3 - Real Elongation Evolution 

 

Figure 4-30 shows the evolution of real elongation on stand 4 and the peak temperature during the 

optimization; the algorithm has been progressively increased the elongation on stand 4: 

 

Figure 4-30: OPT by GA: Stand 4 - Real Elongation Evolution 
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Figure 4-30 shows the evolution of real mandrel speed and the peak temperature during the 

optimization; the algorithm has been progressively increased the mandrel speed: 

 

Figure 4-31: OPT by GA: Real Mandrel Speed Evolution 

 

Figure 4-32 shows the evolution of real mandrel speed and elongation on stand 1 during the 

optimization; it’s evident the correlation between two parameters due to constraint on mandrel 

speed on stand 1: 

 

Figure 4-32: OPT by GA: Real Mandrel Speed and Elongation on Stand 1 
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Global Solution 

Figure 4-33and Table 4-7show respectively the found optimal elongation distribution and the 

optimal value of parameters of the case with the lowest peak temperature of the mandrel. 

 

Figure 4-33: OPT GA - Optimal Elongation Distribution 

 

Results respect a REFERENCE CASE - [value/value_ref] 

CASE 
λ real 

vM T MAX 

s1 s2 s3 s4 

GA 1.18 0.83 1.06 0.98 1.16 0.91 

 

Table 4-7: OPT GA: Global Optimal Solution 

The optimal global solution corresponds to a mandrel peak temperature less than 10% in respect of 

the reference case. 

At the end of the present chapter a paragraph devoted on engineering consideration of the optimal 

solution is present. 
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4.3.3.6 Building of a Fitting Model 
The second phase of the optimization has concerned the realization of a fitting model, with the aim 

to avoid the execution of other FE analysis in the subsequent steps. The main aspects and the 

procedure concerning the developed model are the following: 

 for each stand has been created a fitting model of the following quantities: 

o contact length, evaluated at: 

 bottom gorge section; 

 intermediate section; 

o Shear stress component of contact between the pipe and the mandrel, evaluated at: 

 bottom gorge section; 

 intermediate section; 

 the fitting model has been created determining all quantities in respect of the real elongation 

on the stand of interest, with the assumption that the elongation on previous stands doesn’t 

influence the parameter value; 

 the model created is a polynomial expansion model, developed through the commercial 

software Matlab; 

 the fitting model has been developed by fitting of first 200 cases of GA Optimization, cases 

with a good space spanning; 

 for each parameter a polynomial expansion model of the following order has been created: 

o MIN ORDER = 1; 

o MAX ORDER = 20; 

 for each order, coefficients of the polynomial expansion has been determined by a last 

square minimization of the fitting error: 
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( 4-39 ) 

where: 

o yfit is the value of quantity of interest obtained by the fitting model; 

o yr is the real value of quantity of interest; 

o N is the number of samples used to build the fitting model; 

 the fitting order that has been considered accurate and, then, used in the following analysis 

is the lower order corresponding to the following condition: 

 

  05.0norm2  tolyy rfit
 

 
( 4-40 ) 

where tol  is an acceptable tolerance value, equal to 0.05.  
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Figure 4-34 shows the fitting error of the contact length on bottom gorge section on stand 1, in 

respect of the polynomial order and the real elongation: 

 

Figure 4-34: Fitting Model - Stand 1 - BG Section - Fitting Error 

 

Figure 4-35 shows the norm2 of the fitting error of the contact length on bottom gorge section on 

stand 1 ,in respect of the polynomial order: 

 

Figure 4-35: Fitting Model - Stand 1 - BG Section – Norm2(fitting error) 
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As shown in Figure 4-36, for each stand there is a limit on the value range of real elongation in 

order to avoid boundary divergence of quantities obtained by the fitting model. 

