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Abstract
Islet cell transplantation has therapeutic potential to 
treat type 1 diabetes, which is characterized by autoim-
mune destruction of insulin-producing pancreatic islet 
β cells. It represents a minimal invasive approach for 
β cell replacement, but long-term blood control is still 
largely unachievable. This phenomenon can be attrib-
uted to the lack of islet vasculature and hypoxic envi-
ronment in the immediate post-transplantation period 
that contributes to the acute loss of islets by ischemia. 
Moreover, graft failures continue to occur because 
of immunological rejection, despite the use of potent 
immunosuppressive agents. Mesenchymal stem cells 
(MSCs) have the potential to enhance islet transplanta-
tion by suppressing inflammatory damage and immune 
mediated rejection. In this review we discuss the im-
pact of MSCs on islet transplantation and focus on the 
potential role of MSCs in protecting islet grafts from 
early graft failure and from autoimmune attack.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Type 1 diabetes is caused by a cell-mediated 
autoimmune destruction of pancreatic β cells. The 
transplantation of pancreatic islets provides a cure 
for this disorder. In this review, we first summarize 
the current knowledge on the pathogenesis of type 1 
diabetes and on the therapeutic options for this disor-
der. Next we discuss the impact of mesenchymal stem 
cells on vascularization and immunomodulation of islet 
transplantation. 
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INTRODUCTION
Type 1 diabetes results from the autoimmune destruc-
tion of  insulin-producing pancreatic islet β cells and is 
usually diagnosed in children and young adults. β cell 
replacement therapies using either pancreas or islet 
transplantation represent a therapeutic alternative to the 
administration of  exogenous insulin.

Islet transplantation is advantageous compared with 
whole pancreas transplantation because it is relatively 
non-invasive. However, a decline in islet cell survival, 
after transplantation, remains a significant obstacle in 
successful islet transplantation. It has been suggested 
that the complete lack of  islet vasculature and hypoxic 
environment in the immediate post-transplantation pe-
riod contribute to the acute loss of  islet by ischemia[1]. 
Moreover, graft failure continues to occur because of  
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immunological rejection, despite the use of  potent im-
munosuppressive agents. 

Mesenchymal stem cells (MSCs) are non-hemato-
poietic multipotent stromal cells that can differentiate 
in a variety of  tissues[2]. The ability of  MSCs to secrete 
trophic and angiogenic factors may help to prevent early 
islet damage and assist islet engraftment. MSCs may also 
attenuate autoimmunity through their immunomodula-
tory properties while secreting cytokines to control au-
toreactive T cells. All these properties could be used for 
in vivo co-transplantation to improve islet engraftment[3]. 
Here we discuss the impact of  MSCs on islet transplan-
tation from both early graft failure and from autoim-
mune attack, to prevent immune rejection and promote 
long-term islet allograft survival.

PATHOGENESIS OF TYPE 1 DIABETES 
Type 1 diabetes is a fast-growing global problem with 
enormous social, health, and economic consequences. 
This metabolic disorder is characterized by the irrevers-
ible destruction of  insulin-secreting β cells. Death of  
the pancreatic β cells is associated with hyperglycaemia, 
which is the main determinant of  long-term complica-
tions in diabetic patients. Exogenous insulin administra-
tion is required to control glucose levels in the blood. 
The pancreatic islets are the targets of  an autoimmune 
assault, where islets are invaded by mononuclear cells 
that cause an inflammatory reaction called “insulitis”, 
leading to loss of  most of  β cells. β cell death in the 
course of  insulitis is probably caused by direct contact 
with activated macrophages and T-cells, and/or exposure 
to soluble mediators secreted by these cells, as cytokines, 
nitric oxide (NO), and oxygen free radicals[4]. 

