
Hints from the Crowd : a Novel NoSQL

Database

Paolo Fosci1, Giuseppe Psaila1, Marcello Di Stefano2

1 University of Bergamo, Dept. of Engineering,
Viale Marconi 5, I-24044 Dalmine (BG), Italy,
e-mail: paolo.fosci, psaila@unibg.it

2 University of Palermo, Dept. of Computer Science Engineering,
Viale delle Scienze Ed. 6, I-90100 Palermo, Italy,
e-mail: marcello.distefano@unipa.it

Abstract. The crowd can be an incredible source of information. In
particular, this is true for reviews about products of any kind, freely
provided by customers through specialized web sites. In other words,
they are social knowledge, that can be exploited by other customers.
The Hints From the Crowd (HFC) prototype, presented in this paper, is
a NoSQL database system for large collections of product reviews; the
database is queried by expressing a natural language sentence; the result
is a list of products ranked based on the relevance of reviews w.r.t. the
natural language sentence. The best ranked products in the result list
can be seen as the best hints for the user based on crowd opinions (the
reviews).
In this paper, we mainly describe the query engine, and we show that our
prototype obtains good performance in terms of execution time, demon-
strating that our approach is feasible. The IMDb dataset, that includes
more than 2 million reviews for more than 100,000 movies, is used to
evaluate performance.

1 Introduction

Reviews about products that customers can freely write on specialized web sites
constitute an incredible source of information, by means of which users would
like to get useful hints. But how could a user obtain them? Typically, the user
has some wishes and would like to find products that match those wishes, based
on opinions of other users. But to do that, a specialized system is necessary.

Looking at the problem by a database technology point of view, product
reviews constitute a text database that has a given structure; user’s wishes can
be seen as natural language queries over the set of reviews and the user wants
to obtain the products whose set of reviews matches the query at the highest
degree; the ideal solution, is to get a ranked list, where the best ranked products
can be seen as the best hints for the user based on crowd opinions (the reviews).
In other words, such a system is a NoSQL database system, where queries are
natural language sentences.

Thus, the Hints From the Crowd (HFC) prototype is a NoSQL database sys-
tem for large collections of product reviews; the database is queried by expressing
a natural language sentence; the result is a list of products ranked based on the
relevance of reviews w.r.t. the natural language sentence. Semantic tagging and
term expansion (by means of WordNet) are performed, both indexing reviews
and querying them.

We wanted to demonstrate that it is possible to obtain an answer to a query
in acceptable time on a large set of reviews. Therefore, we tested the prototype on
reviews about movies downloaded from the IMDb.com web site, that includes
more than 2 million reviews for more than 100,000 movies. The study about
execution times at query time is presented.

The paper is organized as follows. Section 2 presents related literature. Sec-
tion 3 shows and describes the architecture of the system. Section 4 describes
how the query engine works and the ranking measure. Section 5 presents the
results of the performance study we conducted by means of the IMDb dataset.
Finally, Section 6 draws the conclusions.

2 Related Work

Research in the database area is more and more addressing the concept of NoSQL
database. Several attempts to define the concept can be found. Referring to [14],
three categories of data stores are considered: Key-Value stores, Document stores
and Column Family stores. The first category deals with datasets similar to maps
or dictionaries where data are addressed by a unique key. The second category
deals with sets of text documents, and our work falls into this category. The
third category encompasses column oriented stores, extensible record stores and
wide columnar stores. Graph databases can be considered as well belonging to
the world of NoSQL databases [12].

One important aspect of NoSQL data stores is performance. Often, NoSQL
databases are necessary due to the implicit limitation of relational databases in
given application contexts, where the relational structure of data is an obstacle to
obtain fast execution times. The work in [1] tries to address this perspective and
presents six features of NoSQL data stores. The are: (1) the ability to horizontally
scale simple operation throughput over many servers; (2) the ability to replicate
and to distribute (partition) data over many servers; (3) a simple call level
interface or protocol (in contrast to a SQL binding); (4) a weaker concurrency
model than the ACID transactions of most relational (SQL) database systems;
(5) efficient use of distributed indexes and RAM for data storage; (6) the ability
to dynamically add new attributes to data records.

