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Abstract 

This study is dedicated to supplier selection problem (SSP) with two different 

aspects: (1) SSP with deterministic demand, and (2), SSP with stochastic demand. For 

both aspects, we assume that all suppliers were already pre-evaluated according to some 

criteria, such as financial strength and performance history, and now the buyer needs to 

further assess the suppliers for order allocation based on some quantitative criteria such 

as purchasing cost, etc. 

 

SSP with deterministic demand: Such problems are usually modeled as a multi-

objective optimization problem (MOOP) subject to suppliers’ capacity, buyer’s demand, 

etc. Number of objectives and constraints vary from one problem to another. For 

solving the MOOP, three different cases have been considered in the literature: Case 1) 

the Decision Makers (DMs) determine a goal for each objective and then try to drive 

achieved objectives towards their goals as close as possible (this case is known as the 

crisp MOOP); Case 2) the DMs determine the weights of objectives instead of the goals 

so that the objectives approach their possible ideal solution according to their weights 

(this case is known as the fuzzy MOOP); Case 3) the DMs determine multiple goals or 

an interval goal for each objective and then try to drive achieved objectives towards the 

goals (known as Multi-Choice Goal Programming (MCGP) model). In Case 1, goal 

programming is the most famous and wildly used approach in the literature. However, 

the approach is not able to make the achieved objectives consistent with their goals. In 

chapter 2 (as the first contribution), we develop a normalized goal programming 

approach to achieve some levels of consistency among different objectives. Then, the 

proposed approach is extended for solving the fuzzy MOOP of Case 2. Due to 

uncertainly/imprecision, Case 3 may be more applicable than Case 1 as the DMs can 
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determine an interval goal (or multiple goals) for every objective. In chapter 3 (as the 

second contribution), we propose an improved MCGP approach providing the DMs 

with more control over their preferences in comparison with the previous models. 

 

SSP with stochastic demand: Such problems can be modeled by using probability 

distributions. The newsvendor model is one of the most famous models in this area that 

can be wildly used in reality because of the decline of product life cycle. In Chapter 4, 

we consider a multi-period SSP where a buyer procures an item (i.e., raw material) from 

a set of capacitated suppliers to meet the final product stochastic demand in order to 

maximize his/her expected profit. The suppliers may offer quantity discount as a 

competitive factor to induce the buyer to purchase more. We first model the problem by 

mixed integer nonlinear programming, and then propose an algorithm for solving the 

model (as the third contribution). In Chapter 5, we consider a single period newsvendor 

problem where a buyer purchases a single item from a set of capacitated suppliers. In 

this problem, we assume that both the demand and supply are uncertain. Wholesale 

prices offered by the suppliers and their supply uncertainties are considered as the 

competitive factors. In order to compensate the supply uncertainties, the suppliers may 

allow the buyer to return unsold products at the end of season (buyback policy). 

Therefore, the buyer has to take into account three criteria (suppliers’ wholesale price, 

suppliers’ unreliability level, and suppliers’ buyback price) for evaluating the suppliers 

that contributes to the complexity of the problem. In this chapter, we develop an 

algorithm to solving such problem (as the forth contribution).  
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CHAPTER 1 - INTRODUCTION 

 

1. Motivations and objectives of the thesis 

Consumers’ expectations for high quality products with short lead-time and low price 

are the factors that companies can utilize as competitive factors. Companies have to take 

the advantage of any opportunity to optimize their business processes, for handling and 

maintaining a competitive position. To do so, companies design an efficient supply 

chain management (SCM) system that allows them to work effectively with their supply 

chain partners. In this aspect, the purchasing function, affecting all areas of an 

organization, is taking an increasing importance (Aissaouia et al., 2007). Figure.1 

illustrates that the major purchasing decision processes can be classified into six parts: 

(1) make or buy, (2) supplier selection, (3) contract negotiation, (4) design 

collaboration, (5) procurement, and (6) sourcing analysis (Aissaouia et al., 2007).  

 

The literature shows that the cost of component parts and raw materials in 

manufacturing industries can equal up to 70% of the product cost (Ghodsypour and 

O’Brien, 1998). As a result, in a purchasing department, one of the most important tasks 

is the selection of the right suppliers as it can meaningfully decrease the cost of 

purchasing and improve corporate competitiveness (Willis et al., 1993; Dobler et al., 

1990; Xia and Wu, 2007).  

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC5-4JF8HP3-1&_user=152286&_coverDate=12%2F31%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012478&_version=1&_urlVersion=0&_userid=152286&md5=41570f386f3a760aa3f7e5ae4acaefc4#aff1#aff1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC5-4JF8HP3-1&_user=152286&_coverDate=12%2F31%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012478&_version=1&_urlVersion=0&_userid=152286&md5=41570f386f3a760aa3f7e5ae4acaefc4#aff1#aff1
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Fig. 1. Major Purchasing Processes (Aissaouia et al., 2007) 

 

 

Buyers usually follow two different scenarios for SSP: single- sourcing and multiple-

sourcing scenarios.  

 

In the first scenario, almost all suppliers are able to meet the buyer’s requirements so 

that the buyer selects the most appropriate one.  

 

In multiple-sourcing scenario, due to suppliers’ limitations on capacity, quality, etc, the 

buyer splits its order between multiple suppliers. Multiple-sourcing scenario is a 

practical way for ensuring the reliability of a buyer’s supply stream (Aissaoui et al., 

  Type of part/service 

       Row material  Finished/semi 

finished 

1 

     Make   Outsource 

1 

Own source 

 

  Purchase 

    Supplier selection 

2 

  Contract negotiation 

3 

  Design collaboration 

4 

       Procurement 

5 

   Sourcing analysis  
6 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VC5-4JF8HP3-1&_user=152286&_coverDate=12%2F31%2F2007&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000012478&_version=1&_urlVersion=0&_userid=152286&md5=41570f386f3a760aa3f7e5ae4acaefc4#aff1#aff1
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2007). Aissaoui et al. (2007) also concluded that mathematical programming is the most 

appropriate tool for modeling such problems.  

Table 1. 

Dickson’s (1966) supplier selection criteria 

Rank Factor Mean Rating Evaluation 

1  Quality  3.508  Extreme Importance 

2  Delivery  3.417   

3  Performance History  2.998   

4  Warranties & Claims Policies  2.849  Considerable Importance 

5  Production Facilities and Capacity  2.775   

6  Price  2.758   

7  Technical Capability  2.545   

8  Financial Position  2.514   

9  Procedural Compliance  2.488   

10  Communication System  2.426   

11  Reputation and Position in Industry  2.412   

12  Desire for Business  2.256   

13  Management and Organization  2.216   

14  Operating Controls  2.211   

15  Repair Service  2.187   

16  Attitude  2.120  Average Importance 

17  Impression  2.054   

18  Packaging Ability  2.009   

19  Labor Relations Record  2.003  

20  Geographical Location  1.872  

21  Amount of Past Business  1.597   

22  Training Aids  1.537   

23  Reciprocal Arrangements  0.610  Slight Importance 
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By evaluating suppliers based on some criteria, competent suppliers are chosen for 

procurement process. Supplier selection problem (SSP) in its nature is a multi-criteria 

decision-making (MCDM) problem, as Dickson (1966) identified and ranked 23 criteria 

by sending a questionnaire to 273 purchasing agents and managers in the United States 

and Canada (see Table 1).  

 

Table 1 shows that the importance of these criteria is different that, in practice, it may 

however change from one industry to another. The existence of many criteria with 

different importance, contribute to the added complexity of SSP (Wang and Yang, 

2009), because purchasing managers should be able to effectively incorporate their 

preferences in decision making process. In the literature, for considering multiple 

criteria for evaluating suppliers in the multiple-sourcing scenario, multi-objective 

mathematical programming is usually used to model the SSP when the demand is 

deterministic. One very famous approach to solve the multi-objective problem is 

determining a goal for every objective and then trying to drive the achieved objectives 

towards their goals. Another very new approach is determining an interval goal, instead 

of a single goal, for every objective and then trying to drive the achieved objectives 

towards the lower bound of the interval goal for minimization objectives (or towards the 

upper bound of the interval goal for maximization objectives).   

 

In addition, buyers’ information on market demand may be considered as the most 

significant cause of uncertainty in reality (Tajbakhsh, 2007). In this case, probability 

distributions, which generally depend on previous data, can be used to model the 

uncertain demand. To deal with this problem, purchasing managers integrate SSP with 
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inventory management so that they should simultaneously obtain the optimal inventory 

level, the appropriate set of suppliers, and the suppliers’ order quantity. In this case, if 

the demand is greater than the inventory level, the unmet demand is lost; if the demand 

is less than the inventory level, the buyer has unsold products. As a result, the demand 

uncertainty is another aspect that increases the complexity of SSP. In the literature, 

studies dealing with SSP and inventory management consider only a single objective 

that is maximizing buyers’ expected profit (or minimizing buyers’ expected cost). They 

have assumed that the suppliers satisfy other buyers’ requirements such as quality, 

delivery, etc, and the buyer only need to consider the suppliers’ wholesale price in their 

evaluation. However, the suppliers may allow the buyer to return unsold product at the 

end of the period with a price. In addition, they may have different level of reliability on 

quality and/or delivery, etc. As a result, the buyer has to take into account suppliers’ 

buyback price and unreliability level on quality and/or delivery, in addition to the 

wholesale price. To the best of our knowledge, no study has considered such 

complicated problem.        

 

This thesis is dedicated to SSP and aims to effectively incorporate buyers’ preferences 

and suppliers’ conditions in suppliers’ evaluation when (1) the demand is deterministic, 

and (2) the demand is stochastic. Within this perspective, the objectives of this thesis are 

as follows. 

 

Objectives for deterministic demand problem 

1. To model a multi-objective SSP that allows the decision makers to determine a 

single goal for every objective. The main objective is to effectively incorporate 
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the decision makers’ preferences in suppliers’ evaluation by making the 

achieved objectives consistent with their goals. 

 

2. To model a multi-objective SSP letting the decision makers to determine an 

interval goal for every objective. The main objective is to effectively incorporate 

the decision makers’ preferences in suppliers’ evaluation by providing more control 

on both the inside and outside of the interval goals. 

 

Objectives for stochastic demand problem 

3. To develop a multi-period multi-supplier newsvendor problem (dynamic 

programming) where the capacitated suppliers may offer quantity discount as a 

competitive factor. The main objective is to concurrently obtain the optimal 

inventory level and suppliers’ order quantity for each period by proposing a 

sophisticated algorithm. 

 

4. To extend a single-period multi-supplier newsvendor problem where the 

capacitated suppliers may be unreliable in terms of quality and/or delivery, and 

in order to compensate their unreliability, they may allow the buyer to return 

unsold products at the end of the single period (buyback). The main objective is 

to concurrently obtain the optimal inventory level and suppliers’ order quantity by 

considering multiple criteria (suppliers’ wholesale price, suppliers’ unreliability 

level, and suppliers’ buyback rate) by means of proposing an algorithm. 
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2. Scope  

This study deals with a two echelon supply chain with one buyer and multiple suppliers. 

For order allocation, the buyer evaluates the suppliers whose capacities are restricted so 

that the buyer should divide its order among the suppliers. We also take into account 

two types of demand: deterministic (or known) and stochastic (or uncertain) demands. 

In addition, we employ mathematical programming to model the problems. 

  

3. Research methodology  

Methodology used for the first and second objectives: 

1. For the first and the second objectives that are on SSP with known demand, we 

consider a problem where the capacitated suppliers should be evaluated based on 

multiple criteria (wholesale price, rejects, and delivery) for order allocation. We 

employ multi-objective mixed integer linear programming (MOMILP) model to 

formulate the problem under consideration. Then, we develop two approaches for 

solving the MOMILP problem when (1) there is a single goal for every objective 

and (2) there is an interval goal for every objective. 

 

Methodology used for the third objective: 

2. For the third objective that is about the integration of SSP and inventory 

management under the stochastic demand, we consider a problem where the 

capacitated suppliers should be evaluated based on a single criterion (discounted 

wholesale price) for order allocation. We use mixed integer nonlinear programming 

(MINLP) model to formulate the problem that maximizes buyer’s expected profit. 

The problem is multi-period dynamic programming and is solved recursively: first 
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the optimum solution (inventory level and the suppliers’ order) of the last period is 

obtained; then the second last period is solved; until the first period. We then 

propose an algorithm for solving the problem. 

 

Methodology used for the fourth objective: 

3. For the fourth objective dealing with the integration of SSP and inventory 

management under stochastic demand, we consider a problem where the capacitated 

suppliers should be evaluated based on multiple criteria: (1) the suppliers may offer 

different wholesale prices, (2) they may have different level of uncertainty (or 

unreliability) on quality and/or delivery, (3) they may allow the buyer to return 

unsold products at the end of the season (they may have different buyback price). 

We first employ binomial random yield model to consider the uncertainty of 

suppliers on quality and/or delivery. We then use mixed integer nonlinear 

programming (MINLP) model to formulate the single period problem that 

maximizes buyer’s expected profit. At the end, we propose an algorithm to solve the 

problem. 

 

4. Contributions  

The contributions of this research to the extent literature are as follows. 

Contribution regarding to the first objective: 

1. Goal programming approach is the widely used technique for solving multi-

objective problems when a single goal is determined for each objective. However, 

this technique cannot guarantee that the achieved objectives to be consistent with 

their goals (i.e., the solution may not be consistent with decision makers’ 
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preferences). To overcome this weakness, we develop a new normalized goal 

programming approach.  

 

Contribution regarding to the second objective: 

2. Multi-choice goal programming approaches are the new proposed techniques for 

solving multi-objective problems when an interval goal is determined for each 

objective. However, this technique cannot guarantee that the decision makers have 

control on both the inside and the outside of the interval goal. As a result of this, the 

decision makers’ preferences may not be effectively incorporated in the model. To 

prevail over this limitation, we develop a new multi-choice goal programming 

approach. 

 

Contribution regarding to the third objective: 

3. On the literature, only few articles have integrated SSP with inventory management, 

especially when the suppliers have limitation on minimum and maximum order 

quantity or when the suppliers offer discount on the wholesale price. In addition, to 

the best of our knowledge, no study has considered multi-period supplier selection 

problem with stochastic demand. In order to fill this gap in the literature, we thus 

develop an algorithm maximizing the buyers’ expected profit by simultaneously 

calculating the optimum inventory level and the suppliers’ order quantity for the 

multi-period SSP. 

  

   Contribution regarding to the fourth objective: 
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4. In the literature, studies that have integrated SSP with inventory management, 

mostly evaluate the suppliers based only on one criterion (supplier’s wholesale 

price). However, the suppliers may differ with each other on the other aspects: for 

example they may different buyback price, or they may have different level of 

unreliability on quality and/or delivery. In order to be able to evaluate the suppliers 

based on multiple criteria, we proposed an algorithm that maximizes the buyer 

expected profit on a single period problem.  

 

5. Outline 

We organize the thesis as follows.  

Chapter 2 proposes the new normalized goal programming approach for solving multi-

objectives SSP problems. In order to compare the effectiveness of the proposed method, 

a comparative analysis is presented which includes Weighted Goal Programming, 

Compromise Programming, TOPSIS, Weighted Objectives, Min–max Goal 

Programming and Weighted Max–min models. Chapter 3 proposes the new multi-

choice goal programming approach and compares the new method with the existing 

multi-choice goal programming approaches.  

 

Chapter 4 develops the algorithm for multi-period SSP with stochastic demand when the 

suppliers offer quantity discount.  

 

Chapter 5 proposes the algorithm for single-period SSP with stochastic demand that 

enables the purchasing managers to evaluate the suppliers based on multiple criteria. 
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In chapter 6, we finally conclude the thesis and highlight its findings and limitations. In 

addition, we provide recommendation for future research. 
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CHAPTER 2 - A NEW NORMALIZED GOAL PROGRAMMING 

MODEL FOR MULTI-OBJECTIVE PROBLEMS: A CASE OF 

SUPPLIER SELECTION AND ORDER ALLOCATION 

 

The main aim of this chapter is to develop a technique for solving multi-objective 

models so that the achieved objectives are consistent with their goals. We model the 

problem of supplier selection as a multi-objective optimization problem (MOOP) where 

minimization of price, rejects and lead-time are considered as three objectives. We here 

consider two different cases: 1) the crisp MOOP in which the goals of objectives are 

predetermined; and 2) the fuzzy MOOP in which the weights of objectives are 

predetermined. In both cases, the aim is to achieve some levels of consistency among 

different objectives. To do so, a Normalized Goal Programming approach is developed 

and tested for both cases. In order to compare the effectiveness of the proposed method, 

a comparative analysis is presented which includes Weighted Goal Programming, 

Compromise Programming, TOPSIS, Weighted Objectives, Min–max Goal 

Programming and Weighted Max–min models. An illustrative example reveals that our 

proposed model is able to achieve the desirable consistency among all objectives. 

 

1. Introduction 

In a purchasing department, one of the most important tasks is the selection of the right 

suppliers as it can meaning fully decrease the cost of purchasing and improve corporate 

competitiveness (Willis et al., 1993; Dobler et al., 1990; Xia and Wu, 2007). The 

literature shows that the cost of component parts and raw materials in manufacturing 

industries can equal up to 70% of the product cost (Ghodsypour and O’Brien, 1998).As 
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carefully discussed by Aissaoui et al. (2007), purchasing decisions have six stages: “(1) 

‘make or buy’, (2) supplier selection, (3) contract negotiation, (4) design collaboration, 

(5) procurement, and (6) sourcing analysis”. Stages 2, 5 and 6 are entirely the 

responsibility of purchasing departments (Aissaoui et al., 2007). In Stage 2, a set of 

suppliers are pre-evaluated and selected according to some criteria. For instance, only 

those suppliers may be pre-approved who have access to the needed technology for 

producing a product that meets the buyer’s requirements. After Stage 2, the question 

that how much and who (from the set of pre-approved suppliers) should provide the 

buyer with the products arises. The literature shows that in order to answer this 

question, the problem can be formulated as a mathematical programming model to 

further assess the suppliers according to some important factors such as price, quality, 

delivery, market demand, and suppliers’ capacity. Decision makers (DMs) who may 

come from different roles (such as senior managers, production managers, and purchase 

managers), usually gather to evaluate suppliers (Demirtas and Ustun, 2008; Jolai et al, 

2011). Studies that answer this question (or address lot sizing) fall under Stage 5, so 

does our study in this chapter. 