Type 1 diabetes is a multifactorial disease where a 
genetic predisposition combines with environmental fac-
tors to induce the activation of  the specific autoimmune 
destruction of  β cells. Different known genetic risk fac-
tors can predict type 1 diabetes but autoantibodies are 
the most important preclinical markers. Autoantibodies 
include: islet cell autoantibodies, autoantibodies to in-
sulin, autoantibodies to GAD (GAD 65), and autoan-
tibodes to the tyrosine phosphatases IA-2 and IA-2β. 
In 85%-90% of  patients affected by juvenile diabetes, 
these autoantibodies are detectable[5]. Several genetic loci 
have been associated with type 1 diabetes but the HLA 
(human leukocyte antigen) region, located on chromo-
some 6p, with its multiple genes is the strongest link to 
immune-mediated diabetes susceptibility. More than 200 
identified genes are located in the HLA region, over half  
of  which are predicted to be expressed[6]. Non-genetic 
factors also contribute to the risk of  type 1 diabetes. 
This is supported by the fact that the overall concor-
dance rate for type 1 diabetes among monozygotic twins 
is only about 10%-40%[7]. Environmental factors play a 
substantial role in the development of  type 1 diabetes. 
They include specific infectious agents, dietary factors, 

perinatal factors, socioeconomic factors, and psychoso-
cial factors[8]. 

THERAPEUTIC OPTIONS FOR TYPE 1 
DIABETES 
The treatment of  type 1 diabetes mellitus includes dif-
ferent therapeutic approaches. The aim of  clinical inter-
vention is to arrest or prevent the β cell destruction due 
to autoimmunity, reverse this process and restore normal 
blood glucose level and immune homeostasis. Insulin 
therapy was the first therapy and represented the prima-
ry breakthrough treatment for type 1 diabetes, however, 
frequent hyper- and hypo-glycaemia episodes seriously 
affect the quality of  life of  these patients. Recent tech-
nological innovations such as insulin analogue formula-
tion, devices for insulin delivery and glucose monitoring 
systems have allowed diabetic patients to improve their 
glycaemic control[9]. Intensive insulin therapies via insulin 
pens, subcutaneous or intraperitoneal insulin infusions 
using pumps reduce the onset and progression of  dia-
betic complications, risks of  hypo- or hyper-glycaemia, 
and increase the patient’s quality of  life. 

β cell replacement is the only way to restore eugly-
caemia and ameliorate the progression of  diabetic com-
plications. Pancreas or pancreatic islet transplantation 
represents therapeutic alternatives to the administration 
of  exogenous insulin to treat patients with type 1 dia-
betes. At the current time pancreas transplantation can 
produce long-term exogenous insulin independence, 
however, it remains a major surgical undertaking, as-
sociated with sizeable early morbidity and mortality, and 
with mandatory life-long immunosuppression[10]. Islet 
transplantation also offers glycaemic control and preven-
tion of  hyperglycaemia without the need for exogenous 
insulin administration[11]. As islets make up only 1%-2% 
of  the pancreas, islet transplantation provides a much 
smaller transplant mass than whole pancreas transplant 
and is therefore a much less invasive procedure, and 
presents a smaller load of  immunogenic tissue. 

New therapeutic strategies for type 1 diabetes fo-
cus on three important points: residual β cell preven-
tion, β cell restoration and β cell immune protection[12]. 
An achievable goal could be to develop a new cellular 
source for β cell. Different studies focus on immortal-
ization and expansion of  β cells from deceased donor 
pancreas[13,14], reprogramming or transdifferentiation of  
other pancreatic cells to β cells[15], differentiation from 
pancreatic progenitor cells in the adult pancreas[16] and 
differentiation and maturation from embryonic stem 
cells and induced pluripotential stem cells[17]. All these 
cellular sources appear promising in developing potential 
new candidates for beta-cell substitution and therapy for 
patients. 