The ranking metrics we defined as the basis of the HFC system is inspired
to the concept of itemset, developed in the area of data mining for mining fre-
quent itemsets and association rules. Several works [6, 9, 7] adopt association
rule mining for analyzing customer reviews and extract opinions from them. In
[6], association rule mining is used to extract, from within customer reviews,

relevant features the characterize opinions of users about products. In [9], a sys-
tem to compare opinions about products is presented, where product reviews
reports PROs and CONs; in particular, association rule mining is exploited to
assign a positive or negative polarity to words (namely, adjectives) in product
reviews, and use this polarity to rank the opinion about products. The work in
[5] extracts, by means of an association rule mining technique, relevant features
that summarize product reviews.

Other data mining techniques are used to analyze customer reviews. For in-
stance, in [10] a sentence clustering technique is adopted. In [2], both supervised
and unsupervised approaches are evaluated. A similar work is done in [8], where
key classification techniques for opinion mining are discussed. The work in [3]
presents a technique for semantic classifications of product reviews.

However, we do not propose a data mining technique and the HFC system
is not a data mining system. We simply take inspiration from the concept of
frequent itemset.

Proposals related with the notion of frequent itemset and association rule
mining was exploited in the area of recommender systems [13]. In effect, the
reader could imagine the HFC system as a kind of recommender system. How-
ever, based on the general perception about recommender systems (well pre-
sented in [11]) a recommender system builds a profile of the user and matches
this profile against previous knowledge. In contrast, the HFC system does not
build a profile of users; it performs a query, consciously submitted by the user,
on the set of product reviews.

Furthermore, notice that certainly the our proposal has some common as-
pects with search engines and information retrieval techniques. However, these
techniques usually models documents based on the Vector Space Model, and do
not consider at all the specific features of collections of product reviews.

3 The HFC System

As stated in Section 1, Hints From the Crowd is a NoSQL database system that
deals with collections of product reviews, that can be queried by expressing a
natural language sentence (i.e. query in the rest of the paper).

Due to lack of space, in this Section we shortly mention system architecture
and data structure underlying the Query Engine, that we describe in Section 4.

3.1 Architecture

The HFC system is composed by several components, each one devoted to per-
form a specific task as shown in Figure 1. In particular, we distinguish between
the back-end and the front-end : the former is responsible for collecting, analyzing
and indexing data from product reviews; the latter is the actual user interface
accessed by users, that is built on top of the Query Engine.

Let us describe the architecture in details.

Analizer Loader Expander

Query

Engine

Product

Reviews

Tagged

Reviews

File System

Data Structure

Relational

Database

Web

Application

Fig. 1. Architecture of the HFC System.

Back-end. In this side of the system, we find the components (rectangles) that
prepares the data structure on which queries are executed. These components
operate on source data and intermediate results (ovals) and upload data struc-
tures in the Storage box.

– Analyzer. This component is responsible for analyzing product reviews, iden-
tifying words and their grammar category (noun, verb, adjective or adverb).
This pos-tagging operation is performed by the Stanford Parser3. As a result,
reviews are transformed into tagged sentences, composed of tagged terms, i.e.,
a term associated to a tag that denotes the grammar category.

– Loader. The goal of this component is to load Tagged Reviews into the data
structures on which queries are performed (see Section 3.2).

– Expander. After the loading phase has ended, tagged terms are expanded on
the base of an ontology (in our case, WordNet), so that the Query Engine
can exploit semantic relationships in order to capture a wider set of results
related with the query.

Front-end. From the architectural point of view, the key component of the front-
end is the Query Engine: it exploits the preliminary work performed by back-end
components, and works on data structures describing occurrences of terms in
product reviews. The Web Application component has been developed to give
end users the capability to exploit the system.

3.2 Data Structure

Figure 2 graphically depicts the logical schema of the HFC data-structure.
Table Products describes each single product, and its schema is context-

dependent, in the sense that the attributes are defined based on the application
domain. For example, since we use IMDb movie data set to test the prototype,
we defined attributes concerning movies, such as title, director, year, and so on.