  

The supplier selection in its nature is a multi-criteria decision-making (MCDM) 

problem since some conflicting criteria have influence on evaluation and selection of 

suppliers (Dickson, 1966; Aissaoui et al., 2007). By sending a questionnaire to 273 

purchasing agents and managers in the United States and Canada, Dickson (1966) 

identified and ranked 23 criteria for supplier selection problems (SSP). The top six 

criteria were respectively quality, delivery, performance history, warranty policy, 

production facilities and capacity, and price. The existence of various criteria with 
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different importance contributes to the added complexity of SSP (Wang and Yang, 

2009). However in practice, the importance of those criteria may change from one 

industry to another. In the studies that have employed mathematical programming for 

SSP, price, defects and lead-time are widely used as the top three criteria influencing 

supplier selection (Roa and Kiser, 1980; Weber and Current, 1993; Ghodsypour and 

O’Brien, 1998; Kumar et al., 2004, 2006; Wadhwa and Ravindran (2007); Amid et al., 

2006, 2009, 2011). The reason for choosing these three criteria from the top six list 

presented by Dickson (1966) is mainly because they are readily quantifiable. Other 

criteria that appear in the top six list include performance history and warranty policy, 

which are primarily qualitative measures. In this chapter, we also consider price, defects 

and lead-time as the objective of our model while the capacity of production facilities is 

considered as a constraint. 

 

There exist two kinds of SSP: single- and multiple-sourcing scenarios. In the first 

scenario, almost all suppliers are capable of meeting the buyer’s needs, and therefore, 

the buyer needs to select the best supplier. In the second kind, limitations on quality, 

capacity, price, delivery, etc. force the buyer to purchase the same item from more than 

one supplier. Applying multiple-sourcing scenario is a practical way for ensuring the 

reliability of a manufacturer’s supply stream (Aissaoui et al., 2007). In multiple-

sourcing scenario, a buyer needs to make a decision on how much should be purchased 

from which supplier. DMs or managers usually make a decision analytically or 

intuitively (Simon, 1987; Sadler-Smith and Shefy, 2004). Sadler-Smith and Shefy 

(2004) discussed that analytical decision making is more advisable for well-structured 

and routine situations, while intuitive decision making is wiser in loosely structured 
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situations. SSP is typically quantitative and deliberative and according to Simon (1987) 

this kind of problem is greatly impacted by analytical decision making. Aissaoui et al. 

(2007) also concluded that mathematical programming is the most appropriate tool that 

can be used to model such problems. Therefore, the structured multi-sourcing SSP that 

we study here can be modeled as a Multi-Objective Optimization Problem (MOOP). 

 

For solving MOOP, two different cases can be considered. In the first case, DMs first 

determine the precise goal value for each objective function that can be considered as a 

crisp goal (crisp MOOP), and then techniques such as Weighted Goal Programming 

(WGP) is used to solve the problem. In the second case, the DMs first determine a 

weight for each goal that can be considered as a fuzzy goal (fuzzy MOOP), and then 

techniques such as min–max GP (MGP) also known as fuzzy GP can be used to solve 

the problem. 

 

1.1. Crisp MOOP 

There are some techniques used for solving MOOP in which the goal of each objective 

is precisely determined. Ustun and Demirtas (2008a) proposed an integrated multi-

period Multi-Objective (MO) model for SSP and order allocation. To solve the MO 

problem, they used ε-constraint method, a reservation level driven Tchebycheff 

procedure (RLTP) and Preemptive GP, and then compared the results of these three 

techniques. In ε-constraint method, DMs select one of the objectives as a single-

objective and put other objectives in constraints. That is, the DMs do not determine any 

goal. In RLTP, the weighted distance of an achieved objective from its reference, which 

is almost equal to the positive ideal solution (PIS), is minimized. For maximization 

problems, the achieved objective should also be greater than reservation levels that are 
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adjusted by the DMs from one iteration to another. Even if the weighted distances 

become normalized and equal weights are assigned to them, the method cannot 

guarantee that the achieved objectives have a proportional distance from their 

references. By preemptive goal programming, after determining the goal of each 

objective, DMs place the goals into different priority levels, so that the goals of a higher 

priority level is satisfied first. Clearly, since the objectives are not considered 

simultaneously, the consistency between the achieved objectives and their goals cannot 

be guaranteed. In another study, Ustun and Demirtas (2008b) defined an additive 

achievement function by combining MGP and Archimedean GP (AGP, also known as 

WGP) to solve the MO problem. An integrated MO mixed integer linear programming 

model was also proposed by Jolai et al. (2011) for SSP and order allocation. They also 

used WGP to solve their model. The WGP method simultaneously tries to minimize the 

objectives’ weighted deviations from their goals. Similar to RLTP, there may be at least 

one objective whose weighted deviations are dominating others. Therefore, the model is 

biased towards this objective and neglects others. As a result, WGP cannot guarantee 

the achieved objectives to be consistent with their weights. 

 

1.2. Fuzzy MOOP 

In reality, the input data and information related to suppliers and the market is not 

always precisely known to the buyers, and thus, researchers often employ fuzzy set 

theory as the best tool for handling SSP in an uncertain environment (Kumar et al., 

2004, 2006; Amid et al., 2006, 2009, 2011). Fuzzy set theory was first introduced by 

Zadeh (1965). In contrast to the classical set theory, in which the membership of an 

element to a set is a binary (0, 1) term, the fuzzy set theory allows this membership to 

be from a real interval [0, 1]. In other words, in the classical set theory, an element is 
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either a member of a set or a non-member. In the fuzzy set theory, however, an element 

can be considered a member with a certain degree of membership, while also being a 

non-member. For example, a buyer may consider a batch of products with a zero 

percent defective rate as a member of a perfect set with a membership value of 1. In 

addition, if the batch contains 5% or more defective items, the buyer would no longer 

consider it as a member of the perfect set (i.e., the membership value is zero). If the 

membership function for this example is linear as shown in the following figure, a batch 

with 1% defective rate can have a membership value of 0.8. 

 

 

  

 

 

 

 

 

 

Fig. 1. An example of a linear membership in fuzzy set theory. 

 

 

Kumar et al. (2004, 2006) formulated a fuzzy mixed integer goal programming for 

multiple sourcing SSP including three fuzzy goals: cost, quality and delivery subject to 

buyer’s demand, suppliers’ capacity, etc. They used Zimmermann’s (1978) max–min 

technique to solve the multi-objective problem. However, the technique of 

Zimmermann was not able to consider the weight of the three objectives. In real 

situations, objectives (or criteria) have various weights related to strategies of the 

purchasing department (Wang et al., 2004; Amid et al., 2006, 2009, 2011). To cope with 

the problem, Amid et al. (2006, 2009) formulated a fuzzy MO model for SSP including 
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three fuzzy goals: cost, quality and delivery subject to capacity restriction and market 

demand. In order to be capable of taking into account the objectives’ weight, they used 

the additive model of Tiwari et al. (1987) for solving the MO problem. Lin (2004) 

argued that by using the additive model of Tiwari et al., the achievement levels of 

objective functions are not necessarily consistent with their weights because an 

objective with a higher weight receives a higher achieved level than others. Lin (2004) 

subsequently proposed a weighted max–min model (WMM) for solving fuzzy MO 

problems. This approach was later applied by Amid et al. (2011) to a fuzzy MO SSP 

with three fuzzy goals: cost, quality and delivery subject to capacity and demand 

requirement constraints. 

 

Other techniques that are applicable when the objectives have different weights are 

fuzzy or min–max GP (MGP), weighted objectives (WO), compromise programming 

(CP) (see Wadhwa and Ravindran, 2007 for WO and CP) and TOPSIS (Technique for 

Order Preference by Similarity to Ideal Solution) (see Abo-Sinna et al., 2008). The CP 

approach attempts to bring the solution close to the PIS. On the other hand, TOPSIS, 

which was developed for solving multi-attribute decision making problems (MADM) by 

Hwang and Yoon (1981), has another concept: the solution should be close to the PIS 

and far from the negative ideal solution (NIS). In fact, for constructing the TOPSIS 

method, we only need to extend CP to consider NIS. Although TOPSIS has more 

computational complexity than other MO optimization techniques such as WO, MGP, 

etc., it has been recently utilized to solve MO problems in some studies (Abo-Sinna, 

2000; Abo-Sinna and Amer, 2005; Abo-Sinna and Abou-El-Enien, 2006; Abo-Sinna et 

al., 2008). However, these studies do not justify using such a method for solving MO 
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problems. Hence, the question is whether using TOPSIS for solving MO problems can 

also result in the achievement levels of objective functions to be consistent with their 

weights. This question is answered in a numerical example later. 

 

Similar to the model of Tiwari et al. (1987), MGP, WO, CP and TOPSIS also focus on 

the objective with a higher weight and neglect other objectives. As a result, the 

achievement levels of objective functions are not necessarily consistent with their 

weights. In the following section, we elaborate the concept of the consistency that is the 

focus of this chapter. 

 

1.3. The consistency concept  

In Crisp MOOPs, the solution is consistent if the achieved objectives have a 

proportional distance from their goals. In other words, when the actual achieved 

objective of one criterion is obtained, say in the middle of its PIS and goal, other 

objectives should do so; otherwise, the solution is not consistent. By the following 

example, this concept is better illustrated. Consider   
  as the best value (or PIS) and   

  

as the worst value (or NIS) for the k
th

 minimization objective  =1,2,3. Assume that 

  
 =50,   

 =80,   
 =60,    

 =300,   
 =400,   

 =370,   
 =150,   

 =300, and   
 =150. In 

addition, assume that after solving the MOOP, the actual achieved objectives are 

obtained as   =65,   =377.5 and   =187.5. Here, we see that the ratio of 

      
     

    
    for the three objectives are the same and equal to 0.25. That is, the 

distance of achieved objectives from their goals is proportional. Therefore, we can say 

that the actual achieved objectives are consistent with their goals. This concept is also 

illustrated in Figure. 2. 
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Fig. 2. The concept of consistency. 

 

The techniques used for solving crisp MOOPs in the literature are not able to guarantee 

the consistency between the achieved objectives and their goals. To address this issue, 

we first need to choose an appropriate technique. One of the well-known multi-objective 

techniques is Goal programming (GP) that for several reasons such as robustness, 

mathematical flexibility, and the possibility of introducing many system constraints, has 

been the most widely used technique for solving MO problems (Dhahri and Chabchoub, 

2007; Chang, 2007; Jolai et al., 2011). In the GP approach, DMs require to specify the 

most desirable value or goal for each objective as the aspiration level. For finding the 

optimal solution, they subsequently minimize deviations from aspiration levels. There 

are three basic approaches to GP: 1) WGP, 2) lexiographic or preemptive GP, and 3) 

MGP. As discussed earlier, the first two approaches are used to solve crisp MOOPs and 

the last one is used for fuzzy MOOPs. Furthermore, WGP considers all objectives 

simultaneously in comparison to preemptive GP. Therefore, we adopt WGP in this 

chapter as a means to overcome the inconsistency issue. 

  
  

     
    

 ,    k=1,2,3 

(1/4)    

     
    

    
  

(1/4)    

  
    

     

  
    

  

 

  
     

(1/4)    
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1.4. The purpose of the study 

In this article, we model a single-item SSP as a MOOP including three goals: cost, 

rejects and lead-time subject to suppliers’ capacity and buyer’s demand. We consider 

two different cases: Case 1) the crisp MOOP in which the goals or the aspiration levels 

of objectives are predetermined; Case 2) the fuzzy MOOP in which the weight of 

objectives, instead of the aspiration levels, are predetermined. The first part of the aim 

of this study is that the actual achieved objective,   , in Case 1 should be consistent with 

its goal,   
 . Recall the consistency example in previous subsection. When the actual 

achieved objectives are obtained as   =65,   =377.5 and   =187.5, we see that the ratio 

of       
     

    
    for the three objectives are the same and equal to 0.25. 

Therefore, the first part of our aim is satisfied. The second part of the aim is that for 

minimization objectives, it is more desirable if some of the achieved objectives can be 

better than their consistency without damaging the consistency of other objectives. That 

is, if for example,    approaches to 150 (i.e.,         , thus better than its 

consistency) without disturbing the consistency of other objectives, a better solution is 

achieved. 

   

The aforementioned aim is also applicable to Case 2 so that the actual achieved levels of 

the objectives are consistent with the weights, or, it is more desirable if some can be 

better than their consistency without damaging the consistency of other objectives. 

 

Due to the widespread use of GP, in this study, we focus on WGP as a means to address 

the inconsistency issue in both crisp and fuzzy cases. Therefore, a Normalized GP 

(NGP) is first proposed for solving the problem of Case1 in order to satisfy the first part 
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of the aim. Then, the method is relaxed (R-NGP) to allow the fulfillment of the second 

part. Finally, NGP and R-NGP are extended to solve the fuzzy problem of Case 2. In 

Case1, WGP and in Case 2, CP, TOPSIS, WO, MGP and WMM are used as 

comparators. 

 

The rest of this chapter is organized as follows: In the subsequent section, the MO 

model for the SSP is presented. In Section 3, the NGP method is proposed and 

developed for solving the MO model. Section 4 provides a numerical example and 

compares the solution of the NGP with other aforementioned methods. In Section 5, 

feasibility of the NGP approach is discussed. Finally, conclusions are drawn in Section 

5. 

 

2. Multi-objective model for supplier selection and order allocation  

The literature shows that price, rejects and lead-time are the most commonly used 

ordering decisions (Roa and Kiser, 1980; Weber and Current, 1993; Ghodsypour and 

O’Brien, 1998; Kumar et al., 2004, 2006; Amid et al., 2006, 2009, 2011). In this study, 

these three criteria are used in the single-item MO supplier selection model. It is 

assumed that the demand is known, and a set of approved suppliers with limited 

production capacity can satisfy the demand. 

The notations used to formulate the problem under consideration can be stated as 

follows: 

 

n  number of suppliers 

X  vector of decision variables   

xi  (decision variable) number of units ordered from supplier i,      

Vi  capacity of supplier i 
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Ci  purchasing price of the product from supplier i 

qi  expected defect rate of supplier i 

Fi  percentage of items delivered late by supplier i 

D  demand of the product 

    relative importance of objective k 

 

The MO model for procuring an item from multiple suppliers is formulated as follows: 

              
 
      (1) 

              
 
      (2) 

              
 
      (3) 

Subject to: 

   
 
        (4) 

                                              i = 1, 2, …,n (5) 

                                              i = 1, 2, …,n. (6) 

 

Eq. (1), Eq. (2) and Eq. (3) minimize total purchasing cost, the number of rejected items 

and the number of units that are late, respectively. The demand is satisfied by constraint 

(4). Constraint (5) ensures that the order quantity assigned to supplier i does not exceed 

its capacity. 

 

As mentioned in the introduction, one of the most common techniques to GP is 

Weighted Goal Programming (WGP). WGP approach requires the DMs to determine 

the most desirable value or goal (  
 ) for each objective as the aspiration level, and then 

attempts to minimize the deviations from goals. Since our proposed approach is based 

on WGP, we first introduce the above MO model using WGP as follows: 

  

          
    

   
      (7a) 

Subject to: 

     
    

    
                                   k=1,2,3 (7b) 



24 

 

  
    

   ,   
 ,   

  0                           k=1,2,3 (7c) 

(4), (5) and (6).          

 

where   
  and   

  are negative and positive goal deviations, respectively.  

 

3. NGP approach 

The idea of normalized goal programming (NGP) is not very new. Many researchers 

have addressed the need for normalization when goal programming is used. Tamiz et al. 

(1998) reviewed some techniques to deal with incommensurability. These techniques 

attempt to transfer different units of the deviational variables to a common unit in order 

to eliminate an unintentional bias towards a larger magnitude objective. Iskander (2012) 

takes a different normalization approach in which the achieved objectives are 

proportional to the weights initially decided by the DMs. These normalization 

approaches cannot guarantee that the achieved objectives are consistent with their goals. 

Lin (2004) focused on fuzzy MO problems and argued that, “When the DMs provides 

relative weights for fuzzy goals with corresponding membership functions, the ratio of 

the achieved levels should be as close to the ratio of the objective weights as possible to 

reflect their relative importance.” In this study, we provide a different version of 

normalization and we argue that for deterministic GP, when the aspiration level for each 

objective is provided by DMs, the achieved objectives should be consistent with their 

aspiration levels as much as possible.  
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3.1. The R-NGP approach 

In order for the achieved objectives,   , to be consistent with their goals, we need to 

eliminate the scale effect of different objectives. Thus, we normalize the deviations 

using     
    

        
    

        
    

        
    

        
    

       , 

in which     ,      if    ;     ,      if    ; and either    or    can 

equal to one if    , k=1,2,3 (       ). In addition,   
                  is 

called the PIS or the best value and   
                  is called the NIS or the 

worst value for the k
th

 minimization objective, in which S is the feasible set. 

  

Now, the R-NGP for Case 1 can be developed as follows: 

        (8a) 

Subject to:  

     
    

    
 ,                                           k=1,2,3, (8b) 

    
    

        
    

        
    

        
    

        
    

       ,                                              

k=1,2,3, (8c) 

  
    

   ,   
 ,   

  0,                                     k=1,2,3, (8d) 

        ,                                                  (8e) 

       ,                                                        (8f) 

           ,                                                     (8g) 

(4), (5) and (6). 

 

To differentiate this model from model (7), this model is called R-NGP as the equality 

constraint of (7b) is relaxed to the inequality constraint of (8b). Also note that, if 

needed, DMs can present their preferences among the goals through assigning relative 

weights to each objective by multiplying    by    
    

  , k=1,2,3, in Eq. (8c). 
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To evaluate the consistency of the solution, we introduce here a consistency ratio as 

  
          

      
    

   and   
       

         
    

  . The consistency is 

achieved if for    ,   
    

    
    and   

   ,         , and for    , 

  
    

    
    and   

           . For    , either   
  or   

 ,        , is 

equal to zero, depending on    and   . When the consistency ratios of the three 

objectives are equal, the distances of achieved objectives from their goals are 

proportional.  

For the R-NGP model, we prove the following proposition. 

 

Proposition 1. Equation (8c) normalizes the deviations (  
 ,   

 ) so that the actual 

achieved objectives obtained by R-NGP are consistent with their goals or better. 

 

Proof. To prove proposition 1, we consider three cases:  

 

If    , then     ,      and (8c) becomes     
    

      
    

        
  

  
     . (Note that in this case, either binary variable can be one that has no impact on 

the solution.) Therefore,   
    

    for all  , and (according to (7b)) all achieved 

objectives are equal to their goals. 

 

If     (assume      ), then     ,      and (8c) becomes     
    

   

   
    

        
    

       . Then    
    

         
    

      
    

  . Since 

the right hand side is negative, for all  , we have   
    and   

     
    

   

      
    

    . That is, for all   the achieved objective is in the middle of    
 and 

  
 . In an extreme case where    , the achieved value of all objective functions is in 



27 

 

the farthest point of   
 , i.e.,   

 . In other words, for    ,      
     

     
  , 

        where   
    

    
 . 

