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1.  INTRODUCTION 

1.1 Introduction  

The performance of manufacturing/ production planning part of a company is effected 

by different types of uncertainty. Graves (2011) categorized uncertainties that affect 

production planning section of a firm into three major types: “Uncertainty in Demand 

Forecast”, “Uncertainty in External Supply Process”, and “Uncertainty in Internal 

Supply Process”.  Many supply chain uncertainties in most industries arise from the 

demand side. Supply uncertainty, although infrequent, is another cause of uncertainty. It 

has considerable effect on the performance of a supply chain and supply decisions. 

Many researchers in the field of production planning, inventory, and supply chain 

management have studied demand uncertainty. Recently, supply uncertainty has been 

receiving considerable attention in the literature. There are several factors which causes 

major varieties in supply like natural disasters (weather condition, fire), equipment 

breakdowns, supplier’s capacity constraint, unplanned maintenance, market volatility, 

terrorist attacks, war, transportation, and so on (Tajbakhsh et al. 2007). 

Due to all these supply disruption causes, supply uncertainty can be categorized in three 

different aspects: Lead time, Quantity/ Quality of supply, and Purchase price (Snyder 

et.al (2012), Tajbakhsh et al. 2007).  

In this research, supply disruption from quantity perspective is in the center of our 

attention. Therefore, we focus on the concept and types of supply disruption from 

quantity perspective. 

Quantity supply disruptions are classified in three major categories: Randomness in 

supplier capacity, Random Supplier availability (disruption), and Random yield. 

(Tajbakhsh et al. 2007). 

Yield uncertainty is mostly applicable in the area of electronic devices and chemical 

process. Form inventory management point of view, yield uncertainty occurs in 

situation either order quantity to supplier is not match with received quantity or 

imperfect units are delivered form supplier. 
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Supply disruption can be viewed as a random supplier availability in which a supplier’s 

availability refers to the form of all-or-nothing (Bernoulli yield). This can be referred as 

a second type of supply quantity availability (Snyder et.al (2012).  

Variation in supplier capacity creates the other type of supply quantity uncertainty. In 

such environment, the risk of supply increases. To encounter the risk, some operational 

strategies/tools such as Stockpile Inventory, Multiple Suppliers, Backup Supply Source, 

Manage Demand, and Strengthen Supply Chain can be used. (Tomlin and Wang 2011). 

We illustrate uncertainties in supply chain in Figure 1.1. The focus of this thesis is on 

special type of supply uncertainties, uncertainty in supplier availability and uncertainty 

in random yield, which are shown with dashed lines square in Figure 1.1.  

Figure 1.1 Uncertainties in Supply Chain 

The other stream of this thesis is on the role of information sharing and updating on 

supply chain performance. Supply disruption affects the performance of supply chain 

members. To improve the performance of a supply chain by coordination, the role of 

information sharing cannot be neglected. Many studies have adopted coordination 

contract design and information sharing to deal with supply chain uncertainty 

(Arshinder et.al 2011). On the other hand, many papers have studied different 

forecasting tools to mitigate supply chain uncertainty that leads to accurate decision 

Uncertainties in 
Supply Chain 

Demand 

Supply 

Lead Time 

Purchase Cost 

Quantity/ 
Quality 

Randomness in 
Supplier 
Capacity 

Random 
supplier 

Availability 

Random Yield 
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making. When supplier’s reliability is uncertain, firm uses past information to forecast 

future supply availability. Since Bayesian approach can be applied for forecasting using 

past history, it seems to be an appropriate tool. As additional observation/ information 

reveals, Bayesian approach updates the probability of an event using new information. 

Empirical Bayesian approach introduced by Scarf (1960) is a tool to manage optimal 

base stock level and update or anticipate demand distribution at the same time through 

demand observation over time.  

Although the majority of attention in literature is focused on the value/flow of 

information from downstream to upstream in the form of realized demand, updated 

demand, and advanced demand information, less attention is paid to information sharing 

from upstream to downstream (supply-side information).  

In the literature, many inventory models assume supply is available continuously for 

future (Parlar & Perry 1995). In reality, a true distribution of either demand or supply in 

not known with certainty. 

1.2 Thesis Objectives and Research Questions 

This thesis deals with the effect of supply information sharing and updating on different 

areas of supply chain management: Production Planning/inventory Management, 

Marketing, and Behavioral Management. The objectives of this thesis are three-fold. 

First, from production planning/inventory management perspective, the objectives are 

 To characterize the special pattern of optimal production/ordering policy for a 

multi-period inventory model in which a machine produces two different 

products with a fixed (setup) cost for each.  

 To investigate the benefits of supply uncertainty forecasting on the behavior of 

the system. 

Second, we investigate procurement management under the assumption of uncertain 

random yield in a three-level supply chain consisting of a supplier, a distributor, and a 

retailer. The aims are 
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 To investigate the effect of random yield forecasting by learning from previous 

supply observations on the supply chain parties. 

 To induce the retailer for yield risk forecast sharing. 

 To discover under which condition and what contract the distributor shares the 

knowledge of supply risk with the retailer.  

 To explore the role of information sharing on the ordering decision and profit 

maximization. 

In chapters 2 and 3, we highlight the role of information sharing and updating from 

supply side on inventory and procurement management. While in chapter 4, we 

investigate the role of trust on shared forecast. The goals are: 

 To investigate whether supplier shared supply forecasting information truthfully.  

 To explore under which condition manufacture should trust supplier’s report.   

 To find an optimal ordering policy for two situation of information sharing, 

truthfully and untruthfully. 

1.3 Research Methodologies 

To answer the research questions and reach the objectives stated in the previous section, 

mathematical modeling is proposed and analytical results are obtained. For the first 

work, a mathematical model is developed for multi-period inventory management 

where an unreliable machine produces two different products with two different fixed 

costs. The machine availability is updated using Bayesian updating learning from 

previous periods’ information. Mathematical proofs are presented to support analytical 

results, theorem and lemmas. In the second work, to share the risk of supply 

unavailability between supply chain members, a distributor and a retailer, we propose 

four various contracts in a three-echelon supply chain. For two contracts, Bayesian 

updating is used to forecast uncertain random yield and an algorithm is proposed to 

obtain the optimal ordering quantity. While for the two other contracts, analytical 

results are obtained. In all four contracts, game theory approach is used to make an 

appropriate procurement decision. Finally, in the last work of the thesis, the problem of 

truthful forecast information sharing is modeled mathematically and results are obtained 

intuitively and numerically.  
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In this thesis, analytical results are supported by numerical examples as well. 

1.4 Thesis Outline 

The organization of the thesis is as follows: Chapter 2 determines the optimal ordering 

policy of a two-product, periodic-review inventory problem in which the probability of 

supply availability is unknown. In Chapter 3, different coordination contracts are 

proposed to share yield risk uncertainty in a three-echelon supply chain. Chapter 4 

investigates the role of trust in supply forecast information sharing and supply chain 

member’s fundamental decisions. Thesis conclusion, findings, limitations, and future 

recommendations are presented in Chapter 5. 
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2. TWO-PRODUCT INVENTORY MANAGEMENT WITH FIXED COSTS AND 

SUPPLY UNCERTAINTY 

This Chapter determines the optimal ordering policy of a two-product, periodic-review 

inventory problem in which the probability of supply availability is unknown. 

Moreover, there are two different fixed costs assigned to each product. Demand rates 

are random variables with known probability density functions, and the supply 

availability of each product is updated at the beginning of each time period. We prove 

the optimality of (s,S) policy with a monotone switching curve that indicates the priority 

of production, where the order-up-to levels and the reorder points are functions of 

supply availability information. A simple computation is proposed to calculate the two 

thresholds levels. Bayesian updating helps to manage the optimal ordering policy by 

updating supply disruption information. Numerical results show that improving the 

accuracy of the forecast leads to making a better ordering decision and eliminating the 

negative effect of supply disruption on the total cost.   

2.1 Introduction 

There are predictable and unpredictable factors that cause supply disruption, which 

negatively impact the performance of a supply chain and its members, such as 

uncertainty of demand and supply (e.g., Tajbakhsh et.al , 2007, Atasoy et.al, 2012). 

Demand uncertainty has been studied by many researchers in the field of production 

planning, inventory and supply chain management. Recently, supply uncertainty has 

been receiving considerable attention in the literature. First, due to its importance and, 

second, because not many studies are available in the literature. Traditional production 

and inventory policies set by firms to encounter the risks that arise from supply 

disruptions of products may be ineffective (Tomlin, 2009). A firm can learn from its 

experience with its supplier, for instance, the history of supply availability, to determine 

how reliable that supplier is. Through observations, a firm can acquire additional 

information that leads to more accurate ordering decisions. 
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This Chapter addresses the optimal ordering/production scheduling policy for a system 

that produces two products with finite planning horizon, where inventory is reviewed 

periodically due to variation in demand and uncertainty in supply availability. Two 

switching costs are incurred, for example, when the facility switches production 

between two products.  The developed model adopts a structure of supply availability of 

all-or-nothing; i.e., in a given period the supply is either fully available or unavailable. 

The model is used to determine the optimal ordering/production policy for each of the 

two products. The developed model is also applicable for periodic production planning 

problems with unreliable manufacturing facilities.   

There is a plethora of published works in the literature on inventory with probabilistic 

and uncertain demand, however it would not be effective and feasible to review them 

here. Thus, the following review focuses on the ordering/production planning literature 

with fixed costs, uncertain supply, and (s, S) inventory policy. The review of the 

literature classifies the works on inventory/production planning problem into two 

groups. These include studies that considered fixed cost(s) and those that considered 

uncertainty of supply. The earliest works of the first category are those of Scarf(1960) 

and Veinott(1966) who dealt with  the concept of K-convexity in stochastic inventory 

management, for a single product case where a K-convex function is defined as for any 

0 <  < 1, K ≥ 0 (fixed cost), and x  y, f(x+(1)y)  f(x) +(1)(f(y)+K). They 

showed that a periodic review (s,S) inventory policy for a single product is optimal 

under certain assumptions. Johnson (1967) investigated a multi-product periodic review 

inventory problem with a single fixed cost for all products, with an order cost for each. 

For the infinite planning horizon case, Johnson (1967) showed that the (σ,S) policy is 

optimal. This policy operates as follows, if the inventory level of a product at the 

beginning of a period is in the reordering region, σ, then order up to S otherwise do not 

order. Kalin (1980) redefined σ as a do-not-order set, an increasing set, regarding a 

specific partial ordering. He, who considered a single product with a fixed cost, 

recommended an optimal order policy that when the initial inventory level is in the set σ 

do-not-order, else order up to the vector level S. Elhafsi and Bai (1996) studied a 

production and setup scheduling problem in which a machine produces two products 

with fixed setup times and costs for both products. Under the assumption of constant 

demand rate and constant processing time for each product, the optimal production rate 
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and setup epochs are derived as a function of the system’s state for the cases of finite 

and infinite time horizons. 

To compute the optimal ordering policy, Ohno & Ishigaki (2000) presented a time-

computing-efficient algorithm, the Policy Iteration Method (PIM), to minimize the 

expected undiscounted cost function for multi-item continuous time inventory model 

with fixed replenishment time. Shaoxiang (2004) showed that the optimality of the 

hedging point policy is based on the concept of   differential monotone for finite and 

infinite planning horizons, for a two-product periodic review stochastic inventory 

system with no setup (fixed) costs, where demands are random and the production 

facility is unreliable. A function,  yxGn , , is said to be -differential monotone if: (1) 

 yxG
nx

,  when x and y, (2)  yxG
ny

,  when x and y, and (3) 

   yxGyxG
nynx

,, 21     when x and y, where, e.g., x is non-decreasing in x and 

y is decreasing in y (Shaoxiang, 2004; p.314)). A generalization of the K-convexity in 

   was proposed by Gallego & Sethi (2005) for the case of joint and individual setup 

costs to determine the optimal policy for a multi-product inventory problem. In addition 

to the definition of K-convexity in   , some properties of the function were developed. 

Numerically, they showed that the (σ, S) policy is optimal for a two-product, two-period 

inventory problem with deterministic demand and a joint setup cost. Chen and Simchi-

Levi [5] Investigated periodic review of stochastic cash balance problem when there are 

fixed costs for both ordering and return. The objective was to make ordering or return 

decisions to minimize the total expected cost for N-period planning horizon. To 

characterize the optimal policy, they developed the concept of symmetric K-convexity 

and (K, Q)-convexity.  

Demirag et al. (2012 a) developed two heuristic policies for a firm in which an ordering 

(fixed) cost is incurred when the order quantity of the previous period does not cross a 

specified threshold level. They partially characterized an optimal policy that is simpler 

and easier for practical implementation. In a follow-up paper, Demirag et al. (2012 b)  

determined the optimal policy for a single-product stochastic periodic review inventory 

problem  operating under three different forms of the fixed cost: (1) If the order size 

exceeds a threshold C, then a fixed cost    is incurred, otherwise   <   , (2) an 
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incremental value of   is incurred per batch for any additional order quantity higher 

than batch capacity C, and (3) an additional fixed cost is incurred for any order as well 

as a fixed cost charged for batches. They introduced an optimal policy for a new 

concept of (C,       )-convexity for (1); an X-Y band type optimal policy applies for 

(2) and (3).   

For continuous review of the capacitated inventory/production problem, Chao et. al 

(2012) developed an (r,S) policy and presented an algorithm to compute parameters r 

and S. They assumed that demand arrivals follow a Poisson distribution and setup costs 

are incurred with every production run. Their optimal production policy suggests 

turning the machine on to produce, if the inventory level of a certain product is below r, 

and off if it is above S.  

The second group of studies of interest focuses on reviewing stochastic 

inventory/production planning where product supply availability is uncertain. The 

review first considers those studies that deal with where the supply distribution is 

known. Parlar et al. (1995) showed that the (s,S) policy is optimal and a reorder point, s, 

is dependent on the previous supply state, and that, s, increases if the current period of 

supply is fully filled. To compute the optimality of order-up-to level policy, Gullu et al. 

(1997) presented a newsboy-like formula for a single-product, periodic review 

inventory order-up-to level policy with supply uncertainty for the cases of deterministic 

and dynamic demand. They assumed that supply availability follows a Bernoulli 

process and supply to be either available in full or unavailable. Özekicia and Parlar 

(1999) considered a periodic review inventory-production planning control problem 

with and without fixed costs in an environment in which the cost parameters and 

demand and supply availability are randomly changing. A base-stock policy and an (s,S) 

policy were shown to be optimal when a supplier is unreliable.  

The aforementioned papers consider supply uncertainty concept with perfect knowledge 

on supply distribution. Scarf (1959), Azoury (1985), Lariviere and Porteus (1999) are 

examples of studies that deal with demand Bayesian learning and its effect on 

production decisions. On the contrary, scarce are those works on reducing supply 

uncertainty by learning. To the best of the authors’ knowledge, there are two papers that 
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address dual-sourcing and inventory management when supply distribution is unknown 

and supply uncertainty is forecasted by the Bayesian learning approach. Tomlin (2009) 

was the first to investigate the effect of supply learning on inventory and sourcing 

decisions. Using Bayesian updating, he assumed that a supplier’s yield distribution is 

updated for the Bernoulli case of all-or-nothing yields. His results showed that a 

supplier is more enticed to order when its supply reliability uncertainty increases. In 

turn, an improvement in estimating the accuracy of successful arrivals from a supplier 

decreases the risk of a future supply disruption, and consequently reduces investing in 

inventory. In another study, Chen et al. (2010) investigated a problem where a 

manufacturer is faced by a dual sourcing problem. Unlike Tomlin (2009), one of the 

suppliers is unreliable with lower ordering cost, while the other is reliable with a higher 

order costing. Using the Bayesian learning process, they updated information about the 

unreliable supplier to find the optimal sourcing decision for a multi-period dynamic 

problem. They assumed that supplier reliability state and distribution of arrival 

proportion levels are unknown for the manufacturer at order placement time. Recently, 

Atasoy et al. (2012) provided an improvement to earlier works by investigating a single-

product inventory problem, where a supplier provides its customer (a manufacturer) 

with information on its future supply availability. They considered a production-

inventory situation for non-stationary deterministic demand with fixed and no fixed 

ordering costs. They proposed a heuristics algorithm to prove the optimality of state-

dependent (s,S) policy and showed that supply information sharing is not beneficial 

when  the ordering cost is high and supply availability is low. 