 

Table 4-8 shows the polynomial order degree obtained for each quantities and each stands: 

 

 

 

 

 

 

 

 

 

 

Figure 4-36 shows the contact length and contact shear stress on stand 1 used in the analysis, in 

respect of the real elongation: 

 

Figure 4-36: Fitting Model - Stand 1 - BG Section – Quantities Behavior 

  

  STAND 
POLYNOMIAL 

ORDER 

l_cnt_BG 

1 4 

2 12 

3 10 

4 9 

5 6 

6 1 

l_cnt_IS 

1 4 

2 12 

3 10 

4 6 

5 7 

6 1 

  STAND 
POLYNOMIAL 

ORDER 

tau_BG 

1 5 

2 12 

3 10 

4 2 

5 8 

6 7 

tau_IS 

1 2 

2 12 

3 10 

4 2 

5 6 

6 8 

 

Table 4-8: Fitting model - Polynomial Order Degree Obtained for each Quantities 
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Figure 4-37 shows the contact length and contact shear stress on each stand obtained by the fitting 

model, in respect of the real elongation. The range of the used real elongation must be consistent 

with plant setting of each stand; further it has been further restricted in order to avoid possible 

boundary divergence of quantities for high degree polynomial order. Some oscillation of quantities 

due to used high polynomial degree is evident. The effect of this aspect on the possible generation 

of local minima on the mandrel peak temperature has not been investigated. 

 

 

 

  

Figure 4-37: Fitting Model - Contact Length and Shear Stress of each Stand 
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Table 4-9 shows the obtained polynomial expansion coefficients: 

 

 

 

 