 

Similarly, if     (assume      ), the achieved value of all objective functions is in 

the middle of   
  and   

 . In other words, for    ,      
      

    
  ,         

where   
    

    
 .  

 

By considering these three cases, it is demonstrated that the deviations are normalized 

since the distance of all achieved objectives from their goals are proportional to each 

other, and thus, consistent with their goals. For minimization objectives, as is the case 

here, buyers are more concerned with minimizing positive goal deviations (  
 ) and 

maximizing negative ones (  
 ) in order to make achieved objectives closer to their PIS 

(  
 ). In addition, a less achieved objective from its consistency is more desirable for 

minimization objectives. For this reason, we maximize   and we change the equality 

constraint of (7b) to the inequality constraint of (8b) (see Figure. 3). □ 

 

 

 

 

 
For    , as   increases,   

  reduces and the achieved objective approaches its goal.  

  

 

 

 

 
 

For    , as   increases,   
  increases and the achieved objective approaches its PIS. 

 

 

Fig. 3. The effect of increased   on achieved objective. 
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3.2. The fuzzy R-NGP approach 

The problem (1)–(6) with fuzzy goals maybe presented as follows (Zimmermann, 

1978): 

 

               
 
      

    (1a) 

               
 
      

    (2a) 

               
 
      

    (3a) 

Subject to: 

   
 
        (4) 

                                              i = 1, 2, …,n (5) 

                                              i = 1, 2, …,n. (6) 

 

In the above objective functions, the fuzzified version of   is denoted by the symbol  , 

and   
 , k=1,2,3, is the fuzzy goal or aspiration level for k

th 
objective that is determined 

by the DMs. Due to the conflict of the three fuzzy objectives, they may not be achieved 

concurrently according to the constraints of the model, and the DMs might hence define 

a membership function        for every objective to determine the achieved levels 

(Amid et al. 2006, 2009, 2011) as follows: 

 

        

                                                  
 

   
        

    
             

       
  

                                                  
 

                                           (9) 

 

 

Now, we easily extend R-NGP for solving fuzzy MO problems, where the weight of 

objectives is predetermined (Case 2). The actual achieved level of each objective is 

obtained using Eq. (9) (Lin, 2004). Therefore, if    
       , in which   is the 
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weight of each objectiveand    
        

    
      

    
  , the aspiration level for 

objective k can be equivalent to   
    

        
    

   . As a result, the Fuzzy R-

NGP model is constructed as follows: 

 

        (10a) 

Subject to:  

     
    

    
        

    
   ,            k=1,2,3, (10b) 

    
    

        
    

        
    

        
    

        
    

       ,                                              

k=1,2,3, (10c) 

  
    

   ,   
 ,   

  0,                                     k=1,2,3, (10d) 

        ,                                                  (10e) 

       ,                                                        (10f) 

           ,                                                     (10g) 

(4), (5) and (6). 

 

where   
 
   =1. 

 

4. An illustrative example 

In this section, the following numerical example is used to illustrate how the proposed 

NGP can be employed to solve both crisp and fuzzy MOOPs. The example is divided 

into two cases. In the first case, we consider a problem in which the goals or aspiration 

levels for each objective are predetermined (crisp MOOP). The problem is solved by 

WGP, NGP and R-NGP approaches for comparison. In the second case, a fuzzy MOOP 

in which the objectives have different levels of importance (instead of their goals) are 

considered. CP, TOPSIS, WO, MGP and WMM are also used to compare the solutions 

in Case 2.  
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In this example, three suppliers are going to meet a predicted buyer’s demand of 5,000 

units. Table 1 provides the suppliers’ information: prices (Ci in $), defect rate (qi), late 

delivery rate (Fi) and capacity (Vi). 

 

 

Table 1. 

Data for the numerical example. 

Supplier Capacity (units) Price ($) Defect Rate (%) Late Delivery 

(%) 

S1 2,500  6.5  0.10 0.45 

S2 2,500 5.5  0.30 0.40 

S3 2,500 6  0.20 0.60 

 

For the given data, the following crisp formulation is obtained: 

                               

                                      

                                       

Subject to 

                

            i = 1, 2, 3 

         i = 1, 2, 3. 

 

Before we apply cases 1 and 2, we need to obtain PIS (or lower bound) and NIS (or 

upper bound) for all three objectives by solving each objective function as a single 

objective: 

 

 PIS:    = (28,750, 7.5, 21.25) 

 NIS:   = (31,250, 12.5, 26.25) 
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Case1: The NGP approach for crisp MOOP 

This case considers models (7) and (8), WGP and NGP, respectively. The goals of cost, 

quality and delivery are assumed to be   
 =29,500,   

 =9 and   
 =22, respectively. For 

WGP, it is assumed that          1/3. To solve the problem, GAMS or Solver 

is employed and the optimal solutions of the three methods are compared in Table 2. 

Table 2. 

Solution to Case 1. 

 NGP R-NGP WGP 

         30,000      30,000     29,500 

           10.00        10.00       11.00 

          23.21       21.25       22.75 

      1,938.77    2,500.00   1,500.00 

      1,938.77    2,500.00   2,500.00 

      1,122.45          0.00   1,000.00 

  
            0.29           0.29         0.00 

  
            0.29            0.29         0.57 

  
            0.29          -0.18         0.18 

 

By considering the consistency ratio,   
 , Table 2 shows that in NGP, the actual 

achieved objectives are consistent with their goals. In addition, the value of the third 

objective improved from 23.28 in NGP, to 21.25 in R-NGP, without disturbing the 

consistency of objectives 1 and 2 (i.e.   
    

      ). Hence, it is demonstrated that 

the R-NGP is able to preserve the second part of our aim. However, WGP fully 

achieved the first objective, but not the other two objectives. Therefore, there is no 
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consistency among the objectives. The reason is that WGP only minimizes the 

deviations of an objective that its    
    

   prevails others.  

Case 2: The fuzzy NGP approach for MOOP 

To demonstrate that NGP is applicable for fuzzy situations, we compare the solution of 

NGP with those of CP, TOPSIS, MGP, WO and WMM. First, it is assumed that the 

weights of cost, quality and delivery are   =0.6,   =0.3 and   =0.1, respectively. 

Based on fuzzy R-NGP model, the problem is formulated as follows: 

 

       

Subject to 

                  
    

    
          

    
       

                          
    

    
          

    
     

                           
    

    
          

    
  ] 

    
    

        
    

        
    

        
    

        
    

       

       k=1,2,3 

  
    

   ,   
 ,   

  0    k=1,2,3  

                   

                  

                       

                

             i=1,2,3 

          i=1,2,3. 

 

Using GAMS or Solver, the optimal solution of fuzzy NGP is calculated as   =909,  

  =1,591,   =2,500,    =0.64,    =0.36 and    =0.20. Also, the optimal solution of 

fuzzy R-NGP is calculated as   =1,818,   =2,500,   =682,    =0.64,    =0.36 and 

   =0.81.  
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For the latter, it can be seen again that the actual achieved level of objectives 1 and 2 are 

consistent with their relative importance (  ), and     is better than its consistency. 

Therefore, the solution of fuzzy R-NGP satisfies the second part of our aim. 

 

The solutions obtained by the other aforementioned approaches are compared in Table 

3.  

Table 3. 

Comparison of solutions obtained by different approaches (  =0.6,   =0.3,   =0.1). 

 

Fuzzy 

NGP 

Fuzzy R-

NGP WMM MGP WO TOPSIS( =2) CP( =2) 

          29,659      29,659 29,583      28,750      28,750      28,955      29,286 

            10.68        10.68   10.83        12.50        12.50        12.09        11.43 

            25.45        22.27   25.42        25.00        25.00        24.39        23.39 

              0.64           0.64      0.67          1.00           1.00           0.92           0.79  

              0.36          0.36     0.33          0.00          0.00          0.08          0.21 

              0.20          0.81     0.17          0.25          0.25          0.37          0.57 

 

Table 3 shows that the solutions obtained by CP, TOPSIS, MGP and WO may not be 

acceptable because there is no consistency between weights and the achieved levels of 

objectives. Similar to the argument of Lin (2004), we can say that these methods only 

minimize the heaviest-weight objective, and others may be neglected. This is evident in 

the above example where for all methods the first objective achieved a higher level, 

while the second objective despite of having a higher weight than the third one, 

achieved a lower level. However, the solution of WMM and NGP can be acceptable 

since the achieved levels of objectives are consistent with their weights. Furthermore, 
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fuzzy R-NGP improves the third objective without disturbing the consistency of the 

other two objectives. Therefore, the solution fulfills the second part of our main aim. 

 

The above methods are also compared via three other different combinations of weights 

as presented in Table 4:  
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Table 4. 

Numerical example solutions using different combinations of weight values.  

 Fuzzy NGP Fuzzy R-

NGP 

WMM MGP WO TOPSIS CP 

  The actual achieved level of objectives,     

     =0.6  0.636 0.636 0.667 1.000 1.000 0.918 0.786 

     =0.3 0.364 0.364 0.333 0.000 0.000 0.082 0.214 

     =0.1  0.199 0.805 0.167 0.250 0.250 0.374 0.571 

        

     =0.3  0.500 0.500 0.500 0.500 0.500 0.500 0.500 

     =0.3 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

     =0.3  0.500 0.500 0.500 1.000 1.000 1.000 1.000 

        

     =0.3  0.417 0.417 0.375 0.500 0.500 0.340 0.340 

     =0.5 0.583 0.583 0.625 0.500 0.500 0.660 0.660 

     =0.2  0.333 0.841 0.250 1.000 1.000 0.680 0.680 

        

     =0.1  0.182 0.200 0.111 0.000 0.000 0.017 0.043 

     =0.8 0.818 0.800 0.889 1.000 1.000 0.983 0.957 

     =0.1  0.182 0.306 0.222 0.000 0.000 0.033 0.087 

 

The summary of comparison of the two cases is presented as follows: 
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Case 1, crisp model: 

 Unlike NGP, WGP was not able to make the achieved objectives consistent with 

their goals. In addition, R-NGP showed its ability to achieve the second part of the 

aim. 

 

Case 2, fuzzy model: 

 Despite the computational complexity of TOPSIS and CP for solving the fuzzy 

MOOP, their solutions may be less desirable when the consistency of objectives is 

important. The same argument can be made for MGP and WO methods, despite the 

fact that they do not have the complexity of TOPSIS and CP. 

 

 Among comparators, WMM is the only method that can compete with fuzzy NGP 

and fuzzy R-NGP in maintaining consistency of objectives. However, WMM has 

not been applied to crisp models. 

 

5. Discussion on the solution feasibility 

5.1. Feasibility of the NGP approach 

In the WGP approach, model (7), the deviations can get any value resulting in a feasible 

solution. However, in our new model, NGP, all deviations are simultaneously restricted 

to be proportional to  . For example, when    ,   
    

     
  and   

 =0 for all 

       , where   
    

    
 . Such restrictions may cause the solution of NGP to be 

infeasible in some cases such as below.  

Suppose that there are three objectives in which the first two objectives are completely 

in agreement with each other while they are completely in conflict with the third one. In 
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addition, assume that the DMs set   
 =  

  and   
 =  

 ,  =2,3. The NGP cannot find a 

feasible solution for this case as explained below. 

 

1. Assume that    , then   
    and   

   ,   =1,2,3. However, since   
 =  

 , 

 =2,3, then   
 =0 as well (i.e.,   

    
   ,  =2,3).  

1.1. If    , then   
 =0 for all k and, as a result, we have   =  

 =  
  and 

  =  
 =  

 ,  =2,3. If the first objective equals   
 , the second objective should 

also be equal to   
 since they are both in agreement with each other. However, 

according to the NGP model, the second objective must be equal to   
 since 

  
    

   . As a result, the model becomes infeasible. 

1.2. If    , then   
    

    
  (because   

    
     

 ) for all k and, as a 

result, we have   =  
    

    
 =  

 ,  =1,2,3. Again, if the first and the 

second objectives move towards their worst solutions, the third objective 

should do the opposite, which is impossible (because according to the NGP 

model   =  
 ,  =1,2,3). Therefore, here the model is again infeasible. By 

similar argument, we can conclude that there is no feasible solution when 

     .  

 

2. Assume that    , then   
    and   

   ,  =1,2,3. Since   
 =  

  then   
 =0 as 

well (i.e.,   
    

   ). Since   
   ,    can approach to   

 . On the other hand, as 

  
  increases, we expect to see   

  also increases, due to the consistency rule, 

resulting in    to approach   
    

 . However, this is not possible since the third 

objective is in conflict with the first and the second objectives, hence, another 

infeasible solution. 
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The above infeasibility has been addressed in the R-NGP approach by replacing the 

equality of Eq. (7b) with “ ” in (8b). The following numerical example is intended to 

clarify the above discussion. 

 

5.2. Numerical example 

Table 5 shows the data of three suppliers, where the first and the second objectives are 

in agreement with each other while they are in conflict with the third objective. The 

demand is 5,000 units. 

 

Table 5. 

Data for suppliers. 

Supplier Capacity Price ($) Defect Rate (%) Late Delivery 

(%) 

S1 2,500  6.5  0.30 0.40 

S2 2,500 6.0  0.20 0.45 

S3 2,500 5.5 0.10 0.60 

 

Here, we need to obtain PIS and NIS for all three objectives by solving each 

objective function as a single objective: 

 PIS:    = (28,750, 7.5, 21.25) 

 NIS:   = (31,250, 12.5, 26.25) 

 

If the DM sets the goals such that   
 =  

 ,   
 =  

  and   
 =  

 , solving the problem by 

NGP results in an infeasible solution, while the solution of R-NGP is feasible as 

follows: 
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   =0       =2,500      =2,500 

   =28,750       =7.5       =26.25 

  =1 

 

As can be seen, the first and the third objectives are consistent and equal to their goals 

and the second objective is better than its consistency. 

 

In the above problem, if the DM sets the goals such that   
 =  

 ,   
 =  

  and   
 =  

 , by a 

similar discussion we can conclude that the solution of NGP is infeasible. Using Solver 

for R-NGP, we can obtain a feasible solution as follows: 

 

   =1,250      =2,500      =1,250 

   =30,000      =10      =23.75 

  =0.5 

 

As can be seen, the first and the third objectives are consistent with their goals and the 

second objective is better than its consistency. 

 

6. Concluding remarks 

In this article, the supplier selection problem was modeled as a MOOP with three 

minimization objective functions: price, rejects and lead-time. Then, we proposed the 

NGP method to solve the problem in two different cases: Case 1) a crisp MOOP in 

which the aspiration levels (or goals) of objectives are predetermined; Case 2) a fuzzy 

MOOP in which the weights of objectives, instead of the goals, are predetermined. 

It was the main aim of our model that, for minimization objectives, the actual achieved 

objectives in Case 1 be consistent with their goals (first part), or preferably better than 
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their consistency if this could be achieved without disturbing the consistency of other 

objectives (second part). The aim was also applicable to Case 2. 

 

The NGP was first developed for solving the crisp problem of Case1. Then, the method 

was relaxed (R-NGP) for fulfilling the second part. In real problems, the input data and 

information related to suppliers and market is not always firmly known to the buyers, 

resulting in goals and sometimes their relative importance not to be known precisely. To 

overcome the difficulty of imprecise goals in such uncertain environments, we 

employed fuzzy set theory to extend our proposed approach (fuzzy MOOP of Case 2). 

This can be seen as a strength of this study since DMs can implement our proposed 

approach in any MOOP, in which the goals can be expressed in two ways: precise and 

imprecise. Since we did not discuss the imprecise relative importance of goals here, this 

remains as an avenue for future research. 

 

In Case1, WGP and in Case 2, CP, TOPSIS, WO, MGP and WMM were used to 

compare solutions. An illustrative example was used to present the developed models. 

The result revealed that, while comparators CP, TOPSIS, WO and MGP were not able 

to guarantee the consistency, in both cases NGP and R-NGP were able to make achieve 

objectives consistent with their goals. Moreover, R-NGP was able to maintain the 

second part of the aim. This can be seen as another strength of this study as we can 

effectively incorporate DMs’ preference in the decision making process. 

It is worthwhile to mention that while the fuzzy MOOP of Case 2 makes the approach 

one step closer to reality, further adjustments in the model may be needed when we 

apply this approach to real world problems. For example, mathematical programming 
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normally considers tangible criteria only, while SSP may be affected by both tangible 

and intangible factors in reality. In order to take into consideration both factors, AHP or 

ANP can be integrated with mathematical programming, as reviewed in the Introduction 

section. Demirtas and Ustun’s (2008) study is a very good example for practical SSP, 

where our NGP approach can be employed to solve their MO problem. Setting meetings 

for DMs to express their preferences and judgments on the decision making process can 

be considered as another adjustment. 
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CHAPTER 3 – AN IMPROVED MULTI-CHOICE GOAL 

PROGRAMMING APPROACH FOR SUPPLIER SELECTION 

PROBLEMS 
  

 

 

The main goal of this chapter is to propose a technique for solving multi-objective 

models so that decision makers can determine an interval goal for each objective 

(instead of a single goal) and can have more control on both the inside and the outside 

of the interval. In this study, a supplier selection problem is first modeled as a multi-

objective optimization problem with three minimization objectives: price, rejects and 

lead-time. In reality, the objectives may have different relative weights. In addition, due 

to uncertainly/imprecision, it may be easier for decision makers to determine an interval 

goal for every objective, instead of a single goal. Also, the decision makers may have 

other preferences such as the purchasing cost not significantly exceeding the budget. For 

this purpose, a new Multi-Choice Goal Programming (MCGP) approach is proposed. 

One of the main advantages of the proposed model is that it provides decision makers 

with more control over their preferences. Finally, an illustrative example demonstrates 

the effectiveness of our proposed model.  

 

1. Introduction 

Today companies need to take advantage of any opportunity to increase their abilities 

for competing with their rivals. They should fulfill the expectations of customers for 

acquiring a high quality and low price product with a short lead-time delivery. It is also 

notable that for most industries up to 70% of the product cost comes from raw materials 

and component parts (Ghodsypour and O’Brien, 2001). In such environments, suppliers 

play a very important role for companies. When suppliers can provide companies with 
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low price and high quality raw materials (or component parts) in a right time, the 

companies may also do so for their customers. As a result, different criteria such as 

price, quality and delivery should be considered at the time of evaluating suppliers 

(Dickson, 1966; Weber et al., 1991). Depending on the companies’ strategy on 

purchasing, the supplier selection criteria may have different priorities (Wang et al., 

2004). 