The models available in the literature that are of relevance to this study, are either to 

solve  inventory management problems for a single-product or multiple products where 

supply availability follows a Markovian process, or optimal-sourcing strategies by 

updating the knowledge of supply disruption.  To the best of the authors’ knowledge, no 

study in the literature has considered the effect of supply availability with Bayesian 

learning updating on the ordering policy for a two-item inventory problem, with a 

setup/order (fixed) cost for each. The aim of this study is to characterize the special 

pattern of the optimal production/ordering policy for such a problem. Moreover, the 

research investigates the benefits of supply uncertainty forecasting on the behavior of 

the system. 
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The rest of the Chapter is organized as follows. The mathematical model and the supply 

availability structure are presented in section 2.2. Section 2.3 presents the 

characterization of the optimal policy by a simple algorithm and some numerical 

examples. Discussion of results and managerial insights are provided in Section 2.4. 

Finally, Section 5 includes a summary, conclusions and possible future extensions.    

2.2 Mathematical Model 

Suppose a single supplier (e.g., machine) fills orders for two products, one at a time, 

under an unlimited capacity constraint. It is assumed that the demands for the two 

products are identically independent, and distributed (i.i.d) random variables in each 

order period with density function  ( ). To meet the uncertain demand, it is also 

assumed that the supplier places an order at the beginning of each period. Then, we 

investigate a periodic review of N-period ordering/production problem in which the 

probability of supply availability, say supplier reliability, is unknown. Using Bayesian 

learning, a manufacturer can update its initial knowledge of supply availability over 

time.  At the end of the period, either holding or shortage costs are incurred, if either an 

excess or shortage of on hand inventory occurs. The unit production/ordering cost,    , 

and the fixed cost,   , are incurred for item      . The future expected cost is 

discounted by rate r.  

We propose to find the optimal production quantity in each period for each product 

where the supply availability will be forecasted at the start of each period. We assume 

supply availability is a random variable that follows the Bernoulli distribution with an 

unknown parameter, probability of supply availability, , with prior Beta density 

function. Bayesian updating is used as a tool to predict and update the expected supply 

availability using information received from previous periods. 

2.2.1 Supply Availability Structure 

Supply availability is of all-or-nothing type. That is, at the beginning of each period an 

order is placed to a machine/supplier. If the supplier is in an up status, then the order is 

successfully filled, otherwise it is not. Bayesian updating is used to learn about the 

reliability of a supplier (supply availability). Suppose that the supply availability 

probability follows the Bernoulli distribution with an unknown parameter, θ, which is 

the probability of the supplier’s reliability. The prior distribution of the unknown 
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parameter is Beta with parameters α and β. The posterior distribution is also from the 

Beta distribution family in which the parameter α updates to α+1 as one observes the 

supplier satisfies a placed order in a period and β increases by the number of 

unavailability periods. This assumption was used in Tomlin (2009). For modelling 

reliability uncertainty, Tomlin (2009) applied Beta family distribution. He stated that 

the distribution is attractive to be chosen because a large range of belief can be reflected 

by Beta family. Moreover, the Beta family properties are preserved for posterior 

distribution after a Bernoulli trail.  

The initial belief of the probability of the supplier reliability,, can be estimated given 

the two parameters α and β. As the system learns more about the supply availability, it 

would be possible to forecast the expected supplier reliability using the new observation 

to find a more accurate one. The initial estimate of θ is 
 

   
 and the supplier is reliable 

for the next periods with a forecasted mean of 
   

     
 and it is unreliable with a 

probability of  
     

     
 , where   ∑   

 
    is the number of supply available periods 

where      if the supplier is up and 0 if it is down.  

2.2.2 Dynamic Programming Notation and Formulation 

Consider an N-period, two-product dynamic programming in which a firm incurs two 

distinct switching/fixed costs any time a positive quantity is ordered from a supplier. 

Note that, we generalize the meaning of a supplier to either be an outsource supplier or 

a production facility. In each period, the firm is allowed to order one product only from 

the supplier. Demands from the two products,      , are i.i.d random variables with 

pdfs and Cdfs   ( ) and    ( ), respectively. A unit holding cost,    , and a penalty 

cost,   , are charged for any leftover inventory and shortage quantity at the end of each 

period for item i=1,2. Let    and    denote the unit ordering/production cost for items 1 

and 2, respectively, and   is a one-period discount factor where   (   ). Define     

and     as the initial and after-order inventory levels of item i=1,2, respectively.    

Let us define    (           ) be the minimum expected discounted cost function given 

the initial inventory levels     and     of items 1 and 2, and any state (   ) at the 

beginning of period  . In the model, (   ) is not subscribed by a time index because its 
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time index is clear from the formula. The dynamic programming problem can be 

formulated as follows: 

  (          )    (  (         ))    (   {  (         )           
    

  (         )            
      (         ) })             (1) 

where,    
 

   
,    

 

   
 . The other terms of Eq. (1) are given as: 

  (         )    (  )    (  )    (    (               ))    (2)  

  (  )         (  ) ,    (  )         (  ) ,   

  ( ): The one-period expected holding and shortage cost function, 

  : The one-period demand for product  ,  =1,2, 

Where   ( )    ∫ (    ) (  )
 

 
      ∫ (    ) (  )

 

 
    for                  

Letting 

  
 (         )  

   {  (  (         ))  

  (   {  (         )           
      (         )            

     

  (         ) })}         (5)  

, the expected discounted cost function in Eq. (1) can then be expressed as follows: 

  (         )                
 (         )     (6) 

Given an unavailable supply period, the state of the system does not change and the 

parameter    will be updated to    . On the other hand, when the supplier fills an 

order, depending on the product type, it costs the firm the corresponding ordering and 

fixed switching costs and the updated parameter   is    .  

At the beginning of each period, starting at state (     ), there are three choices to 

consider depending on the supplier’s status and the system’s state. If the supplier is 
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down, then no action is taken. On the other hand, we may order either product 1 or 

product 2 or nothing when the supply is up. Given supply availability information using 

Bayesian updating, the optimal ordering policy that minimizes the total expected 

discounted cost function is determined.  

2.3 Optimal Policy Condition 

The mathematical model discussed in the previous section states that if the supplier is 

unavailable, ordering/production quantity is zero, otherwise the optimal ordering policy 

is either produce item 1 or item 2 or nothing. To characterize the optimal policy, first we 

introduce some notations that serve the sufficient conditions of optimality. Let us define 

   as a set of functions defined on 2R which are (  ,   )-convex, supermodular and 

diagonal dominance. The definition and properties of (  ,   )-convexity introduced by 

Gallego & Sethi (2005) are presented in Appendix E.2. We assume that 

  (         )     and    ‖ ‖    ( )    where   (     )  states the vector 

form of initial inventory level therefore, 1S and 2S   are the two global minimizers of 

  (         ) with respect to 1x  and 2x  respectively.  

To characterize the optimal policy, some critical points and operators are defined as 

follows. 

We define   (   ) and   (   ) as the minimisers of   (         ) with respect to    

and    respectively. Let us define the two useful operators   and    as follows: 

    (         )       (  (   )       )    (         ) 

    (         )       (     (   )    )    (         ) 

These two operators calculate the additional cost of producing product 1 and 2 up to 

their service level,   (   ) and   (   ).  

Here, we note that in this model, the fixed cost is not a function of a product’s inventory 

level. It is also assumed that both products are identical in terms of manufacturing 

propose.   
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To support the characterization of optimal policy, it is assumed that the operators have 

the following properties:  

Assumptions  

(I)     (         )           , 

(II)     (         )           , 

(III)     (         )       (         )          . 

Since we assume that the machine can either produce one product or produce nothing at 

each time given the initial inventory levels, we need to define two switching curves to 

separate the ordering regions. This assumption is also addressed by Ha (1997). In such a 

system, it is important to schedule production of each product according to priority. The 

two switching curves are as follows: 

 (      )     {        (         )         (         )    } 

 (      )     {        (         )       (         )   } 

Function  (      ) separates the production region of item 1 from that of item 2 and 

 (      ) forms the production and non-production regions. We symbolize these three 

regions by   ,   , and   . The mathematical representation of the ordering regions is 

defined as follows: 

   {(     )  (  (   )   (   )) |         } 

   {(     )  (  (   )   (   )) |             } 

   {(     )          } 

Non-production region    is located above  (      ) and   is above  (      ) and 

below  (      ), while    is below  (      ) and  (      ).  The following lemma 

is useful when we analyze optimal policy.  
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Lemma 1: If   (         ) is (  ,   )-convex, then 

a) 

  
 (         )     {     (         ) }  

{
     (         ) (     )    

  (         ) (     )    
   

b) 

  
 (         )     {     (         ) }  

{
     (         ) (     )    

  (         ) (     )    
   are (  ,   ) -convex where   (   )  and 

  (   )are the global minimizers. 

Lemma 2 below shows that the (  ,   ) -convexity, supermodularity and diagonal 

dominance properties of   (         )  are preserved under minimization. Its 

usefulness will be shown later in the Chapter. 

Lemma 2: 

   
 (         )     {  

 (         )    
 (         )    

 (         )}  

{

     (         ) (     )    

     (         ) (     )    

  (         ) (     )    

 is (  ,   )-convex, supermodular and diagonal 

dominance. 

Proposition 1:   (         ) is (  ,   )-convex, supermodular and diagonal dominant 

in    and    for    . 

The proofs of Lemma 1, Lemma 2 and Proposition 1 are presented in Appendices A and 

B, respectively. 

(  ,   )-convexity of    implies that it is customary to show the optimality of (s,S) 

policy, but is it not sufficient since we need to switch ordering with respect to ordering 

priority. 

 



 

19 
 

2.3.1 The Structure of Optimal Policy 

In this section, we show the optimality of (s,S) policy together with a monotone 

switching curve.  

Proposition 2: 

a) Given    and   , if the inventory level of item 2 is above or equal to  (      ), then 

do not order. Otherwise, order product 2 if    is below  (      )and order item 1 if  

   is above  (      ), 

b)  (      ) is decreasing in    for    , 

c)  (      ) is increasing in    for    . 

See the Appendix C for the proof of Proposition 2. 

We define the two threshold levels   (   )  and   (   )  of item 1 and item 2, 

respectively, by the following expressions 

  (   )     {     (      )    (      )}, 

  (   )   (  (   )) 

where   (      ) and  (      ) are two switching curves. The value of    at the first 

intersection point of   (      )  and   (      )  is   (   ) . Figure 1 portrays the 

optimal scheduling policy. 
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Figure 2.1 Optimal policy and Ordering Regions 

(s,S) policy for the problem is defined as follows: 

If the initial inventory level of each product is at or above its threshold level, then stop 

ordering; otherwise, order it up to its base stock level. Next, we define ordering priority 

for products when both products inventory level are below their threshold level. For the 

following region, we characterize the optimal ordering policy in Theorem 1. 

  (  (   )    (   ))  {(     )|      (   )         (   )} 

Theorem 1:  

Given the initial inventory levels, the optimal ordering policy is (  
 (   ),   

 (   )), 

together with a monotone switching curve  (      ) for item        in period n when 

the initial inventory levels are at or below their threshold levels. The proof of Theorem 

1 is provided in Appendix D. 

 

 

(  (   )   (   )) 

(  (   )   (   )) 

Region 2 (  ): 

Order Product 2  

Region 1(𝜎 ): 
Order  Product 1 

   

   

 (      ) 

 (      ) 

Region 0 (𝜎 ): 

Order  Nothing  
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Lemma 3: If    
     then    

 (   )    (   ) for any   . 

Proof: We define    (         )       (         ) and   
 (         )      

  (         ) . For   
    , and       (         )         (         ) . 

Therefore,   (         )    
 (         ) .  Since   (   )  and   

 (   )  minimize 

  (         ) and   
 (         ), respectively.   

 (   ) must be less than   (   ).   

2.4 Numerical Results 

In this section, we present numerical examples to illustrate how the optimal ordering 

policies for the model developed in the previous section behave for different situations, 

and for the cases of high and low volume demand. We are interested to see how the 

initial Bayes estimation of the probability of supply availability, and its updating affect 

a firm’s ordering strategy. To do so, we analyze the results for two models; Bayesian 

and non-Bayesian. We also investigate the effectiveness of prior information of the 

probability of supply availability on the optimal order quantity for the Bayesian and 

non-Bayesian models with and without fixed costs. In the developed model, it is 

assumed that the prior distribution of the probability of supply availability follows Beta 

distribution with parameters α and β. For the non-Bayesian model, the probability of 

supply availability is the expected value of   
 

   
 with respect to the prior mean in 

every period, while it is updated for Bayesian model by observing the supplier’s status 

in the previous period.  

To compute the total expected discounted cost and the optimal order levels, we assume 

that the initial inventory levels of both products are zero. The numerical results are 

obtained by the following input cost parameters: h =1, p =10,      ,     , and 

    . For the high demand case, we assume that the demands are uniformly 

distributed over the intervals [0,5] and [3,6] for products 1 and 2, respectively. On the 

other hand, low demand follows the same distribution for the intervals [1,3] and  [0,2], 

for products 1 and 2, respectively. Furthermore, in this example, unmet demands will 

not be filled in the next period, and therefore it is lost at no cost. Six scenarios are 

considered in this section, which are summarized in Table 2.1. The numerical results are 

obtained for different scenarios that are presented in Table 2.1. Three production/order 
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periods are considered, T= 1, 2, 3, where the performance measure used is the total 

expected discounted cost for the optimal order quantity for each of the T periods. 

Table 2.1 Demand and Fixed Costs Scenarios  

Scenario Demand Setup costs Scenario Demand Setup costs 

1 High              4 Low              

2 High               5 Low                

3 High               6 Low                

The numerical examples will be classified into four subsections: (1) high demand with 

and without fixed (setup) costs, (2) low demand with and without fixed (setup) costs, 

(3) fixed costs effect, and (4) analysis of absolute value of information (VOI). There is a 

common finding among the results of the six scenarios where the optimal ordering level 

for 1- period problem is always less than those of 2 and 3-period. This is because we 

assume that there is no terminal salvage value. The optimal ordering policy consists of 

the optimal ordering levels shown in the various tables; that will follow together with a 

switching curve similar to the one depicted in Figure 1, and as stated in Theorem 1. It 

will be clear after comparing the results summarized in the tables (Appendix) that the 

optimal ordering policy of a product is more sensitive to the values of the probability of 

supply availability when the demand is high. For the case when the demand of product 

1 is the same as that of product 2, the ordering levels for both products are sensitive to 

changes in the value of the probability of supply availability. In all scenarios, for the 

Bayesian model and same prior mean, the slope of cost reduction decreases faster when 

the probability of supply availability is low especially for high demand case. For 

example, in Table 2.A4, when (α, β)= (1,1) and (3,3) the total cost decreases by 5.9% 

(from 181.21 to 170.46) while for (α, β)= (4,1) and (12,3) the cost reduction is 4% 

(from 144.51 to 138.68).  

2.4.1 High Demand with and without setup costs 

Tables 2.2 and 2.A1 to 2.A5 summarize the results, which include the optimal order 

quantity and the total expected discounted for scenarios 1 to 3, with and without 

Bayesian updating for the three periods, and for different  and  values, where  () 
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the number of periods the machine is up (down). It can be seen that as the sample size 

increases, the total expected discounted cost decreases. This means that the more 

knowledge from the past, the greater the value of Bayesian updating especially for the 

case of low initial prior estimation. For example, in Table 2.2, for the case of 

determining the order policy for three future periods (or 3-Period ) where (α, β)= (1,1) 

and (3,3) the total cost decreases from 167.08 to 154.10, respectively, as more 

information is available from the second, 3+3=6 periods, than from the first, 1+1=2 

periods.    