Table Terms is the key table, that describes each single tagged word man-
aged by the system. Attributes products, reviews and occurrences counts the
number of products and the number of reviews in which a tagged term occurs,
and the total number of occurrences, respectively. Notice that, while attribute
taggedword denotes a unique element in the table, since a simple word can be
associated to more than one grammar category (i.e. word book can be either a
noun or a verb), it can appear several times in the table.

3 from the Stanford NLP Group: http://nlp.stanford.edu/index.shtml

Terms(id, word, tag, taggedword, products, reviews, occurrences)
Term2Expansion(termId, expandedWordId, relation)
Occurrences(id, productId, termId, review, position)
Product(id, domain specific attributes)

Fig. 2. Schema of the Relational Database.

Table Term2Expansion represent the relations of a tagged term (by
means of attribute termId) with another tagged term (by means attribute
expandedTermId). Attribute relation denotes the typology of expansion4, i.e.,
synonym, hypernym, heponym to name a few. Notice that tagging a term with its
grammar category (for instance noun), allows us to delimit word expansion only
to the relations implied by the grammar category (i.e. the concept of meronym
can be applied to a verb, but not to a noun).

Finally, table Occurrences describes all occurrences of tagged terms in prod-
uct reviews; in particular, notice attribute position, that indicates the position
of the occurrence in the review.

Data storing. Due to performance issues, part of the data resides as traditional
tables on a relational database (tables Product, Terms and Term2Expansion),
and part on the file system (tables Occurrences)

Specifically, as table Occurrences is likely to be huge5, it has been split in
single occurrences file for each term. Each file, containing occurrences of a single
term, is identified by the term id. due to the very large number of terms, files
are distribuited in a subdirectory tree to avoid to saturate file system limits of
files per directory.

Internally, each occurrences file is organized as a binary file, where a fixed
length data structure represents a term occurrence; this data structure is a 12-
bytes triple (ProductId, ReviewId, Position).

Furthermore, for the sake of performance study, we also have a 2nd version
of the file system data structure, where occurrences are partitioned in 5 orthog-
onal subtrees, and each subtree describes occurrences for 1/5 of the products.
This second version allows us to implement a multi-thread query engine, with 5
threads running in a parallel way (see 5.2).

4 Query Engine

We now describe the key component, i.e., the query engine. Based on a natu-
ral language sentence (the query) it extracts those products whose reviews are
mostly relevant for the query. Relevance is evaluated by means of a ranking met-
ric; retrieved products are returned as a list sorted in reverse order of relevance.
Hereafter, we describe how the ranking metric is defined.

4 WordNet provides a set of 15 different possible expanding relations depending on
word grammar category

5 In our test case, the size is more than 12Gb

l #Il weight termsets (I)

4 1 0.5000 {funny, great, hilarious, jokes}
3 4 0.1000 {funny, great, hilarious}

{funny, great, jokes}
{funny, hilarious, jokes}
{great, hilarious, jokes}

2 6 0.0167 {funny, great} {funny, hilarious}
{great, hilarious} {great, jokes}
{funny, jokes} {hilarious, jokes}

Fig. 3. Termsets levels for query great funny hilarious jokes and corresponding weights.

4.1 Termsets

In this paper we consider a query q as a set of terms (or briefly, a termset).
Thus, we describe a query containing a number n of terms as q = {t1, . . . , tn}

6,
and we investigate only those queries where n > 1 or, in other words, |q| > 1.
With I, we denote a generic termset that is a subset of q for which applies
|I| > 1. With Dq, we denote the set of termsets I derived from q. Notice that
the cardinality of Dq is |Dq| = 2n− (n+1), i.e. Dq is the power set of q without
the empty set and the n single terms that compose q.

With Il we denote an l-termset of q, that is a termset composed by l terms, i.e.
|Il| = l. With Dq,l we denote the set of l-termsets Il. Notice that the cardinality
of Dg,l is |Dq,l| = (nl).

