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Introduction

During the last decade Markov processes have become very popular

for modeling the market fluctuations since they describe the time evolu-

tion of random phenomena (i.e. the daily price of a risky asset). Origi-

nally proposed by the Russian mathematician Markov in 1907, the class

of Markov chains have been growing more useful as a method for captur-

ing the stochastic nature of many economic and financial variables. This

makes the Markov chains an important example of random processes, that

can be also used to approximate other continuous Markov processes.

Applications of Markov chains arise in many different areas. One of the

areas where they have been widely used is the option pricing theory. (see

among other, Cox et al (1979) [12], D’Amico (2003) [13], D’Amico et al

(2009) [14], Iaquinta and Ortobelli (2006) [35].

Among Markovian models we essentially distinguish two categories: para-

metric models (see among other Duan and Simonato (2001) [20], Duan et

al (2003) [18], Staino and Ortobelli (2011)[67]) and non parametric models

(see Iaquinta and Ortobelli (2006)[35]). In the first category, the Markovian

hypothesis is used for the diffusive models of the underlying returns. The

transition matrix depends on the parameters of these Markov processes.

In the second category of models, only the historical series are used to

estimate the option prices. So, in non parametric Markov models the tran-

sition matrix depends on the historical observations. We recall the non-

parametric model presented in Iaquinta and Ortobelli (2006) [35], where
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2 Introduction

the time evolution of the returns is approximated by the Markov chain.

With this model, they are able to price American/European and path de-

pendent options in a reasonable computational time. Alternatively, Staino

and Ortobelli (2011)[67] proposed to price path dependent options when

log-retuns follow a Lévy process. They approximate the Markovian be-

havior of any Lévy process and using the Markov chain properties they

simplify the computation of price path dependent contingent claims. This

method has been firstly applied by Duan and Simonato (2001)[20] and

Duan et al (2003)[18] to approximate Wiener processes and GARCH pro-

cesses with Gaussian residuals in order to price American and barrier op-

tions.

In addition, several empirical works (see Lamantia et al (2006) [41]) have

shown that we cannot reject the Markovian hypothesis of asset returns.

Following the methodology proposed by Christoffersen (1998) [10], it is

possible to test the null hypothesis that the intervals of the distributional

support of a given portfolio are independent against the hypothesis that

the intervals follow a Markov chain.

On the one hand a Markov chain should be a good model to describe the

evolution of the distributional support of a given portfolio. On the other

hand, since its application to predict future wealth presents a high compu-

tational complexity, the Markovianity has not always been opportunely

used in portfolio theory (see Leccadito et al (2007) [42]).