For the same prior mean, when the initial prior mean on the probability of supply 

availability, , is low, the optimal order quantities for the Bayesian model are less than 

those produced from the non-Bayesian model for both the 2-period and 3-period, 

respectively (i.e. when θ = 0.5 where (α, β) = (1,1), (2,2), and (3,3) and when θ = 0.667 

where (α, β) = (2,1), (4,2), and (6,3)). On the other hand, for high prior mean on the 

probability of supplier availability, the optimal order quantity of the Bayesian model 

converges to those of a non-Bayesian model (compare the results in Tables 2.2 and 

2.A4). For instance, for 3-Period, the optimal order quantity for the Bayesian model 

with (α, β) = (4,1) is (6.4, 6.3) from Table 2.2 which is the same for the non-Bayesian 

model when θ = 0.8. The results also show that the optimal order quantities are sensitive 

to changes in the value of the probability of supply availability, when there is supply 

scarcity. Moreover, for the same prior mean, the optimal order level of a product with 

higher expected demand increases in sample size, especially when the probability of 

supply availability is low (e.g. in Table 2.2, for (α, β) = (1,1) and (3,3) the optimal 

ordering level of product 2, which has the higher expected demand increases from 6.7 to 

6.9) to be more secure about future supply disruption. 

One more observation is that with low prior mean on the probability of supply 

availability, e.g., θ = 0.5 corresponding to (α, β) = (3,3) for 3-Period,  the optimal order 

quantities are strictly higher than those  with high prior mean, ( e.g., θ = 0.8 

corresponding to (α, β) = (8,2) for 3-Period, for both the Bayesian model, (S1, S2) = (6.4, 

6.9), and non-Bayesian model, (S1, S2) = (6.4, 6.3)). This can be explained by the fact 

that under a low initial prior mean, the supplier is less reliable. Hence, to avoid 

incurring shortages and additional costs, the manufacturer would increase the order 



 

24 
 

levels because holding inventory would be less costly than experiencing a stock-out 

situation. 

Table 2.2 Optimal Ordering Levels for Bayesian model, Scenario 1  

 

2.4.2 Low Demand with and without setup  

In this section, we repeated the analysis of Section 4.1, for scenarios 4, 5, and 6. The 

results are summarized in Tables 2.A6-2.A11 for the Bayesian and non-Bayesian 

models. For the case of a no setup cost, and by comparing the results in Tables 2.2 and 

2.A1 (Scenario 1) with those in 2.A6 and 2.A7 (Scenario 4), respectively, one can 

(α, β) 

1-Period 2-Period 3-Period 

 

(     ) Cost (     ) Cost (     ) Cost 

(1, 1) (3.2, 5.5) 59.229 (5, 6.7) 107.696 (6.4, 6.7) 167.083 

(2, 2) (3.2, 5.5) 59.229 (5, 6.8) 106.624 (6.4, 6.8) 157.723 

(3, 3) (3.2, 5.5) 59.229 (5, 6.9) 106.148 (6.4, 6.9) 154.104 

(2, 1) (3.2, 5.5) 50.139 (5, 6.5) 90.497 (6.4, 6.5) 140.686 

(4, 2) (3.2, 5.5) 50.139 (5, 6.6) 89.791 (6.4, 6.6) 132.596 

(6, 3) (3.2, 5.5) 50.139 (5, 6.6) 89.500 (6.4, 6.6) 129.694 

(3, 1) (3.2, 5.5) 45.594 (5, 6.3) 82.335 (6.4, 6.3) 126.930 

(6, 2) (3.2, 5.5) 45.594 (5, 6.4) 81.865 (6.4, 6.4) 120.333 

(9, 3) (3.2, 5.5) 45.594 (5, 6.4) 81.684 (6.4, 6.4) 118.045 

(4, 1) (3.2, 5.5) 42.867 (5, 6.3) 77.589 (6.4, 6.3) 118.554 

(8, 2) (3.2, 5.5) 42.867 (5, 6.3) 77.261 (6.4, 6.3) 113.088 

(12, 3) (3.2, 5.5) 42.867 (5, 6.3) 77.138 (6.4, 6.3) 111.223 
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notice that the expected costs for 1-Period, 2-Period, and 3-Period and all values of (α, 

β) are much lower than those for the high demand case. In addition, the S1 and S2 values 

are also lower than those for the high demand case, but less sensitive to past 

information. Similar interpretation of the results can be made when comparing the 

Tables for Scenarios 2 and 5, and 3 and 6, respectively, for the Bayesian and non-

Bayesian models with setup costs and for high and low demand cases. This suggests 

that obtaining supply availability information for the high demand case is more 

beneficial than for the low demand case. Moreover, for the same initial prior mean, the 

total expected discounted cost decreases in sample size smoothly especially for high 

prior estimation.  

2.4.3 The effect of fixed costs  

Where K1> K2>0, we compare the results summarized in Tables 2.2 and 2.A2 and 2.A1 

and 2.A3 for Bayesian and Non-Bayesian models respectively. The results comparison 

indicates that the cost is more sensitive for values of  for the non-Bayesian model than 

the Bayesian model. For example, from Tables 2.2 and 2.A2, for 3-Period, when (α, β) 

= (1, 1), (2, 2) and (3, 3) the costs increase by 8.5% (from 167.08 to 181.21), 10% (from 

157.72 to 173.50) and 10.6% (from 154.10 to 170.47) when comparing the 

corresponding rows in Tables 2.2 and 2.A2. Whereas when (α, β) = (4, 1), (8, 2) and 

(12, 3) the costs increase by 21.89% (from 118.55 to 144.51), 23.96% (from 113.09 to 

140.18) and 24.69% (from 111.22 to 138.69). When comparing Tables 2.A1 and 2.A3, 

one notices as  increases in value from 0.5 to 0.8 to 0.98, for 3-Period, the costs 

increase by 11.93% (from 146.05 to 163.47), 26.23% (from 107.47 to 135.65) and 

39.68% (from 87.017 to 121.54). We also notice that S2s2 are sensitive to (α, β) while 

S1s1 values are not. This is based on the assumption that the expected demand for 

product 2 is higher than that of product.   

When the fixed cost is high, e.g.      ,  for the same initial prior estimation, the 

availability of more information becomes less important, especially when the initial 

prior mean of the probability of supply availability, , is low. This happens because the 

manufacturer orders in high volume to avoid high setup/ fixed cost as the optimal order 

points are independent of the values of α and β. Therefore, it may not be beneficial to 

invest for collecting the information and learning from previous observations when the 



 

26 
 

fixed cost is high. This is true only when the demands for products 1 and 2 are low. 

However, when the demand is high the system behaves similar to the high demand with 

no fixed cost. This can be observed by comparing the results of Tables 2.A2, 2.A4, 2.A6 

and A8 (in the Appendix) for the Bayesian model with high demand and low demand 

cases, respectively, when the fixed ordering costs of a product increases. Considering 

Scenario 3, where K1< K2>0, the results are summarized in Table 2.A4 in the Appendix.  

The behavior of the model as for the case when K1> K2 >0, when compared to the 

results of Scenario 1 (Table 2.2). The behavior of the order policy remained the same, s1 

< s2 and S1 < S2 for 1-Period, 2-Period, and 3-Period, with a switch in behavior for 3-

Period when   0.8. It is most likely that the consistency in the behavior of the 

inventory policy is due to the assumption that the expected demand for product 1 is 

lower than that for product 2.  

2.4.4 Analysis of the absolute value of information (VOI) 

The absolute value of information (VOI) is analyzed for three levels of past information, 

Low (L), Medium (M), and High (H). Here, we make an example for two cases of initial 

prior mean, 0.5 and 0.8.  The following formulas are used to calculate the absolute VOI 

for a 1-period, 2-period and 3-period problem, respectively, where VOI is calculated as  

                                                   

                                                 

                                                      

                                               

For example, for an initial prior mean of  = 0.5 with low demand and          

  , the absolute VOI is       = 84.459-83.917= 0.542.  Table 2.3 presents the 

absolute value of information for the probability of supply availability (θ= 0.5 and θ= 

0.8) when      ,      , and     . 
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The results in Table 2.3 indicate that the absolute VOI decreases as the fixed cost 

increases. Moreover, when the supplier is more likely to be available, the absolute VOI 

is less than when the supplier is less likely to be available. For instance, compare VOIL-

M (K1=0, θ= 0.5) = 2.753 > VOIL-M (K1=0, θ= 0.8) = 1.685. The results in Table 2.3 also 

show that the absolute VOI increases by the number of periods, especially for the case 

of a zero fixed cost. The value of obtaining additional information is less important 

when the arrival information level arises to High level from Medium level. 

2.5 Conclusion 

In this Chapter, we investigated the optimal ordering/production policy for a two-item, 

finite-horizon dynamic problem, with two different fixed costs where the probability of 

supply availability is forecasted by Bayesian learning. Although in literature more 

attention is paid to demand updating, our model contributes to the learning effect on 

supply availability literature. The existence of fixed costs leads to show the optimality 

of (  
 (   )   

 (   )) policy, but the ordering priority is yet to be determined. By a 

simple computation, we show that a monotone switching curve separates the ordering 

region for each product. Numerically, we analyzed the results for low and high demand 

patterns. The results showed that the system was more sensitive to supply availability 

information when demand is high. We also compared the numerical results for two 

models, Bayesian and non-Bayesian. Both order and reorder points for Bayesian models 

were found to be less than those of non-Bayesian, especially when a product demand is 

high. The results indicated that information obtained from learning could be more 

profitable and cost-effective for a low value of the fixed cost. Furthermore, the best 

results were for the case when there is no fixed cost and demand is low. An application 

of the model could be used in companies dealing with products like the oil and cement 

industry, to see how mathematical modeling can help managers deal with issues relating 

to supply uncertainty. Political and economical issues and price violations cause crude 

oil supply disruption, which consequently affect the production of product made from 

the crude oil, such as gasoline and petrol. To avoid future unmet demands, supply 

history would help companies better manage ordering/ production their policies. For 

example, we present two real applications of Bayesian updating for the cases of demand 

and failure process updating. Sakauchi [19] and [20] implemented Bayesian updating to 

accurately estimate the accurate number of heating oil demand for residential and 
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commercial customers, to minimize the supplier’s operational cost. Rathnayaka et. al 

[21] presented SHIPP methodology which helps a system to increase its safety, and 

provides accurate information to predict the disruption (accident) a system may 

exprience. They conducted a case study on a liquefied natural gas (LNG) facility to test 

the model. New observation helps to update the failure probability using Bayesian 

updating, and the forecasting model predicts the number of next time abnormal events. 

Extending the work developed in this work could be in different directions. It would be 

interesting to investigate the optimal ordering policy for a multi-supplier case with 

capacity constraints. It may also be worthy to investigate the behavior of the system 

described in this chapter when there is lead time for delivery, and/or when the 

manufacturer has advance lead time information. Moreover, the incorporation of 

demand uncertainty into this model would also be interesting to investigate.  
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Appendix  

 

A: Proof of Lemma 1: 

Proof: 

For   (     ),    (     ), and    , we proof the (     )-convexit of for the 

following cases.  

We prove for (a). The proof for (b) is similar to (a). We examine the three following 

cases:  

i.     ,      

ii.     ,      

iii.     ,      

In (i)      ,     ,  

  
 (         )       (         ) and   

 (         )       (         ). 

Since   (   ) is (  ,   )-convex, then   
 (         ) is (  ,   )-convex.  

In (ii)     ,     , 

  
 (         )    (         )  and   

 (         )    (         ) . Since 

  (   )is (  ,   )-convex, then   
 (         ) is (  ,   )-convex.  

In (iii)     ,     ,  

For        , let define   (   )     for         

  
 (         )       (         ) 

    
 (         )  (   )  

 (         )  (   )      (         ) 

 (   )   (         )  

    
 (         )  (   )  

 (         )  (   )      (         )

   (         )  



 

31 
 

    
 (         )  (   )  

 (         )  (   )      (         )    

   (         )  

    
 (         )  (   )  

 (         )  (   )      (         )    

   (         )  

    
 (         )  (   )  

 (         )  (   )        

From the definition of   
 (         ), the first inequality holds. The first equality 

follows for the assumption that      and     . The second equality follows from 

Assumption (III) and the definitions of   . The third equality holds from definitions of 

  . The proof is same for   
 (         ).  

Proof of Lemma 2: 

By Lemma 1, we already proved that    
 (         ) and    

 (         ) are (  , 

  ) -convex. The only case that remains is to show the preservation of (  ,   ) -

convexity for the following cases. 

For    , we examine the following cases where   (     )  and   (     ). 

i.     ,      and        , let define   (   )     for        . 

  
 (         )       (         ) 

    
 (         )  (   )  

 (         )  (   )      (         ) 

 (   )      (         )  

    
 (         )  (   )  

 (         )

 (   )      (         )       (         )   

    
 (         )  (   )  

 (         )

 (   )      (         )       (         )   

    
 (         )  (   )  

 (         )  (   )                 

    
 (         )  (   )  

 (         )  (   )         
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The first inequality is from the definition of   
 (         ). The first equality holds 

since     ,     . Definition of    and Assumption (III) result in the rest of 

inequalities.   

ii)     ,      

The proof is similar to (i). 

We also want to prove preservation of the supermodularity and diagonal dominance 

under the minimization. We define 

  
 (         )    

 (         )

    {  (         )    
       

      (         )     
       

   

   (         ) } 

Let   be a function on the set of admissible action,   {     }, which is defined on a 

lattice.  

 (           )

 
 

 
(   )(   )  (         )   (   )(     (         ))

 
 

 
(   ) (     (         )) 

Therefore, we have 

  
 (         )       {     }{ (           )}. 

Since   is the minimizer of  (           ) . We assume that    and    are the 

minimizers of   
 (         ) at state (         ) and (     ), respectively for 

   . Therefore by definition of   
 (         ) 

  
 (             )    (                ), 

  
 (         )    (            ). 
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Similar to Ha (1997) we show the supermodularity preserves for two cases:  

1)      . 

Here we seek to show that  

  
 (           )    

 (           )

   
 (             )    

 (         ) 

By Theorem (8.2) in Porteus (2002), we can write 

  
 (           )    

 (           )    (              )   (         

     )          [definition of   
 (         )] 

  ((              )  (              ))   ((              )  

(              ))  

[  is   supermodular] 

=  ((     ) (       ) (       ))   ((     ) (       ) (      

 ))  

[ definition ] 

   (                )   (            ) 

   
 (             )    

 (         ) 

2)       

  
 (           )    

 (           )

   (              )   (              ) 

   ((              )  (              ))   ((              )  

(              ))   (              )   (              )    

       [Supermoduarity of   in (     )]  
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   (                )   (            )   (              )

  (              ) 

   (                )   (            )   (              )  

 ((              )  (            )   ((              )  

(            ))   (            )  

[Supermoduarity of   in (    )]  

   (                )   (            )   (              )

  (              ) 

   (                )   (            ) 

For Diagonal dominance, since the proof is similar to Ha (1997) we refer the readers to 

Lemma 2, Ha (1997). 

B: Proof of Proposition 1 

Proof: K- Convexity 

By induction, we show K-Convexity property of   (         ) where   (  ,   ). 

Knowing the fact that     (         )    for the last period, we first prove K-

Convexity of   (         )  in    and    for    . Suppose  ( )  is twice 

differentiable. 

We already proved in Lemma 2 that    {  (         )           
    

  (         )            
      (         ) } is (  ,   )-convex. By properties 

(a) and (b) stated in Lemma E.1, we can say   (         ) is (  ,   )-convex. 

Now we assume that   (         ) is (  ,   )-convex for period      . We want 

to show that it is also (  ,   )-convex for period    .  
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  (          )

   (  (         ))

   (   {  (         )    
       

      (         )     
       

   

   (         ) })            

Where   (         )    (  )    (  )    (    (               )) 

As we assume     (               ) is (  ,   )-convex, then by property (C) 

stated in Lemma E.1,   (    ) is (  ,   )-convex. By property (b) from Lemma E.1, 

  (    (               )) is  (  ,   )-convex. Finally property (a) in Lemma 

E.1 proves that   (    (               )) is (  ,   )-convex. Thus by Lemma 

E.2 ,   (         ) is (  ,   )-convex. By properties (a) and (b) stated in Lemma E.1 

and Lemma 1, we complete the proof of the (  ,   )-convexity of   .    

