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Università degli Studi di Bergamo, Facoltà di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo), Italy
and Istituto Nazionale di Fisica Nucleare, sezione di Milano, Milan, Italy

Gianluca Mandanici†
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We compute the zero point energy in a spherically symmetric background distorted at high energy as

predicted by Gravity’s Rainbow. In this context we setup a Sturm-Liouville problem with the cosmo-

logical constant considered as the associated eigenvalue. The eigenvalue equation is a reformulation of the

Wheeler-DeWitt equation. With the help of a canonical decomposition, we find that the relevant

contribution to one loop is given by the graviton quantum fluctuations around the given background.

By means of a variational approach based on Gaussian trial functionals, we find that the ordinary

divergences can here be handled by an appropriate choice of the rainbow’s functions, in contrast to what

happens in other conventional approaches. A final discussion on the connection of our result with the

observed cosmological constant is also reported.
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I. INTRODUCTION

The idea of promoting general relativity to a quantum
level, together with a solution of the cosmological constant
problem, is one of the big challenges of our century. Indeed
a satisfying quantum gravity theory does not exist yet and
the enormous gap of 10120 orders of magnitude between
the predicted theoretical value of the cosmological con-
stant and the observed one has not yet found a compelling
explanation. If the quantum description of nature is appro-
priate for every force, it should be applicable even to the
gravitational force described by general relativity. But
perhaps general relativity, as it stands, requires a change
In this respect, various proposals on how the fundamental
aspects of special relativity can be modified at very high
energies have been done. Among these proposals, particu-
larly promising appears to be the one known as doubly
special relativity (DSR)[1]. One of the characterizing DSR
effects is that the usual dispersion relation of a massive
particle of mass m is modified into the following
expression

E2g21ðE=EPÞ � p2g22ðE=EPÞ ¼ m2; (1)

where g1ðE=EPÞ and g2ðE=EPÞ are two arbitrary functions
which have the following property

lim
E=EP!0

g1ðE=EPÞ ¼ 1 and lim
E=EP!0

g2ðE=EPÞ ¼ 1: (2)

Thus, the usual dispersion relation is recovered at low
energies. Of course, the first ideas of DSR were minted
for flat space. However, nothing forbids us to consider a
curved background and therefore to enter into the realm of

general relativity. From this point of view, Magueijo and
Smolin [2] proposed that the energy-momentum tensor and
the Einstein’s field equations were modified with the in-
troduction of a one-parameter family of equations

G��ðEÞ ¼ 8�GðEÞT��ðEÞ þ g���ðEÞ; (3)

where GðEÞ is an energy dependent Newton’s constant,
defined so that Gð0Þ is the low-energy Newton’s constant.
Similarly we have an energy dependent cosmological
constant �ðEÞ leading to the rainbow version of the
Schwarzschild line element

ds2 ¼ �
�
1� 2MGð0Þ

r

�
d~t2

g21ðE=EPÞ

þ d~r2�
1� 2MGð0Þ

r

�
g22ðE=EPÞ

þ ~r2

g22ðE=EPÞ
ðd�2 þ sin2�d�2Þ: (4)

Since the functions g1ðE=EPÞ and g2ðE=EPÞ come into
play when the energy E is comparable with EP, it is likely
that they modify the UV behavior in the same way as
generalized uncertainty principle and noncommutative ge-
ometry (NCG) do, respectively. If the effect of generalized
uncertainty principle and NCG is to modify the Liouville
measure d3xd3k from one side, and to introduce a gran-
ularity from the other side, the rainbow metric) should be
able to introduce a natural UV regulator hidden into the
arbitrary functions g1ðE=EPÞ and g2ðE=EPÞ. An encourag-
ing partial answer has been obtained in Ref. [3], where an
application of gravity’s rainbow to black hole entropy
computation has been considered. In that paper the UV
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regulator, namely, the brick wall, has been eliminated with
the help of the following choice of g1ðE=EPÞ and g2ðE=EPÞ

g1ðE=EPÞ
g2ðE=EPÞ

¼ exp

�
� E

EP

�
: (5)

An interesting test to see gravity’s rainbow at work again,
should be the computation of zero point energy (ZPE).
Nevertheless, we have to remark that any computation of
ZPE leads to a regularization and subsequently to a renor-
malization process in order to have finite physical quanti-
ties. Therefore, the purpose of the paper is to show that,
with the introduction of appropriate gravity’s rainbow
functions, it is possible to overpass the renormalization
problem. Of course, this proposal does not represent a
complete cure to have a finite theory of Quantum
Gravity, but rather it suggests how the modification of
some basic principles like the introduction of an energy
dependent metric can lead to unexpected results such as the
avoidance of a renormalization scheme. In ordinary gravity
the computation of ZPE for quantum fluctuations of the
pure gravitational field can be extracted by rewriting the
Wheeler-DeWitt equation (WDW) [4] in a form which
looks like an expectation value computation [5]. We re-
mind the reader that the WDW equation is the quantum
version of the classical constraint which guarantees the
invariance under time reparametrization. Its original form
with the cosmological term included is described by

H� ¼
�
ð2�ÞGijkl�

ij�kl �
ffiffiffi
g

p
2�

ð3R� 2�Þ
�
� ¼ 0: (6)

Note that H ¼ 0 represents one of the classical con-
straints. The other one is the invariance by spatial diffeo-
morphism. If we multiply Eq. (6) by ��½gij� and

functionally integrate over the three spatial metric gij, we

can write1 [5]

1

V

R
D½gij���½gij�

R
� d3x�̂��½gij�R

D½gij���½gij��½gij�

¼ 1

V

h�jR� d3x�̂�j�i
h�j�i ¼ ��

�
; (7)

where we have also integrated over the hypersurface� and
we have defined

V ¼
Z
�
d3x

ffiffiffi
g

p
(8)

as the volume of the hypersurface � with

�̂ � ¼ ð2�ÞGijkl�
ij�kl � ffiffiffi

g
p 3R=ð2�Þ: (9)

In this form, Eq. (7) can be used to compute ZPE, provided

that �=� be considered as an eigenvalue of �̂�; namely,
the WDW equation is transformed into an expectation
value computation. In Eq. (6), Gijkl is the supermetric,