Immunoprotection strategies include immunomodu-
latory therapies and immunoisolation techniques. Im-
munotherapies aim to down-regulate the autoimmune 
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response to pancreatic self-antigens and arrest beta-cell 
destruction. Ideally, this type of  technique would induce 
prolonged remission from type 1 diabetes and achieve 
a cure[18]. As regards the separation of  implanted cells 
from the host immune system, this has been recognized 
as an experimental strategy to prevent immunorecogni-
tion, rejection and avoid lifelong immune suppression. A 
bioartificial pancreas tries to create a barrier to immune 
cells while allowing sufficient oxygen and nutrients trans-
fer. Immunoisolation strategies facilitate islet transplan-
tation without the need of  immunosuppression[19]. 

Islet transplantation as a cure for type 1 diabetes 
Transplantation of  pancreatic islets is a less invasive pro-
cedure than pancreas transplantation, with a shorter hos-
pital stay and lower morbidity. This therapeutic option 
is reserved for patients with severe glycaemic variability, 
progressive diabetic complications and life threatening 
hypoglycemia[19]. Successful islet transplantation was 
established in the early 70s in diabetic rats[20] and rhesus 
monkeys[21]. Najaran et al[22] reported the first significant 
case of  human islet transplantation in patients with 
chronic pancreatitis. These patients underwent total or 
near total pancreatectomy, followed by autologous islet 
transplantation which prevented the development of  
diabetes. Thereafter, allograft was attempted in selected 
patients with type 1 diabetes. Unfortunately, out of  the 
237 allografts transplanted from 1990 to 1999, only 16% 
have resulted in insulin-independence for more than 1 
week, and only 11% for more than 1 year[23]. Important 
progress was made thanks to improvements in tech-
niques for isolating human islets[24,25] and to the avail-
ability of  new and more effective immunosuppressive 
agents. 

A positive turn in islet transplantation occurred in 
2000, when James Shapiro and his colleagues treated 7 
diabetic patients with severe hypoglycemia with allogene-
ic islets and a novel immunosuppressive regimen, obtain-
ing insulin-independence in all the transplanted patients 
at a median follow-up period of  11.9 mo[11]. This success 
was due to several changes in the transplantation pro-
cedure, such as the large number of  infused islets (from 
2-4 donors for each recipient), an immunosuppressive 
regimen with inclusion of  sirolimus and without glu-
cocorticoids and the limited cold ischemia time of  the 
recovered pancreases. A follow-up report monitored 65 
transplant recipients for a period of  5 years. This study 
showed that 80% of  the transplanted patients remained 
insulin-independent at 1 year, but only 10% retained an 
insulin-free status at 5 years. However partial graft func-
tion allowed improvement of  glycaemic control with a 
decreased occurrence of  hypoglycemic episodes. Recent 
results for islet transplantation demonstrate major im-
provement in outcomes. Analysis of  transplantations 
performed by Collaborative Islet Transplant Registry 
(CITR) from 1999 to 2010 showed that the insulin inde-
pendence rate at 3 years after transplantation increased 
from 27% in 1999-2003 to 44% in 2007-2010 and at 4 

years approximately 90% of  the grafts showed some de-
gree of  function[26].

All these studies indicated that islet transplantation 
is a promising strategy for treatment of  type 1 diabetes. 
However, there are several challenges limiting wide-
spread application. The disadvantages of  the current 
approach is the limited supply and suboptimal yields 
of  procurement and isolation of  islets, graft failure and 
relatively high requirements to achieve prolonged insulin 
independence and glucose stability[27]. Poor vasculariza-
tion and hypoxia of  the transplanted islets[28], destruc-
tion by autoimmunity and allorejection[29] and exposure 
to the toxic effects of  immunosuppressive agents[30] are 
thought to contribute to early graft failure. Better pro-
tection of  the transplanted islets and improved immu-
nosuppression are current strategies under investigation 
that could substantially advance islet transplantation as 
an acceptable alternative treatment. Mesenchymal stro-
mal cells have been proposed to be one possible means 
to enhance islet transplantation protocols[31].