 

Our study assumes that buyers have pre-evaluated all suppliers according to some 

criteria (such as financial strength, performance history, technical capability, 

geographical location, etc.) and now they need to further assess the pre-approved 

suppliers for order allocation based on some quantitative criteria such as price, quality 

and lead time. The order allocation exercise may result in either a single sourcing 

scenario if the best supplier has enough capacity to fulfill the buyer’s demand, or a 

multi-sourcing scenario when the capacity limitation becomes an issue. The most 

suitable tool for Decision Makers (DMs) to formulate multi-supplier selection problem 

is mathematical programming (Aissaouia et al., 2005). Therefore, supplier selection 

problem (SSP) can be modeled as a multi-objective optimization problem subject to 

some constraints such as suppliers’ capacity, buyer’s demand, etc. 

 

For multi-objective problems, the ideal solution for the DMs is to have the optimal 

objective values for each and every objective. However, this may not happen in reality 

due to conflicts among objectives. Popular approaches for solving multi-objective 

problems in the literature can be categorized into two main groups: (1) fuzzy goal 

programming, and (2) general goal programming approaches. In the first group, the 
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DMs allow the objectives to take any value between their minimum and maximum 

possible values, and then try to come as close to their best point as possible: For 

minimization objectives, the minimum and maximum possible values can be called 

respectively the positive ideal solution (PIS) and the negative ideal solution (NIS). 

Kumar et al. (2004) formulated a mixed integer goal programming for SSPs including 

three objectives: cost, quality and delivery, subject to some constraints. They adopted 

the max–min approach proposed by Zimmermann (1978) to solve the multi-objective 

model. Wadhwa and Ravindran (2007) modeled the SSP as a multi-objective 

programming problem, in which price, lead-time and rejects were considered as three 

conflicting criteria. They presented and compared several multi-objective optimization 

methods, including weighted objective method, goal programming (GP) method, and 

compromise programming, for solving their multi-objective problem. By weighted 

objective and compromise programming, the DMs do not need to determine a specific 

goal for the objectives. Amid et al. (2006, 2009) formulated a multi-objective model for 

SSPs including three goals: cost, quality and delivery under the influence of capacity 

and demand requirement constraints. They adopted a weighted additive method, 

proposed by Tiwari et al. (1987), to solve their model. In another study, Amid et al. 

(2011) used a weighted max–min approach, proposed by Lin (2004), for solving a 

multi-objective SSP with three goals: cost, quality and delivery subject to suppliers’ 

capacity and market demand. Amin and Zhang (2012) developed an integrated multi-

objective model for SSP and order allocation, and then employed the compromise 

programming approach for solving the multi-objective model. Shaw et al. (2012) 

proposed an integration of fuzzy-AHP and fuzzy multi-objective linear programming 

for SSP and order allocation, in which purchasing costs, rejects and lead time were 
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considered as some of the objectives. Similar to Amid et al. (2006, 2009), they used the 

model of Tiwari et al. (1987) to solve their multi-objective model. Lin (2012) developed 

an integrated fuzzy multi-objective linear programming model for SSP and order 

allocation, and then proposed a two-phase approach, based on Zimmermann (1978) and 

Chen and Chou (1996) to solve the fuzzy multi-objective model. Nazari-Shirkouhi et al. 

(2013) developed a fuzzy goal programming approach for solving a fuzzy multi-

objective multi-product SSP with multi-price level, in which cost, quality and delivery 

were their three objectives.  

 

In the second group, the general goal programming approach, the DM determines a 

specific goal for every objective and then tries to achieve the goal as much as possible. 

Ustun and Demirtas (2008) proposed an integrated multi-period multi-objective model 

for SSP and order allocation, in which ε-constraint method, a reservation level driven 

Tchebycheff procedure (RLTP) and preemptive goal programming were used to solve 

the multi-objective model. In another study, Ustun and Demirtas (2008) defined an 

additive achievement function by combining min–max goal programming (MGP) and 

weighted goal programming (WGP) for their multi-objective problem. Demirtas and 

Ustun (2009) also employed WGP for solving their multi-objective SSP and order 

allocation. Jolai et al. (2011) proposed an integrated multi-objective mixed integer linear 

programming model for SSP and order allocation, and used WGP for solving their 

model. Jadidi et al. (2014) proposed a new goal programming approach for both 

deterministic and fuzzy multi-objective models that guarantees the achieved objectives 

to be consistent with their goals. They also applied the proposed model to multi-

objective SSP. In real situations, however, the DMs may not always have precise data 
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and information related to their criteria. Therefore, it may be difficult for them to 

specify an exact goal for every objective. Thus, the general goal programming approach 

becomes less favorable unless the DMs are allowed to choose more than one goal for 

each objective. This can be done either by choosing multi-goals for each objective or by 

specifying a range of values instead of a single goal. Chang (2007) proposed a new 

technique so-called multi-choice goal programming (MCGP) approach enabling DMs to 

determine multiple goals for every objective. In the original MCGP model Chang 

(2007), multiplicative terms of binary variables were used to express multiple discrete 

goals that resulted in increased complexity of the model. To overcome the complexity, 

Chang (2008) revised the original MCGP approach and instead of multiple discrete 

goals, proposed a range for each goal. Subsequently, Liao and Kao (2010, 2011) used 

the revised MCGP approach for SSP. However, Chang (2011) argued that the revised 

MCGP model is not able to consider the DMs’ preference value, and consequently 

added general utility functions to this approach in order to maximize the DMs’ expected 

utility. 

 

In the approaches of Chang (2008, 2011), an interval for each goal is defined by an 

upper and lower bounds. Then, a continuous decision variable is considered within the 

interval as an aspiration level. The MCGP models aim at driving (1) the aspiration 

levels towards their lower bounds for minimization objectives (or upper bounds for 

maximization objectives), and (2) the achieved objectives towards their aspiration 

levels. The mechanism of Chang (2008, 2011) models is somewhat similar to the 

general goal programming approach: derive the achieved objective towards the 

aspiration level as much as possible. However, the DMs may be concerned with making 
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the achieved objectives closer to their PIS values (Jadidi et al., 2014). The DMs may 

also prefer that if an achieved objective cannot stay within the interval, it would remain 

in a close proximity of the interval limits. In situations where the goal interval is 

selected at its minimum position (i.e., the lower bound is at PIS), the upper bound may 

be defined as a critical point from which the achieved objective should not significantly 

exceed. In this study, we try to look at the MCGP from this angle that gives the DMs 

more control on both the inside and the outside of the interval goal. If an objective can 

stay within the interval, it can be driven towards the lower bound (PIS); at the same 

time, if another objective stays outside the interval (due to conflicting objectives), it 

should be kept not too far from its upper bound. The previous MCGP approaches have 

not been designed for such conditions, and here we try to address this kind of problems. 

The new MCGP approach of this study is an extension of the weighted additive method 

(a fuzzy multi-objective method) proposed by Tiwari et al. (1987). 

 

We present the rest of the research as follows. Section 2 formulates the SSP by multi-

objective mathematical programming and then introduces the model by the goal 

programming and the MCGP approaches (Chang 2007, 2008, 2011). The new MCGP is 

proposed in section 3, followed by an illustrative example in section 4. Finally, 

concluding remarks are presented in section 5.  

 

2. Multi-objective supplier selection model  

As shown by the literature, the most important criteria for SSP are purchasing cost, 

rejects and lead-time. Here, we model a single item SSP in which a set of approved 

suppliers having limitation on their production capacity should satisfy the buyer’s 
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expectations on these three criteria and the demand, which is assumed to be known. The 

notations of the multi-objective problem are presented as follows: 

 

k  index for objectives, k=1, 2, …, K 

n   number of suppliers  

Xi   number of units ordered to supplier i  

Vi   capacity of supplier i  

Ci   unit purchasing price from supplier i  

qi   expected defect rate of supplier i  

Fi  percentage of items delivered late by supplier i  

       objective k 

D  demand 

 

The multi-objective SSP is formulated as follows: 

Model 1: 

              
 
           (1.1) 

              
 
           (1.2) 

              
 
           (1.3) 

Subject to: 

   
 
               (1.4) 

         i = 1, 2, …, n     (1.5) 

        i = 1, 2, …, n.     (1.6) 

Eq. (1.1), Eq. (1.2) and Eq. (1.3) minimize the three criteria: purchasing cost, rejects and 

late deliveries, respectively. Constraints (1.4) and (1.5) consider the buyer’s demand and 

the suppliers’ capacity, respectively.  

 

2.1. The Weighted Goal Programming (WGP) approach  

Since the previous MCGP approaches (Chang 2007, 2008, 2011) were developed based 

on WGP, the above multi-objective model is first introduced using WGP. In WGP, 
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proposed by Charnes and Cooper (1961), DMs first determine aspiration level (  
 ) for 

every objective, and then try to minimize deviations between aspiration levels and their 

achievements as follows: 

 

Model 2: 

           
    

   
            (2.1) 

Subject to: 

        
    

    
    k=1,2,3    (2.2) 

  
    

       k=1,2,3    (2.3) 

  
 ,   

  0     k=1,2,3    (2.4) 

and the constraints of (1.4), (1.5) and (1.6).     

   

where   
  and   

  are negative and positive goal deviations, respectively, and    is the 

relative importance of the k
th

 objective.  

 

 

2.2. The original MCGP approach 

Chang (2007) argued that due to uncertainly/imprecision, the DMs may prefer to set 

multiple goals for every objective. Since the above WGP approach has not been 

designed for this purpose, Chang (2007) proposed the MCGP approach as follows: 

 

Model 3: 

            
    

   
           (3.1) 

Subject to: 

         
    

      
       

 
    k=1,2,3    (3.2) 

   
    

       k=1,2,3    (3.3) 

   
 ,   

  0     k=1,2,3    (3.4) 

                 k=1,2,3    (3.5) 

 and the constraints of (1.4), (1.5) and (1.6). 
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where    
  (        and          ) is the j

th
 goal of the k

th
 objective,       

     
  

      
 , and        represents a function of binary serial numbers that is defined 

according to the number of goals for each objective and based on resource limitations 

     . The main role of        is to ensure that each objective chooses only one of the 

multiple goals. Interested readers are referred to Chang [24] for further discussions on 

      .  

 

2.3. The revised MCGP approach 

Chang (2008) discussed that in Chang’s (2007) model, the multiplicative terms of 

binary variables that are used to express multiple goals increase the complexity of the 

model. To address this issue, Chang (2008) proposed a revised MCGP approach as 

follows:  

 

Model 4: 

         
    

    
     

    
    

    
         (4.1) 

Subject to: 

         
    

       k=1,2,3    (4.2) 

      
    

             k=1,2,3    (4.3)

                      k=1,2,3    (4.4) 

   
    

       k=1,2,3    (4.5) 

   
    

       k=1,2,3    (4.6) 

   
 ,   

 ,   
 ,   

  0     k=1,2,3    (4.7) 

 and the constraints of (1.4), (1.5) and (1.6). 

where        and        are the minimum and maximum acceptable goals (upper and 

lower bounds) for k
th

 objective, respectively,    is the continuous variable representing 

aspiration level for objective k,   
  and   

  are respectively the positive and negative 
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deviations of       from   ,   
  and   

  are respectively the positive and negative 

deviations of    from       , and   
  and   

  are the relative importance related to (  
 , 

  
 ) and (  

 ,   
 ), respectively. 

 

For SSP, deviations may have different units that cause unintentional bias among the 

objectives. Some techniques that aim at transferring different units of the deviations to a 

common unit in order to remove the incommensurability were reviewed by Tamiz et al. 

(1998). Here, we normalize the deviations of the Chang’s (2008) model as follows: 

 

           
    

    
  

   
    

  
   

    
    

  

               
  

      

 

where   
                , and   

                .  

 

From here on, we refer to the normalized revised MCGP (Model 4) as NR-MCGP. 

 

2.4. The MCGP approach considering utility function 

Chang (2011) argued that the NR-MCGP model cannot consider the DMs’ preference 

value, and therefore, added a general utility function to the revised approach in order to 

maximize the DMs’ expected utility. Chang (2011) considered linear and S-shape utility 

functions. In this research, we only review the linear utility function. However, the 

discussion can be extended to the S-shape utility function as well. The new model of 

Chang (2011) is presented as follows: 

 

Model 5: 

         
    

    
     

   
   

          (5.1) 

Subject to: 
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   k=1,2,3    (5.2) 

         
    

       k=1,2,3    (5.3) 

      
       k=1,2,3    (5.4) 

                      k=1,2,3    (5.5) 

   
    

       k=1,2,3    (5.6) 

   
 ,   

 ,   
 ,    0     k=1,2,3    (5.7) 

 and the constraints of (1.4), (1.5) and (1.6). 

 

where   
  represents the normalized deviation of    from       ,   

  is the weight 

associated with   
 , and    is the utility value. Other variables are defined as before. 

 

If needed, the objective function of Chang (2011) can be also normalized as follows: 

 

        
    

    
  

   
    

  
   

   
   

     

 

where   
  does not need to be normalized because     

      . 

 

From here on, we refer to the above MCGP that considers the utility function (Model 5) 

as MCGP-U. In the following section, we propose a new version of the MCGP model 

that we call it the New-MCGP. 

 

3. The New-MCGP approach 

In addition to the significant improvement on the original MCGP, the NR-MCGP and 

MCGP-U models also contribute to the general goal programming approach by 

considering an interval goal instead of a single goal. By regulating   
  in both methods, 

the achieved objective,      , is driven towards the aspiration level,   , that is bounded 
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within the interval goal,        ,      ]. At the same time,    is also driven towards 

       by adjusting   
  in MCGP-U (or   

  in NR-MCGP). However, it might be 

worthwhile to consider the MCGP from a different angle: setting the lower bound, 

      , at the PIS,   
 , (which may be the DMs’ preference (Jadidi et al., 2014)) and 

considering the upper bound,       , as a critical point so that the achieved objective 

should not significantly exceed it. For example, some manufacturers such as Toyota and 

Honda, before selecting their suppliers, may determine the maximum price of 

components and raw materials that they can afford to pay for (Liker and Choi, 2004) 

(i.e., they predetermine the maximum purchasing cost). In this case, the predetermined 

cost can be considered as a critical point. In other words, if an objective stays within the 

interval goal, [      ,       ], the lower bound,       , should be considered as a pivot 

point which magnetizes the objective towards itself; if at the same time another 

objective falls outside the interval goal (due to conflicting objectives), the upper bound, 

      , should be considered as a new pivot point which keeps the objective as close as 

possible to itself. The structure of the two previous methods does not support this type 

of conditions while it may happen in reality.  

  

In order to address such conditions in SSP, we propose a New-MCGP approach inspired 

by the fuzzy model of Tiwari et al. (1987). This new approach will pay special attention 

to        and        as two pivot points that enables the DMs to have control on both 

the inside and the outside of the interval. Applying the original Tiwari et al. (1987) 

approach to Model 1 results in: 

 Model 6: 

          
 
            (6.1) 

Subject to: 
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         k=1,2,3    (6.2)  

              k=1,2,3    (6.3) 

 and the constraints of (1.4), (1.5) and (1.6).  

   

 

where    is a continuous coefficient,       , that represents the normalized 

distance of the achieved objective from   
 . Constraint (6.2) can be rewritten as: 

 

          
          

   k=1,2,3    (6.2a) 

 

As the range for each objective is decided by the DMs, here we propose that the lower 

bound of the range,       , be set equal to   
 , while the upper bound,       , can be 

less than or equal to   
 . The rational for this suggestion is that in a minimization 

problem, the DMs would normally prefer the lowest value for the objective. As a result, 

the range [  
 ,   

 ] is divided into two sub-ranges of [      ,       ] and [      ,   
 ] 

that we call them the more desirable range (MDR) and the less desirable range (LDR), 

respectively. 

 

We also propose that    be the normalized distance of the achieved objective k from 

       so that by maximizing this coefficient, we approach to       . Therefore, Eq. 

(6.2) can be written as: 

   
            

             
    k=1,2,3  

 

Realizing that by moving the upper limit of    to        the range for each objective is 

tightened, we allow the achieved objective to take a value outside this tightened range 

subject to a penalty. We do so by introducing another variable,   , that represents the 
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normalized distance of the achieved objective k from        when it is greater than 

      . Thus: 

 

   
            

  
        

     k=1,2,3 

 

As both    and    determine the position of a single objective k, only one of them can 

be non-zero. That is,        . 

 

Figure 1 illustrates the relationship between    and   . If the achieved objective       

falls within the MDR (e.g., point 1), then     . However, if it falls outside (e.g., point 

2), then     . While the aim is to obtain a value within the range and as close as 

possible to the lower bound       , the model allows the objective to take a value 

outside the range subject to a penalty in order to avoid infeasible solutions. Therefore, 

the objective of the new model will be to maximize    and to minimize   . 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The relationships among model parameters.   

 

Using these new variables, we can re-write Eq. (6.2a) as follows: 

       

  
        

1 2 

       

  
        

      

     
     

     
     

MDR LDR 
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           k=1,2,3 (6.2b) 

 

 

Therefore, the New-MCGP approach for the multi-objective SSP of Model 1 is 

formulated as follows: 

 

Model 7: 

         
      

 
   

 
           (7.1) 

Subject to: 

                                  
           k=1,2,3 (7.2) 

                  k=1,2,3 (7.3)

                    k=1,2,3 (7.4) 

 and the constraints of (1.4), (1.5) and (1.6).  

 

As illustrated in Figure 1, the New-MCGP approach enables DMs to have control on 

both the MDR and the LDR. This will increase the effectiveness of the New-MCGP by 

involving some certain DMs’ preferences.  

 

The New-MCGP approach guarantees a feasible solution as       moves between its 

minimum,   
 , and maximum,   

 , values. Furthermore, since          , it can 

facilitate the DMs’ preference modeling by eliminating the incommensurability caused 

by scale differences among objectives.  

   

Discussion on       : 

Since        is a user-selected parameter, it is worthwhile to have some guidelines for 

choosing an appropriate value for this parameter. The purpose of        and        is to 

determine a focus area between   
  and   

 . As we make          
 ,        divides the 
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range of   
  and   

  into two sections: (1) more desirable one (MDR) that is on the left 

side of       , and (2) less desirable one (LDR) that is between        and   
 . One 

consideration in determining        is whether the objectives are conflicting or not. In 

case of conflicting objectives, it is recommended that if one        is close to   
 , the 

other        be chosen relatively close to   
 . In other words, if the range of one 

objective is chosen tightly, the range for the other objective should be chosen wider to 

allow more movements for conflicting objectives. In the above example, the first and 

the second objectives are in conflict, and since the range of first objective was chosen 

more tightly, the range for the second objective was not as tight as the first one. 