�ij is the supermomentum,3R is the scalar curvature in
three dimensions, and � is the cosmological constant,
while � ¼ 8�G with G the Newton’s constant.
Nevertheless, solving Eq. (7) is a quite impossible task,
therefore we are oriented to use a variational approach with
trial wave functionals. The related boundary conditions are
dictated by the choice of the trial wave functionals which,
in our case, are of the Gaussian type. Different types of
wave functionals correspond to different boundary condi-
tions. The choice of a Gaussian wave functional is justified
by the fact that ZPE should be described as a good candi-
date of the ’’. To fix the ideas, a variant of the line element
(4) will be considered

ds2 ¼ �N2ðrÞ dt2

g21ðEÞ
þ dr2

ð1� bðrÞ
r Þg22ðEÞ

þ r2

g22ðEÞ
ðd�2 þ sin2�d�2Þ; (10)

whereN is the lapse function and bðrÞ is subject to the only
condition bðrtÞ ¼ rt. Metric (10) will be the cornerstone of
the whole paper, which is organized as follows. In Sec. II,
we derive the Hamiltonian constraint in presence of the
background (10), in Sec. III we compute the ZPE of
quantum fluctuations around the background (10) and,
with the help of an appropriate choice of the functions
g1ðE=EPÞ and g2ðE=EPÞ, we will show that the UV diver-
gences of ZPE disappear. We summarize and conclude in
Sec. IV. Units in which ℏ ¼ c ¼ k ¼ 1 are used through-
out the paper.

II. THE HAMILTONIAN CONSTRAINT
IN GRAVITY’S RAINBOW

In order to use Eq. (7) for the metric (10), we need to
understand how the WDW modifies when the functions
g1ðE=EPÞ and g2ðE=EPÞ distort the background. It is there-
fore necessary to understand how some basic ingredients
change under the transformation of the line element (10).
The form of the background is such that the shift function

Ni ¼ �Nui ¼ g4i0 ¼ 0 (11)

vanishes, while N is the previously defined lapse function.
Thus the definition of Kij implies

Kij ¼ � _gij
2N

¼ g1ðEÞ
g22ðEÞ

~Kij; (12)

where the dot denotes differentiation with respect to the
time t and the tilde indicates the quantity computed in
absence of rainbow’s functions g1ðEÞ and g2ðEÞ. For sim-
plicity, we have set EP ¼ 1 in g1ðE=EPÞ and g2ðE=EPÞ

1See also Ref. [6] for an application of the method to a fðRÞ
theory.
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throughout the paragraph. The trace of the extrinsic curva-
ture, therefore, becomes

K ¼ gijKij ¼ g1ðEÞ ~K (13)

and the momentum �ij conjugates to the three-metric
gij of � is

�ij ¼
ffiffiffi
g

p
2�

ðKgij � KijÞ ¼ g1ðEÞ
g2ðEÞ ~�

ij: (14)

Since the rainbow’s functions distort the classical con-
straint, it could be a good test to verify if it is satisfied
for the background (10). The distorted classical constraint
becomes

H ¼ ð2�Þg
2
1ðEÞ

g32ðEÞ
~Gijkl ~�

ij ~�kl �
ffiffiffi
~g

p
2�g2ðEÞ

�
~R� 2�c

g22ðEÞ
�
¼ 0;

(15)

where we have used the following property on R

R ¼ gijRij ¼ g22ðEÞ ~R (16)

and where

Gijkl ¼ 1

2
ffiffiffi
g

p ðgikgjl þ gilgjk � gijgklÞ ¼
~Gijkl

g2ðEÞ : (17)

Note that the classical constraint (15) can be extracted
directly from the distorted Einstein’s field Eqs. (3) with
the help of the following procedure

G��ðEÞu�u� ¼ 8�GðEÞT��ðEÞu�u� þ g���ðEÞu�u�;
(18)

where g��u
�u� ¼ �1 and u� is a timelike vector normal to

the spatial hypersurface. Since the metric is static, the term
containing ~�ij vanishes. This can be easily verified from the
definition of the extrinsic curvature Kij of Eq. (12). From

Eq. (10) and from the property (16), we find

R ¼ gijRij ¼ g22ðEÞ ~R ¼ 2g22ðEÞ
b0ðrÞ
r2

; (19)

where we have used the mixed Ricci tensor ~Ra
j whose

components are:

~R a
j ¼

�
b0ðrÞ
r2

� bðrÞ
r3

;
b0ðrÞ
2r2

þ bðrÞ
2r3

;
b0ðrÞ
2r2

þ bðrÞ
2r3

	
: (20)

Therefore the Hamiltonian constraint (15) is reduced to

H ¼ 2
b0ðrÞ
r2

� 2�c

g22ðEÞ
¼ 0: (21)

For the Schwarzschild case, we find bðrÞ ¼ 2MG and
H ¼ 0 if and only if �c ¼ 0, for every choice of g2ðEÞ
as it should be. With regard to the de Sitter (dS) and anti-de
Sitter (AdS) cases, we find that the classical constraint (15)
is satisfied if

H ¼ �dS � �c

g22ðEÞ
¼ 0 ) �dSg

2
2ðEÞ ¼ �c

bðrÞ ¼ �dS

3
r3;

(22)

for the dS background and

H ¼ �AdS þ �c

g22ðEÞ
¼ 0 ) ��AdSg

2
2ðEÞ ¼ �c

bðrÞ ¼ ��AdS

3
r3

(23)

for the AdS background. Now that we have investigated the
classical part, we can define the WDW equation for the
background (10). From Eq. (6) we find that H� ¼ 0
becomes

H�¼
�
ð2�Þg

2
1ðEÞ

g32ðEÞ
~Gijkl ~�

ij ~�kl�
ffiffiffi
~g

p
2�g2ðEÞ

�
~R� 2�c

g22ðEÞ
��

�

¼0 (24)

and the Eq. (7) transforms into

g32ðEÞ
~V

h�jR� d3x~��j�i
h�j�i ¼ ��c

�
; (25)

where

~�� ¼ ð2�Þ g
2
1ðEÞ

g32ðEÞ
~Gijkl ~�

ij ~�kl �
ffiffiffi
~g

p
~R

ð2�Þg2ðEÞ : (26)