  
STA
ND 

ORDER 

POLYNOMIAL EXPANSION COEFFICIENTS 

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 

lcnt             
BG      

1 4 -38.8598 271.2671 -731.338 924.7873 -367.076                 

2 12 -1.9E+09 3.47E+10 -2.9E+11 1.47E+12 -5E+12 1.22E+13 -2.2E+13 2.78E+13 -2.6E+13 1.75E+13 -7.9E+12 2.14E+12 -2.7E+11 

3 10 2.9E+08 -4E+09 2.53E+10 -9.4E+10 2.27E+11 -3.8E+11 4.31E+11 -3.4E+11 1.74E+11 -5.3E+10 7.21E+09     

4 9 -2.7E+11 3.04E+12 -1.5E+13 4.33E+13 -8E+13 9.91E+13 -8.2E+13 4.31E+13 -1.3E+13 1.82E+12       

5 6 -7.2E+08 4.77E+09 -1.3E+10 1.93E+10 -1.6E+10 7.04E+09 -1.3E+09             

6 1 -3.1E-14 32.142                       

lcnt 
IS 

1 4 -38.4966 268.7319 -724.504 916.1444 -363.646                 

2 12 -1.4E+09 2.49E+10 -2.1E+11 1.06E+12 -3.6E+12 8.76E+12 -1.5E+13 2E+13 -1.9E+13 1.25E+13 -5.6E+12 1.54E+12 -1.9E+11 

3 10 2.4E+08 -3.4E+09 2.1E+10 -7.8E+10 1.88E+11 -3.1E+11 3.57E+11 -2.8E+11 1.44E+11 -4.4E+10 5.97E+09     

4 6 -2.1E+07 1.6E+08 -5E+08 8.31E+08 -7.8E+08 3.88E+08 -8.1E+07             

5 7 -5.8E+09 4.41E+10 -1.4E+11 2.58E+11 -2.8E+11 1.81E+11 -6.5E+10 1E+10           

6 1 -1.1E-13 24.27894                       

Tau 
BG 

1 5 -458.974 3429.618 -10205.4 15108.01 -11115.9 3253.751               

2 12 4.68E+08 -8.6E+09 7.18E+10 -3.6E+11 1.24E+12 -3E+12 5.3E+12 -6.9E+12 6.44E+12 -4.3E+12 1.93E+12 -5.3E+11 6.55E+10 

3 10 -1.4E+08 2.02E+09 -1.3E+10 4.82E+10 -1.2E+11 1.99E+11 -2.3E+11 1.86E+11 -9.7E+10 3.01E+10 -4.2E+09     

4 2 -68.6336 176.818 -105.502                     

5 8 3.11E+10 -2.7E+11 1.05E+12 -2.3E+12 3.16E+12 -2.8E+12 1.52E+12 -4.8E+11 6.56E+10         

6 7 -8.1E+10 5.86E+11 -1.8E+12 3.1E+12 -3.2E+12 1.97E+12 -6.7E+11 9.91E+10           

Tau 
IS 

1 2 -5.81826 21.44968 -13.2814                     

2 12 3.49E+08 -6.4E+09 5.36E+10 -2.7E+11 9.27E+11 -2.2E+12 3.96E+12 -5.1E+12 4.81E+12 -3.2E+12 1.44E+12 -3.9E+11 4.89E+10 

3 10 -1.1E+08 1.62E+09 -1E+10 3.85E+10 -9.5E+10 1.59E+11 -1.9E+11 1.49E+11 -7.8E+10 2.4E+10 -3.3E+09     

4 2 -54.9069 141.4544 -84.4012                     

5 6 67161226 -4.4E+08 1.23E+09 -1.8E+09 1.49E+09 -6.6E+08 1.2E+08             

6 8 3.36E+10 -3.8E+11 1.73E+12 -4.3E+12 6.54E+12 -6.2E+12 3.59E+12 -1.2E+12 1.67E+11         

 

Table 4-9: Fitting Model - Polynomial Coefficients 
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Table 4-10 shows the error on the mandrel peak temperature obtained by the FE Analysis and the 

fitting model. Cases present in Table 4-10 are only the main cases used to evaluate the error on the 

peak temperature of the mandrel. 

 

CASE 
λ real 

νM 
 T MAX 
ERROR 

s1 s2 s3 s4 s5 s6 

1 1.00 0.87 1.13 1.04 1.00 1.00 1.00 -0.001 

2 0.87 0.87 1.26 1.04 1.00 1.00 0.77 -0.005 

3 1.16 0.83 1.07 1.01 1.00 1.00 1.16 0.003 

 

Table 4-10: Fitting Model – Error on The peak temperature of the mandrel Respect FE Analysis 

 

Figure 4-38 shows the flowchart of variables involved in the optimization process. The time of 

analysis of each single case has been reduced to 5÷10 minutes, depending on the number of 

iterative correction made by the Preset Model. 

 

 

Figure 4-38: Fitting Model - Flowchart 
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4.3.3.7 Solution Refinement by Gradient Based Algorithm 
After the evaluation of the global solution by GA, a second step of the optimization process has 

been carried out, with the aim to refine the solution and to verify the possible existence of local 

minima points in a neighborhood of that global solution. 

Space restriction 

Exploiting the space selection made in the first step by GA, the space investigated for the solution 

refinement has been reduced. The criteria followed for the restriction of the refinement space region 

is based on the mandrel peak temperature obtained by GA: 

 

CASEREFERENCEMAXREFINEMENTMAX TT ___ 95.0   

 
( 4-41 ) 

where  

o TMAX_REFINEMENT is the higher peak temperature of the mandrel considered in the 

refinement phase (value referred to the peak temperature obtained during GA 

optimization); 

o TMAX_RERFERENCE_CASE is the mandrel peak temperature of the reference case. 

Hence, for obvious reasons, the solution refinement step has excluded cases with high values of the 

mandrel peak temperature. The range of obtained input parameters is the following: 

[ values/values_ref ] 

STAND 
λ INPUT vM 

MIN MAX MIN MAX 

1 1.05 1.35 

1.07 1.11 
2 0.84 1.21 

3 0.96 1.18 

4 1.01 1.10 
 

Table 4-11: Multistart Optimization - Input Parameter Range of Solution Refinement Space 

Table 4-11 is internal to the limit of input parameters shown in Figure 4-37. Hence, boundary 

divergence phenomena are excluded. 