4.2 Termset Weight

We now define the concept of weight for a termset.

Definition 1: The weight of a l−termset is a function of its length and the
length of the query q (|q| = n) and it is denoted as wq(l).
For n = 2 there is only one 2-termset and its weight is wq(2) = 1 by definition.
For n > 2 the weight of the single n−termset q is, by definition, wq(n) = 0.5,
while for 2 < l < n it is wq(l) = wq(l + 1)/((nl) + 1) and for l = 2 it is
wq(2) = wq(3)/(

n
2). 2

The rationale behind Definition 1 is the following. The topmost termset,
corresponding to the whole query, is the most important one, and its weight
is equal to the overall weight of all the shorter termsets. The same principle is
valid for any generic termset Il (with 2 < l < n), whose weight is equal to the
overall weight of all lower levels termsets (even those that are not subset of Il).
In this way, reducing the size of termsets, the contribution of each level quickly
decreases.
Notice, that the overall weight of all termsets is exactly 1 (

∑
I∈Dq

wq(|I|) = 1).

Figure 3 shows the termsets levels with an example query.

4.3 Query Expansion and Semantic Coefficient

As stated in Section 3.1, reviews are processed performing several operations.
Similar operations are performed on a user query in natural language as well.

6 At moment, in this stage of the project we do not consider word order or repetitions

Pos-tagging. By means of Stanford Parser, each word of a user query is tagged
with an attribute that denotes its grammar role (verb, noun, adjective to name
a few) in the query.

Stopwords filtering. Stopwords are those words that are too common in reviews
(such as articles, conjunctions); furthermore, common verbal forms like is or
have (just to name a few) are treated as stopwords. Stopwords include also some
very context-dependent words such as the word actor in a movie context. These
words hold a small semantic meaning, so after pos-tagging operation stopwords
are discarded from the query.
Thus, denoting with SW the set of possible stopwords, in the rest of the paper
the notation:

q = {t1, . . . , tn}

includes only those terms ti /∈ SW , and, as stated in Section 4.1, we consider
only those queries q such that |q| > 1 (actual length without stopwords).

Term expansion. By means of WordNet ontology, each tagged term ti ∈ q is
expanded with all those terms directly associated to ti depending by its grammar
tag. Thus, for example a noun is expanded with all its synonyms, hypernyms
or hyponyms and so on, while a verb is expanded with all its synonyms or
meronyms, to name a few. There are actually a total of 15 possible different
relations between a tagged term and its expanded words.
We denote with t∗i the generic expanded term of ti, and with ET (ti) the set of
all expanded terms of ti. By definition, ti ∈ ET (ti) with an identity relation,
thus, |ET (ti)| ≥ 1.

Notice that, given a generic expanded term t∗, it can happen that t∗ ∈ ET (ti)
and t∗ ∈ ET (tj) with i 6= j. In other words, we cannot state a-priori that
ET (ti) ∩ ET (tj) = � with i 6= j. As an example, the term colour can be an
hypernym expansion for both terms red and black.

Query expansion. An expanded query q∗ is each combination of {t∗1, . . . , t
∗

n}. We
consider valid a combination q∗ = {t∗1, . . . , t

∗

n} only if t∗i 6= t∗j ∀i 6= j Notice that
the original query q is a particular q∗ itself, and it is valid by definition.

Expanded termsets. Previous considerations about query q and its expansions,
are applicable to each termset Il. With I∗l we denote an expanded termset I∗l =
{t∗1, . . . , t

∗

l }, and similarly I∗l is valid only if t∗i 6= t∗j ∀i 6= j.
With EI(I) we denote the set of all possible expanded termset I∗ that can be
derived from I. The cardinality of EI(I) =

∏
t∈I |ET (t)|, that is the number of

all possible combinations of the expanded terms of those terms that compose I.