Proof:  Supermodularity and Diagonal dominance 

By induction, we conduct the proof. Assume that     (         )   . It is trivial to 

show that   (         )  is supermodular and has diagonal dominance for    . 

  (         ) is the sum of two separable functions and it is also belongs to   . 

Therefore, knowing the fact that these properties preserve under adding and multiplying 

by positive scalars, here,        , and by Lemma 2,   (         ) is supermodular 

and has diagonal dominance. Now, assume     (         )    . Hence, 

  (         ) is by lemma 2 and Lemma (8.3) Porteus (2002) and thus, we complete 

the proof. 

C: Proof of Proposition 2: 

a) Select a point    above  (      ). By the definition of  (      ),      and 

     and by (III) in Assumption, for all   
    , 

    (     
     )       (     

     )      (         )       (         )   .  

Thus for all points above   , the optimal decision is order nothing. If we pick    below 

 (      ) , it follows from the definition of  (      )  that     (         )   
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    (        )   . So, it is optimal to order product 2. As    increases it moves 

above  (      ), the priority of ordering also moves to product 1. The rational follows 

by Assumption (III),     (         )       (         ) increasing in   . 

b) By Assumptions (I) and (II), for      
    (   )  we have the following 

    (  
   (      )    )      (    (      )    )    

    (  
   (      )    )      (    (      )    )    

By the definition of  (      ), we must have  (  
     )   (      ). 

 c) It follows from the definition of  (      )  that     (    (      )     )   

    (    (      )     )   . For       
    (   ), we have by Assumption (III), 

    (  
   (      )     )       (  

   (      )    )   , 

and since     (          )       (          ) is increasing in   , we must have 

 (  
     )   (      ). 

D: Proof of Theorem 1: 

In region 0, it follows from the definition of K-convexity that for any      (   ) and 

     (   ) ,       (          )    and     (          )   . Thus, it is not 

beneficial to order any product. For      (   ) and      (   ), switching curve 

 (      )  determines the ordering priority. If     (          )   

    (         )   , then it is optimal to order product 1. As the inventory level of 

product 1 increases, by Assumption (III)     (          )       (         ) 

decreases thus ordering product 2 in more advantageous. 
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E: Complimentary Definitions, Notations, and Results Table: 

E.1. Model Notations 

  : Unit holding cost for product i, i= 1, 2, 

  : Unit penalty cost for product i, i= 1, 2, 

  = Unit ordering cost for product i, i= 1, 2, 

  : Fixed cost for product i, i= 1, 2, 

  : The probability of machine being down in period n,  

  : The probability of machine being up in period n 

 : The probability of machine/ supplier availability, 

(   )  Machine reliability status at the beginning of a period 

 : The number of supply available periods 

 : Discount factor, 

  : Initial inventory level for product  ,  =1,2, 

  : Inventory level after production for product  ,  =1,2, 

  : The one-period demand for product  ,  =1,2, 

  ( ): Demand probability density function for product i, i= 1, 2, 

   ( ): Demand cumulative distribution function product i, i= 1, 2, 

  ( ): The one-period expected holding and shortage cost function, 

  (          ):  Minimum expected discounted cost function. 
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E.2. (  ,   )-convexity 

To characterize the optimal policy, we define                          where 

  (  ,       )-. The definition follows the definition from Gallego & Sethi (2005).  

Definition 1: A function           is K-convex function in    if  

 )()()1()())1(( xyKyfxfyxf    

for all  1,0  and all yx  where ii yx 
 for all ni ,...2,1 .     

Lemma E.1 presents some properties of  -convex function in   .  

Lemma E.1: (Gallego and Sethi (2005) [Gallego & Sethi (2005)])The following 

properties are defined for K-convex function in   : 

a) If   is  -convex function in   , then it is  -convex function in    for any    . 

Particularly, a convex function in    is   -convex function in    for any    . 

b) If 
1f  is  -convex function in    and 

2f  is  -convex function in   , then for 0a , 

0b , 
21 bfaff   is (     )–convex. 

c) If   is  -convex function in   , for a random variable   (          ) ,   (   )  

  is also  -convex in    for all  . 

Proof: See Gallego and Sethi (2005, page: 4 and 5). 

The following lemma was defined by Gallego & Sethi (2005)for individual setup costs 

case to show that the sum of independent k-convex functions is  -convex in   .  

Lemma E.2: (Theorem 3.1, Gallego and Sethi, 2005). 

If           is   -convex for        , then  (       )  ∑   (  )         
    

is    -convex where   (         ). 

Proof: See Gallego and Sethi (2005, page: 7) 
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E.3. Results Tables 

Table 2.A1. Optimal Ordering Levels for non-Bayesian model, Scenario 1   

Non-Bayesian Model,   Scenario 1 

  

1-Period 2-Period 3-Period 

 

(     ) Cost (     ) Cost (     ) Cost 

0.5 (3.2, 5.5) 59.229    (5, 7) 104.926 (6.4, 7) 146.053 

0.6667 (3.2, 5.5) 50.137 (5, 6.7) 88.809 (6.4, 6.7) 123.613 

0.75 (3.2, 5.5) 45.594 (5, 6.5) 81.266 (6.4, 6.5) 113.370 

0.8 (3.2, 5.5) 42.867 (5, 6.3) 76.867 (6.4, 6.3) 107.468 

0.9 (3.2, 5.5) 37.413 (5, 6.1) 68.260 (6.4, 6.1) 98.623 

0.98 (3.2, 5.5) 33.049 (5, 5.8) 61.454 (6.4, 5.8) 87.017 
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Table 2.A7. Optimal Ordering Levels for non-Bayesian model, Scenario 4   

Non-Bayesian Model,   Scenario 4 

  
1-Period 2-Period 3-Period 

 (     ) cost (     ) cost (     ) cost 

0.5 (2.3, 1.6) 

 

25.649 (3.2, 2.2) 

 

44.865 (3.2, 2.7) 

 

62.468 

0.6667 (2.3, 1.6) 

 

23.281 (3.1, 2.2) 

 

39.991 (3.1, 2.7) 

 

55.029 

0.75 (2.3, 1.6) 

 

22.098 (3, 2.2) 

 

37.989 (3, 2.7) 

 

51.698 

0.8 

 

(2.3, 1.6) 

 

21.388 (3, 2.2) 

 

36.560 (3, 2.7) 

 

49.484 

0.9 (2.3, 1.6) 

 

19.968 (2.9, 2.2) 

 

34.404 (2.9, 2.7) 

 

45.619 

0.98 (2.3, 1.6) 

 

18.832 (2.8, 2.2) 

 

33.057 (2.8, 2.7) 

 

42.759 
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3. THE EFFECT OF RANDOM YIELD UPDATING IN THREE-LEVEL 

SUPPLY CHAIN 

This Chapter forms a procurement problem for a three-echelon supply chain (a 

producer/supplier, a distributor and a retailer) where yield and demand are random 

variables. The distributor orders from the supplier in which the supplier’s shipment 

quantity is added by random yield. It is assumed that the random yield and demand are 

uniformly distributed. Using Bayesian updating, the distributor updates its random yield 

distribution that follows a uniform distribution with two unknown parameters. We 

model the problem for the distributor and the retailer. For two types of contracts, the 

effect of information updating and risk sharing is investigated. It is shown how 

Bayesian updating helps managers to make an appropriate procurement decision. The 

results also show how supply chain members benefit under different contracts. For 

models with information updating, an algorithm is proposed to obtain the optimal 

ordering quantity for each chain member. Analytical results for the Non-Bayesian 

model are also provided. Sensitivity analysis and the learning effect on the performance 

of the supply chain members are investigated numerically.        

3.1 Introduction 

Many supply chain uncertainties in most industries arise from the demand side. Supply 

uncertainty, although infrequent, is another cause of uncertainty. It has considerable 

effect on the  performance of a supply chain  and supply decisions. Supply uncertainty 

and randomness in yield are caused by many factors that are usually out of humans 

control. For example, farmers are always worried about the weather conditions that 

influence planting and quantity and quality of the harvest, where the output might not be 

the same as the input. On the other hand, since agricultural goods are perishable, some 

factors, such as transportation, affect the yield for the members of a supply chain, 

especially the member who deals with the end customers [Keren (2009), He and Zhang 

(2008)]. Moreover, the quality of inputs or raw materials also has an effect on the 

production output. For example, the quality of seeds in the agricultural industry and the 

quality of chips in the semiconductor industry significantly affect random yield that, 
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consequently, has an influence on production planning and ordering, and pricing 

decisions of the parties in a supply chain. Many studies have adopted coordination 

contract design and information sharing to deal with supply chain uncertainty 

(Arshinder et.al 2011). On the other hand, many papers have studied different 

forecasting tools to mitigate supply chain uncertainty that leads to accurate decision 

making. In this Chapter, supply contracts in combination with Bayesian updating are 

used in a three-echelon decentralized supply chain to investigate the effect of 

information and information sharing on the profits and ordering decisions of the 

members in the chain.  

In this Chapter, we investigate ordering decisions in a three-echelon supply chain 

consisting of a supplier, a distributor and a retailer. The distributor, who is the middle 

player of the chain, faces random yield from an upstream supplier. We classify contracts 

for two scenarios: Bayesian and Non-Bayesian. In each scenario, the distributor shares 

the random yield risk with the retailer under different contracts. We first study the 

decentralized case of Non-Bayesian with lost sales and spot market contract. Later, in 

addition to the lost sales contact, a quantity flexibility contract is proposed for the 

Bayesian model. 

For additive supply yield risk, the distributor’s optimal ordering quantity from the 

supplier and the retailer’s optimal ordering quantity from the distributor are derived. We 

suppose that the yield risk is unknown and the distributor forecasts the yield risk by 

relying on the observation obtained from the previous period. Under the quantity 

flexibility contract, the retailer is flexible to receive less than the ordered quantity 

conditional on the distributor’s yield risk sharing and updating and shipment 

commitment up to a level.  

We assume that the retailer is the dominant player. To overcome a stock-out (shortage) 

situation in the lost sale model, the retailer requests that the distributor shares and 

updates its random yield information on a regular basis. Moreover, a quantity flexibility 

contract is offered for the purpose of information sharing where the distributor fills a 

shortage from a spot market.  
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Despite the large body of literature that has investigated supply chain management and 

random yield; we restrict our attention in this Chapter to reviewing recent papers on 

supply chain interfacing of uncertain random yield and demand with coordination 

contracts, especially quantity flexibility contract. First, we review the literature on 

random yield in two-level supply chains, then uncertainty in three-level supply chains. 

Gerchak and Grosfeld-Nir (1998), Granot and Yin (2007), Hsu and bassok (1999), 

Mukhopadhyay and Ma (2009) derived optimal production quantities for a single period 

under random demand and yield. To overcome double marginalization of a supply chain 

consisting of a buyer and a supplier, Li et.al (2013) developed two coordination 

contracts: a shortage penalty contract for deterministic demand and an accept-all 

contracts for random demand. They assumed that the supplier decides on the production 

level before supply uncertainty is realized. 

To encounter the risks from having uncertain demand, wholesale price and production 

yield, some researchers (Xu, 2010) suggested applying an option contract to 

synchronize the production plan of a manufacturer with the procurement policy of a 

supplier in a decentralized supply chain. Respectively, the optimal production and 

option order quantities for a manufacturer and a supplier were derived under this 

contract. Xu’s results expressed the benefits of adopting an option contract for the 

supply chain members.       

In a supply chain with one supplier and one retailer, He and Zhang (2008) studied no 

random yield risk sharing and different risk sharing contracts (underproduction, 

overproduction, and both underproduction and overproduction) for the decentralized 

and centralized cases where demand is uncertain. For each decentralized scenario, the 

retailer’s optimal ordering quantity and the supplier’s optimal production quantity are 

calculated. In a later study, He and Zhang (2010) investigated the same supply chain 

described in their earlier paper where the commitment contract is used to share the 

random yield risk between the channel members. They also analysed the supply chain 

performance when demand is fulfilled from a secondary market where the unit price is 

either dependent or independent of the random yield. For a two- echelon supply chain 

consisting of a producer and a customer, Keren (2009) considered a single-period 
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inventory problem in which demand is deterministic and supply yield is random. For 

two types of supply yield, additive and multiplicative, the optimal production quantity 

was derived. Additionally, he extended the problem in his paper by including one more 

supply chain member, a distributor, who has the customer’s demand information as 

private. The systems of the distributor and the producer were modelled mathematically 

and then solved to obtain the respective optimal ordering and production quantities. For 

the uniform distribution production yield, numerical examples reveal that the customer 

and the distributor may order more than what they need to overcome supply uncertainty, 

which is also beneficial for the producer. However, still, some questions with respect to 

the results obtained by Keren (2009) remain unanswered. Later, Li et. al (2012) 

extended the work of Keren (2009) to cover issues that were not addressed in his paper. 

They explored under which condition it is optimal for the distributor to order more than 

the demand. Moreover, they calculated the effect of yield uncertainty on the 

performance of the entire supply chain and its members. However, Keren’s (2009) 

results hold for uniformly distributed supply risk, Li et. al (2012) achieved results for 

the generalized random yield distribution. They showed that above a certain threshold 

level of marginal profit, the distributor orders more than the demand.  

He and Zhao (2012) investigated a three-echelon supply chain consisting of a raw 

material supplier, a manufacturer and a retailer where both demand and supply are 

uncertain. They analytically characterized the retailer’s optimal inventory decision and 

the supplier’s optimal production planning. Moreover, to obtain the supply chain 

coordination, they examined two types of coordination contracts, which are the 

wholesale price contract and the return policy combined with wholesale price contract. 

The results revealed that the supply chain achieves a win-win situation under the 

combined return policy and wholesale contracts offered by the manufacturer and the 

retailer, and the supplier and the manufacturer, respectively, while, solely, the wholesale 

contract does not coordinate with the immediate member of the supply chain. They also 

explored the effect of supply uncertainty on the supplier’s production decision. 

Ding and Chen (2008) studied a single-period coordination model of a three level 

supply chain for short-lived products. The contract is first negotiated by the 

manufacturer with the retailer, and then with the supplier. To achieve coordination, a 
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flexible return policy was established allowing for the postponement of decision on 

final contract prices. 

Random yield in assembly systems was studied by Guler and Bilgic (2009) and Shi-hua 

and Zhe (2012). For the random demand and supplier’s yield, Guler and Bilgic (2009) 

proposed a combination of buyback and revenue sharing contracts to coordinate the 

channel under forced compliance. Shi-hua and Zhe (2012) proposed an option contract 

to counter the risk of production uncertainty of an assembly component where the 

product demand is deterministic and price-dependent. Another stream of related 

research to our work is the one on channel coordination under quantity flexibility 

contract. Although the positive affect of flexibility on the performance of the supply 

chain is clear, it still seems interesting to determine the optimal level of flexibility. In 

this regard, Tang and Tomlin (2008) conducted a thorough investigation of the role of 

flexibility to mitigate supply chain risks, which are: supply risks, process risks, 

intellectual property risks, behavioural risks, demand risks, and political/social risks. 

For various flexibility strategies, they analytically showed that for some types of supply 

chain risks a low level of flexibility reduces supply chain risk.  

Güray and Keskin (2013) analysed supply chain coordination for wholesale price, buy 

back, quantity flexibility, quantity discount and revenue sharing contracts in a 

decentralized setting where the random yield is assumed to be multiplicative. They 

showed that, apart from the wholesale price contract, the randomness characteristics of 

the yield have no effect on supply chain coordination for all contracts.  For a finite 

horizon, Lian and Deshmukh (2009) developed two heuristic models to derive the 

optimal ordering policy that minimises the buyer’s total expected cost. They considered 

a supply contract with quantity flexibility where the supplier offers a discount to the 

buyer on an advance purchase commitment. Moreover, in their model, demand 

forecasting was shown to increase the buyer’s order quantities for future periods with 

respect to its inventory condition. For a single period model and under uncertain 

production yield and demand, Hu et.al (2013) developed a flexibility ordering policy for 

a supply chain with a manufacturer and a supplier. They investigated a supply chain 

with centralized and decentralized decisions to find the supplier’s optimal procurement 

quantity when the manufacturer’s optimal flexible ordering quantity lies between a 
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minimum value and a maximum value. The analysis of the results showed that for the 

decentralized model, flexibility is not beneficial (profits) for the manufacturer while it is 

when the policy is centralized. Therefore, to achieve coordination, they proposed a new 

contract that combines “revenue sharing” and “order penalty and rebate (OPR)” 

contracts.   