 

4. An illustrative example 

The following numerical example is going to illustrate how the New-MCGP can solve 

multi-objective SSP. This example considers a situation in which six suppliers, whose 

information is presented in Table 1, should meet the buyer’s demand of 16 units. 

 

 
Table 1.  

The data for the numerical example 
Supplier i Price, Ci Rejection Rate, qi 

(%) 

Late Delivery Rate, 

Fi 

(%) 

Capacity, Vi 

S1 3 0.40 0.25 5 

S2 3.5 0.35 0.30 4 

S3 4 0.30 0.15 3.5 

S4 4.5 0.25 0.20 6 

S5 5 0.20 0.40 5.5 

S6 6 0.15 0.35 5 

 

 

Using the above data, we can obtain   
 = 58.75,   

 = 0.03225,   
 = 0.03425,   

 = 82.25, 

  
 = 0.05325 and   

 = 0.05525. Furthermore, it can be seen that the first and second 

objectives are in conflict. That is the suppliers with a better price have poor quality and 
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vice versa. The third objective, while not directly in conflict with the other two 

objectives, shows the best delivery in mid range of price and quality. 

 

Here, we assume there are three conditions that the DMs are going to incorporate in 

their decisions for suppliers’ evaluation and order allocation:  

 

Condition 1:       =  
  and          

 ,   , so that       =68,       =0.0461 

and       =0.04475. That is, each objective has a critical point, 

         , and two ranges, MDR and LDR. 

Condition 2: The second objective is more important than the first one: its 

achievement,      , should be more preferably in the MDR and as 

close as possible to       . 

Condition 3: The first objective, while being less important than the second one, 

should not significantly exceed       : its achievement,      , may 

be in the LDR but preferably as close as possible to       . 

 

Here, we apply the New-MCGP model to the above example.  

 

The New-MCGP model: 

We first set        and           as defined in Condition 1. In order to consider 

Condition 2 (i.e., the second objective is the most important one), we should have 

  
    

  which in turn will cause    to increase and       to approach       . Since 

the first and second objectives are in conflict,       approaches   
 . For taking into 

account Condition 3 (i.e., the first objective should not significantly exceed       ), we 

should have   
 
   

 
 that causes    to decrease and       to get far from   

  and 

towards       . As a result, the weights may be allocated as   
 =0.1,   

 =0.8,   
 =0.1, 
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=0.8,   
 

=0.1 and   
 

=0.1. We employ Solver in Excel to solve this problem by the 

New-MCGP model. The results are as follows: 

 

      = 68 =        that holds the second condition, 

      = 0.044 (within MDR) that holds the first condition, 

      = 0.039, 

X1=2.75, X2=0, X3=3.5, X4=6, X5=3.75, X6=0. 

 

 Here, we see that the first objective did not exceed       . As demonstrated here, the 

New-MCGP model allows the DMs that by adjusting   
  and   

 
 to move one objective 

closer to its       , and at the same time, to keep another objective not far from its 

      .  

 

Analysis of weights: 

The weights (  
 ,   

 
) are user-selected parameters by which the DMs can incorporate 

their strategies in SSP. For instance, if the strategy is to produce a high quality product, 

the weight of quality (rejects in this numerical example) should be higher than others. In 

this model, the more important objective is assigned a higher   
  that results in the 

objective to stay in MDR and to approach       . If the less important objective is in 

conflict with the first one, it may fall in LDR and far from       . In this case, we can 

assign a higher   
 

 to this objective such that it stays closer to       . When an equal 

value is assigned to all   
 

, it means the DMs are not concerned with the objectives 

getting far from       . In order to investigate the effect of different weight values on 

the results, we gradually increase   
 

. As we increase   
 

 from 0.33 to 0.80, we 
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distribute the remaining values equally among the other two weights. We solve the 

model for different combinations of weights as presented in Table 3. 

 

Table 2. 

 The weight analysis for   
 
.  

  
 

 0.33 0.60 0.80 

  
 

 0.33 0.20 0.10 

  
 

 0.33 0.20 0.10 

      82.00 76.45 68.00 

      0.032 0.036 0.044 

      0.050 0.045 0.039 

 

Table 3 shows that as   
 

 increases from 0.33 to 0.80,       improves from   
  to 

      . The gain for the first objective comes at a slow loss for the second objective; i.e.,  

      moves farther from        but it does not surpass       . Figure 2 depicts the 

above analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The sensitivity of       and       to increased   
 

 and decreased   
 

 in the New-MCGP 

 

 

This analysis shows that the New-MCGP enables DMs to better incorporate their 

preferences in the model for making a more desirable decision on supplier selection and 

 

 

                
        

                
        

      when   
 

=0.33       when   
 

=0.60       when   
 

=0.80 
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order allocation. DMs are able to consider interval goals or aspiration levels, and at the 

same time, take more accurately into account their relative importance.  

 

5. Conclusions   

In this study, a single product supplier selection problem (SSP) was formulated as a 

multi-objective optimization model. It was assumed that: (1) the objectives can have 

different relative importance levels, and (2) it may be easier for decision makers to 

determine an interval goal or aspiration level for every objective. In order for these two 

assumptions to be incorporated into the solution methodology, the New-MCGP 

approach was then proposed. In comparison with the previous studies, we set the lower 

bound of the interval goal at the positive ideal solution (PIS) that drives the objective 

towards itself if it falls within the interval goal, and at the same time, set the upper 

bound as a magnetic point if the objective exceeds it. This type of model can be used in 

reality when managers try to determine the maximum purchasing price of components 

and raw materials before selecting their suppliers. Then, this maximum cost can be 

considered as the upper bound from which its achieved objective should not 

significantly exceed. In addition, the numerical example illustrated that variation in 

priority of criteria will change the order quantities assigned to the suppliers. This means 

that our proposed model effectively incorporates DMs’ preferences and conditions for 

SSP and order allocation by providing the DMs with control on both of the more 

desirable range (MDR) and the less desirable range (LDR). 

In this chapter, we assumed that the demand and suppliers’ capacities are known. 

However, these two parameters may be uncertain in reality. The study of SSP where the 

demand and suppliers’ capacities are uncertain can be considered as a direction for 

future research. 
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In addition, the supplier selection problem can be integrated with supply chain 

coordination. The supply chain coordination, which generally concentrates on inventory 

management, tries to improve the whole supply chain profitability by aligning the 

partners’ strategies and goals. However, to the best of our knowledge, supplier selection 

studies have mainly considered the buyers’ strategies and preferences rather than those 

of the entire supply chain. Taking supply chain coordination into account for a SSP is 

also open for further study. 
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CHAPTER 4 - A MULTI-PERIOD SUPPLIER SELECTION 

PROBLEM UNDER PRICE BREAKS: A DYNAMIC 

NEWSVENDOR MODEL 

 

The main aim of this chapter is to develop an algorithm for finding optimal inventory 

level and suppliers’ order allocation for a stochastic multi-period supplier selection 

model where the suppliers may offer discount quantity to the buyer. In this chapter, we 

consider a multi-period supplier selection problem where a buyer purchases a single 

product from a set of capacitated suppliers to meet its stochastic demand. The suppliers 

may offer quantity discount as a competitive factor to induce the buyer to purchase 

more. The problem under consideration is non-stationary in terms of selling price, 

purchasing price, holding cost, and demand. The objective is to obtain the suppliers’ 

optimum order quantity in order to maximize the buyer’s expected profit. We first 

model the problem by mixed integer nonlinear programming, and then propose an 

algorithm for solving the model. A sensitivity analysis is also conducted to examine the 

effect of changing the value of model parameters (selling price, purchasing price, 

holding cost, and demand) during the time horizon on the buyer’s performance. The 

numerical results show that selling price and holding cost have, respectively, the highest 

and lowest impact on the buyer’s profit.  

 

1. Introduction 

The competitive environment puts continuously pressure on manufacturers to decline 

cost. Purchasing departments’ role in the supplier selection process is determinant to 

decrease the purchase cost of the necessary components. For example, up to 70% of the 
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product cost in manufacturing industries can be associated to the cost of component 

parts and raw materials (Ghodsypour and O’Brien, 1998). Boer et al. (2001) states that 

“in industrial companies, purchasing share in the total turnover typically ranges between 

50-90%”. Supplier selection, and the related order allocation among them, has been 

expansively studied in years (Zhang and Ma, 2009). Although in reality the product 

demand is mostly uncertain, which increases the complexity of problem, the vast 

majority of the studies assume it is known precisely (Zhang and Ma, 2009).  

 

The supplier selection problem (SSP) with uncertain demand can be modeled using 

probability distributions. One of the most famous problems in this area is probably the 

newsvendor problem that can be extensively employed in reality because of the 

reduction of product life cycle (Zhang and Zhang, 2011). Dada et al. (2007) and Yang et 

al. (2007) studied SSP under random yield supply and uncertain demand. They did not 

consider a limitation on minimum and maximum order sizes, while some economic 

issues, such as transportation and production setups, cause suppliers to set restriction on 

minimum order size (Awasthi et al, 2009). Therefore, Burke et al. (2007), Awasthi et al. 

(2009) and Zhang and Zhang (2011) studied supplier selection and purchase problems 

where the suppliers have restriction on minimum and maximum order sizes under 

uncertain demand. 

However, the abovementioned studies did not consider a SSP under price breaks. 

Suppliers may propose quantity discount as an incentive for buyers to purchase higher 

quantities (Amid, 2009), although it increases the complexity of the problem (Xia and 

Wu, 2007). There are two types of quantity discounts in literature: incremental quantity 

discounts and all-units discounts. In all-units discounts, all items in an order are 
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discounted if the order exceeds a certain level, while in incremental discounts, units 

over a certain level are discounted and items before the certain level are not. Xia and 

Wu (2007), Amid et al., (2009), and Mansini et al., (2012) have recently developed 

supplier selection models with quantity discount where it was assumed that the demand 

is deterministic. Despite the benefit of higher selling, this strategy causes the over-order 

that may increase inventory risk, mainly due to the uncertainty of the demand (Zhang 

and Ma, 2009). Kim et al. (2002) considered a problem in which a manufacturer buys 

multiple raw materials from suppliers to produce different type of products with 

uncertain demand. They proposed an iterative algorithm to solve the problem that was 

mathematically modeled. Subsequently, Zhang and Ma (2009) extended the model of 

Kim et al. (2002) to consider the all-units quantity discounts as well. Zhang and Ma 

(2009) employed mixed integer nonlinear programming (MINLP) formulation for 

modeling the problem in order to maximize the expected profit of the buyer. To solve 

the problem, they first used an external module to define the integration function of the 

expected profit arises due to the stochastic demand, and then integrated the module with 

GAMS/SBB (Simple Brach & Bound that is one of the GAMS solvers for MINLP 

models). In another study, Yin and Nishi (2013) developed a solution procedure for the 

model of Zhang and Ma (2009) with both of incremental and all-units discounts, in 

which the uncertain demand is assumed to follow the standard normal distribution. They 

first applied a novel outer-approximation method to solve the mixed-integer 

programming problem. Since the problem formulation included integral terms due to 

demand uncertainty, a normalization technique was then used to reformulate the model 

that replace the integral terms. 
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The afformentioned studies, dealing with uncertain demand, have only considered 

single period SSP. However, companies have to ensure that the product is available on 

an ongoing basis during a year. Due to some restrictions such as warehouse capacity, 

holding cost, etc, placing an order once a year is not economic, and thus, they usually 

split a single order to multiple ones (multi-period inventory control). There are studies 

that have considered SSP over a planning horizon (consisting of multiple periods) such 

as Sen et al. (2013), Mak et al. (2011), Woarawichai et al. (2011), Demirtas and Ustun 

(2009), Demirtas and Ustun (2008), Ustun and Demirtas (2008), Basnet and Leung 

(2005) and Rungreunganaun and Woarawichai (2013). However, these studies only took 

into account supplier selection models with deterministic demand, while demand in 

reality is mostly uncertain.  

 

Multi-period models are dynamic and any surplus inventory at period t can be used at 

period     (Porteus, 2002). Therefore, for calculating the buyer’s expected profit in 

period t, we have to count the value of each leftover inventory going to period     

(i.e.,     , the purchasing price of one unit in period    ). When an order quantity 

should be bought from multiple suppliers with different prices, it becomes difficult for 

the buyer to calculate     . Moreover, it becomes more difficult if the suppliers offer 

different price levels due to quantity discounts.  

 

In this study, we used MINLP formulation to model a single product multi-period SSP 

to find the suppliers’ optimum order quantity that maximizes the buyer’s expected 

profit. It is assumed that the demand is stochastic and the suppliers have capacity 

restriction. In addition, the suppliers may utilize the all-unit quantity discount as a 
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competitive factor to stimulate the buyer for a greater order. The problem is a non-

stationary multi-period problem as selling price, purchasing price, holding cost, and 

demand may change from one period to another. We first develop an algorithm to solve 

the MINLP model over a single period. In order to verify that our algorithm efficiently 

finds the optimum order quantities, we also develop a GAMS-based solution program to 

compare the solutions. Subsequently, we extend the algorithm for the multi-period 

problem by the concept of dynamic programming. In other words, the multi-period 

problem is solved by backward induction: the optimum order allocations of the last 

period is computed first, the optimum order allocations of the second last period is 

obtained next, and so on (Porteus, 2002). We also investigate a sensitivity analysis to 

study the effect of changing the value of selling price, purchasing price, holding cost, 

and demand during the time horizon on the buyer’s performance. 

 

The rest of the chapter is organized as follows: Section 2 models the single period 

problem by using MINLP and develops the algorithm. The algorithm is also extended to 

the multi-period problem in this section. A numerical example and sensitivity analysis 

are discussed in section 3. Finally, section 4 draws conclusion and future studies. 

  

2. Supplier selection model with discount 

2.1. Single Period Model 

Consider a situation in which suppliers, who may offer all-unit quantity discounts, are 

going to meet a buyer’s uncertain demand for a single product. All the suppliers in the 

identified set are evaluated based only on price (or discounted price) since it is assumed 

they already satisfied other qualitative and quantitative criteria such as quality, financial 
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strength, delivery, etc. The buyer needs to allocate the optimum order quantity to each 

supplier in order to maximize his expected profit. 

 

We first develop a single period SSP. The notations for formulating the problem are 

presented as follows: 

 

Indices 

            index of suppliers, (  indicates number of suppliers) 

            index of price level (   indicates number of price levels offered 

by supplier i). 

 

Parameters 

    selling price per unit at the market, determined exogenously 

h   holding cost per unit  

Sh   shortage cost per unit  

      price per unit offered by supplier i at price level j (          ) 

   
    upper bound of the order that can be allocated to supplier i at price level j 

   
    lower bound of the order that can be allocated to supplier i at price level j 

    market demand (random variable) 

       known probability density function of the demand 

       known cumulative distribution function of the demand 

 

The relationship between the discount segments are as follows:       
        

     
  

   
 . 

 

Decision variables 

      order allocated to supplier i at price level j 
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    is binary variable:     1 if order is placed to supplier i at price level j; otherwise 

    0. 

 

For single period problem, we assume the inventory level before ordering is zero. Let 

          denote the inventory level after ordering. Then, for     , we have 

positive inventory at the end the period, and for     , we have negative inventory 

(shortage). As a result, the expected holding and shortage cost function related to   can 

be formulated as follows: 

 

                  
  

 
               

  

  
   

 

 

The purchasing cost is presented as follows: 

 

               
  
 

 
     

 

The expected revenue function is also formulated as follows: 

 

               
  

 
          

  

  
  

 

 

The MINLP model of a single period newsvendor problem for maximizing buyer’s 

expected profit is presented as follows: 

 

 Model 1: 

                                (1.1) 

Subject to: 

       
  
   

 
            (1.2) 
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             i=1,2,…,n; j=1,2,…,  , (1.3) 

   
             i=1,2,…,n; j=1,2,…,  , (1.4) 

    
  
           i=1,2,…,n,   (1.5) 

            i=1,2,…,n; j=1,2,…,  , (1.6) 

 

Eq. (1.1) maximizes the buyer’s profit. Constraint (1.2) guarantees that the inventory 

level after ordering equals the summation of all orders assigned to the suppliers. 

Constraints (1.3) and (1.4) ensure that the order allocated to supplier i at price level j 

places in the right interval. By constraint (1.5), at most one discount segment is selected 

for every supplier. 

 

For taking into account quantity discounts, the model was formulated as an MINLP, 

which is considered as NP-hard (Awasthi et al., 2009; Yin and Nishi, 2013). In addition, 

     is concave and the corresponding optimal quantity assigned to supplier i at price 

level j without bound constraints is determined using the classical fractal formula 

   
      

       

     
  (Burke et al., 2007).  

  

Proposition 1. Let    
  and    

  be the optimum order quantity to supplier i at price 

level j for Model 1 with and without bound constraints, respectively. Also, let   be the 

summation of order quantities assigned to other suppliers except (or before) supplier i 

(note that at most one order can be assigned to each supplier). Then we have (see 

Figure. 1): 

 

(i) If      
     

       
 , then    

     
   . 

(ii) If      
     

   , then    
     

 .  

(iii) If      
       

 , then    
     

 .  

(iv) If        
        , then    

   .   
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Fig. 1. The optimum order quantity with and without bound constraints 

 

 

See appendix for proof. Proposition 1 was also proved by Zhang (2010) for a single 

supplier model. 

 

To better show how the proposed algorithm performs, the algorithm is developed into 

two stages. We first use Proposition 1 to construct Algorithm A1 to solve Model 1 for 

finding an initial solution or an initial orders allocation (stage 1). Subsequently, we will 

discuss that the initial solution may not be optimal, and two more actions should be 

added to Algorithm A1 for finding the optimal solution. Therefore, Algorithm A1 is 

then extended to perform those two actions for assessing other neglected solutions 

(stage 2). The extended algorithm is called Algorithm A2. 

 

Algorithm A1 

First, each price interval is named by    
  in which the index of   is used to show their 

rank in term of price (i.e.,    
    has the lowest price and    

         has the highest 

price). From    , by using Proposition 1, we assess each interval if the optimal order 

quantity without bound,    
 , can be positive. If so, the order quantity is denoted by    

  . 

We go for the next interval,    
   , if    

      
  , we stop otherwise. In addition, when 
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a supplier is assigned an order, his other intervals no longer assessed for further 

allocation (one order to each supplier). The vector of positive allocations is represented 

by          
     , and the corresponding revenue is denoted by   .    and    

represent the best allocations vector and its revenue up to a new order is placed (i.e., 

when an order is placed to a supplier, new    is computed and compared with   . If 

     , then    and    are replaced by    and   , respectively). Furthermore, the 

vector of selected intervals is denoted by         
    .  