Angelelli and Ortobelli (2009) [1] proposed some algorithms that reduce

the complexity of the portfolio selection problems based on this hypothe-

sis. In particular, they distinguish two different methods to build the tran-

sition matrices. With parametric portfolio selection models the transition

matrix depends on the parameters of the underlying Markov process and

the parameters are functions of the portfolio weights. Instead, with non

parametric Markov models the transition matrix depends directly on the

portfolio weights. Hence, the transition probabilities are strictly linked to

historical observations.
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Empirical distributions of asset returns are typically ’fat tailed’ with
large asset price movements having higher probability than predicted by
normality. Alternative models, able to capture tail decays and time vary-
ing volatility, have been developed.
Recently, attention has been placed on Markov regime switching models.
In such models, the stochastic process remains in one regime for a random
amount of time before switching over into a new regime.
Markov regime switching model assumes there are two ’regimes’ or states
with different mean and volatility levels. This specification can be inter-
preted as a mixture distribution with dynamics generated by a Markov
chain.
In this model the Gaussian distribution is generalized by introducing two
regimes with different moments. Leptocurtosis is obtained here because
the variance in the two regimes differs.
So, the mixture distribution generates the leptocurtosis and the Markov
chain is responsible for the nonlinear dynamics.
The Markov regime switching was first introduced by Hamilton(1989) [30]
to modelling changes in time series and business cycle. Engel and Hamil-
ton (1990)[22] are the first to apply Markov regime switching model to
financial time series. They study a sample of quarterly returns, finding
that Markov regime switching model gives a good fit. They also apply a
variety of tests to analyse the performance of their model.
Applications of Markov regime switching model to stock market returns
are found in Pagan and Schwert(1990) [56]. There Markov regime switch-
ing is compared with GARCH and several models.
Cai (1994)[8], Gray (1996) [27], Klaasen (2002) [39] proposed various spec-
ifications for Markov switching ARCH-type models.
Cai(1994)[8] was the first to apply the idea of endogenous regime-switching
parameters by Hamilton(1988, 1989) [29] [30] into an ARCH specification
to account for possible presence of structural breaks. He uses the ARCH
specification instead of GARCH to overcome the problem of infinite path-
dependence, i.e to avoid the conditional variance at time t depending on
the entire sample path.
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Gray(1996)[27] suggests to integrate out the unobserved regime path in
the GARCH equation using the conditional expectation of the past vari-
ance and his model can be regarded as the first MRS-GARCH.
Klaassen(2002) [39] suggests adopting the conditional expectation of the
lagged conditional variance with a broader information than in Gray, so
that his model has two main advantages. It allows both a higher flexibility
in capturing the persistence volatility shocks, and gives straightforward
expressions of multi-step-ahead volatility forecasts that can be calculated
recursively as in standard GARCH models.
Duan, Popova and Ritchken (2002)[19] model fills the gap between Black-
Scholes(BS) model [5], in this framework can be viewed as a single volatil-
ity model with no feedback effects, and the extended GARCH models,
which have infinitely many volatility regimes with feedback effects. This
include the family of GARCH option pricing models discussed by Duan
(1995 [17] and the Markov regime switching models of Hamilton as spe-
cial cases. His models allow volatility regimes to impact returns but do not
allow returns to impact future volatilities. In Duan, Popova and Ritchken
(2002) [19] are considered models in which variance updating schemes de-
pend not only on levels of variance and on asset innovations, but also on a
second factor that is uncorrelated with asset returns. As a result variance
levels are not completely determined by the path of prices. This second
factor allows for further flexibility in capturing properties of stock return
process.
To price regime switching American and European options, Buffington
and Elliot(2002) [7] use partial differential equation with non-smooth bound-
ary conditions, whereas Yao et al (2003)[70] derived the PDE’s with smooth
boundary conditions. In a recent paper, Fu et al(2012)[25] provided a
closed-form formula for price of an European call option, when the Markov
process has finite number of states.

This thesis deals with the parametric Markovian approach to model as-
set returns. We propose and examine innovative timing portfolio selection
strategies that use the Markovianity property of some different processes.
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First, we discuss how to approximate the distribution of the first passage
times of some well known Lévy processes. On the one hand, most of the
parametric processes used in portfolio theory are Markov processes such
as Lévy processes. On the other hand, forecasting the future wealth of
a parametric Markov process could present a high computational com-
plexity in portfolio problems. For this reason in this thesis we apply the
method discussed by Duan and Simonato (2001) [20] to approximate the
Markovian evolution of the portfolio wealth with a proper Markov chain.
Then, using the same logic of Iaquinta and Ortobelli (2006) [35]’s algo-
rithm we are able to propose a new algorithm for computing the distri-
bution of first passage times of the portfolio wealth. This way to estimate
first passage time distributions is different and alternative to the approach
presented by Mijatović and Pistorius (2013)’s [50] algorithm. Mijatović
and Pistorius’s approach, as well as, the discreted time Duan’s one have
been used for pricing barrier options and are not computationally efficient
for portfolio selection problems, as suggested by Angelelli and Ortobelli
(2009) [1].
While timing portfolio strategies have been treated in financial literature
(see Kardaras and Platen (2010) [37]), we are the first’s one (by our knowl-
edge) to suggest practical methods to deal with them. In particular, we
propose new portfolio selection strategies that optimize proper first pas-
sage times of the wealth at some benchmark levels. As a matter of fact,
investors want to maximize the first time their wealth decrease and want
to minimize the first time their wealth increase. With the methodology
proposed we are able to optimize timing portfolio strategies in a reason-
able computational time for most of the well known Lévy processes. The
new computationally efficient algorithm presented in Chapter 2 is the first
contribution of this thesis.
Second, we empirically compare different portfolio strategies based on
the optimization of the expected value of proper first passage times of the
portfolio wealth.
In this context, we want to evaluate the impact of different distributional
assumptions in timing portfolio strategies. In particular, we consider the
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following Lévy processes: Normal Inverse Gaussian (NIG) [3] , Variance
Gamma (VG) [44], Meixner [63], Brownian motion and α-Stable Lévy pro-
cess [45] and [34].
A further important contribution of this thesis is the empirical compari-
son among different timing portfolio selection strategies when the returns
are modeled by a non-Lévy process (Markov Regime Switching model
and log-Student t model). We assume a Markovian evolution of the port-
folio processes and we estimate some proper stopping times. We pro-
pose an empirical experiment to show that the techniques previously pre-
sented can be applied in practical portfolio problems not only for the
Lévy processes but for other processes as well. Finally, we compare the
ex post wealth obtained by optimizing (under different distributional as-
sumptions) a performance ratio between the average first passage time
of the wealth at a "losing" level and the average first passage time of the
wealth at a "winning" level. Doing so, we show how the theoretical dis-
cussion can be practically applied to real portfolio problems.