ROLE OF MSCS IN VASCULARIZATION 
AND IMMUNOMODULATION OF ISLET 
TRANSPLANTATION
MSCs are multipotent, self-renewing cells that re-
side mainly in the bone marrow, representing only 
0.001%-0.01% of  nucleated marrow cells. They can be 
also isolated from other tissues, including skeletal mus-
cle[32], adipose tissue[33], amniotic fluid[34] and umbilical 
cord blood[35] and expanded for several passages without 
losing their self-renewing capacity[36,37]. The International 
Society for Cellular Therapy has defined criteria to de-
fine the MSC population, including adherence to plastic 
in culture, expression of  cell surface markers, such as 
CD105, CD73 and CD90, and lack of  expression of  
CD45, CD34, CD14 or CD11b, CD79a or CD19 and 
HLA-DR surface molecules[38]. MSCs have been well 
characterized for their ability to differentiate into several 
cell types of  mesenchymal origin, such as osteoblasts, 
adipocytes and chondrocytes[38], but it has been also 
demonstrated that they have the capacity to differenti-
ate into cell types of  endodermal and ectodermal lin-
eages, including lung epithelial cells[39], retinal pigment[40], 
skin[41], sebaceous duct cells[42], renal tubular cells[43], neu-
ral cells[44], hepatocytes[45] and insulin producing cells[46]. 
However, an intense debate about the contribution of  
MSCs to form functional tissue through transdifferen-
tiation processes is still open[47]. Aside to their ability to 
differentiate into many types of  cells, MSCs can also 
have a reparative effect through the migration to the site 
of  injury[48] and the release of  paracrine factors that af-
fect cell migration, proliferation and survival of  the sur-
rounding cells[49]. In addition, MSCs have been shown to 
contribute to repair processes through the secretion of  
pro-angiogenic molecules, thus promoting the formation 
of  new blood vessels in vivo[50]. Moreover, MSCs have 
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endothelial growth factor (VEGF) expression resulted in 
an increase in both islet graft mass and revascularization 
and, unlike vector-transfected grafts, rapidly returned re-
cipient to stable normoglycaemia[65].

Several bone marrow subpopulations, such as endo-
thelial progenitor cells and MSCs may be able to differ-
entiate into one or more of  the cellular compartments 
of  the vascular bed[66,67]. MSCs are known to secrete 
VEGF and other growth factors and to enhance prolif-
eration of  endothelial cells and smooth muscle cells[68]. 
MSCs release a wide array of  cytokines that support 
hematopoietic stem and progenitor cell development, as 
well as the secretion of  other cytokines that are relevant 
to increasing blood flow to ischemic tissue[69]. Moreover, 
MSCs secrete several important arteriogenic cytokines, 
including VEGF and monocyte chemoattractant pro-
tein-1 (MCP-1). In mice undergoing distal femoral artery 
ligation, a model of  hind limb ischemia, local injection 
of  MSCs increased adductor muscle levels of  VEGF and 
fibroblast growth factor (FGF) proteins compared with 
controls, and co-localization of  VEGF and transplanted 
MSCs within adductor tissue was demonstrated[68].

Recently it has been reported that in animal models, 
MSCs are able to enhance survival and function of  islet 
graft by increasing islet revascularization[70]. Consistent 
with these studies, our group showed that cultured MSCs 
express high level of  VEGF and that transplantation of  
those MSCs elicited a robust host angiogenic response 
leading to neovascularization of  syngeneic islet grafts 
in diabetic rats. This effect may serve to increase local 
perfusion of  the islets and ameliorate their metabolic 
activity[71]. Similar results were obtained in a preclinical 
model by Berman et al[72] that demonstrated enhanced 
islet engraftment and function at 1 mo post-transplant in 
a cynomologus monkey model of  allogeneic islet-MSCs 
transplantation. The authors hypothesized that MSCs 
enhance islet engraftment by staying in proximity to the 
islets at the time of  cotransplantation, providing revas-
cularization and regenerative signals. MSCs provided an 
important approach for enhancement of  islet engraft-
ment, thereby decreasing the numbers of  islets needed 
to achieve insulin independence[72].