 

For the ease in the presentation of Algorithm A1, we introduce some task as follows. 

For starting point, Initial Task is used: 

 

Initial Task: Arrange all     in increasing order of   (i.e.    
     

   ). If    
     

    

then    
      

     . Also set    ,      ,     , K=0,  =0,   =0,     .  

where   is a number greater than       ;    will be only used in Algorithm A2 

and is explained later. 

 

Also, every time that a positive order is allocated to an interval,    
 , we perform Task 1 

as follows:  

Task1:         
  ,           

   ,        
   and compute   . If 

     , then replace    and    by    and   , respectively. 

 

Algorithm A1 is developed, presented by Figure. A1 in appendix, to find an initial 

solution. In Algorithm A1, when    
      

  , we have to assess the next interval, 

whose supplier has not been selected yet, for order allocation. Assume    
      

   that 

results in an order allocation to Kth interval, and thus        
  . Then, we have to 
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evaluate the next interval: whether      
      ? If so, then we have     

            

that according to Proposition 1 in (i), (ii) or (iii),    
   will be positive. In Addition, 

allocating order to the intervals stops in following four conditions (stop-conditions): 

 

 First condition is when       : in this case, no interval left for allocation. 

 Second is    
  =0: in this case,    

       is also zero because    
     

   .  

 Third situation is    
      

    : since in this condition we have           
    .  

 Fourth condition is    
      

  : we know that    
          

   since    
     

   . 

Therefore, when    
      

  , then        
   and    

          
          . 

 

In next subsection, we investigate on finding a global optimal solution based on initial 

solution obtained by Algorithm A1.  

 

Algorithm A2 

Any time that Algorithm A1 faces one of the four stop-conditions, other intervals, if 

any, does not evaluated for order allocation. When    
      

   (fourth condition), the 

final solution of Algorithm A1 may not be globally optimal: Assume there exist three 

suppliers with limitation on minimum   
  and maximum   

 ,        , order quantity 

so that        . If Algorithm A1 arrives to the solution of   
    

 ,   
    

  and 

  
   , according to the forth condition Algorithm A1 terminates. However, there are 

other possible allocations (Poss-Allocations) that may increase the buyer’s profit:  

 

Poss-Allocation1: the solution obtained by Algorithm A1:   
    

 ,   
    

  and 

  
   . 

Poss-Allocation2:   
    

 ,   
   ,   

             
      

     
  . Where 

    
 .   
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Poss-Allocation3:   
             

      
     

  ,   
    

 ,   
   . 

Where     
 . 

 

where it is assumed   
    

   ,   
    

   ,   
      

      

     
 . 

 

Then the global optimal allocation is one of the Poss-Allocations that gives a higher 

profit to the buyer. (In numerical example section, we sometimes refer the solutions to 

Poss-Allocation1 & 2 & 3 for better interpretation). 

 

It may happen that Poss-Allocation2,     
    

  , yields bigger revenue than Poss-

Allocation1,     
    

 ), as illustrated by Figure. 2. In Poss-Allocation3, if we have to 

order   
  to the second supplier, the optimality condition for the first supplier should be 

again evaluated, that is       
 
           should hold. It is straight forward that a 

solution with higher profit is globally optimal allocation in our example. 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 
Fig. 2. Comparison of Poss-Allocation1&2. 

 

    
    

 ) 

For   
 +  

    , (b) yields bigger profit than (a) 

(a) Poss-Allocation1 

  
  

 

(b) Poss-Allocation2 

  
    

  

  
    

  

 

  
    

  

    
    

 ) 

    
    

 ) 

  
 +  

  

  
    

  

  
  

  
 +  

  

  
    

 -  
  

  
 +  
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However, it is obvious that if any of the first three conditions (stop-condition) is 

fulfilled, the solution is globally optimal, because there is no any possible allocation that 

increases the profit of the buyer.  

 

These three Poss-Allocations tell us that every time    
      

 ,  some more actions 

should be added to Algorithm A1 for finding the global optimal solution. The extra 

actions are presented as follows:  

 

Action 1. Set    
     and then assess if other intervals after    

   yield a better 

solution (as Poss-Allocations2). 

Action 2. Keep    
      

  and then evaluate again if optimality condition holds for 

other intervals before    
   (as Poss-Allocation3).  

 

As a result, we incorporate these two actions in Algorithm A1 to develop Algorithm A2 

for obtaining global optimal solution (see Figure. 3). In Algorithm A2, we again define 

some tasks similar to Initial Task and Task 1. Before setting    
     and going for 

Action 1, we first need to memorize all allocations and its associated profit, because we 

later need to use the memorized information for carrying out Action 2.  

 

Task 2 memorizes the information as: 

 

 Task 2:       ,       ,     ,     , and     . 

 

where   is a counter whenever    
      

 ,   is added by one;          , as instance, 

is the vector of positive allocations when    
      

  for the first time, i.e.,    . 
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Task 3 set    
   to zero, because we then need to do Action 1: 

 

Task 3:           
   ,         

  ,        
  , and    

    . 

 

For performing Action 2, Task 4 is also employed that recalls the allocations memorized 

in Task 2 and then sets all allocations to zero except the one that was equal to    
  . 

Subsequently, Action 2 can be done.  

 

Task 4:            
              ,          

            , 

     
   ,   =  ,      ,    . 

 

In Algorithm A2, when    , we set   =   in Task 4. Then by adding the condition 

of      in Algorithm A2, we guarantee that only the optimality condition of all 

intervals before    
    is evaluated. 
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Algorithm A2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Flowchart of Algorithm A2 
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2.2. Multi-Period Model 

Despite the single period problem, this model is dynamic and operates over   (  

       ) periods so that any surplus inventory in one period will be used at following 

period. In this study, the multi-period model is solved recursively so that the last period 

is solved first, the second last period is solved second and so on (Porteus, 2002). We 

assume that backlogging is not allowed. All parameters and variables in previous 

section are used here but we only add subscript   to them, because the model is non-

stationary (for instance,    denotes holding cost per unit in period  ). Let    and 

               indicate respectively the inventory level before and after ordering in 

period  . Therefore, the expected holding and shortage cost function of period   related 

to    can be formulated as follows:  

  

                          
   

 
                    

  

   
.  

 

The purchasing cost of period   is: 

As the total order quantity purchased in period t is           
  
 

 
         , 

therefore,                     
  
 

 
   . Since, we need to declare         in term of 

  , we will have: 

 

                  , in which              
  
 

 
         

  
 

 
    . 

         

The expected revenue function of period   is also formulated as follows: 

 

                     
   

 
               

  

   
.  
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Finally, the buyer’s expected profit of period   when the state is   , is formulated as: 

 

       

                                              
 

 
             .  

where         denotes the one-period discount factor. 

 

       can be written as: 

                                

where                                         
 

 
            . 

 

Therefore, optimal inventory level after ordering (base stock level:   
 ) in period   can 

be obtained by maximizing        over            . In other words,    is a 

maximizer of       . 

As a result, the maximizer of buyer’s expected profit in each period can be obtained by 

solving Model 2, formulated using MINLP: 

 

Model 2: 

                    (2.1) 

Subject to: 

            
  
   

 
       t =1,2,…,N    (2.2) 

    
              t =1,2,…,N; i=1,2,…,n; j=1,2,…,  , (2.3) 

    
              t =1,2,…,N; i=1,2,…,n; j=1,2,…,  , (2.4) 

     
  
          t =1,2,…,N; i=1,2,…,n,  (2.5) 

            t =1,2,…,N; i=1,2,…,n; j=1,2,…,  , (2.6) 
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In order to employ Algorithm A2 to solve Model 2, we need to find a way to calculate 

    
  (    

  is the optimum order quantity to supplier i at price level j in period t for Model 

2 without bound constraints). Recall that in a single period problem, we had    
  

    
       

     
 . Assume at the end of last period, each leftover unit has a value of   for 

the buyer (i.e., the slope of the terminal value function is   ). Also, assume that there 

exist only one supplier whose price in period N is   . By taking the first derivative of 

       over    and setting it to zero we obtain   
       

      

        
 . Furthermore, 

the second derivative shows that it is concave (i.e.,   
        ). By following Porteus 

(2002) in chapter six, it is demonstrated that   
      

      

           
  is optimal in 

period t for each period, in which    and      are the unit purchasing price of the 

supplier in period   and    , respectively. If we have multiple suppliers (assume 

without discount), for computing    
  the difficulty is estimating     , because of the 

different unit purchasing price in period     (i.e.,            ). However, we know that 

    
             

   , where     
    and     

    are the lowest and highest unit purchasing 

price in period    : Assume there are three suppliers in period    , where their price 

are         =5,         =6,         =7; Then,     
   =5 and     

   =7. As a result, 

    
       

           
        

       
       

           
    . Thus, for determining the maximizer 

of    for each interval in each period,     
 , Lemma 3 is defined as follows.    

  

Lemma 3. Let                                                  
 

 

                for the interval of     . Then,     
                      can be 

determined using following algorithm (see Figure. 4): 

Step 0: Set            
        

           
     and       

        

           
    .  
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Step 1. Compute          and then            . If       , start again Step 1, 

else go to step 2. 

Step 2.     
                  . 

where   is a small number so that smaller   yields more exact     
 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Fig. 4. Optimal inventory level (base stock level) after ordering 

 

(iii)  Base stock policy can be represented as follows: if        
 , then we should 

increase the stock level up to     
 , else we do nothing.    

 

We here employ again Proposition 1 to obtain     
 . Note that for multi-period model in 

proposition 1,   is the summation of    and positive order quantities assigned in period 

t to other suppliers except (or before) supplier i. Now, Algorithm A2 can be used for 

multi-period problem where all parameters and variables get subscript  , indicating 

period  , and the algorithm should be recursively operated over   periods.  

 

 

3. Numerical experiments 

To demonstrate the performance of the proposed algorithm, two subsections are 

conducted here. In the first subsection, single period problem is considered, and some 

examples are solved by the proposed algorithm, coded using Visual Basic 

a b 
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programming. In addition, different GAMS solvers for MINLP models, such as 

BARON (Branch-And-Reduce Optimization Navigator), DICOPT (DIscrete and 

Continuous OPTimizer) and SBB, are used to compare the solutions. In the second 

subsection, a non-stationary multi-period problem is solved and discussed. 

 

3.1. Single-Period problem 

We consider a situation in which demand follows uniform distribution         , 

    ,       . Five different cases are conducted and their parameters are 

illustrated in Table 1. In Table 1,    , as an example, represents first supplier in second 

price level. It is in line with naming each price level by    
  where the index of   was 

used to show the rank of each interval among all in term of price. In Case 1, the first 

supplier has two price levels: If the order assigned to him is between 0 and 17, the 

purchasing price would be 5.5; and if it is between 17.01 and 20, the price is 5. In Case 

3, we only changed    
  from 8.01 to 8.05, in comparison with Case 2. 
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Table 1. 
Data related to the different cases 

Scenarios                             

Case 1        

    5 5.5 5.5 6 6 6.5 6.6 

   
  20 17 5.5 2.5 15 8 6 

   
  17.01 0 2.51 0 8.01 0 2 

Case 2        

    5 5.5 5.5 6 6 6.5 6.6 

   
  5 3 5.5 2.5 15 8 6 

   
  3.01 0 2.51 0 8.01 0 2 

Case 3 In this case,    
      , compared to case 2. 

Case 4 In this case,    
      , compared to case 3. 

Case 5        

    5 5.5 5.5 - 6 6.5 - 

   
  5 3 15 - 15 10 - 

   
  3.01 0 12 - 10.01 0 - 

 

 

By using the proposed algorithm, we solve the problem for the different cases. In order 

to be able to compare the solutions, the problem is also formulated in GAMS. The 

solutions are presented using Table 2. 
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Table 2. 
The solutions of GAMS and the proposed algorithm  

 Proposed Algorithm GAMS 

 BARON DICOPT 

Scenarios Orders Profit  Orders Profit  Orders Profit  

Case 1          79.08           79.08           79.08  

Case 2          

         

         

72.570           

         

         

72.570           

         

         

72.570  

Case 3          

         

         

72.520           

         

         

72.518           

         

         

72.520  

Case 4          

         

         

72.518           

         

         

72.518           

         

         

72.518  

Case 5          

        

75.818           

        

75.818           

        

75.818  

 

The solutions of the proposed algorithm are interpreted as follows. In Case 1, one can 

see that the algorithm finds the global optimal solution in line with Poss-Allocation1 

(i.e.         ). In Case 2, although the price of suppliers 1 and 2 (i.e.     and    ) are 

lower in comparison with third supplier’s, the buyer does not order up to their full 

capacity (   
  and    

 ). It is in line with Poss-Allocation3. In Case 3, even though the 

price of     is lower than that of    , the buyer prefers to order from    . It can be 

justified by Poss-Allocation2. In addition, by looking at the solution of BARON in Case 

3, one can see that ordering from     yields worse profit than    , and BARON was not 

able to find the optimal solution. For more discussion assume in Case 3,    
  was equal 
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to     , then by using our algorithm the optimal solution is obtained as         , 

        ,          and            . One can again see that the profit increases 

by 0.008 compared to original parameters of Case 3. Since    
    in Case 4, it is better 

to order from     (i.e.         ) that is obtained from comparison of Poss-

Allocation1 and Poss-Allocation3. Example 5 can be interpreted the same as Case 2.    

 

These five cases, especially cases 2, 3 and 4, demonstrate the accuracy of the proposed 

algorithm in finding global optimal solution. SBB in GAMS was also used for solving 

the cases, but we did not present the solutions in Table 2. We observed that SBB was 

not able to find global optimal solution for cases 3 and 4. Also, Table 1 illustrates that 

BARONS could not find global optimal solution in Case 3. However, the proposed 

algorithm and DICOPT obtained global optimal solution in all cases.  

 

3.2. Multi-Period problem and sensitivity analysis 

After demonstrating the accuracy of our algorithm in previous subsection, we here only 

perform sensitivity analysis in a non-stationary multi-period situation. As we have 

different parameters, such as     ,   ,    and market demand, we analyze the effect of 

changing the value of those parameters on buyer’s profit over a three-period problem. In 

Case 1, we consider a stationary three-period problem as benchmark. Then, four other 

cases are introduced to see the effect of %20 improvement in     ,   ,    and demand on 

buyer’s profit.  

 

The benchmark case (Case 1) considers a stationary three-period problem in which the 

demand follows uniform distribution          ,       ,     ,   ,      . Each 
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leftover unit of last period values      . In addition, Suppliers’ information over the 

three-period is as follows: 

 
                     

     5 5.5 5.5 6 

    
  5 3 16 6 

    
  3 0 6 0 

 

The information of non-stationary three-period problems (Case2-5) is presented in 

Table 3. 

Table 3. 

The information of different cases 

The cases Scenarios Model 

Case 2 Selling price in second period increases by 

%20. 

         

Case 3      and      decrease by %20.         ,           

Case 4 Demand in period 2 increases by %20.                

Case 5 Holding cost per unit in period 2 drops by 

%20. 

        

 

The multi-period is solve recursively and the solutions of the different cases are 

presented in Table 4, only when the initial inventory level in each period is 0, 5 and 10: 
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Table 4. 

The result of different cases  

 Period 1 Period 2 Period 3 

Case 1 as benchmark 

             Orders        Orders        Orders 

0 65.68           

          

49.99           

          

24.11           

          
5 92.27           

          

72.58           

          

50.42           

          
10 120.12           100.43           78.43           

Case 2 improves selling price per unit 

             Orders        Orders        Orders 

0 83.43           

          

65.73           

          

24.11           

          
5 109.89           

          

92.55           

          

50.42           

          
10 137.89           120.55           78.43           

Case 3 improves purchasing price per unit 

             Orders        Orders        Orders 

0 79.06           

          

61.07           

          

24.11           

          
5 105.35           

          

82.62           

          

50.42           

          
10 133.37           105.01           78.43           

Case 4 improves the demand 

             Orders        Orders        Orders 

0 69.61           

          

50.35           

           

24.11           

          
5 96.04           

          

77.85           

          

50.42           

          
10 124.04           104.81           

          

78.43           

Case 5 improves the holding cost per unit 

             Orders        Orders        Orders 

0 65.87           

          

46.20           

          

24.11           

          
5 92.31           

          

72.77           

          

50.42           

          
10 120.31           100.77           78.43           

 

Case 1 shows that order allocation in period 3 is slightly less than those of periods 1 and 

2. It is due to       (each leftover unit value at the end of third period). In periods 1 

and 2, the leftover units values      for their following period that are greater than 

     . For Case 2, one can see that the increase of selling price in period 2 has only 
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influence on order allocations at the same period. In addition, it increases the total profit 

by %16      , compared to Case 1. In Case 3, the decrease of suppliers’ prices in 

second period causes the order allocations to increase in same period and to decrease in 

period 1. It can be interoperated in two ways: (1) since the purchasing cost in period 2 

will decrease by %20, it is better that we buy less in period 1 and more in period 2, and 

(2) since the left over units in period 1 will have less value in next period, it is better 

that we have less over stock at the end of period 1. The total profit of Case 3,      , 

improved by %12 in comparison with Case 1. For Case 4 also one can see that the 

increase of demand in period 2 raises the order allocations at the same period only. The 

total profit of Case 4,      , was also improved by %4 in comparison with Case 1. In 

Case 5, improving the holding cost also enhances the total profit in comparison with 

Case 1, while it is not considerable.   

 

By considering these five cases, we can conclude that (1) selling price and holding cost 

per unit have respectively highest and lowest impact on total profit (see Figure. 5), and 

(2) only purchasing cost alteration in one period changes the order allocation of the 

same period as well as that of in its previous period. 

 

 
 

Fig. 5. The profit of the different cases 
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4. Conclusion 

This study considered a single-product multi-period SSP subject to the quantity discount 

schemes and demand uncertainty. We employed MINLP formulation to model the 

problem in order to maximize the expected profit of the buyer under multiple sourcing 

scenario. We developed an algorithm to solve the single period problem, and in order to 

be able to verify the efficiency and accuracy of the proposed algorithm, we also 

developed a GAMS-based solution program to compare the solutions. Comparison of 

the solutions demonstrated the capability of the proposed algorithm for obtaining global 

optimal solution. Subsequently, we extended the algorithm for solving the non-

stationary multi-period problem. In multi-period problem, we examine the effect of 

changing some model parameters (selling price, purchasing price, holding cost, and 

demand) on buyer’s expected profit. The result revealed that selling price and holding 

cost had highest and lowest impact on the buyer profit, respectively.  