Finally, with D∗

q , we denote the set of all valid expanded termsets that are
included in q and all its valid expansions q∗.

|ET (t)| sct(t) (not expanded) sct(t
∗) (t∗ 6= t)

1 1.0000 —
2 0.7500 0.2500
3 0.6667 0.1667
5 0.6000 0.1000

10 0.5500 0.0500

I∗ (structure) # sct(I
∗)

{t1, t2} 1 0.4444
{t∗1, t2}or{t1, t

∗

2} 4 0.1111
{t∗1, t

∗

2} 4 0.0278

a) b)
Table 1. a) Trend of Semantic coefficient w.r.t. the cardinality of ET (t). b) Semantic
coefficient for a generic 2-termset where each term has two expansions.

Semantic coefficient. Each t∗ ∈ ET (t) has a semantic coefficient sct(t
∗), with

0 < sct(t
∗) ≤ 1, that depends on the cardinality of ET (ti).

Definition 2: For each t∗ ∈ ET (t) except t, sct(t
∗) = 0.5/|ET (t)|, and sct(t) =

0.5 + 0.5/|ET (t)|. 2

The rationale of semantic coefficient, is the following. A term describes a
semantic concept that is mostly expressed by the term itself, but receives a
small contribution from expanded terms: the greater the number of expansion,
the smaller the semantic contribution of a single expanded term. Notice that∑

t∗∈ET (t) sct(t
∗) = 1. Table 1.a shows how sct varies with ET (t) cardinality.

With scI(I
∗) we denote the semantic coefficient for an expanded termset I∗

derived from I.

Definition 3: Given an expanded termset I∗ = {t∗1 . . . t
∗

l } derived for a termset
I = {t1 . . . tl}, it is scI(I

∗) =
∏

t∗
i
∈I∗

l
scti(t

∗

i). 2

This way, a termset that contains only original terms gives the highest se-
mantic contribution, while augmenting the number of expanded terms in the
termset, the semantic contribution decreases.
Table 1.b shows the trend of the semantic coefficient for a 2-termset where each
original term has two expansions. Notice that, according to the above definition,∑

I∗∈EI(I) scI(I
∗) = 1.

4.4 Product Reviews and Termsets

Consider a product p (a movie, a camera, etc.), its set of reviews is denoted by
R(p) = {r1, . . . , rk}. Each review is a text, i.e., a sequence of term occurrences
ri =< t1, . . . , ts >.

With T (R(p)) we denote the set of terms appearing in reviews for product
p, and with T (ri) the set of terms appearing in review ri ∈ R(p).

Definition 4: A termset I is said relevant for product p if ∃ri|I ⊆ T (ri). 2

The set of relevant termsets for product p is denoted as RDp,q. In an analogous
way, RD∗

p,q is the set of all relevant expanded termsets for product p. Notice
that RDp,q ⊆ Dq, and also RD∗

p,q ⊆ D∗

q .

4.5 Termset Average Density

In a preliminary work [4], we assumed that every termset occurrence in product
reviews contribute to the support of the termset with the same weight, i.e. 1,

since the support, by definition, is the number of reviews containing the termset
on the total amount of reviews.
Given a termset I, in a single review, terms in I can be very dense or, on the
opposite case, very sparse. We consider a review in which the occurrences of
terms in I are dense being more relevant for the query than a review where
occurrences are sparse. Thus, we introduce the concept of Termset Density of
an termset I for a single review.

Definition 5: Consider a product p, a review r ∈ R(p), and a termset Il. The
Termset Review Density dr(Il) is defined as

dr(Il) = l/minWinr(Il)
where minWinr(Il) is the size of the minimal window in review r that includes
all the terms of termset Il. 2

Notice that for Termset Review Density, it holds that 0 < d(Il, r) ≤ 1

The next step is to define a Termset Average Density for a generic termset
I (we omit the subscript l not to burden notation) w.r.t. a product p.

Definition 6: Consider a product p and its set of reviews R(p). With RI(p)
we call the subset of R(p) of those reviews containing termset I. The Termset
Average Density for product p, denoted as adp(I), is defined as:

adp(I) = (
∑

r∈RI(p)
dr(I))/|R(p)|

2

The Termset Average Density is analogous to termset support, with the
difference that the contribution of the occurrence of a termset I in a review r is
not 1 but its density dr(I). Notice, thus, that adp(I) ≤ sp(I) ≤ 1, where with
sp(I) we denote the support of a termset I for a product p.