We can gain more information if we consider gij ¼
�gij þ hij, where �gij is the background metric and hij is a

quantum fluctuation around the background. Thus, Eq. (25)
can be expanded in terms of hij. Since the kinetic part of

�̂� is quadratic in the momenta, we only need to expand
the three-scalar curvature

R
d3x

ffiffiffi
g

p 3R up to the quadratic

order. However, to proceed with the computation, we also
need an orthogonal decomposition on the tangent space of
3-metric deformations [7,8]:

hij ¼ 1

3
ð�þ 2r � �Þgij þ ðL�Þij þ h?ij : (27)

The operator L maps �i into symmetric tracefree tensors

ðL�Þij ¼ ri�j þrj�i � 2

3
gijðr � �Þ; (28)

h?ij is the traceless-transverse component of the perturba-

tion (TT), namely

gijh?ij ¼ 0; rih?ij ¼ 0 (29)

and h is the trace of hij. It can immediately be recognized

that the trace element� ¼ h� 2ðr � �Þ is gauge-invariant.
It is straightforward to see that the gauge-invariant decom-
position (27) does not change, when we consider the rain-
bow’s metric (10). Therefore, following the results of
Ref. [9], we can use the final expression
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1

V

h�?jR� d3x½�̂?
� �ð2Þj�?i

h�?j�?i

þ 1

V

h��jR� d3x½�̂�
��ð2Þj��i

h��j��i ¼ ��c

�
: (30)

Note that in the expansion of
R
� d3x

ffiffiffi
g

p
R to second order

in terms of hij, a coupling term between the TT component

and the scalar one remains. However, the Gaussian inte-
gration does not allow such a mixing, which has to be
introduced with an appropriate wave functional. Extracting
the TT tensor contribution from Eq. (25), we find

�̂?
� ¼ g32ðEÞ

4 ~V

Z
�
d3x

ffiffiffiffiffiffiffi� �g
p

~Gijkl

�
ð2�Þg

2
1ðEÞ

g32ðEÞ
~K�1?ðx; xÞijkl

þ 1

ð2�Þg2ðEÞ ð
~4m
L
~K?ðx; xÞÞijkl

�
: (31)

The origin of the operator ~4m
L comes from

ð4̂m
Lh

?Þij ¼ ð4Lh
?Þij � 4Rk

i h
?
kj þ 3Rh?ij ; (32)

which is the modified Lichnerowicz operator where 4L is
the Lichnerowicz operator defined by

ð4LhÞij ¼ 4hij � 2Rikjlh
kl þ Rikh

k
j þ Rjkh

k
i

4 ¼ �rara: (33)

Gijkl represents the inverse DeWitt metric without the
ffiffiffi
g

p
factor and all indices run from one to three. Note that the
term

� 4Rk
i h

?
kj þ 3Rh?ij (34)

disappears in four dimensions when we use a background
which is a solution of the Einstein’s field equations without
matter contribution. The ‘‘�’’ symbol in Eq. (31) means
that we have rescaled every piece in Eq. (25), evaluated at

second order. Moreover, although the expression of ~��

explicitly shows how the operator �̂� globally changes,
when we consider the following eigenvalue equation

ð4̂m
Lh

?Þij ¼ E2h?ij ; (35)

we find that

ð ~4m
L
~h?Þij ¼ E2

g22ðEÞ
~h?ij ; (36)

in order to reestablish the correct way of transformation of
the perturbation. Then, the propagator K?ðx; xÞiakl can be
represented as

K?ð ~x; ~yÞiakl ¼ ~K?ð ~x; ~yÞiakl ¼
X
	

~hð	Þ?ia ð ~xÞ~hð	Þ?kl ð ~yÞ
2
ð	Þg42ðEÞ

; (37)

where ~hð	Þ?ia ð ~xÞ are the eigenfunctions of ~4m
L . 	 denotes a

complete set of indices and 
ð	Þ are a set of variational
parameters to be determined by the minimization of

Eq. (31). The expectation value of �̂?
� is easily obtained

by inserting the form of the propagator into Eq. (31) and
minimizing with respect to the variational function 
ð	Þ.
Thus the total one-loop energy density for TT tensors
becomes2

�

8�G
¼ � 1

2

X
	

g1ðEÞg2ðEÞ½
ffiffiffiffiffiffiffiffiffiffiffiffi
E2
1ð	Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E2
2ð	Þ

q
�: (39)

The above expression makes sense only for E2
i ð	Þ> 0,

where Ei are the eigenvalues of ~4m
L . With the help of

Regge and Wheeler representation [10], the eigenvalue
Eq. (35) can be reduced to

�
� d2

dx2
þ lðlþ 1Þ

r2
þm2

i ðrÞ
�
fiðxÞ ¼

E2
i;l

g22ðEÞ
fiðxÞ i¼ 1;2;

(40)

where we have used reduced fields of the form fiðxÞ ¼
FiðxÞ=r and where we have defined two r-dependent effec-
tive masses m2

1ðrÞ and m2
2ðrÞ

m2
1ðrÞ ¼

6

r2

�
1� bðrÞ

r

�
þ 3

2r2
b0ðrÞ� 3

2r3
bðrÞ

m2
2ðrÞ ¼

6

r2

�
1� bðrÞ

r

�
þ 1

2r2
b0ðrÞþ 3

2r3
bðrÞ ðr� rðxÞÞ:

(41)

In order to use the WKB approximation, from Eq. (40) we
can extract two r-dependent radial wave numbers

k2i ðr; l;!i;nlÞ ¼
E2
i;nl

g22ðEÞ
� lðlþ 1Þ

r2
�m2

i ðrÞ i¼ 1;2: (42)

III. ONE-LOOP ENERGY IN AN ORDINARY
SPHERICALLY SYMMETRIC BACKGROUND

It is now possible to explicitly evaluate Eq. (39) in terms
of the effective mass. To further proceed, we use the WKB

2Note that one could discuss the following eigenvalue equation
ð4̂m

Lh
?Þij ¼ !h?ij rather than Eq. (35), with ! � E having

nonetheless energy square dimensions. This choice leads to an
induced �=8�G, which cannot be regularized by any choice of
the rainbow’s functions. This can be easily understood by look-
ing at Eq. (39). Indeed, if we set ! � E, the total one-loop
energy density becomes