The thesis is organized as follows. Chapter 1 deals with the theory
of Markov process. In particular we examine Markov chains, continu-
ous time Markov processes (with more attention to Lévy processes) and
Markov regime switching processes.
In chapter 2 we show how to model parametric Markov chains. Then, for-
malizes a methodology to compute the distribution of bounded stopping
times. We compare the ex-post wealth obtained optimizing some paramet-
ric timing portfolio selection strategies.
A further financial application considering non-Lévy processes is given
in chapter 3. The Markov approximation of the Regime Switching model
and the log-Student-t model is presented. Then, we recall a methodology
to preselect some assets that optimize some common performance criteria.
Finally, we assess the ex-post wealth we obtain maximizing a performance
measure based on the average of proper first passage times.



Chapter 1
An introduction to Markov

processes

In this chapter we deal with Markov processes and we describe the

principal use of the Markov property. In particular we examine Markov

chains, continuous time Markov processes (with more attention to Lévy

processes) and Markov regime switching processes. Markov chains are

the simplest mathematical models for random phenomena evolving in

time.

A Markov process is a particular type of stochastic process where the future

value of a variable depends only on its present value. The characteristic

property of this sort of process is that it retains no memory of where it has

been in the past (Markov property). This means that only the current state

of the process can influence where it goes next.

The past history of the variable and the way that the present has emerged

from the past are irrelevant. The lack of memory property makes possible

to predict how a Markov process may behave, and to compute probabili-

ties and expected values which quantify that behavior.

This chapter deals with the theory of Markov process. It is organized as

follows. In the section 1.1 discrete-time Markov chains are defined and

their behavior is investigated. The calculation of transition probabilities,

expected hitting times and invariant distribution are given. Also treated

7



8 1. AN INTRODUCTION TO MARKOV PROCESSES

are recurrence, transience and convergence to the equilibrium.

section 1.2 presents Lévy processes, defining them and stating their char-

acterization by infinitely divisible distributions. Moreover, section 1.2

shows how any Lévy process satisfies Markov property, simplifying its

tractability. We focus on the construction of Lévy processes and, in par-

ticular, we explain how to define a Lévy process by a subordinator. We

describe some exponential Lévy processes and we propose a computation-

ally efficient method to approximate their parameters.

In the section 1.3 is given a description of Markov regime switching frame-

work. The likelihood function is evaluated of and the EM algorithm is

described.

1.1 Definition of Markov chains and some basic
properties

In this section discrete-time Markov chains are defined and their be-

havior is investigated. The calculation of transition probabilities, expected

hitting times and invariant distribution are given. Also treated are recur-

rence, transience and convergence to the equilibrium. We follow Norris

(1998) [52] and Marcus and Rosen (2006) [47] .

Let us define the Markov chain and its properties.

Definition and basic properties

Let I be a countable set. Each i ∈ I is called a state and I is called the

state-space. We say that λ = (λi : i ∈ I) is a distribution if 0 ≤ λi < 1 for all

i ∈ I and in addition the
∑

i∈I λi equals 1.