 In this Chapter, we model a single period problem with random yield risk sharing and 

information updating, where an additive random yield that follows the uniform 

distribution with two unknown parameters is considered. Forecasting by learning from 

observations has been used wildly to make appropriate production and procurement 

management decisions. There are many papers published on the effectiveness of 

demand forecasting on supply chain’s profit or cost resulting in appropriate decisions 

for single period and multi-period dynamic problems.  

Bayesian updating was used by Scarf (1959), Azoury (1985), Lariviere and Porteus 

(1999) as a forecasting tool to update uncertain demand for dynamic production 

planning. Under a quantity flexibility contract, Tasy (1999) and Wu (2005) investigated 

a decentralized model where uncertain demand is forecasted by a Bayesian method. We 

refrain from reviewing the broad literature related to demand information updating since 

it falls outside the scope of this Chapter. We only focus on reviewing the literature 

relating to information sharing from the supply side, especially where Bayesian learning 

has been applied. In a supply chain with one manufacturer and one supplier, a design 

theory was used by Yang et.al (2009) to derive the optimal contract by the manufacturer 

to obtain the supplier’s private information. The supplier is categorized as either high-

reliable or low-reliable. When disruption happens, the supplier either pays a shortage 

penalty or fills the shortage quantity with backup production. They investigated the 

effect of asymmetric information on using backup production for low- and high-reliable 

supplier.  

Tomlin (2009) and Chen et al. (2010) investigated the effect of supply learning on 

inventory and sourcing decisions. Using the Bayesian learning process, they updated 

information about the unreliable supplier in their model to find the optimal sourcing 

decision for a multi-period dynamic problem. 
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Every year at Christmas time or other high demand seasons/occasions, managing 

inventory level is challenging for many producers and sellers not only from the demand 

side but also from the supply side. In such a situation, the distributor may not fill the 

retailer’s entire order quantity because the supplier faces a shortage situation. There are 

some factors that affect supply availability such as emergency orders from other buyers, 

selling-priority, trust on the buyer’s ordering quantity, and so on. To encounter the 

negative effect of supply unavailability and unmet demand, learning from previous 

supply observations might contain useful information to the buyer.     

In this Chapter, a three-echelon supply chain consisting of a supplier, a distributor and a 

retailer is considered. We investigate the role of information sharing on the ordering 

decision and profit maximization. For an unknown additive random yield, an 

observation from the previous supply period is used to update the distribution of the 

random variable, random yield variable, with two unknown parameters that indicate the 

range of the random variable. Moreover, we propose a quantity flexibility contract to 

induce the distributor for sharing the random yield information to the retailer. Keren’s 

(2009) and He and Zhang (2008, 2010) studied channel coordination and yield risk 

sharing for additive and multiplicative random yield. To the best of our knowledge, 

there is no study in the literature that investigates whether random yield forecasting is 

beneficial for the supply chain parties or not. If it is, we investigate under which 

condition and what contract the distributor shares the knowledge of supply risk with the 

retailer. We also explore the role of quantity flexibility, spot market, and lost sale 

contracts on the performance of the supply chain and its associated parties.  

The rest of the Chapter is organized as follows. Section 3.2 presents model analysis 

including supply risk structure and mathematical formulation of the model. Optimal 

solutions are derived in section 3.3. Managerial insights and discussion of results are 

presented in section 3.4. In the last section, there are concluding remarks and some 

future extensions of the work presented in this Chapter. 
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3.2 Model Analysis 

3.2.1 Supply Risk Structure 

The supply chain model of this Chapter assumes that the distributor orders   units from 

the supplier whose shipment quantity is affected by an additive random variable  , i.e. 

Q +  . To be specific, the supply risk model arises from the fact that the supplier may 

ship less or more than the distributor’s order quantity. Furthermore, it is assumed that 

the distributor’s yield risk is an unknown parameter. To model the supply risk 

distribution, a generalization of the uniform distribution is used, which allows 

uncertainty outside its boundaries. The overall supply risk distribution consist of three 

parts. From left and right, it captures the Pareto distribution when the yield risk is out of 

its normal range and behaves uniformly in the middle. 

We assume that the supplier delivers     units where  , the yield,  is a random 

variable with      , for          and  ( |   )  is the random yield 

distribution function on the range       where   and   are unknown. The total random 

yield distribution follows a Doubly-Pareto Uniform distribution and is given as 

 ( |   )  {
 

   
      

           
 

By Degoort (1970), the conjugate prior on       is a Bilateral Bivariate Pareto 

distribution with parameters    and    and   where       and    . The prior 

probability density function is given as 

 (   |     )  {

 (   )(     )
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Therefore, the distribution of   defined as  
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Observe that the distribution of   is a weighted uniform distribution. On the interval 

(     )  and (    ), it is a Pareto distribution scaled by 1/(   +2) which indicates 

random yield surges while on the interval (     ), the scaling factor is   /(    +2) 

implying the normal range of the random yield. The supply risk probability density 

function is increasing on the interval (     )  and is decreasing on the interval 

(    ). 

The following lemma states the scaled supply risk probability density function of the 

Uniform distribution with two unknown parameters. 

Lemma 1:  
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The following lemma states a property that is used to update the random yield 

distribution.  

Lemma 2: (Theorem 2, Degoort [28], Page 173) 

Suppose that       is a random sample from a uniform distribution on the range       

where the values of   and   are unknown. Further suppose that the prior distribution of 

the unknown properties   and   is a bilateral bivariate Pareto distribution with 

parameters   ,    and  . Then, the posterior distribution of   and   is a bilateral 

bivariate Pareto with parameters     (        ),      (        ), and    . 

From Lemma 2, the posterior distribution of   and   after an observation of the initial 

supply risk    is a bilateral bivariate Pareto distribution with parameters    

   (     ) and       (     ) and    . Thus, the probability density function 

supply risk   given an observation    is: 

  ( |  )  
(   )(   (     )    (     ))(   )

(   )    (       )     (       )     

The conditional probability density function of supply risk is: 

 ( |  )  
 

(     )
   (

    

     
)         

 (1) 

Where   (
    

     
)  

   

(   )     (       )    
  for   

    

     
. 

Therefore, in our model, given an initial supply risk information, the supply risk 

distribution would be updated with different parameters and preserving its original 

shape. Moreover, we normalized the distribution by   ( )  and it is scalable by the 

parameters       (     ) and       (     ). 
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3.2.2 Model Notation and Formulation 

3.2.2.1 Notation 

   Distributor’s unit ordering cost from supplier, 

    Spot market price, 

   Distributor’s unit selling price to retailer, 

            Retailer’s unit selling price, 

           Distributor’s order quantity from supplier, 

   Retailer’s order quantity to distributor, 

           Retailer’s unit holding cost for unsold inventory, 

           Retailer’s unit shortage cost for demand that exceeds inventory level, 

                      Random yield variable, 

                      Retailer’s Flexibility level, 

           Retailer’s demand,  

 ( )   Demand probability density function, 

 ( )  Demand cumulative distribution function, 

  
                 Distributor’s expected profit for the Non-Bayesian spot market model, 

     
              Distributor’s optimal ordering quantity for the Non-Bayesian spot market 

model, 

    
   Distributor’s optimal ordering quantity for the Bayesian lost sale model, 

    
   Distributor’s optimal ordering quantity for the quantity flexibility model, 
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     Distributor’s expected profit for the Bayesian lost sale model, 

  
   

  Distributor’s expected profit for quantity flexibility model, 

  
                 Retailer’s expected profit for the Non-Bayesian spot market model, 

     
         Retailer’s optimal ordering quantity for the Non-Bayesian spot market    

model, 

    
   Retailer’s optimal ordering quantity for the Bayesian lost sale model, 

    
   Retailer’s optimal ordering quantity for quantity flexibility model, 

  
     Retailer’s expected profit for the Bayesian lost sale model, 

  
   

  Retailer’s expected profit for quantity flexibility model. 

3.2.2.2 Non- Yield Risk Updating 

3.2.2.2.1 Spot market Model 

The members of a decentralized supply chain maximize their profits independently. In 

this section, we model the distributor and the retailer’s profit functions where the 

distributor tolerates a random yield risk from its supplier. This Non-Bayesian model is 

similar to the model studied by He and Zhang (2008) where the supplier’s random yield 

is multiplicative and the spot market cost is split between the supply chain members.  

In this model, the distributor decides on the size of the ordering quantity   from the 

supplier by considering random yield to meet the demand from the retailer. The supplier 

ships     unis to the distributor. If     is less than the retailer’s order quantity  , 

then the distributor incurs a secondary market ordering cost. It is common to assume 

that the secondary market ordering cost is higher than the distributor’s ordinary ordering 

cost He and Zhang (2008). On the other hand, if     is greater than  , the distributor 

then carries the over ordering cost, and its profit function is expressed as follows: 

  
         ∫ (

 

  
    )  ( )     ∫ (  (   ))

   

  
 ( )   (2) 
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The first term of Eq. (2) is the profit from selling   units to the retailer, the second term 

is the ordinary ordering cost and the third term is the secondary market ordering cost to 

fulfil the shortage quantity. The distributor’s profit function is shown to be concave in    

in lemma 3. 

Lemma 3: 

The distributor’s profit function is concave in   and the optimal ordering quantity is: 
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  )         (3) 

Proof: 
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For uniform random yield distribution the distributor’s optimal ordering quantity is  

     
      

  (   )

  . The retailer’s optimal ordering quantity from the distributeor 

is the solution of a standard newsvendor model, i.e.    
     

     
 . 

3.2.2.2.2 Lost Sale Model 

In this model, the distributor decides on the size of the ordering quantity   from the 

supplier by considering the random yield parameter to meet the demand from the 

retailer. The supplier ships     units to the distributor. If     is less than the 

retailer’s order quantity  , then a lost sales situation occurs. On the other hand, if     

is greater than  , then the distributor carries over the ordering cost. The Non-Bayesian 

lost sale model is similar to the lost sales model studied by He and Zhang (2008) where 
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the supplier’s random yield was multiplicative. The distributor’s profit function is 

expressed as    

  
      ∫ (

   

  
    )  ( )    ∫  

 

   
  ( )    ∫ (

 

  
    )  ( )   

 (4) 

The first term of Eq. (4) is the profit from selling   units to the retailer, the second term 

is the profit obtained by selling     units, and the third term is the ordinary ordering 

cost. The distributor’s profit function is shown to be concave in   in lemma 4. 

Lemma 4: 

The distributor’s profit function is concave in   and the optimal ordering quantity is a 

linear function of the retailer’s order quantity    
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Proof: 
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For a uniform random yield distribution the distributor’s optimal ordering quantity is  
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.  

Lemma 4 shows that      
  is a linear function of the retailer’s order quantity. We 

rewrite     
     , where      (
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The retailer’s optimal ordering quantity given the distributor’s optimal ordering from 

lemma 4 is expressed as follows:  
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The following lemma shows the concavity and the calculation of the optimal ordering 

quantity. 

Lemma 5:  

Given the distributor’s optimal ordering level, the retailer’s optimal ordering quantity is 

the solution of the following equation where the retailer’s profit function is concave and 

it is given as: 

  ( ) ̅( )  ∫  (     )  ( )   
 

  

     

     
    (7) 

Where  ̅( )     ( ) and  ̅( )     ( ). 



 

69 
 

The proof of lemma 5 is presented in Appendix. 

3.2.2.3 Random Yield Updating 

Facing lost sales is costly for both the distributor and the retailer. If the risk of random 

yield is high, then ordering from the distributor is not beneficial and the retailer may 

decide to order from another supplier. Here, information updating may help the 

distributor to deal with a future shortage situation that might occur at the supplier’s side. 

On the other hand, if the distributer covers the shortage in inventory by ordering from 

the spot market, then this will be costly, especially when the product ordering time 

occurs in the high demand season. To overcome these two problems, learning from a 

previous observation is proposed to reduce these negative effects. For the lost sales 

model, updating the information is beneficial for the distributor since it can reduce the 

risk of losing customers. While for the spot market model, on one hand, random yield 

forecasting may not be beneficial for the distributor when considering that it pays for 

shortage quantity at the spot market price. On the other hand, forecasting may help the 

distributor to avoid ordering from the spot market or, if needed, order less. 

Consequently, the retailer benefits from not having shortages, especially at a high 

demand season that shows the retailer’s loyalty to customers. Therefore, the retailer 

offers a quantity flexibility contract to the distributor in the case of ordering from the 

spot market so that both benefit from information updating and sharing.      

3.2.2.3.1 Bayesian Updating-Lost Sale (BLS) 

The model presented here is similar to the NBLS model but with the following 

difference. In BLS model, it is assumed that the distributor updates the random yield 

before ordering from the supplier. After ordering, the information would be shared with 

the retailer for making an accurate ordering decision considering the shared information. 

In section 3, the model and its solution are explained. 

3.2.2.3.2 Quantity Flexibility Contract (QFC) 

In this model, the distributor forecasts the supplier’s random yield risk and decides on 

the ordering quantity from the supplier by the help of a yield risk observation to fill the 

retailer’s order. Since information gathering along with payments to the spot market is 

costly for the distributor, the retailer offers a quantity flexibility contract to the 
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distributor as an incentive of sharing updated supply risk information. The framework 

of the contract gives the retailer the flexibility to receive  (   ) and the distributor to 

commit product availability not to drop below  (   ) units and to supply up to  . If 

the distributor’s shipment quantity exceeds the retailer’s ordering quantity, then the 

distributor has unused items of a product. On the other hand, if the shipment quantity to 

the retailer falls below its shipment commitment, then the distributor has to supply the 

shortage quantity from the spot market with a price higher than the ordinary purchasing 

price. The performance of the supply chain parties are commonly affected by the 

parameters                where   is the transfer price between the retailer and the 

distributer,   and    are the distributer-supplier transfer price and the spot market cost, 

  is the flexibility level and   is the unknown supply risk.  

The model events are described as follows. First, the retailer orders   units from the 

distributor with a level of flexibility  . Then, the distributor receives an update    

quantity on the yield risk distribution and the random yield distribution, which is 

updated from an observation. Given the updated information and the retailer’s 

flexibility level, the distributor submits an order quantity of   units to the supplier. 

After random risk realization, the supplier delivers a production quantity,    , to the 

distributor. Then, the distributor shares supply risk information with the retailer. The 

retailer makes its actual purchase after demand realization and given supply random 

yield risk information.   

The problem is solved for the general demand distribution and the random yield 

distribution with unknown parameter following the uniform distribution 

3.3 Optimal Solutions:  

3.3.1 Bayesian Lost sale model  

The standard Stackelberg game is employed where the retailer is the dominant player. 

First, the expected cost of the distributor for the Bayesian lost sales model with random 

yield information is given as 
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where  ( |  ) is given by Equation (1). 

Lemma 6:  

a) For the Bayesian lost sales model, the distributor’s expected profit is concave in   

and has an optimal ordering quantity    
  , which satisfies the following condition: 

∫  
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∫  
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Using Lemma 1, Equation (9) can be rewritten as: 
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b)     
     , where   can be determined by  ,  , and   ( ).  

c) If we assume that    (
     

     
)   , then     

  can be expressed as: 

       
         

  (
 

 
) (     )     (11)  

    
      is a linear function of  , where        

  (
 

 
) (     )  and 

  ( )  
   

(   )     (       )    . The distribution   
  (

 

 
)depends on the value of  

 

 
.  It 

may be Uniform or Pareto from right or left. 