�

8�G
¼ � 1

2

X
	

g1ðEÞg2ðEÞ
� ffiffiffiffiffiffiffiffiffiffiffiffi

!1ð	Þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
!2ð	Þ

q �
(38)

and the expression is divergent. Therefore this option will be
discarded.
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method used by ‘t Hooft in the brick wall problem [11] and
we count the number of modes with frequency less than!i,
i ¼ 1, 2. This is given approximately by

~gðEiÞ ¼
Z lmax

0
�iðl; EiÞð2lþ 1Þdl; (43)

where �iðl; EiÞ, i ¼ 1, 2 is the number of nodes in the mode
with ðl; EiÞ, such that ðr � rðxÞÞ

�iðl; EiÞ ¼ 1

�

Z þ1

�1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i ðr; l; EiÞ

q
: (44)

Here it is understood that the integration with respect to
x and lmax is taken over those values which satisfy
k2i ðr; l; EiÞ � 0, i ¼ 1, 2. With the help of Eqs. (43), (44),
and (39), this leads to

�

8�G
¼ � 1

�

X2
i¼1

Z þ1

0
Eig1ðEÞg2ðEÞd~gðEiÞ

dEi

dEi: (45)

This is the graviton contribution to the induced cosmologi-
cal constant to one loop. The explicit evaluation of the
density of states yields

d~gðEiÞ
dEi

¼
Z @�ðl;EiÞ

@Ei

ð2lþ1Þdl

¼ 1

�

Z þ1

�1
dx

Z lmax

0

ð2lþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðr;l;EÞp d

dEi

�
E2
i

g22ðEÞ
�m2

i ðrÞ
�
dl

¼ 2

�

Z þ1

�1
dxr2

d

dEi

�
E2
i

g22ðEÞ
�m2

i ðrÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
i

g22ðEÞ
�m2

i ðrÞ
s

¼ 4

3�

Z þ1

�1
dxr2

d

dEi

�
E2
i

g22ðEÞ
�m2

i ðrÞ
�
3=2

: (46)

Plugging expression (46) into Eq. (45) and dividing for a
volume factor, we obtain

�

8�G
¼ � 1

3�2

X2
i¼1

Z þ1

E�
Eig1ðEÞg2ðEÞ d

dEi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

E2
i

g22ðEÞ
�m2

i ðrÞ
�
3

s
dEi; (47)

where E� is the value which annihilates the argument of the
root. In the previous equation, we have included an addi-
tional 4� factor coming from the angular integration and
we have assumed that the effective mass does not depend
on the energy E. To further proceed, we can see what
happens to the expression (47) for some specific forms of
g1ðE=EPÞ and g2ðE=EPÞ. One popular choice is given by

g1ðE=EPÞ ¼ 1� �ðE=EPÞn and g2ðE=EPÞ ¼ 1; (48)

where � is a dimensionless parameter and n is an integer
[12]. Nevertheless, the above choice does not allow a finite
result in Eq. (47) and therefore will be discarded. Thus the

choice of the possible forms of g1ðE=EPÞ and g2ðE=EPÞ is
strongly restricted by convergence criteria. We have hith-
erto used a generic form of the background. We now fix the
attention on some backgrounds which have the following
property

m2
0ðrÞ ¼ m2

2ðrÞ ¼ �m2
1ðrÞ; 8 r 2 ðrt; r1Þ: (49)

For example, the Schwarzschild background represented
by the choice bðrÞ ¼ rt ¼ 2MG satisfies the property (49)
in the range r 2 ½rt; 5rt=2�. Similar backgrounds are the
Schwarzschild-de Sitter and Schwarzschild–anti-de Sitter.
On the other hand, other backgrounds, like dS, AdS and
Minkowski have the property

m2
0ðrÞ ¼ m2

2ðrÞ ¼ m2
1ðrÞ; 8 r 2 ðrt;1Þ: (50)

If case (49) holds, Eq. (47) becomes

�

8�G
¼ � 1

3�2
ðIþ þ I�Þ; (51)

where

Iþ ¼
Z 1

0
ðEg1ðE=EPÞg2ðE=EPÞÞ

� d

dE

�
E2

g22ðE=EPÞ
þm2

0ðrÞ
�
3=2

dE (52)

and

I� ¼
Z 1

E�
ðEg1ðE=EPÞg2ðE=EPÞÞ

� d

dE

�
E2

g22ðE=EPÞ
�m2

0ðrÞ
�
3=2

dE: (53)

Instead, in case condition (50) holds, Eq. (47) becomes

�

8�G
¼ � 2

3�2
I�: (54)

We begin to look at Eq. (51). It can immediately be seen
that integrals Iþ and I� can be easily solved for a very
particular choice. Indeed, if we set

g�2
2 ðE=EPÞ ¼ g1ðE=EPÞ (55)

we find that Iþ and I� take the form:

Iþ ¼ 3
Z 1

0

�
E

g2ðE=EPÞ
�
2 d

dE

�
E

g2ðE=EPÞ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

E

g2ðE=EPÞ
�
2 þm2

0ðrÞ
s

dE (56)

and
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I� ¼ 3
Z 1

E�

�
E

g2ðE=EPÞ
�
2 d

dE

�
E

g2ðE=EPÞ
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

E

g2ðE=EPÞ
�
2 �m2

0ðrÞ
s

dE: (57)

The above integrals can be easily evaluated using the
auxiliary variable

zðE=EPÞ ¼ E=EP

g2ðE=EPÞ (58)

so that Eq. (47) becomes:

�

8�G
¼ �E4

P

�2

�Z z1

x
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � x2

p
dzþ

Z z1

0
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p
dz

	
;

(59)

where z1 ¼ limE!1zðE=EPÞ and x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ðrÞ=E2
P

q
. The

integrals involved in Eq. (59) can be calculated straight-
forwardly being

I1;xðzÞ ¼
Z

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � x2

p
dz

¼ 1

8
fzð2z2 � x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � x2

p
� x4 log½2ðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � x2

p
Þ�g

(60)

and

I2;xðzÞ ¼
Z

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ x2

p
dz

¼ 1

8
fzð2z2þ x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ x2

p
� x4 log½2ðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þ x2

p
Þ�g:

(61)

Thus we get the final expression:

�

8�G
¼ �E4

P

�2
fI1;xðz1Þ � I1;xðxÞ þ I2;xðz1Þ � I2;xð0Þg;

(62)

for the case with x < z1, and the expression

�

8�G
¼ �E4

P

�2
fI2;xðz1Þ � I2;xð0Þg; (63)

for the case with z1 < x. In particular, for the class of
rainbow functions that satisfy the condition z1 ¼ 0, we get
a vanishing cosmological constant:

�

8�G
¼ 0: (64)

Although very appealing, the result (64) presents the un-
pleasant feature of being always negative, even in the
region of space where we would expect a positive cosmo-
logical constant. Moreover, it is independent on the choice
of gðE=EPÞ, provided that this last one can guarantee the
convergence of the integral and the absence of imaginary

factors. For these reasons, we are led to investigate other
forms of g1ðE=EPÞ and g2ðE=EPÞ even if they have less
symmetry with respect to proposal (55). The only restric-
tions we have are the low-energy limit (2) and the con-
vergence requirement for the integrals (52) and (53). To do
calculations in practice, a useful choice is the following

g1ðE=EPÞ ¼
Xn
i¼0

�i

Ei

Ei
P

exp

�
�

E2

E2
P

�
;

g2ðE=EPÞ ¼ 1; > 0; �i 2 R: (65)

The use of a ‘‘Gaussian’’ form is dictated by the possibility
of doing a comparison with NCG models. Indeed, in
Ref. [13] the authors have considered a distortion induced
by an underlying NCG on the counting of states. Basically,
one finds that the number of states is modified in the
following way

dn¼ d3xd3k

ð2�Þ3 ) dni

¼ d3xd3k

ð2�Þ3 exp

�
��

4
ð!2

i;nl �m2
i ðrÞÞ

�
; i¼ 1;2; (66)

where the UV cutoff is triggered only by higher momenta

modes * 1=
ffiffiffi
�

p
which propagate over the background

geometry. Then the induced cosmological constant
becomes

�

8�G
¼ 1

6�2

�Z þ1ffiffiffiffiffiffiffiffiffi
m2

0
ðrÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 �m2

0ðrÞÞ3
q

e�ð�=4Þð!2�m2
0
ðrÞÞd!

þ
Z þ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 þm2

0ðrÞÞ3
q

e�ð�=4Þð!2þm2
0ðrÞÞd!

�
:

(67)

The analogy with the choice (65) can be seen immediately.
However, Eq. (67) leads directly to a positive-induced
cosmological constant, while Eq. (51) needs an appropriate
choice of g1ðE=EPÞ and g2ðE=EPÞ to induce a positive part.
After choice (65), the graviton contribution terms (52) and
(53) become

Iþ ¼ 3
Z 1

0

�Xn
i¼0

�i

Ei

Ei
P

exp

�
�

E2

E2
P

��
E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm2

0ðrÞ
q

dE

(68)

and

I� ¼ 3
Z 1ffiffiffiffiffiffiffiffiffi

m2
0ðrÞ

p
�Xn
i¼0

�i

Ei

Ei
P

exp

�
�

E2

E2
P

��
E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

0ðrÞ
q

dE:

(69)

In the appendix, we explicitly compute the integrals (68)
and (69) for every n. In order to motivate choice (65), we
have to observe that the case with n ¼ 0 leads to a negative
value of �=8�G for every kind of background as one can
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see from Eq. (51). Thus, it is necessary to make a correc-
tion on the pure Gaussian choice in such a way that we
have a possible change of sign in �=8�G. For our pur-
poses, it is sufficient to discuss the case with n ¼ 1 and
n ¼ 3. We begin with n ¼ 1.

A. Example a) n ¼ 1

After integration, for n ¼ 1, Eq. (51) can be rearranged
in the following way

�

8�GE4
P

� �

8�GE4
P

ð;�;xÞ

¼� 1

2�2

�
x2


cosh

�
x2

2

�
K1

�
x2

2

�

��

�
3x

22
� x2

ffiffiffiffi
�

p
3=2

sinhðx2Þþ 3
ffiffiffiffi
�

p
25=2

coshðx2Þ

þ
ffiffiffiffi
�

p
23=2

�
x2 � 3

2

�
ex

2
erfð ffiffiffiffi


p

xÞ
��

; (70)

where, again, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ðrÞ=E2
P

q
, �1 � � and where K0ðxÞ is

the Bessel function and erf ðxÞ is the error function. It is
clear that for every choice of the couple ð;�Þ there exists
a curve with a different behavior. Therefore, to fix ideas,
we will fix the Gaussian factor  to the same one proposed
by the NCG setting of Eq. (67). Before doing this, it is
useful to compute the series expansion for small and large
x. For large x one gets

�

8�GE4
P

’ � ð2�3=2 þ ffiffiffiffi
�

p
2Þx

4�27=2
� 8�5=2 þ 3

ffiffiffiffi
�

p
3

16�211=2x

þ 3

128�2

16�7=2 þ 5
ffiffiffiffi
�

p
4

15=2x3
þOðx�4Þ; (71)

while for small x we obtain

�

8�GE4
P

’ � 45=2 þ 3
ffiffiffiffi
�

p
�2

4�29=2
þOðx3Þ: (72)

It is straightforward to see that if we set

� ¼ �
ffiffiffiffiffiffiffiffi
�

p
2

; (73)

then the linear divergent term of the asymptotic expansion
(71) disappears and Eq. (70) vanishes for large x. Plugging
Eq. (73) into expansion (72), we obtain

�

8�GE4
P

’ 3�� 8

8�22
þOðx3Þ; (74)

which means that for x ¼ 0, the induced cosmological
constant never vanishes and therefore cannot be a good
candidate to reproduce the Minkowskian limit. Indeed, we
have to recall that the variable x expresses the curvature of
the background through the shape function bðrÞ, which for
Minkowski vanishes. On the other hand, the vanishing of

expression (71) and consequently Eq. (70) for x ! 1
offers a good candidate for large distance estimates.
Alternatively, by imposing that

� ¼ � 4

3

ffiffiffiffi


�

r
; (75)

the expression (72) vanishes for small x, while for large x,
the leading term becomes

�

8�GE4
P

’ � ð3�� 8Þx
12

ffiffiffiffiffiffiffiffiffiffiffiffiffið�Þ3p : (76)