In summary, MSCs cotransplanted with islets in type 
1 diabetic recipients can facilitate islet revascularization, 
engraftment and improved islet function: Consequently, 
the presence of  MSCs permit to reduce the islet number 
required for reversal of  diabetes. Therefore, cotransplan-
tation of  MSCs with islets could facilitate islet engraft-
ment and improve islet graft function in clinical islet 
transplantation.

Immunomodulation of islet transplantation by MSCs 
One of  the most promising aspects of  MSCs regards 
their dynamic role in modulating the immune system. 
MSCs are not only immunoprivileged cells, due to the 
low expression of  class Ⅱ Major Histocompatibilty 
Complex (MHC-Ⅱ) and co-stimulatory molecules in 
their cell surface, but they also interfere with different 

emerged as a useful cell population for immunomodu-
lation therapy thanks to their ability to secrete a large 
amount of  bioactive molecules that affect immune and 
inflammatory responses[51]. The combination of  tissue 
regenerative potential and immunomodulatory or immu-
nosuppressive activity has prompted therapeutic interest.

MSCs promote islet graft revascularization 
Normally pancreatic islets have a rich vascular supply 
within the pancreas to support their metabolic activity 
and to facilitate rapid dispersal of  secreted hormones. 
Large islets are supplied by 1-3 arterioles that penetrate 
the B cell-rich islet core and distribute into a dense net-
work of  sinusoidal capillaries connected to venules in the 
islet periphery[52]. Islets receive considerably more blood 
flow than surrounding pancreatic exocrine tissue[53] and 
islet capillaries are much more permeable than exocrine 
capillaries due to the presence of  10 times as many small 
pores within their endothelial cells[54]. Relatively strong 
expression of  VEGF by islets is probably responsible 
for the high degree of  vascularization and fenestration. 
Depletion of  VEGF in β cells in mice reduces vascular 
density and permeability to the level of  exocrine tissue 
and partly impairs insulin secretion[55]. The islet vascu-
lature degenerates during the process of  isolation and 
transplantation and the islets must initially rely on diffu-
sion of  oxygen and nutrients from the culture medium 
and from vessels in the transplant environment for their 
survival[56,57]. This condition leads to prolonged hypoxia 
that, at the early post-transplant stages, is considered a 
major reason for early islet graft loss. The vessel density 
and oxygen tension in transplanted islets are less than 
half  compared with islets in the native pancreas[58]. Fur-
ther compromising islet graft survival in this context 
is their vulnerability to oxidative stress, a consequence 
of  relatively low expression of  antioxidant enzymes[59]. 
Thus, transgenic islet expression of  antioxidant enzymes, 
such as glutathione peroxidase, could be a possible solu-
tion. However, a potential drawback of  this approach is 
that glutathione peroxidase removes H2O2, an inducer 
of  VEGF synthesis[60], and thus may further impair islet 
graft revascularization. The net result of  oxidative and 
other challenges is that more than 70% of  islets trans-
planted intraportally fail to become stably engrafted[61]. 

VEGF is a multi-functional angiogenic regulator that 
stimulates blood vessel formation, endothelial cell survival 
and epithelial cell proliferation[62]. The receptors of  VEGF 
are predominantly expressed on vascular endothelial 
cells[62] and are also expressed in pancreatic islets[63]. Sever-
al line of  evidence indicates that insufficient expression of  
VEGF limits the rate and extent of  islet graft revascular-
ization. Transplanted islets show a significant reduction of  
VEGF expression at day 3-4 after transplantation[64] while 
an over expression of  VEGF markedly improves the 
degree of  revascularization and function of  islet grafts. 
Mouse islets transfected with an adenovirus carrying the 
cDNA for the human VEGF165 isoform were transplanted 
under the kidney capsule of  diabetic nude mice. Vascular 
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pathways of  the immune response by means of  direct 
cell-to-cell interactions and soluble factor secretion. As 
schematically represented in Figure 1, it is well estab-
lished that MSCs can exert immunosuppressive activ-
ity on T cells[73] and interfere with dendritic cell (DC) 
maturation[74]. Furthermore, MSCs may modulate natural 
killer (NK) cell cytotoxic activity, B cell proliferation and 
immunoglobulin production.