Algorithm setup 

The Multistart Interior-Point Algorithm (MS-IP) has been used, initially exploiting default settings 

provided by M-OPT. Unlike GA, a changing of the following parameter has been necessary: 

 Step length: the gradient of the objective function at a generic point is built evaluating the 

variation of the objective in respect of each parameter. This variation is computed by means 

of a forward finite difference approach (after that the Hessian is built using the quasi-

Newton Method). The entity of variation of each parameter is determined by the step length 

factor: 
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ii xlengthstepx  _  

 
( 4-42 ) 

where:  

o Δxi is the variation of i-th parameter; 

o step_length is the step length parameter; 

o xi is the value of i-th parameter at the current point. 

The default value of the step length provided by M-OPT is the following: 

 

DEFAULTlengthstep  _  

 
( 4-43 ) 

where: 

o ε is the machine error, equal to 1.49e-08 (referred to the working in double precision 

by matlab). 

The default value of the step length is too small for the problem and the used tools: the 

Preset Model doesn’t change its variable value in presence of very small variation of them. 

Hence, during a first trial test, parameters didn’t change and the optimization has not been 

started. After the first derivative estimation, M-OPT has stopped the process at a final point 

equal to the start point. 

As suggested by M-DOC, a relaxation of the step length has been necessary. Its value has 

been progressively increased: from the reference case, a series of single gradient based trials 

has been made, increasing progressively the step length, until a variation of design variables 

during the process. 

The minimum step length able to vary all involved parameters has been equal to 0.01. 
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Figure 4-39 shows the evolution of input parameters and the peak temperature of the 

mandrel during a gradient base descent from the reference case, with the step length equal to 

0.01. 

 

Figure 4-39: Gradient Based Optimization - Step Length = 0.01 

 

Start points 

The aspects involved in the start point definitions are the following: 

 number of start points: the number of start points of each single gradient descend has been 

chosen considering the time available and the time necessary to make a single descend. The 

time necessary to carry out a single analysis has been assumed equal to the time of descend 

of the test with the step length equal to 0.01. That analysis has required 240 function 

evaluation and a CPU time of 12 hours. Considering a serial computing (a parallel analysis 

has not been performed) and fixing a total time of all the analysis equal to one week, a 

number of start points equal to 10 has been chosen; 

 space subdivision: in order to investigate uniformly the space, the default setting of MS-IP 

has been used, with the aim to cover the largest number of combinations of involved 

parameters. 
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Figure 4-40 and Figure 4-41 show respectively the input elongation and input mandrel speed of 

the obtained 10 start points: 

 

Figure 4-40: Multistart Optimization - Start Points - Input Elongation 

 

Figure 4-41: Multistart Optimization - Start Points - Input Mandrel Speed 
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Figure 4-42 and Figure 4-43 show respectively the real elongation and real mandrel speed of 

obtained 10 start points: 

 

Figure 4-42: Multistart Optimization - Start Points - Real Elongation 

 

Figure 4-43: Multistart Optimization - Start Points - Real Mandrel Speed 
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Optimization 

The optimization has required 1240 function evaluations and 6 days of CPU time. Different 

solutions have been found; hence, different local minima are present. 

Figure 4-44 shows the evolution of peak temperature during the optimization: 

 

Figure 4-44: Multistart Optimization - The Mandrel Peak Temperature Evolution 
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Figure 4-45 shows the real elongation distribution relative to 10 local minima present: 

 

Figure 4-45: Multistart Optimization - 10 Local Minima - Optimal Real Elongation Distribution 

Figure 4-4 shows the real mandrel speed relative to 10 local minima present: 

 

Figure 4-46: Multistart Optimization - 10 Local Minima - Optimal Real Mandrel Speed 
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Figure 4-47 and Table 4-12 show respectively the optimal real elongation distribution and the 

optimal value of parameters of the case with the lowest mandrel peak temperature: 

 

Figure 4-47: Multistart Optimization – case 5 – Best Solution - Real Elongation Distribution 

 

Results respect a REFERENCE CASE - [value/value_ref] 