Given a probability space (Ω,=,P), recall that a random variable X with

values in I is a function X: Ω→ I . Suppose we set

λi = P(X = i) = P({ω : X(ω) = i})
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Then, λ defines the ditribution of X. We think of X as modelling a random
state which takes the value i with probability λi.
Let define the transition matrix P = (pij : i, j ∈ I) where pij : i, j ∈ I

is the probability to go from i to j. Next we give the basic definitions of
homogeneous Markov chains and its construction.

Definition 1.1. Given a probability space (Ω,=,P), a space of states I and a
sequence of random variablesXn : Ω→ I . We say that (Xn)n≥0 is an homo-
geneous Markov chain with discrete times if ∀n ≥ 0 and ∀i0, i1, . . . , in−1, i, j ∈
I such that P (X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i) > 0 then the two
properties are verified:

• P (Xn+1 = j/Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = i0) = P (Xn+1 =

j/Xn = i). This property, known as Markov property implies that
Markov chains have no memory. In other words, the probability of
the system being in any given state at the next time step depends
only on the state of the system at the current time step and is inde-
pendent of the previous states of the system. .

• P (Xn+1 = j/Xn = i) = P (Xk+1 = j/Xk = i) = p(i, j) ∀n, k ∈
N0. This is the case the matrix P does not depend on time and the
Markov chain is called homogeneous Markov chains.

Proposition 1.1.1. Given the space of states I, the transition matrix P and the
starting distribution λ associated to X0(i.e P(X0 = i0) = λi0), then it is possi-
ble to build a probability space (Ω,=,P) and a Markov chain (Xn)n≥0 uniquely
identified, at less of finite dimensional distribution, by (I, P, λ).

Since a homogeneous Markov chain is uniquely determined by the
initial distribution λ and the transition matrix P, we point out that the
Markov chain (Xn)n≥0 on Markov (λ, P ).

In the following we deal only homogeneous Markov chain and with
abuse of notation we do not specify that is homogeneous.

Theorem 1.1.2. A discrete-time random process (Xn)0≤n≤N is Markov(λ, P ) if
and only if for all i0, . . . , iN ∈ I

P(X0 = i0, X1 = i1, . . . , XN = iN) = λi0pi0i1pi1i2 . . . piN−1iN .
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Proof. See Norris (1998) [52], Theorem 1.1.1

An important property of the Markov chains is that they have no mem-
ory. This is given by the next result. We write δi = (δij : j ∈ I) where

δij =

{
1 if i = j

0 otherwise
(1.1)

Theorem 1.1.3. (Markov Property). Let (Xn)n≥0 be Markov(λ, P ). Then,
conditional on Xm = i, (Xm+n)n≥0 is Markov (δi, P ) and is independent of the
random variables X0, . . . , Xm.

Proof. We have to show that for any event A determined by X0, . . . , Xm,
we have

P({Xm = im, . . . , Xm+n = im+n} ∩ A|Xm = i)

= δiimpimim+1 , . . . , pim+n−1im+nP(A|Xm = i)

then the result follows by Theorem 1.1.2. First consider the case of elemen-
tary events

A = {X0 = i0, . . . , Xm = im}.

In that case we have to show that

P(X0 = i0, . . . , Xm+n = im+n and i = im)/P(Xm = i)

= δiipimim+1 . . . , pim+n−1im+n

× P(X0 = i0, . . . , Xm = im and i = im)/P(Xm = i)

which is true by 1.1.2.

During this section we will try to response to the following question:
what is the probability that after n steps our Markov chain is in a given
state? First, given the transition probability pij and the initial distribution
λ0 we can calculate the probability p(n)

i .

Proposition 1.1.4. Given the homogeneous Markov chain(λ,P) with transition
probability pij and the initial distribution λ0 then the following relation holds:

p
(n)
i = P(Xn = i) =

∑
i0,i1,...,iN−1

λi0pi0i1pi1i2 . . . piN−1i.
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We consider distributions and measures λ as row vectors whose com-
ponents are indexed by I, just as P is a matrix whose entries are indexed
by I × I . When I is finite we identify the states 1,2,...,N; then λ will be an
N-vector and P an N ×N matrix.
We extend matrix multiplication to the general case in the obvious way,
defining a new measure λP and a new matrix P 2 by

(λP )j =
∑
i∈I

λipij, (P 2)ik =
∑
j∈I

pijpjk.