MSCs have been shown to suppress autoreactive 
T-cell responses in models of  autoimmunity such as ex-
perimental autoimmune encephalomyelitis[75], collagen-
induced arthritis[76] and autoimmune enteropathy[77]. Type 
1 diabetes is one of  the most prevalent autoimmune 
diseases in childhood. The effector mechanisms of  im-
mune-mediated destruction of  islet β cells are complex, 
but an essential early event is the activation of  islet cell 
antigen reactive T cells. Recently, the therapeutic benefit 
of  MSCs has been evidenced in the treatment of  type 1 
diabetes. Lee et al[78] used immunodeficient recipient mice 
chemically induced by streptozotocin to study the effect 
of  human MSCs in the development of  diabetes. Infu-
sion of  hMSCs reduced glycaemic levels and increased 
peripheral insulin levels. In the pancreas of  these mice 
the islets appeared larger compared with islets from un-
treated diabetic mice[78]. In experimental mouse models, 
intravenously infused MSCs are capable of  migrating to 
pancreatic islets[48]. However, the role of  MSCs in β cell 

replacement is controversial. Some evidence suggests the 
possibility that MSCs differentiate into islet β cells[48]. In 
addition, similar results were reported by Ezquer et al[79] 
in a model of  streptozotocin-induced diabetes. Rever-
sion of  hyperglycemia and glycosuria was observed after 
injection of  MSCs, with increased morphologically nor-
mal β pancreatic islets. Other reports have contradicted 
these findings suggesting that MSCs could be feeder cells 
for islet differentiation, proliferation and vascularization, 
but do not differentiate into β cells[80].

MSCs may also offer therapeutic opportunities in 
transplantation by directly targeting alloreactive T cells. 
MSCs are immunosuppressive in vitro and, in mixed-
lymphocyte reactions, suppress T-cell proliferation[73] 
through soluble factors, including 2,3-dioxygenase 
(IDO), prostaglandin-E2 (PGE2), nitric oxide, trans-
forming growth factor β (TGF β) and hepatocyte 
growth factor (HGF)[81,82]. Neutralizing antibodies 
against TGF β and HGF can restore the MSC-induced 
suppression of  T cell proliferation[73]. In a model of  al-
logenic pancreatic islet transplantation, the administra-
tion of  MSCs resulted in the prolonged survival of  islets 
and led to long-term stable normoglycemia[83]. In this 
study MSCs were colocalized at the graft site where they 
locally produced immunosuppressive matrix metallopro-
teinase-2 and-9 that block the activation and expansion 
of  alloreactive T cells[83]. In a most recent paper, using 
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a rat model of  streptozotocin induced diabetes, the au-
thors found that MSCs significantly improved glycemic 
control and reduced graft infiltration by immune cells in 
either allogenic or syngeneic pancreatic islet transplan-
tation[84]. They found that MSCs were effective when 
administrated either locally or systematically. The modu-
lation of  acute rejection that the authors observed after 
islet transplantation may indicate that soluble factors are 
released by MSCs to several organs after their systemic 
administration.

Additional studies revealed that MSCs might produce 
this anti-proliferative effect via induction of  anergy in 
the T cell population[85], T cell tolerance[75], or by induc-
ing proliferation of  regulatory T cell populations[86]. Ber-
man et al[72] first reported increased numbers of  Treg in a 
MSC allogeneic islet transplant preclinical model. MSCs 
treatment significantly enhanced islet engraftment and 
function at 1 mo post-transplant, as compared with ani-
mals that received islets without MSCs. Additional infu-
sions of  donor or third-party MSCs resulted in reversal 
of  rejection episodes and prolongation of  islet func-
tion. Stable islet allograft function was associated with 
increased numbers of  regulatory T-cells in peripheral 
blood[72].