CASE 
λ real 

vM T MAX 

s1 s2 s3 s4 

MULTISTART 1.16 0.84 1.08 0.98 1.16 0.91 

 

Table 4-12: Multistart Optimization – Case 5 – Best Solution – Parameters Value 
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4.4 Results 

4.4.1 Solution Comparison 
The optimal solution obtained using a gradient based method has been found to be in close 

agreement with the solution obtained by GA optimization. Figure 4-48 and Table 4-13 show 

respectively a comparison of the best solution obtained by GA and MS-IP and the optimal value of 

parameters corresponding to those cases: 

 

Figure 4-48: GA and MS-IP Optimal Solution – Real Elongation Comparison 

Results respect a REFERENCE CASE - [value/value_ref] 

CASE 
λ real                  

vM T MAX 

s1 s2 s3 s4 

GA 1.18 0.83 1.06 0.98 1.16 0.91 

MULTISTART 1.16 0.84 1.08 0.98 1.16 0.91 

 

Table 4-13: GA and MS-IP Optimal Solution – Parameters Comparison 

As shown, the best solution obtained by two algorithms is in close agreement: there is only a little 

difference on the elongation distribution but this difference doesn’t affect the peak temperature of 

the mandrel. 
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4.4.2 Algorithms Comparison 
The important aspects concerning the use of two algorithms are the followings: 

 GA: 

o 420 function evaluation; 

o NO setting of parameters has been required; 

 MS-IP: 

o 1240 function evaluation; 

o setting of the step length parameter has been required. 

Since the optimal global solution found by both the algorithms is the same, the conclusion 

concerning their application on this problem is that GA are more fast and robust than MS-IP. 

4.4.3 Engineering Considerations 
This paragraph deals with engineering consideration concerning the obtained optimal solution. 

Figure 4-49 shows these main aspects: 

 the optimal solution provides a high elongation value on the first stand: due to the mandrel 

speed constraint on the first stand, this allows to increase the mandrel speed; 

 the low value of the elongation on the second stand is due to the fact that this generates an 

increasing of the elongation on the third and the forth stand, with the aim to obtain the 

correct total elongation. This allows to obtain an acceleration of the pipe towards the outlet 

of the mandrel mill; 

 the high mandrel speed and the described elongation distribution allow to reduce the 

relative speed between the pipe and the mandrel on the mandrel mill. This is the main factor 

that reduces the peak temperature of the mandrel during the rolling phase; 

 the elongation distribution has no relevant impact on contact pressures and on contact shear 

stress. 

 

Figure 4-49: Global Optimal Solution – Engineering Considerations 
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4.4.4 Plant Improvements 
This paragraph concerns a description of plant improvements obtainable by the optimal solution: 

 mandrel life improvement: as explained in 4.2.3, the hardness of the mandrel is an important 

parameter related to the solidity of basement of the external chromium layer. In this sense, 

the found optimal solution allows to reduce the HV hardness fail of the mandrel during its 

use on the plant. An estimate carried out by the thermal model, simulating 1000 consecutive 

rolling cycles, shows that the optimal solution allows a reduction of the HV hardness fail of 

15% in respect of the reference case. At the moment it’s not possible to relate exactly the 

hardness reduction with an increasing of the mandrel life, but the obtained optimal 

configuration is certainly better; 

 productivity improvement: alternatively, a productivity improvement can be obtained by 

using the optimal elongation distribution and increasing the pipe outlet speed,  keeping 

fixed the mandrel peak temperature equal to the current configuration. In this sense, the 

operation limit is represented by the start austenitizing temperature (Ac1) at which a 

metallography changing of the basement of hard chromium coating starts. Figure 4-50 and 

Figure 4-51 show the maps of operation concerning respectively the actual configuration 

(the reference case) and the optimal case. The criteria used for the area subdivision is the 

following: 

 

o green area = TMAX_MANDREL ≤TSTART_AUSTENITIZING (Ac1); 

o yellow area = TSTART_AUSTENITIZING(Ac1)≤ TMAX_MANDREL ≤ TEND_AUSTENITIZING (Ac3); 

o red area = TMAX_MANDREL≥ TEND_AUSTENITIZING (Ac3); 

 

Figure 4-50: Maps of Operation – Current Elongation Distribution 

 

Figure 4-51: Maps of Operation – Optimal Elongation Distribution 

The operation limit is represented by the boundary between the green and the yellow zone. 
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The optimal elongation allows to move the limit, permitting an increasing of the pipe outlet speed. 