Given the distributor’s optimal ordering quantity for Bayesian lost sale model, the 

retailer’s expected profit is: 
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Lemma 7: 

The retailer’s expected profit for the Bayesian lost sales model is concave in   given the 

updated information, whose solution is given as: 

(     ) [∫  ( )  ( |  )  
 

   
]  (     ) ∫  ( )  ( |  )  

 

 
 

∫  (     )  ( |  )    (   ) ∫    ( )  (   |  )    
 

 
 

 

   
  (13) 

The proof is presented in the Appendix. 

3.3.2 Quantity Flexibility Contract (QFC) 

First, we explore the distributor’s problem. The distributor’s expected profit function for 

a given retailer’s order quantity is expressed as: 
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Lemma 8: 

Given an order quantity q with flexibility level   and initial random yield   ,  the 

distributor’s expected profit function is concave in   and the optimal order quantity    

must satisfy the following condition: 

(    ) ∫   ( |  )   
 

 (   )  
  ∫  ( |  )   

 

   
 (    )  (  
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 (15) 

Using Lemma (1), Equation (15) can also be expressed as: 
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)]           (16) 

The proof for lemma 8 is provided in the Appendix.  

It is rather difficult to obtain an explicit expression for    from Equation (13) for   

 . Moreover, the random yield distribution structure is a mix of uniform and Pareto 

distribution, therefore, depending on the random yield probability density function the 

profit function form differs at each part of the random yield p.d.f. Thus, this would be 

difficult to get the explicit solution of    so the model behaviour will be studied 

numerically. 

Given the distributor’s shipment quantity       
 , the retailer’s objective is to find the 

optimal ordering quantity    that maximizes the following expected profit function: 
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3.3.3 Optimal Solution Calculation 

The following proposed algorithm calculates Bayesian optimal ordering quantities and 

profits for the supply chain parties. To solve the problem numerically, MATLAB 2010 

software was used to find the optimal solution by following these steps: 

Step 1: Set the input parameters at their values, 

Step 2: Determine the appropriate ranges of  , q and  , 

Step 3: Update the random yield information,  

Step 4: Find the optimal   that maximizes Equation (14), the distributor’s profit 

function, given the retailer’s order quantity, q, and the flexibility level, d, 
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Step 5: Given   , solve Equation (17) to get the optimal  , 

Step 6: Calculate the distributor’s and the retailer’s profit functions given    and   . 

Here, we need to mention that the program procedure is similar to the one in Wu 

(2005).  

Proposition 1: 

For fixed values of the model parameters, the distributor’s optimal ordering quantity    

decreases in  , while that of the retailer  increases. 

When the transfer price increases, the distributor orders less from the supplier since the 

retailer may order less to avoid higher transfer cost that diminishes its profit. Although 

the retailer orders less, but the distributor’s expected profit improves because of the 

higher selling price.  

Proposition 2: 

For fixed values of the model parameters, the distributer’s optimal ordering quantity    

increases in the spot market price   while its profit decreases. 

As the spot market price increases, the distributor’s willingness to order from the spot 

market decreases. On the other hand, the distributor commits to fulfill the retailer’s 

order by at least  (   ), which increases the distributor’s order quantity from the 

supplier. The risk of random yield affects the distributor’s profit as the larger the 

quantity ordered from the supplier the higher will be the yield risk. The retailer’s profit 

is also affected by increasing the spot market price as a result of the distributor’s risk 

sharing.   

The proofs for the above propositions are provided in the Appendix. 
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3.4 Numerical Results 

To examine the behavior of the model presented in this Chapter and to obtain some 

managerial implications and insights several numerical examples are solved with results 

discussed. These examples study the effect of information sharing between the 

distributor and the retailer and the impact of random yield updating on the profits and 

ordering decisions in a three-echelon supply chain is investigated. We assume that 

demand follows a uniform distribution in these numerical examples. The other input 

parameters of the model are presented in the following table: 

Table 3.1. The values of input parameters. 

 

The next two sections provide comparisons of the numerical results for the cases of: (1) 

Non-Bayesian, and (2) Bayesian updating. These sections are followed with one that 

discusses the effect of information updating on the performance of the supply chain and 

a sensitivity analysis section. 

3.4.1 Non- Bayesian Models Comparison 

Tables 3.2 to 3.5 summarize the optimal ordering quantities and profits of the supply 

chain members for uniform demand and supply when there is no random yield updating 

for different h and g values, where h = 1.2 < g = 2 and h = g = 2 (Tables 3.2 and 3.3), 

and h = 1.2 < g = 2 when C
S
 = 2.4 and C

S
 = 1.6 (Tables 3.4 and 3.5). For both high and 

low holding cost, the distributor benefits more in the lost sales case since the retailer 

orders more to deal with shortage effect and consequently the distributor’s profit 

increases. The retailer’s profit is less than that of the spot market model since for the 

lost sale case the retailer orders more to overcome possible supply and demand 

mismatch.  A comparison of the two models shows that the optimal order quantities of 

the supply chain members are higher for the lost sale model. This is because in the spot 

market model the parties avert risk yield by ordering from the secondary market. The 

results in Tables 3.4 and 3.5 show that when the spot market price,   , is lower, 1.6 < 

                 

3 1.6 2.4 3.3 1.2 2 8           
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2.4, the distributor orders less from the unreliable supplier since a shortage quantity can 

be filled by ordering from the spot market (for example when (    )  (    ) , 

     
  13.2976 for        and      

          for       ) . 

Table 3.2 Non-Bayesian Lost Sale Model (NBLS) for      and       

 (    )      
       

    
       

     

(6, 10) 16.8524 24.5218 66.0093 40.5103 

(2.5, 3.2) 21.1599 23.9993 65.7521 40.5103 

(-9.5, -2.7) 31.1681 24.9650 65.4029 39.6382 

(-5, -4.3) 28.6599 23.999 66.0093 40.5103 

 

Table 3.3 Non-Bayesian Lost Sale Model (NBLS) for      and     

 (    )      
       

    
       

     

(6, 10) 15.6565 23.5959 63.1409 38.4645 

(2.5, 3.2) 20.2340 23.0734 63.40618 38.9363 

(-9.5, -2.7) 30.2422 24.0391 62.7834 38.0641 

(-5, -4.3) 27.7340 23.0734 63.40618 38.9363 

 

Table 3.4 Non-Bayesian Spot Market Model (NBSM) for      and        

 (    )      
       

    
       

     

(6, 10) 13.2976 21.9643 67.0804 36.2976 

(2.5, 3.2) 18.9976 21.9643 67.0804 37.1526 

(-9.5, -2.7) 26.9310 21.9643 67.0804 35.5260 

(-5, -4.3) 26.4976 21.9643 67.0804 37.1526 
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Table 3.5 Non-Bayesian Spot Market Model (NBSM) for      and        

(    )      
       

    
       

     

(6, 10) 11.9643 21.9643 67.0804 37.3393 

(2.5, 3.2) 18.7643 21.9643 67.0804 37.3393 

(-9.5, -2.7) 24.6643 21.9643 67.0804 37.3393 

(-5, -4.3) 26.2643 21.9643 67.0804 37.3393 

 

3.4.2 Bayesian Updating Model Comparison 

In this section, we compare the results of Bayesian updating of the quantity flexibility 

contract model and that of Bayesian lost sales model. For both contracts, the risk of 

random yield and updating information is shared between the supply chain members. 

Table 3.6 presents the optimal ordering policies that maximize the profits of the retailer 

and the distributors for the Bayesian lost sales model. The optimal order policies under 

quantity flexibility contract are shown in Tables 3.7 to 3.12 for different observations 

and ranges of yield risk. It can be seen that under the quantity flexibility contract the 

retailer and the distributor benefit (have higher profits) in comparison to the Bayesian 

lost sales model. When there is no quantity flexibility (   ), the retailer registers its 

highest profit for any yield risk range,   = 8, 3, -11, and -5 in Tables 3.7-3.10 

respectively, the distributor registers its lowest profit even lower than its profit form the 

lost sale model. The results show that the quantity flexibility contract is more beneficial 

to the distributor than lost sale when the flexibility level, d, is not very low. The results 

in Tables 3.7 to 3.12 show that the distributor’s profit increases when d increases. This 

may suggest that the quantity flexibility contract is a profitable one for both members.     

Under the Bayesian lost sales model, both the distributor and the retailer register their 

highest profits when observation keeps its uniform behavior, meaning that observed 

yield risk is         . On the other hand, the retailer’s profit was shown to 

improve slowly when there is a Pareto movement from the left side.  It can also be seen 

that as the yield risk increases, the optimal ordering quantity also increases.  
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Table 3.6 Bayesian Lost Sale Model (BLS) for    . 

 (      )        
      

    
      

    

 3 17.1 23.4 65.6689 34.6618 

(6,10) 8 14.9 22.8 66.5604 35.8305 

 14 13.7 23.5 65.3014 34.1060 

 1 20.4 22.5 66.9067 36.6368 

(2.5, 3.2) 3 19.3 22.1 67.0645 37.0552 

 5 18.8 22.5 66.8662 36.4183 

 -11 30.6 23.6 65.1637 34.0585 

(-9.5,-2.7) -5 29.6 23.3 65.74 34.6372 

 0 28.8 23.8 64.7407 33.5308 

 -7 28.2 22.5 66.8308 36.2718 

(-5,-4.3) -5 26.8 22.1 67.0645 37.0552 

 -2 25.4 21.8 68.7680 36.2219 

 

Table 3.7 Quantity Flexibility Contract (QFC) for     when   = 8 and (      ) = 

(6,10). 

      
      

    
   

   
   

 

0 12.3 21.3 70.7721 34.2744 

0.1 15 23.1 69.8809 36.4991 

0.2 15.5 23.4 69.5080 36.8890 

0.3 15.6 23.5 69.3765 37.0348 

0.4 15.6 23.5 69.3184 37.0268 

0.5 15.6 23.5 69.2877 37.0234 

0.6 15.6 23.5 69.2699 37.0218 

0.7 15.6 23.5 69.2590 37.0210 

0.8 15.5 23.5 69.2522 37.0206 
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Table 3.8 Quantity Flexibility Contract (QFC) for     when   = 3 and (      ) = 

(6,10). 

      
      

    
   

   
   

 

0 13.1 21.3 70.8824 32.8081 

0.1 15.5 22.9 70.5338 34.4706 

0.2 17.1 23.7 69.5954 35.3654 

0.3 17.6 24 69.1873 35.7600 

0.4 17.7 24.1 68.9294 35.8880 

0.5 17.7 24.1 68.7759 35.8691 

0.6 17.7 24.1 68.6786 35.8596 

0.7 17.8 24.1 68.6918 35.8548 

 

Table 3.9 Quantity Flexibility Contract (QFC) for     when   = -11 and (      ) = 

(-9.5, -2.7). 

      
      

    
   

   
   

 

0 26.1 21.3 70.9923 32.1642 

0.1 28.6 22.9 70.7380 33.7841 

0.2 30.4 23.8 69.7698 34.7048 

0.3 31 24.1 69.1352 35.0350 

0.4 31.2 24.2 69.8076 35.1381 

0.5 31.3 24.3 68.5720 35.2772 

0.6 31.4 24.4 68.4183 35.4315 

0.7 31.4 24.4 68.3168 35.4234 
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Table 3.10 Quantity Flexibility Contract (QFC) for     when   = = -5 and (      ) 

= (-9.5, -2.7). 

      
      

    
   

   
   

 

0 25.7 21.3 70.8704 32.9067 

0.1 28.2 22.9 70.5050 34.5773 

0.2 29.7 23.7 69.5698 35.4958 

0.3 30.1 23.9 69.1950 35.7298 

0.4 30.2 24 68.9546 35.8608 

0.5 30.3 24.1 68.8126 36.0130 

0.6 30.3 24.1 68.7235 36.0044 

0.7 30.3 24.1 68.6657 35.9999 

 

Table 3.11 Quantity Flexibility Contract (QFC) for     when   = 0 and (      ) = 

(-9.5, -2.7). 

      
      

    
   

   
   

 

0 23.6 21.2 71.1427 31.3923 

0.1 26.1 22.8 70.9238 329920 

0.2 28 23.8 70.0128 33.9747 

0.3 28.9 24.2 69.1104 34.3939 

0.4 29.3 24.4 68.6874 34.6376 

0.5 29.4 24.5 68.3583 34.7632 

0.6 29.5 24.6 68.1386 34.9100 

0.7 29.5 24.5 67.9909 34.8981 
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Table 3.12 Quantity Flexibility Contract (QFC) for     when   = -5 and (      )  = 

(-5, -4.3). 

      
      

    
   

   
   

 

0 25.9 21.4 70.7609 36.0409 

0.1 27.5 22.8 69.6219 38.2459 

0.2 27.5 22.8 69.6182 38.2453 

0.3 27.5 22.8 69.6177 38.2453 

0.4 27.5 22.8 69.6176 38.2453 

0.5 27.5 22.8 69.6175 38.2452 

0.6 27.5 22.8 69.6175 38.2452 

0.7 27.5 22.8 69.6174 38.2452 

 

3.4.3 The effect of Updating 

In this section, the results from the Bayesian and Non-Bayesian models are compared to 

investigate the effect of updating on the performance of the supply chain members.  

First, we compare the Non-Bayesian and Bayesian lost sales models. By updating, it 

was found that the retailer was the only member who benefits from updating when the 

variance of random yield is low. Moreover, without observation, both members (the 

distributor and the retailer) order larger quantities to deal with the negative effect of lost 

sales on their profit, while updating helps them to order more accurately. 

By comparing the results obtained from the spot market and the quantity flexibility 

contract, it was shown that although the retailer benefits under all conditions, the 

distributer’s profit was shown to increase when the observation lies within the range of 

random variable where a uniform movement happens.   

Consider the following numerical example to illustrate how updating affect ordering 

decision. For (      ) = (6, 10), the optimal ordering quantity of the retailer is 24.52 

for the Non-Bayesian lost sales model, from Table 3.2. So, the distributor in its turn 

orders  

     
        given the expected random yield  ( )  

    

 
  . On the other hand, 
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for the Bayesian lost sales model, the optimal order quantities varies with respect to the 

observation. For example, when (      )  = (6, 10), the order quantity differs for 

different observations, the observation may be on the uniform area or Pareto one. For 

instance, for      , given the retailer’s order quantity, the distributor’s optimal order 

quantity is     
       and given     

 , the retailer’s optimal ordering quantity is 

    
      

    ( |  )       (
    

 
)    .8, while the retailer’s and the 

distributor’s order quantities for      are 17.1 and 23.4, respectively.  For      and 

     , the calculations are as follows: 

Calculated     
      

    ( |  )       (
    

 
)            

       

Calculated     
      

    ( |  )       (
    

 
)            

       

The examples presented above indicate how the calculated     
  is determined by the 

distributor to fill the retailer’s order quantity,     
 . 

3.4.4 Sensitivity analysis 

To investigate the effects of the model parameters on the optimal ordering quantities 

and the profits of the supply chain member, we vary the values of specific parameters 

while keeping the values of the other parameters fixed at their values. The results are 

shown in Tables 3.8, while Figures 3.1, 3.2 and 3.3 relate to Table 3.7. These tables 

illustrate the effect of increasing the flexibility level on the profits of both parties and 

ordering decisions. For fixed parameters, the distributor’s expected profit increases in   

while the retailer’s profit decreases. The effect of increasing the spot market price is 

worse off for both retailer and distributor. As the retailer’s flexibility level increases, the 

distributor’s ordering quantity and profit increase. This can be explained as follows. For 

the retailer, a larger flexibility causes an increase in the retailer’s and distributor’s order 

quantities, which also increases profits. Moreover, when the flexibility level is high, the 

distributor shares more supply risk with the retailer. On the other hand, more flexibility 

allows the distributor to ship less quantity to the retailer, so the retailer’s profit drops 

because it incurs a shortage cost. The numerical results in a later section show that for 

small values of the flexibility parameter d is profitable for both the retailer and the 
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distributor, while larger values diminishes the random yield risk by sharing the risk with 

the retailer. 

Increasing in   is also beneficial for the distributor while it is worse off for the retailer. 

This result is consistent with the result obtained in proposition 1.   

 

Figure 3.1 The effect of flexibility on the distributor’s profit. 