4.6 Product Ranking Metric

Finally, we can now define the Product Ranking Metric PRM.

Definition 7: Consider a query q, the set of termsets D∗

q derived from q, the sys-
tem of the weights wq(|I

∗|) and semantic coefficients scq(I
∗) for each expanded

termset I∗ ∈ D∗

q .
Consider a product p, the set of reviews R(p) and the set of relevant ex-
panded termsets RD∗

p,q that can be actually extracted from R(p). Given for
each I∗ ∈ RD∗

p,q the average termset density adp(I
∗), the Product Relevance

Value for product p is defined as

PRM q(p) =
∑

I∗∈RD∗

p,q
(wq(|I

∗|)× adp(I
∗)× scq(I

∗))
2

The rationale of the above definition is the following. For each termset I∗

included in the query q and actually relevant in the reviews, its contribution
to the overall relevance value is given by its weight wq(|I

∗|) (that depends on
its size) multiplied by its average density adp,q(I

∗) and its semantic coefficient
scq(I

∗).
The system of weights and semantic coefficients has been designed to obtain

a PRM q(p) = 1 for an ideal set of reviews for product p, where each review

Schema A B Diff %

Pos-Tagger active inactive
Distinct tagged terms 1,151,827 776,852 -32.55%
Occurrences 216,345,522 216,345,522 0.00%

Analysis Time (A = Ps+Pt) 2226.80h 3.82h -99.83%
Parsing Time (Ps) 2.11h 2.42h +14.74%
Pos-tagging Time (Pt) 2224.69h 1.40h -99.94%

Db Loading Time (D) 56.05h 49.76h -11.23%
Term Expansion Time (E) 3.73h 2.67h -28.49%
Total Time (T = A+D+E) 2286.58h 56.25h -97.54%

Table 2. Indexed schemes

contains every expanded termset I∗ that can be derived from q with a density
dr(I

∗) = 1, and every expanded termset I∗ is valid.

5 Evaluation

Our dataset is composed by a total of 2,207,678 user reviews for 109,221 movies
downloaded from the IMDb.com web site. The size of the text we downloaded is
approximatively 3,091Mb. Each movie has a number of reviews included between
1 and 4,876, and the average number of reviews per movie is 20.
Experiments has been run on a PC with two Intel Xeon Quad-core 2.0GHz/L3-
4MB processors, 12GB RAM, four 1-Tbyte disks and Linux operating system.

5.1 Indexing

While indexing our data set, as described in the back-end side of HFC system
architecture in 3.1, we figured out how pos-tagging affects the HFC system.
Disabling pos-tagging means tagging each term with a unique trivial tag, and
considering for each term every possible expansion regardless of its role inside
the query; in other words, disabling pos-tagging means a significant reduction of
the number of managed terms because words are distinguished on the basis of
their grammar category (for instance word colour could be both a noun and a
verb); however, the counter effect is that the possible number of expansions for
a termset combinatorially increases.

Table 2 reports data collected during dataset indexing. Column A shows
data regarding indexing with pos-tagging activated (Schema A), while Column
B shows data regarding indexing with pos-tagging deactivated (Schema B). Col-
umn Diff % shows the percentage variation from data of Schema A to data of
Schema B (where applicable). For each Schema, the total number of indexed
term occurrences (row Occurrences) and the number of identified tagged terms
are shown. As said in the premises, disabling pos-tagging reduces the number
of tagged terms (∼ 33%). Table 2 reports, in rows, also data relative to execu-
tion time (in hours) during the indexing phase. The Total Time of the indexing
is given by the sum of Analysis Time, Db Loading Time and Term Expansion
Time. Moreover Analysis Time is split in Parsing Time, that is basically the
time due to reading data from data set, and Pos-tagging Time, that considers