This results in a 7% production increase. 

4.5 Conclusions 
The thermal cycle of the mandrel of a longitudinal mandrel mill has been investigated and 

optimized, with the objective of reducing the peak temperature of mandrel during the rolling phase. 

The activity has been carried out at the R&D Centre of TenarisDalmine S.p.A., one of the largest 

seamless steel pipe producers in the world. 

A Design of Experiments has been carried out, with the aim to identify the most influential 

parameters on the quantity under investigation. As a result, it turned out that the peak temperature 

of mandrel is affected by the elongation distribution, the pipe outlet speed and the mandrel speed. 

Neither the distance between the stands nor the diameter of roll of the fourth stand have any 

influence instead. It has been found that the peak temperature reached by the mandrel decreases 

reducing the pipe outlet speed and increasing the mandrel speed. These trends show that there is an 

important influence of the relative speed between the pipe and the mandrel on the mandrel peak 

temperature. 

A further optimization of the most influential parameters has been implemented, in order to 

determine the optimal configuration that minimizes the peak temperature of the mandrel. The 

optimization has been carried out keeping fixed the pipe outlet speed, with the aim to find the 

optimum concerning a determined productivity of the mandrel mill. A first step of the optimization 

has been performed using a stochastic genetic algorithm, in order to find the global optimum. A 

second step has been implemented with a deterministic gradient-based algorithm, to refine the 

solution in a neighborhood of the optimal solution found in the previous step. The global optimum 

obtained by two algorithms have been found to be in close agreement, while the gradient-based 

optimization has shown that many local minima exist on the neighborhood of the global optimum. 

The identified optimal solution shows that a reduction of 10% of the mandrel peak temperature is 

possible, increasing the elongation on the first stand and moving the elongation distribution of the 

other stands towards the exit of the mandrel mill. The setup found for the first stand allows to 

increase the mandrel speed, satisfying the technological constraint of the mandrel which must 

always be slower than the pipe. Whereas the elongation distribution obtained for the other stands 

allows to increase the pipe speed towards the outlet of the mandrel mill. The consequent setup 

configuration allows to reduce the integral of the relative speed between the pipe and the mandrel 

along the entire mandrel mill, reducing the heat generated by the friction phenomena.  

In addition, it has been found that the variation of the contact pressure and of the contact length due 

to different elongation distributions has no effect on the mandrel peak temperature. 

Compared to the current configuration, every 1000 consecutive cycles, the obtained optimal 

solution allows a 15% reduction of the mandrel hardness fail achieving a life increase. 

Alternatively, keeping fixed the peak temperature of the mandrel, which means maintaining the 

hardness fail and the mandrel life equal to the current configuration, the optimal elongation 

distribution permits a speed up of the pipe outlet, resulting in a 7% production increase. 

With reference to a comparison between the two used optimization algorithms, for this specific 

application the genetic algorithm seems to be more robust. In fact it has required a lower number of 

simulations and it has not required for particular settings. 
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5 Conclusions 

5.1 Shape Optimization with Adjoint method 
A new direction of development within the research group operating at University of Bergamo on 

DG methods for Computational Fluid Dynamics has been started. 

The present work is about the use of the adjoint method in the framework of aerodynamic shape 

optimization. The adjoint approach allows to solve local constrained optimization problems 

efficiently: the solution of only one linear system related to the constraint is required, independently 

from the number of the involved design parameters. The technique is applied to shape optimization 

and grid adaptivity problems for CFD applications, where the number of the involved parameters is 

generally high. 