 

 

Figure 3.2 The effect of flexibility on the retailer’s profit. 
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Figure 3.3 The effect of flexibility on the retailer and the distributor’s order quantities 

3.5 Concluding Remarks 

In this Chapter, we investigated the ordering policies for a three-echelon supply chain 

consisting of a supplier, a distributor and a retailer. The distributor, the middle member 

of the supply chain, was assumed to face a random yield from the supplier for two 

scenarios Bayesian and Non-Bayesian. Under additive supply yield risk, the 

distributor’s optimal ordering quantity from the supplier and the retailer’s optimal 

ordering quantity from the distributor are derived. We supposed that the yield risk is 

unknown and the distributor forecasts the yield risk by using the information from a 

previous observation. The lost sales model and the spot market model were proposed 

for the Non-Bayesian case. Moreover, we extended these two contracts for the Bayesian 

case. We also considered the case of the retailer offering a quantity flexibility contract 

to the distributor as an incentive of sharing its supply risk information where the 

distributor incurs spot market cost. The framework of the contract is such that the 

retailer is flexible to receive quantities less than what it orders given a flexibility level 

and the distributor commits product availability at least equal to the retailer’s flexibility 

threshold quantity and up to its order quantity. If the distributor’s shipment quantity 

exceeds the retailer’s ordering quantity, then the distributor would have unused 

quantity. On the other hand, if the shipment quantity to the retailer falls below its 

shipment commitment, then the distributor has to supply the shortage quantity from the 

spot market at a price higher than the ordinary purchasing price. In addition, to decrease 
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the negative effect of lost sales, updating the distributor supply availability was 

proposed for this model as well. For some models, analytical results were presented 

whereas, for Bayesian updating models, the shape of the unknown parameters led to 

proposing an algorithm to find the optimal solution. 

The results obtained would help managers when deciding which type of contract would 

best work for them. We investigated the effects of random yield updating on the 

performance of the supply chain members. It was also seen from the results that under 

the lost sales model only the retailer benefits from information updating when the 

variance of yield risk is low. Additionally, the most powerful contract was shown to be 

the quantity flexibility contract for the retailer for any flexibility level. This result is true 

for the distributor when the flexibility level is not very low. 

Apart from the discussed results, sensitivity analysis was performed to observe the 

effect of changes in the spot market price, transfer price and flexibility level on the 

performance of the supply chain members for quantity flexibility contract.  It was 

shown, however, that the more the flexibility is, the more the profit for the distributor 

would be, but the less it would be for the retailer. A future extension would be to 

investigate demand updating along with the supply risk updating. Additionally, for 

multi-supplier problems, it would be interesting to investigate the effect of monitoring 

one supplier’s shipment on the ordering from the other supplier. 
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Appendix: 

Proof of Lemma 5: 
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Proof of Lemma 6: 

a)   
    can be rewritten as: 
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Using Lemma 1, the optimal ordering quantity can be calculated as follows: 



 

88 
 

  
     ∫ (   )  ( |  )   

 

  

   ∫ (     )   ( |  )   
 

   

  ∫ (   )   ( |  )   
 

  

    (     )∫   [  
      

     
]   ( )  

 

      
     

  (     )∫ [  
     

     
]   ( )   

 

     
     

  (  

   )∫  [  
     

     
]   ( )   

 

     
     

 

  
      ∫      ( )    ∫   ( )    ∫      ( )  

 

     
     

 

     
     

 

      
     

 

   
   

  
   

∫    ( )    ∫    ( )   
 
     
     

 
      
     

∫    ( )   
 
     
     

 
 

 
 

        (
      

     
)  (   )      (

     

     
)    

      (
      

     
)    (

     

     
)          (

     

     
)  

    
   

   
       (

      

     
)   (   )   (

     

     
)    

b) Assume that      . We need to show that  ( )   (∫  ( |  )  
 

   
)  

 (∫  ( |  )  
 

   
) is increasing function of  .  

  ( )

  
    ( |  )  (   ) (   |  )    



 

89 
 

c) The proof follows from a). 
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Proof of Lemma 7: 
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Proof of Lemma 8: 

We can rewrite   
   

 as follows: 
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Using Lemma 1, the optimal ordering quantity can be calculated as below: 
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 is    then the distributer’s profit function is concave in  . 

Proof of Proposition 1: 
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4. TRUST IN SUPPLY FORECAST INFORMATION SHARING  

In this Chapter, we investigate the role of trust in supply forecast signaling in a supply 

chain with a supplier and a manufacturer in a one-shot game. The supplier faces with 

random yield uncertainty. The uncertainty is multiplied by the manufacturer’s order 

quantity. The supplier has private forecast on yield risk. It decides whether share it 

truthfully or not. On the other hand, the manufacturer faces with two strategies in 

ordering: if it trusts the supplier’s report then it updates its belief on the yield risk 

providing a forecast signal by the supplier. Otherwise, it orders based on its prior belief. 

Analytically we obtained the optimal order quantity. Intuitive result indicates that the 

supplier has a tendency to deviate from reporting true forecast information. Numerical 

results presented in this Chapter also supports intuitive conclusion. 

4.1 Introduction 

One of the most important areas in supply chain management is forecast information 

sharing (Ozer et.al (2011)). On the other hand, information asymmetry is one of the 

sources of inefficiency in supply chain (Ren et.al 2010). Moreover, since forecast 

communication is costless, it creates an incentive to informed party for information 

distortion that affects uninformed parties’ decision. (Gumus, 2014 and Ozer et.al, 2011). 

Researchers have proposed different types of coordination contracts to enhance supply 

chain performance and information sharing ( Tsay and Agrawal, 2004).  

On the other hand, when there is information asymmetry in the supply chain, 

coordination can be obtained through either signaling contract or screening contract. 

The type of contract depends on who offers it.  

Information sharing has been widely used from demand side to achieve coordination in 

supply chain. In most studies related to forecast signaling, demand forecast signal has 

been in the center of attention while supply forecast signal sharing cannot be neglected 

as retailer/manufacturer’s order quantity is dependent to the supplier’s availability in 

terms of quantity. Forecast information sharing can be a special supply chain activity 

where trust and social characteristics are important (Ebrahimi nakhjiri et.al (2011)). 
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In this chapter, we analyze random yield forecast-sharing in one-shot game between a 

supplier and a manufacturer under information asymmetry. We assume that the 

manufacturer faces two strategies about forecast signal, trust or not to trust. In this 

model, we define trust as the manufacturer’s willingness to rely on the supplier’s 

forecast report to determine order quantity. When the manufacturer trusts the supplier, it 

believes the report with certainty and places it order after updating its belief about yield 

risk providing a signal by the supplier. On the other hand, when the manufacturer does 

not trust the supplier’s report, it orders based on its prior knowledge on random yield 

value. It is assumed that random yield has multiplicative form.  

We would like to investigate whether the manufacturer should trust the supplier’s 

forecast signal. What is the best ordering decision for the manufacturer when the 

supplier shares its forecast signal, Trust or Not to Trust?   

Here, we refrain to review papers related to the effect of information sharing in supply 

chain as they have been reviewed in the previous Chapter, Chapter 3. We focus on the 

review of studies that have embedded the concept of trust and investigated the effect of 

forecast signaling on supply chain coordination. Papers written by Chu (1992), 

Lariviere and Padmanabhan (1997), Desai and Srinivasan (1995), Van Mieghem (1999) 

deal with information sharing in decentralized supply chain in which demand signaling 

in new product introductions had been investigated.  

Bakal et. al (2011) considered a two- echelon model with one supplier and multiple 

retailers where there is a lack of supplier’s capacity information in a single-period. 

Using game theoretic approach, the retailer’s reaction under the assumption of full 

capacity information ad asymmetric capacity information and the value of information 

were analyzed in which all retailers are served from the same capacity source.  

Uncertainty in quality of product affects buyer’s profit. To mitigate the negative effect 

of such this uncertainty, Wu et.al (2011) investigated a supply chain including a buyer 

and two competing suppliers who experience product quality uncertainty. They showed 

that quality information sharing is always beneficial for the buyer and it is dependent on 

product quality level and price level for the supplier.  In the basic EOQ model when 

there is a level of supply uncertainty, the target production value for a manufacturer 
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differs from an ordered placed by retailer. Chian and Feng (2006) investigated the value 

of information sharing on the manufacturer’s optimal production quantity which will be 

shipped to a number of retailers under the assumption of production yield variability 

and demand volatility. Moving average method was used to determine the 

manufacturer’s optimal production level in order of forecasting the retailers’ orders for 

two cases of non-information sharing and information sharing.    

To induce a supply chain member to reveal true demand information Özer and Wei 

(2006) and Cachon and Lariviere ( 2001) identified a set of contracts. For a channel 

consisting of a manufacturer and a supplier, Özer and Wei (2006) analyzed credible 

forecast information sharing problem in which the manufacturer has private information 

about her end product while the supplier must decide on capacity level before the 

manufacturer places her order. To make possible credible forecast information sharing, 

two strategic information sharing contracts were developed by the supplier: a nonlinear 

capacity reservation contract and an advance purchase contract which enable the 

supplier to discover the manufacturer’s private forecast information and to receive a 

signal on her forecast information respectively.  

Cachon and Lariviere ( 2001) considered similar problem to Özer and Wei (2006) in 

which a manufacturer who has private information about demand offers two contract 

compliance regimes, forced compliance and voluntary compliance, to a supplier. In 

turn, the supplier decides on capacity procurement. To share demand forecasts 

credibility, they considered contracts under each compliance regime. Wang et. al (2009) 

considered a supply chain consisting of a manufacturer and a retailer who is dominant 

in the supply chain. The supplier supplies the retailer in which its manufacturing cost is 

unknown for the retailer and the retailer has only a perception on the prior distribution 

of the manufacturing cost.  For different types of contract: Price-Only, Franchise fee, 

Two-part tariffs, and Menu of contracts (MC), the retailer investigated conditions in 

which the manufacturer is interested to share its information about manufacturing cost 

and how these contracts affect on information sharing conditions.   

Researchers have defined trust variously. Trust in interpersonal relationship was defined 

as an individual’s confidence in another person’s intensions, motives and sincerity of 
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speech by Mellinger (1995). Mayer et.al (1995) developed definition of trust consisting 

of the following dimensions: 1) benevolence, 2) integrity, and 3) ability.  Donohue and 

Siemsen (2011) defined trust as a relationship of reliance. We review analytical works 

on trust to improve the coordination of supply chain. These works have not been 

commonly studied in literature.  

A manager’s disclosure credibility of private information was examined by Stocken 

(2000) in a supply chain including a manager and an investor in a single-game and a 

repeated game. Although in the one-shot game there was no communication, in the 

repeated game the manager reveals its information truthfully conditional on sufficient 

accounting report.     

Using a game theoretical approach, Ren et.al (2010) investigated supply chain 

coordination and forecast information sharing for a channel consisting of a supplier and 

a customer. The supplier invests on its capacity before the customer realizes demand 

and relies on the customer forecast sharing. The results showed that for a one-shot 

game, the supplier behaves rationally on capacity allocation since the customer does not 

share the forecast information truthfully. On the other hand, for long-term interaction, 

review strategy was used to update the customer’s behavior scoring index to assure 

whether the customer shares truthful information in each transaction.       

Özer et.al (2011) considered a capacity investment decision problem where a supplier 

who is not aware of a manufacturer’s private forecast. A laboratory experiment 

observation reveals that there is cooperation between the manufacturer and the supplier 

in the absence of reputation-building mechanism which is the results of trust between 

the parties. They further developed an analytical model to identify how trust and 

trustworthiness provide cheap-talk forecast sharing effective for one-time interaction 

and repeated interaction as well.  

In addition to the role of trust in supply chain, Ebrahim-Khanjari et.al (2012) 

incorporated social characteristics in a multi-period dynamic model with a 

manufacturer, a salesperson and a retailer. Both the retailer and the salesperson forecast 

demand independently. For different types of salesperson, they showed that in long 

relationship, the salesperson shares its information truthfully. They evaluated and 
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examined the impact of trust, referred to forecast sharing, and the salesperson social 

characteristics on the supply chain parties’ decisions. 

The most relevant study to our research published very recently by Pun and Heese 

(2013). They investigated a manufacturer’s make-buy decision in which there are 

potential suppliers who are either high type or low type. The suppliers’ type is private 

information for the suppliers and unknown for the manufacturer. On the other hand, the 

manufacturer has a prior knowledge about suppliers’ type and updates its beliefs about 

the capabilities of unaudited suppliers by learning from audit supplier. 

 In this chapter, we investigate the effect of forecast signaling on the manufacturer’s 

optimal order quantity in which the manufacturer has two strategies about forecast 

signal, trust and not trust. To the best of our knowledge, there is no study in the 

literature to investigate whether random yield forecast signaling is beneficial for the 

supply chain parties or not. Moreover, we are interested to discover the best strategy of 

the manufacturer given shared forecast. We also explore numerically the effect of 

manufacturer’s trust about signal on the supply chain parties’ profits and order quantity.  

The rest of the chapter is organized as follows. Model analysis and discussion are 

presented in Section 4.2.  In Section 4.3, managerial insights and discussion of results 

are presented by numerical example. In the last section, there are concluding remarks 

and some future extensions of the work presented in this chapter.   

4.2 The Model 

We model a one-shot game for a supply chain consisting of a supplier and a 

manufacturer in which there is a random yield uncertainty from the supply side. The 

manufacturer orders a single product from the supplier who faces with uncertain random 

yield,  . The manufacturer decides on its ordering decision with regard to the supplier’s 

shared forecast on disruption and uncertain market demand. Our focus is on the role of 

trust in forecast shared and the manufacturer’s optimal ordering policy. It is assumed 

that market demand is uncertain in which  ( )  is demand cumulative distribution 

function which is continuous and differentiable and  ( )  is its probability density 

function. The model uncertainty comes from both demand and supply side. The supplier 
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decides in truthful signaling and the manufacturer decides whether trust the received 

signal. 

4.2.1 Random yield Model 

To model random yield uncertainty, we assume that the manufacturer orders quantity   

to the supplier whose shipment quantity is a scaled random variable    , where   is a 

random variable and represents the supplier’s private forecast information.  

Random yield uncertainty,  , belongs to the interval [    ̅] where   and  ̅ are the lower 

and upper bounds on random yield. Let  ( )  be the random yield cumulative 

distribution function that is continuous and differentiable and  ( ) is its probability 

density function. We assume that yield uncertainties are distributed independently.  

The forecast is shared with the manufacturer based on two strategies, truthfully and 

untruthfully. It is assumed that the manufacturer’s belief on shared forecast is in the 

interval [     ̅ ] with probability density function  ( )  and cumulative distribution 

function  ( ). If the manufacturer trusts the supplier’s signal, then the manufacturer 

updates the belief interval and places order according to the received signal and 

uncertain market demand. On the other hand, if it does not believe on the truth of 

forecast signal, then it orders according to its prior knowledge.   

4.2.2 Model Formulation and Discussion 

It costs   the supplier per unit production and charges the manufacturer   for each unit 

purchased from the supplier. The manufacturer earns   revenue per unit sold to market. 

If the shipment quantity is less than what the manufacturer orders, then both the supplier 

and the manufacturer incur shortage cost    and    respectively. The manufacturer is 

the only member who incurs a unit holding cost of   for unsold units. 

The manufacturer’s expected sales given an available shipment quantity from the 

supplier is: 

 (     )   ( )                                  (1) 

Given all the cost parameters, the supplier and the manufacturer’s expected profits are 

defined as follow respectively by   (   ) and   (   ). 
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  (   )  (   ) (    )                                   

                              (2) 

  (   )         (      )                         (3) 

The following is explained how the game procedure played by the supply chain 

members. First, the supplier observes the forecast of random variable  ̂  while the 

manufacturer does not know about  ̂. Then, the supplier sends the random yield signal 

  to the manufacturer. We assume that the manufacturer faces two strategies about 

forecast signal, trust or not to trust. If the manufacturer trusts the supplier’s signal, it 

updates its belief by revising interval belief. Then the order is placed according to the 

received signal and uncertain market demand. On the other hand, if the manufacturer 

believes that the forecast is shared untruthfully, then, the manufacturer places its order 

quantity according to its prior knowledge and the belief interval does not change. The 

manufacturer’s optimal order quantity that maximizes its profit is given below: 

         
 

    (   )  

   is the solution of the following formula: 

(   ) ∫   
 

 
 ( )    (      ) ∫  ( )   

 ̅

 
 

 (        ) ∫    (  )  ( )   
 

 
 (      ) ∫   ( )  ( )   

 ̅

 
 (4) 

For a special case, where both demand and random yield follow uniform distribution, 

the manufacturer’s order quantity is: 

   
    (      )[ (    )    ( ̅  )]        (    )

   (        )( (     ))    (      )( ̅  )
     (5) 

It is assumed that demand varies in the interval [    ̅].  