We define P n similarly for any n given by:

(P n)ij =
∑

i1,...,in−1

pii1 . . . pin−1j

Then, the following relation holds:

Proposition 1.1.5. Given the homogeneous Markov chain(λ,P) with transition
probability pij and the initial distribution λ0 then:

p
(n)
j =

∑
i

λi0 .(P
(n))ij

We agree that P 0, is the identity matrix I, where (I)ij = δij . In the con-
text we specify when I refers to the state-space and when to the identity
matrix. We write pnij = (P n)ij for the (i,j) entry in P n.
In the case where λi > 0 we shall write Pi(A) for the conditional probabil-
ity P(A|X0 = i). By the Markov property at time m = 0, under Pi, (Xn)n≥0

is Markov(δi, P ). So, the behavior of (Xn)n≥0 under Pi does not depend on
λ.

Theorem 1.1.6. Let (Xn)n≥0 be Markov(λ, P ). Then, for all n,m ≥ 0,

• P(Xn = j) = (λP n)j ;

• P(Xn = j) = P(Xn+m = j|Xm = i) = pnij

Definition 1.2. We point out with (pnij : i, j ∈ I) = Pi(Xn = j) = P (xn =

j/X0 = i), and with (I,P) the homogeneous Markov chain with space of
states I and transition matrix P.
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1.1.1 Class structure

It is sometimes possible to break a Markov chain into smaller pieces,

each of which is relatively easy to understand, and which together give

an understanding of the whole. This is done by identifying the communi-

cating classes of the chain.

We say that i leads to j and write i→ j if

Pi(Xn = j for some n ≥ 0) > 0.

We say i communicates with j and write i↔ j if both i→ j and j → i.

Theorem 1.1.7. For distinct states i and j the following are equivalent:

• i) i→ j;

• ii) pi0i1pi1i2 . . . pin−1in > 0 for some states i0, i1, . . . , in with i0 = i and
in = j;

• iii) p(n)
ij > 0 for some n ≥ 0.

It is clear from ii) that i → j and j → k imply i → k. So, ↔ satisfies

the conditions for an equivalence relation on I and thus partitions I into

communicating classes. We say that a class C is closed if

i ∈ C, i→ j imply j ∈ C

Thus a closed class is one from which there is no escape. A state i is absorb-

ing if {i} is a closed class. The smaller pieces referred to above are these

communicating classes. A chain or transition matrix P where I is a single

class is called irreducible.
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Hitting times and absorption probabilities

Let (Xn)n≥0 be a Markov chain with transition matrix P. The hitting
time(or the first passage time) of a subset A of I is the random variable HA :

Ω→ {0, 1, 2, . . . } ∪ {∞} given by

HA(ω) = inf{n ≥ 0 : Xn(ω) ∈ A}

where the infimum of the empty set ∅ is∞. The probability starting from
i that (Xn)n≥0 ever hits A is then

hAi = Pi(HA <∞).

When A is a closed class, hAi is called the absorption probability. The mean
time taken for (Xn)n≥0 to reach A is given by

kAi = Ei(HA) =
∑
n<∞

nP(HA = n) +∞P(HA =∞).

In other words, we write

hAi = Pi(hit A), kAi = Ei(time to hit A)

These quantities can be calculated explicitely by means of certain linear
equations associated with the transition matrix P given by the following
theorem.

Theorem 1.1.8. The vector of hitting probabilities hA = (hAi : i ∈ I) is the
minimal non negative solution to the system of linear equations hAi = 1 for i ∈ A

hAi =
∑

j∈I pijh
A
j for i /∈ A

(1.2)

(Minimality means that if x = (xi : i ∈ I) is another solution with
xi ≥ 0 for all i, then xi ≥ hi for all i.)

Proof. See Norris (1997) [52], Theorem 1.3.2.