The immune response is related not only to T cells, 
but to the interaction between DC cells and T cells[87]. 
DCs are antigen-presenting cells (APCs) capable of  
stimulating both naïve and memory T cells. MSCs affect 
the differentiation, maturation and function of  DCs at 
different levels[74,88]. MSCs have also been shown to alter 
the cytokine secretion profile of  DCs toward up-regu-
lation of  regulatory cytokines, such as IL-10, and down 
regulation of  inflammatory cytokines such as IFNγ, 
IL-12 and TNFα, inducing a more anti-inflammatory or 
tolerant dendritic cell phenotype[74,89]. Studies in animal 
models suggest that DC based immunotherapeutic strat-
egies might also be utilized to facilitate islet transplant 
tolerance[90,91]. Li et al[92] demonstrated that in mice with 
combined transplantation of  pancreatic islets and MSCs, 
the expression of  CD11c (DCs phenotype derived 
from monocytes) and CD83 (mature DCs phenotype) 
was down regulated markedly. This finding showed that 
MSCs inhibit the maturation of  DCs and the stimulation 
of  T cell was weakened, resulting in survival of  trans-
planted pancreatic islets.

Autoimmunity also involves B cells by antibody 
production. The interaction between MSCs and B cells 
is not yet completely understood. However, co-culture 
experiments with these two cells using both mouse and 
human cells showed that MSCs inhibit B cell prolifera-
tion[93]. They also observed that MSCs affect chemotactic 
properties of  B cells while B-cell co-stimulatory mole-
cule expression and cytokine production were unaffected 
by MSCs.

Finally, NK cells are key effector cells of  innate im-
munity. MSCs alter the function of  NK cells by sup-
pressing their proliferation, and cytotoxicity. Spaggiari et 
al[88] demonstrated that cytokine induced proliferation of  

freshly isolated NK cells was inhibited in the presence 
of  MSCs. 

Thanks to their interactions with many different 
types of  immune cells, MSCs administrated in conjunc-
tion with islet cell transplantations could prevent im-
mune rejection and promote long term islet allograft 
survival. 

CONCLUSION
In summary, current data suggest that MSCs have the 
potential to aid in the treatment of  type 1 diabetes 
and overcome some of  the current limitations to islet 
transplantation. These cells may exert beneficial pro-
angiogenic and immunomodulatory effects when co-
transplanted with pancreatic islets. The pro-angiogenic 
effects result from the release of  angiogenic factors from 
MSCs that have been shown to improve islet vascular-
ization and graft function in islet transplantation. The 
immunomodulatory properties of  MSCs may help in 
reducing inflammatory damage to the islets in the early 
peritransplant period. MSCs may also reduce autoimmu-
nity through their capacity to inhibit T cell proliferation 
and suppress differentiation and maturation of  dendritic 
cells. 

These data encourage further preclinical co-trans-
plantation of  MSCs and pancreatic islets to improve the 
outcome of  allogeneic islet transplantation in the treat-
ment of  type 1 diabetes. However, some key issues need 
to be addressed before MSC based therapies become a 
safe option for clinical studies. Most importantly, it is un-
clear if  co-transplanted MSCs engraft and differentiate 
at the implantation site. Thus, the long-term stability of  
MSC activity and function after transplantation should 
be assessed in vivo. In addition, the selection of  a suitable 
donor MSC source may differ if  the treatment aims at 
modulating the autoimmune disease or enhancing pan-
creatic islet engraftment and vascularization. Therefore, 
whether autologous or allogeneic MSCs are suitable as 
a donor source should be selected according to the spe-
cific aim of  the study. 
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