In cooperative game, truthful information-sharing case, the manufacturer trusts the 

supplier’s forecast signal and orders  ̂ to maximize its profit with the updated belief 

after signal observation. The manufacturer updates its belief on the random yield 

availability given the signal,  , from the supplier. The updating process is as follows: 

 Updated       (    ), 
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 Updated  ̅     ( ̅  ) 

The retailer updates the yield risk interval after forecast observation in the same way. 

 Update       (    ̂), 

 Update      (   ̂). 

Alternatively, in the non-cooperative case, the manufacturer does not trust the supplier’s 

shared signal and orders its required quantity    regardless of the shared information 

(received signal).    

         
 

    (   )  

Intuitively we may conclude that the supplier has an incentive to recommend another 

value for random yield when the uncertainty in yield risk is low. It may report the signal 

over pessimistic to get more orders from the manufacturer to increase its profit and 

encounter its shortage cost due to mismatch between demand and supply.  This signal 

affects the manufacturer’s profit negatively due to increasing holding cost and over 

purchasing. Therefore, the best strategy for the manufacturer is do not trust the 

supplier’s signal.    

4.3 Numerical example 

To support the intuitive result presented in this chapter, numerical examples are solved. 

The analytical answer for the case of Uniform demand and random yield was obtained 

in the previous section. Here, by numerical example we show that how the information 

shared by the supplier affects ordering policy of the manufacturer. We also show what 

the most beneficial strategy for the manufacture and retailer is. Moreover, the impact of 

trust in random yield forecast signal on both supply chain members profits is 

investigated. The following table represents the value of input parameters in the model 

for numerical example. 
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Table 4.1. The values of input parameters. 

The next two sections discuss the effect of truthful and untruthful information sharing 

on the supply chain members’ performance. Moreover, the discussion is followed with 

the manufacturer’s optimal action given forecast signal. 

4.3.1 Untruthful Case 

In this case, the manufacturer does not trust shared information on random yield 

availability by the supplier. The manufacturer’s order quantity is independent of yield 

signal. Tables 4.2, 4.3, 4.4, and 4.5 show the results for different scenarios of the 

manufacturer’s belief about yield value based on its prior knowledge on yield risk.  

Following, some trivial results are explained. Table 4.2. shows the manufacturer’s profit 

and optimal order quantity regardless to the supplier’s signal for different belief about 

yield risk, [    ̅ . Regardless yield risk revealed by the supplier, as the interval range of 

the manufacture’s belief about random yield decreases, the optimal order quantity, 

  , decreases. The reason is, the manufacturer is the only member who pays holding 

cost. Therefore, if on hand inventory level at the end of period exceeds demand, then the 

manufacturer incurs holding cost. The smaller length of interval means the more reliable 

supplier. Consequently, more precise ordering leads to increasing the expected profit of 

the manufacturer while the supplier’s profit decreases. This happens due to reduction in 

order quantity. 

One more result is that for the same yield risk interval, the supplier obtains the most 

benefit when observation ensures more supply availability. For example, for [    ̅  

          and [     ̅           , the supplier’s profits are 76.82, 47.64, and 28.28 

respectively for observations 1.4, 0.9, and 0.4. 

 

     

                

1.6 1 3.5 8 1.2 2           
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Table 4.2. Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅           . 

 [    ̅       
  

[0.5, 1.5] 31.87 81.76 

[0.75, 1.15] 30.31 83.07 

[0.9, 1.1] 29.11 84.75 

 

Table 4.3 Supplier’s profit for [    ̅            and different observations. 

[    ̅   ̂       ̂       ̂      

[0.5, 1.5] 28.28 47.64 76.82 

[0.75, 1.15] 26.91 45.31 73.07 

[0.9, 1.1] 25.83 43.51 70.17 

 

When the supplier’s observation is smaller than the lower level of yield risk interval, the 

supplier’s profit decreases as the supplier’s uncertainty on random yield increases. To 

be specific, for the smaller interval range of supplier’s yield risk, the supplier obtains 

the lowest profit when the observed  ̂  is smaller than the lower level of yield risk 

interval,  ̂   . For instance, for [    ̅            and  ̂      , when the range of 

[     ̅  moves from           to          , the supplier’s profit drops from 28.28 to 

20.83. This can be explained as follows. The manufacturer does not update its belief and 

orders based on its prior knowledge, while the supplier’s observation is far from the 

manufacturer’s belief. Therefore, the supplier may incur shortage cost since it may ship 

quantity less than what the manufacturer requested.  

Table 4.4 Supplier’s profit for [    ̅            and different observations. 

[    ̅   ̂       ̂       ̂      

[0.5, 1.5] 23.67 50.98 130.12 

[0.75, 1.15] 22.52 48.5 123.77 

[0.9, 1.1] 21.62 46.57 118.85 
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Table 4.5 Supplier’s profit for [    ̅             and different observations. 

[    ̅   ̂       ̂       ̂      

[0.5, 1.5] 20.83 55.76 267.29 

[0.75, 1.15] 19.82 53.04 254.26 

[0.9, 1.1] 19.03 50.94 244.16 

 

 

4.3.2 Truthful Case 

 We compare the results for three different scenarios of supplier’s observation: I) 

supplier’s observation lies within its yield risk interval, II) it is smaller than the lower 

bound of the interval, and III) it is greater than the upper bound of the interval. 

Although the manufacturer trusts the supplier, the supplier may have incentive to reveal 

another value of random yield. For each scenario, we analyze results and the 

manufacturer’s optimal action for two different cases of information sharing.  

Scenario I: The supplier’s observation lies within the manufacturer’s belief on yield risk 

interval [    ̅  

 Case i) Truthful Supplier 

The result is the same as untruthful information sharing case discussed in previous 

section. 

 Case ii) Untruthful Supplier  

A comparison of Tables 4.6, 4.7, and 4.8, indicates that as the difference between upper 

and lower bond of the manufacturer’s belief interval decreases, lower uncertainty, the 

optimal order quantity increases when yield signal is smaller than the lower bound and 

decreases when it is greater than the upper bound.  

For the case where the signal is smaller than  , the supplier’s profit increases as  ̅    

decreases while there is a significant reduction in the manufacturer’s profit. In this 

situation as it is stated above, the optimal order quantity increases, therefore the supplier 
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sells more that leads to higher profit while the untruthful information hurts the 

manufacturer by increasing the level of unsold units and incurring holding cost. 

Table 4.6 Manufacturer and suppliers’ profit and optimal order quantity for untruthful 

case for [    ̅            and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 33.35 72.23 49.86 

0.9 31.87 81.76 47.64 

1.6 31.67 81.71 47.34 

 

Table 4.7 Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅              and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 35.57 48.21 53.14 

0.9 30.31 83.07 45.32 

1.6 30.14 83.06 45.06 

 

Table 4.8 Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅            and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 36.12 7.78 54 

0.9 29.11 84.75 43.51 

1.6 29.14 84.65 44.46 

 

On the other hand, when the signal is higher than  ̅, the supplier’s profit decreases as 

 ̅    decreases. This happens due to reduction in the optimal order quantity from the 

manufacturer as a result of receiving higher forecast signal. 
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Scenario II) the supplier’s signal is smaller than the lower bound of the Manufacturer’s 

belief on yield risk [    ̅  

 Case i) Truthful Supplier 

As  ̅    decreases, the manufacturer orders more thus the supplier’s profit increases 

while the manufacturer’s profit goes down. 

Case ii) Untruthful Supplier 

By comparing Tables 4.9, 4.10, and 4.11, it is quite clear that reduction in  ̅    

increases the optimal order quantity when the supplier mimic to signal random yield 

lower than the real observation while it decreases for yield signal higher than the 

supplier’s observation. This leads to increase in supplier’s profit and reduction in the 

manufacturer’s profit in comparison with the case of truthful supplier. The same results 

are observed for Scenario III. Results tables for Scenario III are presented in Appendix.  

Table 4.9. Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅            and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 33.35 72.23 29.6 

0.4 32.63 77.78 28.96 

1.3 31.87 81.8 28.28 

 

Table 4.10 Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅              and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 35.55 48.21 31.55 

0.4 34.4 61.11 30.53 

1.3 30.22 83.07 26.82 
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Table 4.11. Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅            and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 36.12 7.8 32.65 

0.4 34.87 33.08 30.95 

1.3 29.55 84.68 26.22 

From above discussion, it can be concluded that it is beneficial for the supplier to mimic 

high uncertainty and send signal lower than the manufacturer’s belief. The manufacturer 

obtains the most benefit when it does not trust the supplier. This result is consistent with 

the result obtained intuitively.   

4.4 Conclusion 

In this chapter, the effect of random yield forecast signaling in a one-shot game for a 

supply chain consisting of a manufacturer and a supplier was studied. The supplier has 

superior information on the forecast of yield risk. It was assumed that the manufacturer 

either trust to supplier’s report or do not trust it. We modeled the supply yield risk in a 

multiplicative form. The manufacturer placed its order after observing the supplier’s 

signal. If the manufacturer absolutely trusted the supplier, it updated its belief about 

yield risk. On the other hand, in the absence of trust, the manufacturer decided on the 

optimal order quantity based on its prior knowledge. We were interested in investigating 

the role of trust in yield risk forecast information sharing. For two types of information 

sharing situation, truthful and untruthful, we analytically obtained the manufacturer’s 

optimal order quantity. Intuitively, we concluded that the supplier has tendency to 

deviate from truthful sharing information when the forecast random yield indicates that 

the supplier is high reliable.   

We also obtained the numerical results in which both demand and supplier’s yield risk 

follow uniform distribution. The numerical result is consistent with intuitive result. 

Numerically we compared the supply chain members’ profits for two cases of truthful 

and untruthful. In truthful case, the results were achieved for three different scenarios of 

the supplier’s observation. Each scenario includes two cases of information sharing. 
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When the supplier is untruthful, it is not beneficial for the manufacturer trust the 

supplier.  

Although we considered one-shot game in this model, many businesses have long-term 

relationships. It would be interesting to see how the supply chain members behave in 

long-term relationship and how the credibility of the supply chain parties are examined. 

Moreover, it can be investigated under which circumstances information will be shared 

truthfully when relationships are long term.     
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Appendix A: 

Table 4.A1 Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅              and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 35.55 48.21 57.26 

1.4 30.19 83.07 48.62 

1.8 30.11 83.06 48.51 

 

Table 4.A2 Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅            and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 33.35 72.23 53.72 

1.4 31.87 81.76 51.33 

1.8 31.38 81.64 50.54 

 

Table 4.A3 Manufacturer’s profit and optimal order quantity for untruthful case for 

[    ̅            and  ̂     . 

   ̂   ̂ 
   ̂ 

  

0.3 36.12 7.8 58.18 

1.4 29.64 84.67 47.73 

1.8 29.8 84.64 47.99 
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5. CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

This thesis studies the effect of information sharing and updating on inventory and 

procurement management in supply chain management for two types of supply 

uncertainties: uncertainty in randomness and uncertainty in yield risk.   

The first part contributes theoretical results for a dynamic inventory model in which the 

probability of supply availability of a machine is forecasted by Bayesian learning. 

Supply availability is an all-or-nothing type and follows the Bernoulli distribution with 

an unknown parameter, θ, which is the probability of the supplier reliability. 

We investigate the optimal ordering/production policy for a two-item, finite-horizon 

dynamic problem, with two different fixed costs. To characterize the optimal policy we 

prove that cost function is (  ,   ) -convex. Then, we prove the optimality of 

(  
 (   )   

 (   ))  policy along with a monotone switching curve as a optimal 

ordering policy for the problem.  

We provide numerical example to compare Bayesian and non-Bayesian models with 

different fixed cost values and demand levels. The results reveal that information 

obtained from learning could be more profitable and cost-effective for a low value of 

the fixed cost. Generally, numerical results show that improving the accuracy of the 

forecast leads to making a better ordering decision and eliminating the negative effect of 

supply disruption on the total cost.   

Second, we investigate a procurement problem for a three-echelon supply chain 

consisting of a supplier, a distributor and a retailer where yield and demand are random 

variables. Under additive supply yield risk, the distributor’s optimal ordering quantity 

from the supplier and the retailer’s optimal ordering quantity from the distributor are 

derived. Using Bayesian updating, the distributor updates its random yield distribution 

that follows a uniform distribution with two unknown parameters. We propose two 

contracts for Non-Bayesian case. Moreover, we extend these two contracts for the 

Bayesian case. A quantity flexibility contract is offered by retailer to the distributor as 
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an incentive of sharing its supply risk information where the distributor incurs spot 

market cost. 

We show how supply chain members benefit under different contracts. While analytical 

results for the Non-Bayesian model are provided, for models with information updating, 

an algorithm is proposed to obtain the optimal ordering quantity for each chain member. 

The results obtained would help managers when deciding which type of contract would 

best work for them.  

The effects of random yield updating on the performance of the supply chain members 

are also investigated. Parts of the results indicate that for the lost sales model, only the 

retailer benefits from information updating when the variance of yield risk is low. 

Moreover, the most powerful contract is shown to be the quantity flexibility contract for 

the retailer for any flexibility level. The learning effect on the performance of the supply 

chain members and sensitivity analysis are investigated numerically.       

Finally, we investigate the effect of trust on random yield forecast signaling in a one-

shot game in a supply chain consisting of a manufacturer and a supplier in which the 

supplier has superior information on the forecast of yield risk. The manufacturer places 

its order after observing the supplier’s signal. If the manufacturer fully trusts the 

supplier, it updates its belief about yield risk. On the other hand, in untruthful case, the 

manufacturer orders the optimal quantity based on its prior belief.  For two types of 

information sharing situation, truthful and untruthful, the analytical result is obtained. 

Intuitive discussion states that the supplier has an incentive to deviate from truthful 

sharing information when the forecast random yield indicates that the supplier is high 

reliable.   

The numerical results for Uniform demand and supplier’s yield risk are obtained. The 

numerical results are in consistent with intuitive result. The supply chain members’ 

profits for two cases of truthful and untruthful are compared numerically. It is shown 

that when the supplier is untruthful, it is not beneficial for the manufacturer trust the 

supplier.  
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5.2 Limitations and Future Recommendations  

Several future researches are presented for the problems discussed in each Chapter.  

Future extensions and limitations for the model developed in Chapter 2 could be in 

different directions. In the model developed in Chapter 2, it is assumed that capacity is 

unlimited which is not true in reality. Therefore, it would be interesting to investigate 

the optimal ordering policy with capacity constraints. It may also be worthy to 

investigate the behavior of the system when there is lead time for delivery, and/or when 

the manufacturer has advance lead time information. Moreover, the incorporation of 

multi-supplier and demand uncertainty into this model would also be interesting to 

investigate.  

Second work can be extended by considering the following issues. A future extension 

would be to investigate demand updating along with the supply risk updating. 

Additionally, for multi-supplier problems, it would be interesting to investigate the 

effect of monitoring one supplier’s shipment on the ordering from the other supplier. 

This work is limited in one-period time horizon so there is an extension for multi-period 

information sharing.  

The limitation of the last work in this study can be considered as an extension of the 

work as well. Although we considered one-shot game in the model presented in Chapter 

4, many businesses have long-term relationships. It would be interesting to see how the 

supply chain members behave in long-term relationship and how the credibility of the 

supply chain parties is examined. Moreover, it can be investigated under which 

circumstances information will be shared truthfully when relationships are long term.     
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