Single-thread 5-threads Diff %

Average Time (T=QE+TG+TE+TM+S) 2,501.12 ms 1,994.66 ms -20.25%

Query Expansion (QE 286.44 ms 286.40 ms -0.01%
Thread generation (TG) 0.40 ms 1.88 ms 370.00%
Thread execution (TE ≤ O+R) 2,199.64 ms 1,691.60 ms -23.10%

Occurrences Loading (O) 1,962.52 ms 1,639.84 ms -16.44%
Ranking (R) 237.12 ms 75.12 ms -68.32%

Thread merging (TM) 1.64 ms 1.80 ms 9.76%
Sorting (S) 13.00 ms 12.98 ms -0.17%

Table 3. Single-thread search engine Vs 5-threads search engine

only the execution time of Stanford Parser when pos-tagging is active, and in-
stead the simple operation of labeling each term with the same tag when the
pos-tagging is inactive. It is clearly evident how much the Analysis Time is af-
fected by Pos-tagging Time using Stanford Parser : the more than 2200 hours
needed for pos-tagging are equivalent to more than 90 days! In order to reduce
this waiting time, we exploited all the 8 cores of the machine used for the ex-
periment, parallelizing the Analysis phase in 8 independent processes, splitting
data set into 8 different sub-data sets, and reducing the actual waiting time to
about 13 days.
The analysis of variation of Db Loading Time and Term Expansion Time high-
lights how the higher number of tagged terms in Schema A w.r.t. Schema B
affects the execution time of the Loader and the Expander.

5.2 Query Performance

For our query performance tests we prepared a set of 25 standard user queries7

like I want to know more about the history of Greece and the Persian wars, or
All those moments will be lost in time, like tears in rain8.

The first test we made, compares the variation of performance of the query
engine working on Schema A (ad described in Section 5.1) in a single-searching-
thread version versus a 5-searching-threads version. Table 3 shows the average
results of the test performed on the set of 25 standard queries mentioned before.
Column Single-thread shows performance of the single-thread search engine,
while Column 5-threads shows performance of the 5-threads search engine, and
column Diff % shows the percentage variation from single-thread w.r.t. 5-threads
search engine. For each search engine version, the average execution time per
query is provided in row Average Time.

Basically, the query engine evaluates a query performing 4 different steps: (1)
query expansion, (2) occurrences loading, (3) product ranking, (4) result sorting.
Steps 2 and 3 can be parallelized (and performed in different threads), while
Steps 1 and 4 must be performed by a single thread.
Row Thread execution of Table 3 reports the average execution time of the
slowest searching threads for each query, while rows Occurrences Loading and
Ranking report the average time of the slowest thread in executing respectively
Step 2 and Step 3 for each query; that is why TE ≤ O +R.

7 due to lack of space, we don’t report the testing queries
8 from Blade Runner movie

Schema A B Diff %
Pos Tagging active inactive

Total time 1,995 ms 3,480 ms 74.47%
Movies 2,067 2,994 44.85%
Occurrences 107,200 226,994 111.75%
Termsets 5,414 13,795 154.80%
Table 4. Pos tagging VS No-pos tagging

The analysis of execution times in Table 3 shows that most of the time needed
to perform a query is because of occurrences loading : this is mostly due to our
storage system based on classical hard disks. With more modern solid-state stor-
age system, that are at least one order of magnitude faster, we are confident to
dramatically improve performance.
Another issue is about threads parallelization. From the compared analysis, at
first glance could seems that the 5-thread search engine version has not signifi-
cantly improved performance, since there is only a 16.44% of gain in occurrences
loading. However, this is mostly due to the fact that we have de facto a single
storage system: data are transferred to main memory through a single system
bus. We are confident that parallelized the process on different machines perfor-
mance should dramatically increased. As a matter of fact, the compared analysis
of ranking execution times, that do not involve disk use, tells that 5-treads search
engine is 68.32% more perfoming that the single-thread search engine.