Starting from the simple quasi-1D Euler equations, the implementation of the discrete adjoint 

method has been validated by comparing the values of computed adjoint variables with results of 

analytical solutions available in the literature. 

The method has then been applied to a shape optimization problem with a single design variable, 

using a gradient based algorithm with an inexact line search approach. The sensitivity of the 

objective function in respect of the design parameter has been evaluated by solving the adjoint 

system, while the length of the step at each iteration has been quantified requiring the satisfaction of 

the Armijo condition. The derivative of residual in respect of the design parameter has been 

computed by means of the finite difference approach. The target value of the objective function has 

been reached in less than 10 iterations and the values of derivatives in the course of optimization 

were found to be in close agreement with those obtained by means of the finite difference approach. 

The application of the method to practical shape optimization problems requires further 

developments: the extension to other objective functions, the introduction of surface 

parameterization techniques, in order to deal with more complex geometries, the extension of the 

analysis to 2D-3D cases and to viscous and unsteady cases. 
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5.2 Thermal Cycle Optimization of a Mandrel Mill Component 
The thermal cycle of the mandrel of a longitudinal mandrel mill has been investigated and 

optimized, with the objective of reducing the peak temperature of mandrel during the rolling phase. 

The activity has been carried out at the R&D Centre of TenarisDalmine S.p.A., one of the largest 

seamless steel pipe producers in the world. 

A Design of Experiments has been carried out, with the aim to identify the most influential 

parameters on the quantity under investigation. As a result, it turned out that the peak temperature 

of mandrel is affected by the elongation distribution, the pipe outlet speed and the mandrel speed. 

Neither the distance between the stands nor the diameter of roll of the fourth stand have any 

influence instead. It has been found that the peak temperature reached by the mandrel decreases 

reducing the pipe outlet speed and increasing the mandrel speed. These trends show that there is an 

important influence of the relative speed between the pipe and the mandrel on the mandrel peak 

temperature. 

A further optimization of the most influential parameters has been implemented, in order to 

determine the optimal configuration that minimizes the peak temperature of the mandrel. The 

optimization has been carried out keeping fixed the pipe outlet speed, with the aim to find the 

optimum concerning a determined productivity of the mandrel mill. A first step of the optimization 

has been performed using a stochastic genetic algorithm, in order to find the global optimum. A 

second step has been implemented with a deterministic gradient-based algorithm, to refine the 

solution in a neighborhood of the optimal solution found in the previous step. The global optimum 

obtained by two algorithms have been found to be in close agreement, while the gradient-based 

optimization has shown that many local minima exist on the neighborhood of the global optimum. 

The identified optimal solution shows that a reduction of 10% of the mandrel peak temperature is 

possible, increasing the elongation on the first stand and moving the elongation distribution of the 

other stands towards the exit of the mandrel mill. The setup found for the first stand allows to 

increase the mandrel speed, satisfying the technological constraint of the mandrel which must 

always be slower than the pipe. Whereas the elongation distribution obtained for the other stands 

allows to increase the pipe speed towards the outlet of the mandrel mill. The consequent setup 

configuration allows to reduce the integral of the relative speed between the pipe and the mandrel 

along the entire mandrel mill, reducing the heat generated by the friction phenomena.  

In addition, it has been found that the variation of the contact pressure and of the contact length due 

to different elongation distributions has no effect on the mandrel peak temperature. 

Compared to the current configuration, every 1000 consecutive cycles, the obtained optimal 

solution allows a 15% reduction of the mandrel hardness fail achieving a life increase. 

Alternatively, keeping fixed the peak temperature of the mandrel, which means maintaining the 

hardness fail and the mandrel life of the current configuration, the optimal elongation distribution 

permits a speed up of the pipe outlet, resulting in a 7% production increase. 

With reference to a comparison between the two used optimization algorithms, for this specific 

application the genetic algorithm seems to be more robust. In fact it has required a lower number of 

simulations and it has not required for particular settings. 
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