This means that Eq. (70) diverges towards negative values.
It is straightforward to see that we cannot simultaneously
fix both the conditions (73) and (75) for the same in order
to have a vanishing expectation value of �=8�G for small
and large x, unless we consider different values for  for
the different behaviors. The idea is to find a point where a
transition from one parametrization to the other one exists.
To begin, we have to observe that if we fix one couple of
parameters to

1 ¼ 1

4
; � ¼ � 4

3

ffiffiffiffiffiffi
1

�

r
; (77)

where 1 has the same value of the numerical factor
appearing in Eq. (67) and the second couple with generic
values, one discovers multiple roots where a smooth tran-
sition from one parametrization to the other one can hap-
pen. This is illustrated in Fig. 1, where the couple (77)
together with some generic values of the couple satisfying
condition (73) are shown. It is visible the presence of
multiple roots. It can also immediately be seen that there

FIG. 1 (color online). Plot of �=8�G as a function of the
scale-invariant x. Choosing parametrization (77), we obtain the
vanishing of �=8�G when x ! 0. The other curves satisfy
condition (73) for different values of , with  � 1. It is
visible the presence of multiple roots.
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exists one and only one transition point, which can be
found by imposing the existence of a tangent point between
the curves parametrized by the values in (77) and the
curves parametrized by

2; � ¼ �
ffiffiffiffiffiffiffiffiffiffi
2�

p
2

; (78)

where 2 is to be determined. We end up with the follow-
ing choice

3 ¼ :7744164292; � ¼ �
ffiffiffiffiffiffiffiffiffiffi
3�

p
2

; (79)

where the common point is located in x ¼ 1:818231873 as
shown in Fig. 2.

This choice corresponds to the following setting

g1ðE=EPÞ ¼ exp

�
�1

E2

E2
P

��
1�

ffiffiffiffiffiffi
1

�

r
4E

3EP

�
;

g2ðE=EPÞ ¼ 10 	 x 	 1:818231873

g1ðE=EPÞ ¼ exp

�
�2

E2

E2
P

��
1�

ffiffiffiffiffiffiffiffiffiffi
2�

p
E

2EP

�
;

g2ðE=EPÞ ¼ 1 x � 1:818231873:

(80)

The setting (80) allows the expression (51) to have finite
values for every kind of background of the spheri-
cally symmetric type. Let us apply our result to the
Schwarzschild background. In terms of the variable x, we
find that

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ðrÞ
E2
P

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
3MG

r3E2
P

s
¼

8><
>:

3MG
r3E2

P

r > 2MG

3
8ðMGÞ2E2

P

r ¼ 2MG
: (81)

Its behavior is

x !
�1 when M ! 0 for r ¼ 2MG
1 when M ! 0 for r > 2MG

; (82)

while

x !
�
0 when M ! 1 for r ¼ 2MG
1 when M ! 1 for r > 2MG

: (83)

The situation with M ! 1 describes a wormhole incorpo-
rating the whole universe which is not a physical situation,
while forM ! 0 we approach the Minkowski limit, which
should predict a vanishing induced cosmological constant.
Note that for both settings (73) and (75), we find that the
whole behavior can be summarized by the following
double limit

lim
M!0

lim
r!2MG

�ðrÞ
8�G

� lim
r!2MG

lim
M!0

�ðrÞ
8�G

; (84)

suggesting that a sort of noncommutativity emerges in
proximity of the throat. Therefore, when we adopt the
parametrization (80), the Minkowskian limit is recovered
for every value of M. Turning now to the case of Eq. (54),
we find that it is possible to have only one parametrization
to obtain the desired behavior as shown in Fig. 3.

B. Example b) n ¼ 3

The example we want to analyze corresponds to the case
n ¼ 3. Of course, we are not going to discuss all the
possible cases. However, n ¼ 3 represents a fair compro-
mise of generalization. In the region where relation (49) is
valid, the integration of Eq. (51) gives

�

8�GE4
P

¼ e�x2

16�27=2

�
� ffiffiffiffi

�
p ð15�þ 4x22ð�þ x2�Þ þ 6ð�þ 2x2�ÞÞ � 2ex

2=2ð1þ ex
2Þx45=2�K0

�
x2

2

�

þ e2x
2

ffiffiffiffi
�

p ð2ð�3þ 2x2Þ�þ ð�15� 4x2ð�3þ x2ÞÞ�Þerfðx ffiffiffiffi


p Þ

þ 2ex
2x

ffiffiffiffi


p �
�6�� 15�þ 2x2�þ 2xK1

�
x2

2

��
�2ðþ 2�Þ cosh

�
x2

2

�
þ x2� sinh

�
x2

2

���	
; (85)

FIG. 2 (color online). Plot of �=8�G as a function of the
scale-invariant x. For 1 ¼ 1=4, there exists 2 ¼ :7744164292
where a smooth transition between the two asymptotic behaviors
is possible. The transition appears for x ¼ 1:818231873.

REMO GARATTINI AND GIANLUCA MANDANICI PHYSICAL REVIEW D 83, 084021 (2011)

084021-8



where K�ðxÞ (� ¼ 0, 1) are the Bessel functions, � � �2

and � � �3. Instead, in the region where

m2
0ðrÞ ¼ m2

2ðrÞ ¼ m2
1ðrÞ; 8 r 2 ðr1;1Þ; (86)

we get

�

8�GE4
P

¼ e�x2

8�27=2

�
� ffiffiffiffi

�
p ð15�þ4x22ð�þx2�Þ

þ6ð�þ2x2�ÞÞþ2ex
2=2x23=2

�
�
�x2�K0

�
x2

2

�
�ð4�þð2þx2�ÞÞK1

�
x2

2

��	
:

(87)

The asymptotic expansion of Eq. (85) in the small x
regime is:

�

8�GE4
P

¼ � 83=2 þ 6
ffiffiffiffi
�

p
�þ 15

ffiffiffiffi
�

p
�þ 16

ffiffiffiffi


p
�

8�27=2

þOðx3Þ; (88)

whereas the leading contributions to Eq. (85) for large x
are:

�

8�GE4
P

¼�xð2 ffiffiffiffi
�

p
3=2þ4�þ8�þ3

ffiffiffiffi
�

p ffiffiffiffi


p
�Þ

8�23

�6
ffiffiffiffi
�

p
3=2þ16�þ48�þ15

ffiffiffiffi
�

p ffiffiffiffi


p
�

32�2x4

þ3ð40 ffiffiffiffi
�

p
3=2þ128�þ512�þ105

ffiffiffiffi
�

p ffiffiffiffi


p
�Þ

1024�2x35

þOðx�4Þ: (89)

Again, as in the case of n ¼ 1, we find that there is in
principle a leading linear divergency in the large x regime.
However, we can choose the parameters satisfying the
Minkowski limit (i.e. the limit of vanishing cosmological
constant density). This time, as opposed to the n ¼ 1 case,
we can ask that the Minkowski limit is satisfied both in the
x ! 0 and in the x ! 1 region, with a unique choice of the
parameters. From Eqs. (88) and (89), it follows that
the parameters that satisfy these requests have to solve
the system

2
ffiffiffiffi
�

p
3=2 þ 4�þ 8�þ 3

ffiffiffiffi
�

p ffiffiffiffi


p
� ¼ 0

83=2 þ 6
ffiffiffiffi
�

p
�þ 15

ffiffiffiffi
�

p
�þ 16

ffiffiffiffi


p
� ¼ 0:

(90)

Notice that already, in the case of three parameters (i.e.
� ¼ 0), the system (90) can be solved but one gets negative
values of the cosmological constant density in a large
x > 1 zone (see e.g. Fig. 4).
Finally, in the full four-parameter case (i.e. � � 0), the

system (90) can be solved with the further request of
approaching the Minkowski limit maintaining positive
values of �. A solution of Eq. (90) satisfying this further
request is:

 ¼ 1=4;

� ¼ 13635�þ 2048
ffiffiffiffi
�

p � 38784

1024ð9�� 32Þ ;

� ¼ � 768�þ 909
ffiffiffiffi
�

p � 2048

512ð9�� 32Þ ;

� ¼ � 303

2048
:

(91)

The resulting � as a function of x is plotted in Fig. 5. A
small zone in which the cosmological constant density
maintains a negative value is, however, still present.

FIG. 3 (color online). Plot of �=8�G as a function of the
scale-invariant x for  ¼ 1=4. The plot works well for back-
grounds of the dS, AdS and Minkowski type. Note that to obtain
a positive induced cosmological constant vanishing at small and
large x, we need only one parametrization.

1 2 3 4 5 6
x

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

x

8 G

FIG. 4 (color online). Plot of �=8�G as a function of
the scale-invariant x for  ¼ 1=4, � ¼ 2

ffiffiffiffi
�

p
=ð9�� 32Þ,

� ¼ ð8� 3�Þ=ð18�� 64Þ, � ¼ 0. The plot shows that the
Minkowski limit is satisfied both in the x ! 0 and in the
x ! 1 limit, but a large �< 0 zone is present.
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IV. SUMMARYAND DISCUSSION

Motivated by the promising results obtained in the
application of gravity’s rainbow to black hole entropy
computation [3] and, on the other side in NCG application
of ZPE evaluation [13], in this paper we have considered
how gravity’s rainbow influences the UV behavior of ZPE.
We have found that, due to the arbitrariness of g1ðE=EPÞ
and g2ðE=EPÞ, it is always possible to find a form of the
rainbow functions in such a way that the expression in (7)
is UV finite. As introduced in Ref. [5], the finite result
�=8�G is interpreted as an induced cosmological constant
but without a regularization and a renormalization to keep
the UV divergences under control. To fix ideas, we have
used Gaussian regulators. In this way our approach is
directly comparable to NCG. The first evident difference
is that, in NCG, the regulator comes into play in the
counting of nodes, while in gravity’s rainbow it appears
in both the sum over eigenvalues and in the counting of
nodes. If one fixes the attention on the pure Gaussian
regulator one discovers that the ZPE is always negative
for gravity’s rainbow. This unpleasant feature can be
corrected with the introduction of a polynomial with real
arbitrary coefficients, as in Eq. (65). By imposing the

positivity of the result for every x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ðrÞ=E2
P

q
we find

that, if condition (50) is satisfied, the parametrization (75)
is sufficient to guarantee that �=8�G> 0, as shown in
Fig. 4. On the other hand, when condition (49)
is satisfied we need two different parametrizations to
guarantee a correct behavior of �=8�G for x 2 ð0;þ1Þ
and most importantly a point of connection where a
smooth transition can happen as shown in parametrization
(80) and in Fig. 3. In summary, the final plot becomes the
one depicted in Fig. 6.

Note that the transition clearly highlights the factthat we
need two metrics with the same background bðrÞ but with
two different choices of g1ðE=EPÞ and g2ðE=EPÞ. Of
course, this transition happens because we insist on having
positivity and a vanishing behavior at the boundary of the
range ð0;þ1Þ. The vanishing behavior for small x is a
guarantee that the Minkowski limit is reproduced. Note
that the reproduction of a Minkowski limit in NCG (i.e. theffiffiffi
�

p ! 0 limit) is less trivial because of the existence of the
IR/UV mixing [14]. It also appears that the case n ¼ 1
seems to be special because it is the only one that has a
positive �=8�G for x 2 ð0;þ1Þ when condition (49) is
satisfied. We can focus our attention on this case andcon-
sider the dS background, which is the static representation
of the Friedmann-Robertson-Walker model. For this
choice, the shape function bðrÞ is

bðrÞ ¼ �dS

3
r3 (92)

and the effective masses (41) become on the cosmological

throat rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=�dS

p
m2

0ðrÞ ¼ m2
2ðrÞ ¼ m2

1ðrÞ ¼ �dS: (93)

Since the behavior of �=8�G for the dS universe is
described by Fig. 3, we can compare our results with
observation. Since �=8�G represents the observed cos-
mological constant induced by quantum fluctuations of the
pure gravitational field, we can fix its value at the present
day as

1 2 3 4 5 6
x

0.0005

0.0005

0.0010

0.0015

x

8 G

FIG. 5 (color online). Plot of �=8�G as a function of the
scale-invariant x for values of the parameters given by Eq. (91).
The plot shows that the Minkowski limit is satisfied both in the
x ! 0 and in the x ! 1 limit. Both limits are approached
maintaining a positive �. A small �< 0 zone is, however, still
present.