Now, we give a general result on mean hitting times. Recall that kAi =

Ei(HA), where HA is the first time (Xn)n≥0 hits A. We use the notation
1B for the indicator function of B, so for example, 1X1=j is the random
variable equal to 1 if X1 = j and equal to 0 otherwise.
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Strong Markov Property

Previously, we described the Markov property. This says that for each

time m, conditional onXm = i, the process after time m begins afresh from

i. Suppose, instead of conditioning on Xm = i, we simply waited for the

process to hit state i, at some random time H. What can one say about the

process after time H? What if we replaced H by a more general random

time, for example H-1? In this section we shall identify a class of random

times at which a version of the Markov property does hold. This class will

include H but non H-1; after all, the process after time H-1 jumps straight

to i, so it does not simply begin afresh.

A random variable T : Ω → {0, 1, 2, . . . } ∪ {∞} is called a stopping time
if the event {T = n} depends only on X0, X1, . . . , Xn for n = 0, 1, 2, . . . .

Intuitively, by watching the process, you know at the time when T occurs.

If asked to stop at T, you know when to stop.

• The first passage time

Tj = inf{n ≥ 1 : Xn = j}

is a stopping time because

{Tj = n} = {X1 6= j, . . . , Xn−1 6= j,Xn = j}

• The first hitting time HA above is a stopping time because

{HA = n} = {X0 /∈ A, . . . , Xn−1 /∈ A,Xn ∈ A}

• The last exit time

LA = sup{n ≥ 0 : Xn ∈ A}

is not in general a stopping time because the event {LA = n} de-

pends on whether (Xn+m)m≥1 visits A or not.
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Now, we show that the Markov property holds at stopping times. The

crucial point is that, if T is a stopping time and B ⊆ Ω is determined by

X0, X1, . . . , XT , then B ∩ {T = m} is determined by X0, X1, . . . , Xm, for all

m = 0, 1, 2, . . . .

Theorem 1.1.9. Strong Markov property. Let (Xn)n≥0 be Markov(λ, P ) and
let T be a stopping time of (Xn)n≥0. Then, conditional on T < ∞ and XT =

i, (XT+n)n≥0 is Markov(δi, P ) and independent of X0, X1, . . . , XT .

Proof. See Norris (1997) [52], Theorem 1.4.2

Recurrence and transience

Let (Xn)n≥0 be a Markov chain with transition matrix P. We say that a

state i is recurent if

Pi(Xn = i for infinitely many n) = 1.

We say that i is transient if

Pi(Xn = i for infinitely many n) = 0.

Thus a recurrent state is one to which you keep coming back and a tran-

sient state is one which you eventually leave for ever. We shall show that

every state is either recurrent or transient.

Recall that the first passage time to state i is the random variable Ti defined

by

Ti(ω) = inf{n ≥ 1 : Xn(ω) = i}

where inf{∅} = ∞. We now define inductively the rth passage time T (r)
i

to state i by

T
(0)
i (ω) = 0, T

(1)
i (ω) = Ti(ω)

and, for r = 0, 1, 2, . . . ,

T
(r+1)
i (ω) = inf{n ≥ T

(r)
i (ω) + 1 : Xn(ω) = i}



16 1. AN INTRODUCTION TO MARKOV PROCESSES

The length of the rth excursion to i is then

S
(r)
i =

{
T

(r)
i − T

(r−1)
i if T

(r−1)
i <∞

0 otherwise.
(1.3)

Our analysis of recurrence and transience will rest on finding the joint
distribution of these excursion lengths.

Lemma 1.1.10. For r = 2, 3, . . . , conditional on T (r−1)
i <∞, S(r)

i is indipendent
of {Xm : m ≤ T

(r−1)
i } and

P(S
(r)
i = n|T (r−1)

i <∞) = Pi(Ti = n).

Recall that the indicator function 1{X1=j} is the random variable equal
to 1 if X1 = j and 0 otherwise. Let us introduce the number of visits Vi to
i, which may be written in terms of indicator functions as

Vi =
∞∑
n=0

1{Xn=i}

and note that

Ei(Vi) = Ei
∞∑
n=0

1{Xn=i} =
∞∑
n=0

Ei(1{Xn=i}) =
∞∑
n=0

Pi(Xn = i) =
∞∑
n=0

p
(n)
ii .