 

This study enables DMs to maximize the buyer expected profit by simultaneously 

considering the demand uncertainty, planning horizon, and suppliers’ quantity discount 

in supplier selection model that make it very realistic and complicated. This study also 

helps managers to consider some other restrictions such as buyer’ warehouse capacity, 

suppliers’ capacity, holding cost, etc in planning the inventory level on an ongoing basis 

during a year. Moreover, they can ensure the production managers that the raw materials 

and components parts are available during a time horizon especially when the demand is 

not known precisely. 
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In reality, suppliers may allow buyers to return unsold products at the end of each 

period (buyback). Literature on inventory management shows that buyback can be used 

as an incentive for the buyer to increase the order. As a result, considering a SSP, where 

the buyer can return unsold products to the suppliers, is still open for future. Another 

direction for future work can be considering a situation in which the suppliers have 

binomial random yields. 

 

Appendix 

Proof of Proposition 1. 

(i) Obviously, if we have assigned   units to other suppliers,     
     should be 

ordered to supplier i at level j in order to satisfy             .  

(ii) The second derivative of      is –                . Therefore, it is 

concave and monotonic increasing for        
 . Since     

         
        

 , 

we have      
          

          
  . Therefore,    

     
 . 

(iii) Similar to (ii), we have    
     

 , since      is monotonic decreasing for 

       
 .  

(iv) It is straightforward. □    
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Algorithm A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A1. Flowchart of Algorithm A1 
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CHAPTER 5 – SUPPLIER SELECTION AND ORDER 

ALLOCATION PROBLEM UNDER DEMAND AND SUPPLY 

UNCERTAINTY WITH RETURN POLYCY 

 

 

The main aim of this chapter is to propose an algorithm for finding optimal inventory level 

and suppliers’ order allocation for a stochastic single-period supplier selection problem where 

the suppliers may be unreliable in term of quality and/or delivery. In addition, the suppliers may 

allow the buyer to return unsold products at the end of the period. This study addresses the 

combination of supplier selection and inventory management under demand and supply 

uncertainty. For a single-period, a buyer purchases a product from a set of capacitated 

suppliers whose supply may be unreliable in term of quality and/or delivery. In order to 

compensate the unreliability, the suppliers might allow the buyer to return unsold 

products at the end of the period with a buyback price (buyback scheme). As a result, 

the buyer has to consider three criteria for supplier evaluation: suppliers’ wholesale 

price, unreliability level, and buyback price. Considering multiple criteria along with 

demand and supply uncertainties contribute to the complexity of the problem. In order 

to calculate the optimum inventory level and suppliers’ order quantity, we develop an 

algorithm that is the main contribution of our study. 

 

This study numerically reaches to the following managerial results: (1) buyback scheme 

lets the buyer share the risk of uncertain supply and demand with his suppliers; (2) it is 

also an effective approach for the suppliers to compensate their unreliability-level; (3) in 

comparison with lower demand variance, when the demand variance is higher, suppliers 
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can compensate their unreliability-level with fewer buyback price; (4) diversification is 

not an optimal approach for the retailer, unless the suppliers have limited capacity. 

   

1. Introduction 

A supply chain (SC) is composed of a combination of activities associated with 

planning, acquiring, coordinating, contributing materials, component parts, finished 

good and service from upstream suppliers to downstream customers (Chopra and 

Meindl, 2006; Wadhwa, 2008). Managing the SC has been recently considered as a 

substantial issue by both practitioners and academicians, since the increase of 

customer’s satisfaction and firm’s profitability is the important targets of it (Boran et al., 

2009; Chou and Chang, 2008; Ha and Krishnan, 2008; Heizer and Render, 2004; 

Monczka et al., 2001; Simchi-Levi et al., 2003; Stevenson, 2005). A very important 

element for the success of SC management (SCM) is following an effective purchasing 

function (Boran et al., 2009; Cakravastia and Takahashi, 2004; Chou and Chang, 2008; 

Giunipero and Brand, 1996; Porter and Millar, 1985). Prudently selecting of right 

suppliers brings meaningful savings for the manufacturing firms (Boran et al., 2009; 

Haq and Kannan, 2006). For most US manufacturers, 40-60% of production costs are 

associated with raw material cost (Wadhwa, 2008). In addition, Ghodsypour and 

O’Brien in 2001 stated that, on average, up to 70% of product cost in manufacturing 

firms is associated with purchased component parts and raw materials. Therefore, 

selecting the competent group of suppliers and maintaining them are the most important 

decisions in purchasing function (Wadhwa, 2008). 

  

The literature has addressed two scenarios for supplier selection problem (SSP): (1) 

Single-sourcing scenario. In this scenario, the buyer needs to select the best supplier if 
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he can meet all his requirements in terms of demand, quality, delivery etc. Although 

following this scenario causes the buyer to have a close relationship with the supplier, 

the risk of supply disruptions may increase (Tajbakhsh, 2007). On the other hand, if the 

buyer needs a high-tech product, obviously a small number of suppliers are available 

(Tajbakhsh, 2007); (2) Multiple-sourcing scenario. In this situation, the buyer needs to 

select a competent group of suppliers. This scenario is a good way to decrease the risk 

of supply disruptions, although it needs more flexibility from the buyer (Aissaoui et al, 

2007). In addition, applying multiple-sourcing scenario can decreases the overall costs 

of procuring and inventory in many cases like just-in-time environment (Hong and 

Hayya’s, 1992; Aissaoui et al, 2007). 

 

For both multiple- and single-sourcing scenarios, the suppliers are evaluated according 

to some conflicting criteria such as price, quality, delivery etc. By an study in the United 

States and Canada, Dickson (1966) identified and ranked 23 criteria for SSP. The top 

six criteria were respectively quality, delivery, performance history, warranty policy, 

production facilities and capacity, and price. As can be seen from the top six, price, 

defects and lead-time are the only criteria that are quantitative. That is why, in studies 

that have used mathematical programming for SSP, price, defects and lead-time are 

widely used as the top three criteria influencing supplier selection (Roa and Kiser, 1980; 

Weber and Current, 1993; Ghodsypour and O’Brien, 1998; Kumar et al., 2004, 2006; 

Wadhwa and Ravindran, 2007; Amid et al., 2006, 2009, 2011). 

 

In addition, at the time of evaluating and selecting the suppliers, it is important for the 

buyer to simultaneously consider the holding, shortage and salvage costs of the products 
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(inventory management) in order to find the optimal order quantity. This importance is 

more highlighted when the demand is not precisely known. However, most studies on 

inventory management focus on single sourcing model and multi-sourcing model has 

observed less consideration (Minner, 2003; Tajbakhsh, 2007). There are two types of 

inventory management models: (1) the economic order quantity (EOQ) model that 

applies when the demand is deterministic. This model determines the optimal order 

quantity in order to minimize the total cost of ordering, purchasing, holding and storage; 

(2) the newsvendor model that determines the optimal order quantity when the actual 

demand is unknown while its stochastic distribution is known. In inventory 

management, newsvendor model is considered as a very important and basic model for 

other sophisticated inventory models and is widely used in reality due to the decline in 

product life cycle (Zhang and Zhang, 2011). Furthermore, in real situation, the buyer’s 

information on market demand as the most significant cause of uncertainty is not always 

known precisely (Tajbakhsh, 2007). Burke et al. (2007) developed an approach for 

supplier selection problem with stochastic demand; allocating optimal order quantities 

to a set of suppliers who must be ordered a positive amount, in which the minimum and 

maximum of their capacity were limited. Awasthi et al. (2009) proposed a heuristic 

algorithm for identifying and allocating the suppliers with restriction on suppliers’ 

minimum and maximum capacity. Zhang and Zhang (2011) proposed an algorithm for 

solving a SSP with stochastic demand and restriction on suppliers’ minimum and 

maximum capacity by considering fixed ordering cost. Zhang and Ma (2009) and Yin 

and Nishi (2013) developed a mixed integer nonlinear programming model for multi-

supplier newsvendor problem where the suppliers offer quantity discounts. 
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These aforementioned studies only used the suppliers’ price (or discounted price) for the 

evaluation of the suppliers, while the literature shows that quality and delivery have 

been wildly used as well. Quality can refer to a situation that the delivered quantity by 

suppliers might include defective items, and delivery can refer to a situation that the 

delivered quantity might be different from the ordered quantity (Tajbakhsh, 2010b). 

These supply uncertainties in quality and/or quantity is one of the most important 

factors that influences the decision of buyers on lot sizing (Tajbakhsh et al., 2010b). 

Binomial yield, stochastically proportional yield, and random capacity are three 

approaches used to model yield uncertainty in inventory control (Tajbakhsh et al., 

2010b). 

 

However, there are few studies that have dealt with stochastic inventory control 

(newsvendor) problems with unreliable suppliers (or with suppliers whose supply is 

uncertain). In this study, the level of supply uncertainty of suppliers is also called the 

level of suppliers’ unreliability. Anupindi and Akella (1993) studied a situation in which 

a buyer has two uncertain suppliers and face with stochastic demand. The authors 

investigated on the implication of order allocation on buyer’s inventory policies in both 

single- and multiple periods. Dada et al., 2007 also studied multi-supplier newsvendor 

problem under uncertain supply. Yang et al, 2007 proposed a solution algorithm for 

supplier selection newsvendor problem in which a buyer needs to allocate optimal order 

quantities to a set of suppliers whose supply is uncertain. In addition, there are other 

studies that have considered multi-supplier inventory problems with deterministic 

demand. Fadıloglu et al. (2008) considered supplier diversification for an Economic 

Order Quantity (EOQ) model for a case that suppliers’ supply was modeled by binomial 
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yields. They also demonstrated that diversification is not optimal. Subsequently, the 

study of Fadıloglu et al. (2008) was followed by Tajbakhsh et al. (2010a) and Yan and 

Wang (2013) as technical not. Yan et al. (2012) considered a supplier diversification 

problem where the suppliers’ supply was uncertain and the price was linearly dependent 

on the products quantity delivered to the market. 

 

The drawback of these studies is, however, they assumed the suppliers offer only 

wholesale price contract, while because of some reason the suppliers may offer buyback 

contract as well. The importance of buyback contract can be interpreted as follows: 

since risks are the consequence of uncertain demand, many buyers often request the 

suppliers to accept the return of unsold products in order to secure the risks (Shi and Su, 

2004; Padmanabhan and Png, 1997). The most important reason for this request is risk-

sharing, and if the suppliers are able to endure the risk more than the buyer, this request 

is rational (Shi and Su, 2004; Padmanabhan and Png, 1997). As a result, return policy is 

implementable for many products facing with uncertain demand, such as newspapers, 

magazines, books, recorded music, computer hardware and soft-ware, greeting cards, 

and pharmaceuticals (Shi and Su, 2004; Padmanabhan and Png, 1997; Howard et al. 

1995). Despite the popularity of the buyback scheme, to the best of our knowledge, only 

Yang et al. (2007) considered a multi-supplier newsvendor problem whose suppliers 

offer buyback contract. They used genetic algorithm for SSP and order allocation.   

  

Despite the importance of buyback scheme and supply uncertainty on production 

planning and inventory control, studies on SSP have addressed each aspect separately in 

the literature. In order to fill the gap, we here consider a multi-supplier newsvendor 
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problem under binomial yield supply in which the suppliers may offer buyback contract 

for alleviating the risks arise due to uncertain demand and supply. The difficulty of this 

problem is that the suppliers should be evaluated based on three criteria: wholesale 

price, unreliability level, and buyback price. Consequently, we develop a solution 

algorithm for SSP and order allocation that is applicable for situations in which the 

suppliers are evaluated according to single- or multiple criteria.     

The rest of the chapter is organized as follows. Section 2 models the problem and then 

develops the solution algorithm for supplier selection and order allocation. Numerical 

example is carried out in section 3. Furthermore, the effect of different parameters, such 

as buyback price, unreliability level, etc., on decision variables and buyer’s profit is 

investigated in the numerical example. Finally, section 4 draws the conclusion. 

      

2. Methodology 

2.1. The model 

  potential suppliers (         ), with the unit selling price or wholesale price of    

and the production capacity of Vi, are going to meet the stochastic (single-period) 

demand,  , of one product for a buyer. In addition to the uncertain demand, the 

suppliers’ supply may be uncertain that can refer to uncertainty in quality and/or 

delivery. Therefore, the suppliers may be unreliable with the unreliability level of   : (1-

  ) is the probability of that a unit, delivered by supplier i, is non-defective or usable (or 

the probability of that a unit, delivered by supplier i, arrives on time). The Binomial 

yield is used here to model the unreliability of the suppliers on supply.    is the total 

order quantity, including defective products, that the buyer allocates to the suppliers, 

and        is the percent of    assigned to supplier i:   
       is the ith 
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supplier’s order. It is assumed that    
 
      , therefore,    

 
     . The number of 

non-defective (usable) products delivered by supplier i,   , is a Binomial random 

variable with parameters   
         and (1    ), i.e.,              

 

  
    

   
    

  
    ,            

 . As a result, the expected number of non-defective items 

received from supplier i can be determined by         
       , and similarly, the 

expected total number of non-defective products is                   
 
   . In 

other words, the retailer purchases    units from all the suppliers, but he can only sell   

units to the market (or only   units are useable).  

 

In addition, the suppliers pay the retailer    $/unit for leftover inventory at the end of 

season (return policy). As the defective items cannot be sold to the market, it is assumed 

that after receiving the order, the buyer executes 100% inspection and then returns the 

defective items accompany with leftover inventory to the suppliers by    $/unit. (Note: 

this way of treating with defective items, is one way out of many other ways). 

   

The known density function of the demand and its cumulative distribution function are 

presented by      and     , respectively. The buyer’s selling price,   $/unit, to the 

market is determined exogenously. The buyer incurs s $/unit for each unit of shortage 

inventory. Throughout the chapter, when we say “supplier i dominates other suppliers” 

it means that it is more profitable for the buyer to purchase from supplier i as much as 

possible. 

  

The following assumptions are made: 

(a)       ,              ,  
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(b)        ,             , 

(c) the remaining products at the end of season are returned to the suppliers 

corresponding to   .  

 

The buyer’s expected revenue of selling the product to the market is expressed as 

follows:  

              
 

 
           

  

 
  

            
    

 
              

  

    
 

 

where            
 
   . 

The expected shortage cost for the buyer is presented as follows: 

                 
  

 
 

                   
  

    
 

 

The buyer’s expected revenue of returns of unsold and defective products to the 

suppliers is stated as follows: 

          
 
                

 

 
        

 
      

        
 
                   

    

 
        

 
      

 

The purchasing cost is also presented as follows:  

            
 
     

 

Therefore, the maximization profit function of the buyer for a multi-supplier 

newsvendor problem can be presented as follows: 

 

                            (1) 

 

Lemma 1.          is concave with respect to   . 
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Proof. To show that      is concave, we first take the second derivative of it with 

respect to   , and then show that it is equal or less than zero.  

 

  

  
           

  

    
      

 
              

    

 
            

  

    
 

     
 
     

   

   
            

 
                

    

 

Since      and    
 
      then      

 
      and thus          . Therefore, it 

is demonstrated that      is concave with respect to   . □ 

 

If supplier i is uncapacitated, the profit function of the buyer if he only purchases from 

supplier i is presented as follows: 

 

                  
 

 
           

  

 
              

  

 
       

 

 

 )    +      +               (2) 

 

By taking the first derivative of         with respect to    and set it to zero we obtain 

the optimal order quantity assigned to supplier i as 

 

         
                 

              
              (3) 

 

Before going to the following theorems, without lose of generality, assume that there are 

only two suppliers for order allocation in our newsvendor problem. 

 

THEOREM 1. In wholesale-price contract, for any    ,         and      , 

we have: 
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(a)               that means supplier 1 dominates supplier 2. 

(b) It is optimal for the buyer to fill his order, Q, as much as possible by supplier 1 

first (i.e.,              ), and then the remaining, if any, by supplier 2 (i.e., 

                  ). 

 

Proof. 

(a) For wholesale-price contract when      and        , the profit of the buyer if 

he only purchases from supplier i can be presented as Eq(2),                  

  . Since      , then we have          . As a result,              

                    . Thus, we can conclude that if the suppliers are 

uncapacitated, it is more profitable for the buyer to purchase from supplier 1 who has 

the lowest purchasing price per unit.  

(b) If supplier 1 has limited production capacity, by Eq(1) the buyer’s profit is 

presented as                  
 
   . If   =0 then   =1, therefore, we have 

           . If   =   , then   =1  , therefore, we have             

         . Since      , it is proved that            . That is, when    

increases, the buyer’s profit increases as well. □  

 

Theorem 1 says that when suppliers are evaluated based on only wholesale price, 

buying from a supplier whose price is less is always optimal for the buyer. If the 

suppliers have limited capacity, the lower price supplier should be first ordered as much 

as possible, and then, the second supplier is ordered, if any. 
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THEOREM 2. In buyback contract, for any    ,          and      ,  

(a) if                   , then neither supplier dominates another one and 

             , 

(b) if                   , then supplier 1 dominates supplier 2 and 

             . 

(c) if                   , then supplier 2 dominates supplier 1 and 

             . 

where                 
 

  
. 

 

Proof. 

(a) By Eq(1) the buyer’s profit function is presented as            

        
 
          

 
   . By substituting                    in the profit 

function, we have            . That is, with every portion of            the 

buyer’s profit is equal to a case if he purchases from supplier 1 only. On the other hand, 

by substituting                    in                         we 

obtain              . 

 (b) Let       
        

  
   (  is a positive small number). By substituting    in 

    , we have                     . That is, when    increases      

decreases. It is proved that it is more profitable for the buyer to purchases from supplier 

1 as much as possible. On the other hand, by substituting    in              

           we have                    that means              .  

(c) Similar to (b), (c) can be proved. □  
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Fig. 1. Buyer’s profit for the buyback scheme. 

 

Theorem 2 and Figure. 1 say that for any order quantity,  , greater than   , supplier 1 is 

the first one, supplier 3 is the next one, and supplier 2 is the third one, because 

                    . For any order quantity,  , between    than   , supplier 1 

is again the first one, supplier 2 is the next one, and supplier 3 is the third one, because 

                    . By the same logic, for any order quantity,  , less than   , 

supplier 2 is the first one, supplier 1 is the next one, and supplier 3 is the third one.  

 

Now we can generalize these two theorems as follows: when the buyer has n 

(i=1,2,…,n) suppliers, he has to first arrange the suppliers in decreasing order of        

  , because a supplier with greater        dominates a supplier with smaller       . 

Then he allocates Q to the suppliers as much as possible, respectively. Similar to these 

theorems, we can conclude that when       , supplier i is again dominant for a 

positive order quantity,  , if        is greater than others’. 