FIG. 6 (color online). Plot of �=8�G as a function of the
scale-invariant x for values of the parameters given by Eq. (80).
The plot shows that the Minkowski limit is satisfied at the
boundaries of the range ð0;þ1Þ. Both limits are approached
maintaining a positive �. The undesired part of the plot has been
eliminated to visualize the global behavior.
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�

8�G
’ 10�11 eV4; (94)

which can be described either for x 
 1 or x � 1.

However, for the dS case x ¼ ffiffiffiffiffiffiffiffi
�dS

p
=EP and x 
 1 means

rc � 1, which is in agreement with our present universe.
On the other hand, when x � 1 means that rc 
 1, which
could be in agreement with the very early universe except
for the disagreement with the expected theoretical predic-
tion, which for our plot in units of E4

P should be Oð1Þ.
Therefore it appears that only the left branch of Fig. 3 from
the bottom to the hilltop can be interpreted as a sort of a
backward evolution in the radial coordinate r. However, to
follow the curve from x ’ 2:18 to x ’ 0, one should have a
variable �dS, namely �dS � �dSðrÞ. The same situation
appears to exist for Minkowski space in radial coordinates
and for the AdS space. Fortunately, Minkowski space does
not have a preferred scale and Fig. 3 has the correct
asymptotic behavior, except for an unpleasant peak in
correspondence of the peak location of the dS space. It is
likely that this spurious prediction is due to the coordinate
choice. On the other side one, can verify that �=8�G ! 0
when r ! 0 for Minkowski, dS, and AdS spaces. Coming
back on the AdS space, we have to note that this back-
ground is not endowed with a horizon, which makes it
difficult to find a significant point. Nevertheless, looking
once again Fig. 3, we can claim that for r ! 1 and very
small �AdS one gets

bðrÞ ¼ ��AdS

3
r3 and x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=r2 þ�AdS

E2
P

s
! 0; (95)

namely a vanishing �=8�G, while in the other regime, i.e.
r ! 0, x ! 1 and once again one obtains a vanishing
�=8�G, which means that, against all odds, we have
regularity on the singularity r ¼ 0.

APPENDIX A: INTEGRALS

In this appendix, we explicitly compute the integrals
coming from Eq. (51). We begin with

Iþ ¼ 3
Z 1

0

�Xn
i¼0

ci
Ei

Ei
P

exp

�
�

E2

E2
P

��
E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm2

0ðrÞ
q

dE:

(A1)

It is useful to divide Iþ into two pieces with i odd and i
even, thus we can write

Iþ ¼ Ieþ þ Ioþ; (A2)

where

Ieþ ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

Z 1

0
x1=2 exp½�ðþ �Þx�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþm2

0ðrÞ=E2
P

q
dx; (A3)

Ioþ ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

Z 1

0
x exp½�ðþ �Þx�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþm2

0ðrÞ=E2
P

q
dx (A4)

are expressed in terms of the variable x ¼ E2=E2
P.

The integrals involved in the expressions of Ieþ and Ioþ
can be evaluated using the formulas

Z 1

0
dxðxþ tÞ1=2x1=2 expð��xÞ

¼ t

2�
exp

�
t�

2

�
K1

�
t�

2

�
t>0;�>0 (A5)

Z 1

0
dxðxþ tÞ1=2x expð��xÞ

¼ 3

2

ffiffi
t

p
�2

þ
ffiffiffiffi
�

p
4

��5=2 expðt�Þð3� 2t�ÞErfc½ ffiffiffiffiffiffi
t�

p �

t > 0; � > 0 (A6)

obtaining

Ieþ ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

�
m2

0ðrÞ
2E2

Pðþ �Þ

� exp

�
m2

0ðrÞðþ �Þ
2E2

P

�
K1

�
m2

0ðrÞ
2E2

P

ðþ �Þ
�	
; (A7)

Ioþ ¼ þ3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

�
3m0ðrÞ

2EPðþ �Þ2

þ�
ffiffiffiffi
�

p
4

exp

�
m2

0ðrÞðþ �Þ
E2
P

��
2m2

0ðrÞ
E2
Pðþ �Þ3=2

� 3

ðþ �Þ5=2
�
Erfc

�
m0ðrÞ
EP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðþ �Þ

q �	
: (A8)

The same procedure can be followed to evaluate

I� ¼ 3
Z 1ffiffiffiffiffiffiffiffiffi

m2
0
ðrÞ

p
�Xn
i¼0

ci
Ei

Ei
P

exp

�
�

E2

E2
P

��
E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

0ðrÞ
q

dE:

(A9)

Even in this case, it is useful to divide I� into two pieces
with i odd and i even. Thus, we can write

I� ¼ Io� þ Ie�; (A10)

where Ie� and Io� are given by

Ie� ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

Z 1

m2
0
=E2

P

x1=2 exp½�ðþ�Þx�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�m2

0ðrÞ=E2
P

q
dx; (A11)
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Io� ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

Z 1

m2
0=E

2
P

x exp½�ðþ �Þx�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�m2

0ðrÞ=E2
P

q
dx: (A12)

Using now the formulasZ 1

t
dxðx� tÞ1=2x1=2 expð��xÞ

¼ t

2�
exp

�
� t�

2

�
K1

�
t�

2

�
t > 0; � > 0 (A13)

Z 1

t
dxðx� tÞ1=2xexpð��xÞ

¼
ffiffiffiffi
�

p
4

��5=2ð3þ2�tÞexpð��tÞ t>0;�>0 (A14)

Ie� and Io� can be rewritten in the form

Ie� ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

�
m2

0ðrÞ
2ðþ �ÞE2

P

� exp

�
�m2

0ðrÞðþ �Þ
2E2

P

�
K1

�
m2

0ðrÞðþ �Þ
2E2

P

�	
;

(A15)

Io� ¼ 3=2E4
P

Xn
i¼0

cið�Þi lim
�!0

di

d�i

� ffiffiffiffi
�

p
4

ðþ �Þ�5=2

�
�
3þ 2ðþ �Þm

2
0ðrÞ
E2
P

�
exp

�
�m2

0ðrÞðþ �Þ
E2
P

�	
:

(A16)
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