The second test we have made on our set of 25 queries, is a comparison be-
tween performance of the 5-thread search engine on the Schema A and Schema
B as described in Section 5.1. Table 4 shows in column A data related to Schema
A, and in column B data related to Schema B. Column Diff % shows the per-
centage variation from Schema A w.r.t. Schema B.
Table 4 provides average data-per-query. It can be noticed that when pos-tagger
is inactive there is a growing of average execution time, mostly due to the larger
number of occurrences to load, and also to a larger number of termsets to ana-
lyze. On the other hands, there is larger number of movies retrieved as, actually,
deactivating pos-tagging means increasing the number of expanded terms to
search (causing generation of false positive movies, i.e., movies whose reviews
are not actually relevant w.r.t. the original query).

6 Conclusions

The scope of this paper was to present the architecture and the query engine
of HFC NoSQL database system. Although performance of the system can be
further be improved, the considerations in 5.2 show that the approach is feasible
in terms of query response time.
We are aware we did not discuss about system effectiveness, but it was beyond
the scope of the paper. However the web-interface we developed is designed to
collect users opinions about the system, and by means of that, in the future
work we intend to deeper investigate effectiveness of the system. Moreover, as
far as effectiveness is concerned, in the future work we intend to integrate term

expansion with linked-data as a source for semantic ontology about terms, and
also considering word order and word repetition in queries in our ranking model.

References

1. R. Cattell. Scalable sql and nosql data stores. SIGMOD Record, 39 (4):12–27,
2011.

2. P. Chaovalit and L. Zhou. Movie review mining: a comparison between supervised
and unsupervised classification approaches. In HICSS. IEEE Computer Society,
2005.

3. K. Dave, S. Lawrence, and D. M. Pennock. Mining the peanut gallery: opinion
extraction and semantic classification of product reviews. In WWW, pages 519–
528, 2003.

4. P. Fosci and G. Psaila. Toward a product search engine based on user reviews. In
DATA-2012 Int. Conf. on Data Technologies and Applications, Rome (Italy), July
2012.

5. M. Hu and B. Liu. Mining and summarizing customer reviews. In W. Kim,
R. Kohavi, J. Gehrke, and W. DuMouchel, editors, KDD, pages 168–177. ACM,
2004.

6. M. Hu and B. Liu. Mining opinion features in customer reviews. In D. L. McGuin-
ness and G. Ferguson, editors, AAAI, pages 755–760. AAAI Press / The MIT
Press, 2004.

7. W. Kim, J. Ryu, K. I. Kim, and U.-M. Kim. A method for opinion mining of
product reviews using association rules. In S. Sohn, L. Chen, S. Hwang, K. Cho,
S. Kawata, K. Um, F. I. S. Ko, K.-D. Kwack, J. H. Lee, G. Kou, K. Nakamura,
A. C. M. Fong, and P. C. M. Ma, editors, Int. Conf. Interaction Sciences, volume
403 of ACM International Conference Proceeding Series, pages 270–274. ACM,
2009.

8. D. Lee, O.-R. Jeong, and S. goo Lee. Opinion mining of customer feedback data
on the web. In W. Kim and H.-J. Choi, editors, ICUIMC, pages 230–235. ACM,
2008.

9. B. Liu, M. Hu, and J. Cheng. Opinion observer: analyzing and comparing opinions
on the web. In A. Ellis and T. Hagino, editors, WWW, pages 342–351. ACM, 2005.

10. D. K. Ly, K. Sugiyama, Z. Lin, and M.-Y. Kan. Product review summarization
based on facet identification and sentence clustering. CoRR, abs/1110.1428, 2011.

11. P. Resnick and H. Varian. Recommender systems. Communications of the ACM,
40(3):5658, 1997.

12. H. Robin and S. Jablonski. Nosql evaluation: A use case oriented survey. In
CSC-2011 International Conference on Cloud and Service Computing, Hong Kong,
China, pages 336–341, December 2011.

13. J. J. Sandvig, B. Mobasher, and R. D. Burke. Robustness of collaborative rec-
ommendation based on association rule mining. In J. A. Konstan, J. Riedl, and
B. Smyth, editors, RecSys, pages 105–112. ACM, 2007.

14. C. Strauch. Nosql databases. http://www.christof-strauch.de/nosqldbs.pdf, 2011.