  

Retailer’s Order Quantity 

Retailer’s Profit 
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2. 2. Solution Methodology 

In this section, we develop a solution algorithm for SSP with stochastic demand and 

uncertain supply. The suppliers may offer buyback contract to compensate their 

unreliability of supply. In fact, the proposed algorithm should be able to perform 

supplier evaluation and order allocation based on multiple criteria: wholesale price, 

unreliability level, and buyback price. 

When the suppliers’ contract is wholesale-price only (   and        ), the buyer 

arranges the suppliers in increasing order of   , because they are evaluated based on 

only one criterion,   . Then the order quantity of ith supplier is obtained by 

 

                     ,        (4) 

 

where      is calculated by Eq(3) when    and        , and     is the order quantity 

assigned to suppliers             (see Burke et al. (2007) for more details). In our 

case that the suppliers are evaluated based on   ,    and   , according to Theorem 1 and 

2 we should arrange the suppliers in decreasing order of       . However,      cannot 

be obtained by Eq(3) if at least one supplier has been already assigned a positive order 

quantity (the reason is shown later in numerical example). As a result, we first introduce 

Algorithm 1 for obtaining     , and then develop the main algorithm for finding the 

optimal set of suppliers and order quantities. 

 

Before introducing Algorithm 1, we discuss how it finds     . Assume     is the order 

quantities assigned to suppliers            . This algorithm gradually increases 

the ith supplier order quantity while the retailer’s profit increases. Since the retailer’s 
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profit is concave on order quantity, once the retailer’s profit drops, the algorithm stops. 

Obviously, the order quantity contributing the maximum profit, is the optimal order, 

    . Then by Eq(4),                     , the ith supplier’s order quantity is 

determined. If          is the total order quantity assigned to suppliers   

        (   is the ith supplier’s order), by using Eq(1), the retailer’s profit is calculated 

as  

     

          
 

 
           

  

 
              

  

 
       

 
        

 

 

 )    +  =1          =1             

 

Algorithm 1: 

Step 1.  

1.1. Set   as arbitrarily (the smaller   is, the more exact     is, so that       

means     is obtained with only one digit decimal).  

1.2. Calculate       , set         ,      and         . (For the first 

supplier     0) 

Step 2. Calculate     .  

 2.1. If       , then       ,        ,         and go to Step 2. 

 2.2. If       , then go to Step 3. 

Step 3.          ,                     , and stop. 

 

From now on,     is calculated by Algorithm 1. The following algorithm is developed 

to find the optimal set of suppliers and order quantities. 

 

Algorithm 2: 

Step 1. Let     as an initial order quantity, set j=0, and     .   is the mean of the 

demand, j counts the number of iteration, and    is the vector of positive orders 

assigned to the suppliers.  
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Step 2. Calculate          i=1,2,…,n.   

Step 3. Re-index and rearrange the suppliers in decreasing order of       , so that 

               . Set j=j+1, and k=1 (k=1 indicates the first supplier in the new 

ranking).   

(a) If in iteration j>1, the ranking of suppliers is the same as in iteration    , the 

solution of iteration     is the final solution and stop. 

(b) Otherwise, continue.  

Step 4. Obtain     by Algorithm 1, that is the order quantity assigned to supplier k.  

Step 5.  

(a) If k   and       , then            , set k=k+1, and back to step 4. 

(b) If k   and         , then            ,        
    and back to step 

2. 

(c) If k   and      , then back to step 2. 

(d) Otherwise,            ,        
    and back to step 2. 

 

In step 3 (a), the stopping condition is sufficient to terminate the algorithm, because it is 

straightforward when the suppliers’ ranking in iteration j+1 is the same as iteration j the 

order allocation to the suppliers is the same as previous iteration. 

For the wholesale-price scheme, the algorithm finds the optimal order allocation in the 

first iteration, because according to Theorem 1, suppliers can be arranged according to 

either    or           that results in the same ranking. That is, the second iteration has 

definitely the same ranking as the first one.  

 

3. Numerical example 

Consider a SSP with three unreliable suppliers (  ,   ,   ) whose unreliability levels are 

       ,        ,        , prices are       ,        and         , 

buyback prices are      ,        and       , and capacities are    

           . Here,   1,   2 and   3, e.g.,      ,      ,       (in other 

words,        ). Product demand follows Normal distribution with        and 
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     . The retailer sells the product to the market with   550. We also assume that 

the shortage cost per unit,  , is zero. These data and information that have been 

introduced here are used throughout the numerical example as benchmark (Benchmark 

Data).  

 

 One very useful way to demonstrate that our algorithm solve the problem properly is 

that we solve the problem with different initial order quantity: Case 1:    ; Case 2: 

  6000. 

 

Case 1 (   ): 

Step 1.       , j=0 and     . 

First Iteration: 

Step 2. Calculate the retailer’s profit for each supplier by assuming that the suppliers are 

uncapacitated:        106,090.59;        118,964.49; and 

       120,864.27.    

Step 3. Based on retailer’s profit obtained in Step 2,    becomes the first,    is the 

second and    becomes the last one. We also set j=1 (j=1 means first iteration), 

and k=1 (k=1 means the first supplier that is   ). 

Step 4. By using Algorithm 1, we obtain         3000, that is, the order quantity 

assigned to   . 

Step 5. (a) Thus, we have                  , set k=2 (k=2 means the second 

supplier that is   ), and back to step 4. 

Step 4. By using Algorithm 1, we obtain         3000, that is, the order quantity 

assigned to   . 

Step 5. (a) As a result, we have                               , set k=3 (k=3 

means the third supplier that is   ), and back to step 4. 

Step 4. By using Algorithm 1, we obtain         1579.71, that is, the order quantity 

assigned to   . 
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Step 5. (d) We here have                                       

        ,   7579.71 as an initial order quantity for the second iteration, and 

back to step 2. 

For the seek of convenience, we show the vector of order quantity as            

                                .  

 

Second Iteration: 

In the second iteration, we see that the ranking of the suppliers is the same as iteration 1. 

Therefore, according to Step 3, the solution of iteration 1 is the final and optimal 

solution. Thus, the optimal order quantity vector is                           

                  that results in the retailer’s profit as 111,661.38. 

We here employ the proposed algorithm for solving the same problem but with different 

initial order quantity as Case 2. 

  

Case 2 (  6000): 

In the first iteration,        39,909.62;        23,139.69; and        37,946.92. 

That is,    becomes the first,    becomes the second and    becomes the last one. The 

order quantity allocated to each supplier in the first iteration is obtained as    

                                        . Thus,   7505.54 is the initial 

order quantity for the second iteration. 

 

In the second iteration, according to the initial order quantity,   7505.54,    becomes 

the first,    becomes the second and    becomes the last one. It results in    

                                        , and   7565.21 as the initial 

order quantity for the third iteration. Since the Suppliers’ order in this iteration is not the 

same as iteration 1, we go to iteration 3. 
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In iteration 3, by calculating the retailer’s profit based on   7565.21 for each supplier, 

we reach to this that    becomes the first,    becomes the second and    becomes the 

last one. This ranking is the same as that of Case 1-iteration 1. It means that we will 

reach to the same result of Case 1. From Case 1 and Case 2, we can conclude that 

different initial order quantity will reach to the same result, but probably, with different 

number of iterations. 

 

Here, we would like to discuss why Eq(3) cannot be used for gaining     . If in this 

numerical example we used Eq(3), we had                                

             and retailer’s profit was 108,953.81. While by Algorithm1, we have 

                                            that results in retailer’s 

profit as 111,661.38. That is, Eq(3) cannot be used in this problem.   

 

3.1. The impact of return price on supplier selection 

In Benchmark Data, we see that    is better than    in term of reliability rate and 

wholesale price. That is, if the suppliers are evaluated based on only these two criteria, 

   dominates   . However, here that the suppliers are evaluated according to three 

criteria, the return price offered by    (            ) helps him to dominates    

and to be ordered more:                                            , 

and retailer’s profit is 111,661.38. 

  

We here decrease the return price of    to    200. We again solve the problem by the 

proposed algorithm with different initial order quantities as Case 1 and Case 2. Both 
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cases lead us to                                             that results 

in the decline of retailer’s profit to 103,614.23. It also causes that the retailer switches 

from    to   . The decline of return price also decreases the total order quantity 

from   7579.71 in Benchmark Data to   7454.87, because the buyer cannot share 

the risks of uncertain demand and supply with his suppliers as much as before. 

 

We can conclude that implementing return policy is a very effective approach for 

suppliers to compensate their other disadvantages as well as for retailers to lighten the 

risks due to the uncertainties of demand and supply. 

 

3.2. The impact of unreliability level on supplier selection   

In the solution of Benchmark Data, we see that    dominates   . In order to see the 

effect of unreliability level of suppliers on both the supplier selection and retailer’s 

profit, we here improve the unreliability level of    from    0.05 in Benchmark Data 

to    0.04. We again solve the problem by the proposed algorithm with different 

initial order quantities as Case 1 and Case 2. The both cases release            

                                 that results in the growth of retailer’s profit 

to 123,865.29 from 111,661.38 in Benchmark Data. In addition, the improvement of 

unreliability level decreased the total order quantity from   7579.71in Benchmark 

Data to   7468.31. The reason for the retailer’s profit growth and order quantity 

reduction is that the number of useable products received from suppliers increased. 

Also,    no longer dominates   . 
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3.3. The impact of standard deviation,  , of the demand on supplier selection  

In comparison with Benchmark Data, we decrease   from 600 to 100. We again solve 

the problem by the proposed algorithm with different initial order quantities as Case 1 

and Case 2. Both cases arrived at                                       

      that results in the growth of retailer’s profit from 111,661.38 to 167,187.55, and 

of the total order quantity from   7579.71 to   8062.88 compared to Benchmark 

Data. For   600, choosing    (with       ,        ,       ) was more 

profitable than    (with       ,        ,      ), while for   100 it is inverse.  

 

The reason can be interpreted as follows. When   600,        is enough for    to 

compensate his weak-points on price and unreliability level, while for   100, causing 

the retailer’s profit to increase,        is not enough anymore. That is,    needs to 

increase his buyback price in order to be considered better than    as the retailer’s profit 

gets bigger. In other word, if a specific buyback price is effective on a specific retailer’s 

profit, it may not by anymore affective on a bigger retailer’s profit, and definitely, it is 

more affective on a smaller retailer’s profit.      

 

In order to have more investigation on the relationship between   and unreliability 

level, we consider the following case.  

 

Assume that there are two uncapacitated suppliers (  ,   ):       ,       , 

       ,        ,     ,         , and the market demand is Normal whose 

       and      . 
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We see that the wholesale prices, offered by the suppliers, are the same for both. The 

second supplier,   , is more reliable than the first one,   , because            

    . Obviously, the only item that    can utilize to compete with    is buyback price. 

Numerically we observe if           (while         ) neither supplier dominates 

another one. That is, the retailer’s profit if he buys from either supplier is the same and 

equal to 246,840. It is shown that in order for    to compensate his unreliability, he has 

to offer a greater buyback price compared to   . 

 

Now we investigate how much buyback price should be in order for neither supplier to 

dominate another one if   increases to 600. We again numerically see that if    

     ,          neither supplier dominates another one and the retailer’s profit 

becomes equal to 180,516. 

 

This numerical example demonstrates when   is lower (here   100 compared to 

  600) the less reliable supplier (here    compared to   ) needs to offer a greater 

buyback price (here    207.97 for   100 in comparison with    187.2 for   600) 

in order to compensate his unreliability. 

 

3.4. The impact of diversification on Retailer’s profit  

Consider the previous data: There are two uncapacitated suppliers:       ,    

   ,        ,        ,    187.2,         , and the market demand is Normal 

whose        and   600 (based on this data, retailer’s profit is depicted by Figure. 

2 for both suppliers). 
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The Figure. 2 shows that when the retailer only buys from   , his profit is 180,516 and 

order quantity is 7266.46. His profit and order quantity are 180,516 and 7563.83, 

respectively, if he only buys from   . Obviously, any combination between this two 

suppliers results in changing the retailer’s profit between 180,516 and T, and order 

quantity between 7266.46 and 7563.83. Therefore, diversification is not optimal at all 

for the retailer. However, when the suppliers have limited capacity, the retailer has no 

choice except diversification. 

 

 

 

Fig. 2. Buyer’s profit on two suppliers with different unreliability level and buyback price. 

 

4. Conclusion 

This study simultaneously took into account supplier selection problem (SSP) and 

stochastic inventory management in which the suppliers’ supply was uncertain. In order 

for the suppliers to compensate their supply unreliability, the suppliers allow the buyer 

to return unsold products at the end of the period (or season). The buyer needed to 

consider three criteria for supplier evaluation and order allocation: suppliers’ wholesale 

Retailer’s Profit 

Retailer’s Order Quantity 
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price, unreliability level, and buyback price. We then proposed an algorithm to evaluate 

the suppliers for concurrently obtaining the optimum inventory level and suppliers’ 

order allocation. The developed algorithm was the main contribution of our study.  

 

In reality, it may be difficult for purchasing managers to make a decision on optimal 

ordering quantity in such uncertain situations. Apart from wholesale price, which is 

common suppliers’ competitive factor, suppliers’ reliability level and buyback price can 

be considered as other competitive factors. This study helps purchasing managers to 

incorporate different criteria, such as (but not limited to) wholesale price, buyback price, 

and uncertainty in demand and supply, in order to obtain the best set of suppliers and 

their optimum order allocation. In addition, this study numerically reaches to the 

following managerial insights: (1) buyback scheme is able to allow the buyer to share 

the risk of uncertain supply and demand with his suppliers; (2) it is also an effective 

approach for the suppliers to compensate their unreliability level; (3) in comparison 

with lower demand variance, when the demand variance is higher, suppliers can 

compensate their unreliability level with fewer buyback price; (4) diversification is not 

an optimal approach for the retailer, unless the suppliers have limited capacity. 
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CHAPTER 6 – CONCLUSION AND FURTHER RESEARCH 
 

This study was dedicated to supplier selection problem (SSP) in a manufacturing 

company: a two echelon supply chain with a buying manufacturer and some capacitated 

suppliers. The reason for choosing this subject was that SSP is one of the most 

important tasks in a purchasing department. Selecting the right suppliers can 

meaningfully decrease the cost of purchasing and improve corporate competitiveness 

(Willis et al., 1993; Dobler et al., 1990; Xia and Wu, 2007). In addition, SSP is a very 

complicated problem since Decision Makers (DMs) should consider multiple criteria for 

evaluating the suppliers. Moreover, information on market demand may be considered 

as the most important cause of uncertainty in reality (Tajbakhsh, 2007). When 

uncertainty is an issue in SSP, complexity also increases more because the problem is 

usually integrated with inventory management so that DMs should simultaneously 

obtain the optimal inventory level and the suppliers’ order quantity. 

 

1. The main Objectives of this study 

We considered two different streams in this study: SSP with deterministic demand, and 

SSP with stochastic demand. In addition, for each stream we had two contributions. 

First contribution in deterministic demand: we modeled a multi-objective SSP where 

the DMs can determine a single goal for every objective. Then we propose a new 

normalize goal programming approach that can effectively incorporate the DMs’ 

preferences in suppliers’ evaluation by making the achieved objectives 

consistent with their goals.  

Second contribution in deterministic demand: We modeled a multi-objective SSP that 

allows the DMs to determine an interval goal for every objective. We 
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subsequently developed a new approached, namely multi-choice goal 

programming (MCGP), that can effectively incorporate the DMs’ preferences in 

suppliers’ evaluation by providing more control on both the inside and outside of 

the interval goals.  

First contribution in stochastic demand: We developed a multi-period multi-supplier 

newsvendor problem (dynamic programming) in which the capacitated suppliers 

may offer quantity discount as a competitive factor. Afterward, we proposed an 

algorithm to simultaneously obtain the optimal inventory level and suppliers’ 

order quantity for each period.  

Second contribution in stochastic demand: At the end, we extended a single-period 

multi-supplier newsvendor problem where the capacitated suppliers may be 

unreliable in terms of quality and/or delivery. For compensating the 

unreliability, the suppliers may allow the buyer to return unsold products at the 

end of the single period (buyback scheme). As a result, it was a very 

complicated problem because DMs should concurrently consider three criteria, 

suppliers’ wholesale price, unreliability level, and buyback price, for obtaining 

the optimal inventory level and suppliers’ order quantity. For solving the 

problem, we proposed an algorithm. 

 

2. The limitations of this study and Future research 

For the first two contributions, we employed mathematical programming that only 

considers tangible criteria, while SSP may be affected by both tangible and intangible 

factors. In order to obviate this limitation, AHP or ANP can be integrated with our 

mathematical programming model. In addition, we assumed that the demand and 
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suppliers’ capacities are known. However, these two parameters may be uncertain in 

reality. Therefore, considering multi-objective SSP with uncertain demand can be as 

future research.  

For the second two contributions, we only considered discount and buyback contracts, 

while other contracts, such as revenue sharing, price protection and rebate, are also very 

famous in the literature. Considering these contracts for SSP can be considered as future 

study as well. In addition, the supplier selection problem can be integrated with supply 

chain coordination. The supply chain coordination, which generally concentrates on 

inventory management, tries to improve the whole supply chain profitability by aligning 

the partners’ strategies and goals. However, we only considered the buyers’ strategies 

and preferences rather than those of the entire supply chain. Taking supply chain 

coordination into account for a SSP is also open for further study. Furthermore, we used 

stochastic distribution to model the uncertain demand. However, if the data related to 

the demand is not available, stochastic models cannot be employed anymore. Fuzzy set 

theory is one of the suitable techniques used for lack of data and information. Another 

direction for future study can be considering a SSP with fuzzy demand. 

 

3. Managerial implications 

In the first study (first contribution in deterministic demand), we make the achieved 

objectives consistent with their goals, which are determined by DMs. This means that 

purchasing managers (or DMs) can effectively incorporate their preference in decision 

making process. In addition, by the proposed model, the managers can express their 

preferences by both fuzzy and deterministic goals. 
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In the second study (second contribution in deterministic demand), we make the DMs or 

purchasing managers able to determine an interval goal, instead of a single goal, for 

every objective. Again, the managers can effectively consider their preferences in 

evaluating and selecting the suppliers. 

In the third study (First contribution in stochastic demand), we model a multi-period 

supplier selection problem that ensures the managers the availability of raw materials on 

an ongoing basis for production.  

In the fourth study (second contribution in stochastic demand), the managers become 

able to evaluate unreliable suppliers. In addition, our model helps the suppliers to 

compensate their unreliability by offering buyback contract (policy) to the buyer.  
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