Also, we can compute the distribution of Vi under Pi in terms of the
return probability

fi = Pi(Ti <∞)

Lemma 1.1.11. For r = 0, 1, 2 . . . , we have Pi(Vi > r) = f ri

The next theorem gives the definition by which we establish recurrence
or transience for a given state. Note that it provides two criteria for this,
one in terms of the return probability, the other in terms of the n-th step
transition probabilities. Both are useful.

Theorem 1.1.12. The following dichotomy holds:

• if Pi(Ti <∞) = 1, then i is recurrent and
∑∞

n=0 p
(n)
ii =∞;
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• if Pi(Ti <∞) < 1, then i is transient and
∑∞

n=0 p
(n)
ii <∞;

In particular, every state is either transient or recurrent.
From this theorem we can go on to solve completely the problem of

recurrence or transience for Markov chains with finite state-space. We
show that recurrence and transience are class properties.

Theorem 1.1.13. Let C be a communicating class. Then either all states in C are
transient or all are recurrent.

Theorem 1.1.14. Every recurrent class is closed.

Theorem 1.1.15. Every finite closed class is recurrent.

Remember that irreducibility means that the chain can get from any
state to any other, with positive probability. Then:

Theorem 1.1.16. Suppose P is irreducible and recurrent. Then for all j ∈ I we
have P(Tj <∞) = 1.

Invariant distributions

Many of the long-time properties of the Markov chains are connected
with the notion of an invariant distribution or measure. Remember that a
measure λ is any row vector (λi : i ∈ I) with non-negative entries. We say
λ is invariant if

λP = λ

The terms equilibrium and stationary are also used to mean the same. The
first result explains the term stationary.

Theorem 1.1.17. Let (Xn)n≥0 be Markov (λ, P ) and suppose that λ is invariant
for P. Then (Xm+n)(n≥0) is also Markov (λ, P ).

Proof. The proof follows from theorem 1.1.6.

The next result explains the term equilibrium.
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Theorem 1.1.18. Let I be finite. Suppose for i ∈ I that

p
(n)
ij → πj as n→∞ for all j ∈ I.

Then π = (πij : j ∈ I) is an invariant distribution.

Proof. See Norris (1998) [52], Theorem 1.7.2

In the next results we show that every irreducible and recurrent stochas-
tic matrix P has an essentially unique positive invariant measure. For a
finite state-space I, the existence of an invariant row vector is given by:
the row sums of P are all 1, so the column vector of ones is an eigenvector
with eigenvalue 1, so P must have a row eigenvector with eigenvalue 1.
For a fixed state k, consider for each i the expected time spent in i between
visits to k:

γki = Ek
Tk−1∑
n=0

1{Xn=i}.

Here the sum of indicator functions serves to count the number of times n
at which Xn = i before the first passage time Tk.

Theorem 1.1.19. Let P be irreducible and recurrent. Then

• i) γkk = 1;

• ii) γk = (γki : i ∈ I) satisfies γkP = γk;

• iii) 0 < γki <∞ for all i ∈ I .

Theorem 1.1.20. Let P be irreducibile and let λ be an invariant measure for P
with λk = 1. Then λ ≥ γk. If in addition P is recurrent, then λ = γk.

Recall that a state i is recurrent if

Pi(Xn = i for infinitely many n) = 1

and we showed in theorem 1.1.12 that this is equivalent to

Pi(Ti <∞) = 1.
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If in addition the expected return time

mi = Ei(Ti)

is finite, then we say i is positive recurrent. A recurrent state which fails
to have this stronger property is called null recurrent.

Theorem 1.1.21. Let P be irreducibile. Then the following are equivalent:

• i) every state is positive recurrent;

• ii) some state i is positive recurrent;

• iii) P has an invariant distribution, π say.
Moreover, when (iii) holds we have mi = 1/πi for all i.

1.1.2 Convergence to equilibrium

We analyse the limiting behaviour of the n-step transition probabilities
p

(n)
ij as n → ∞. As we saw in the theorem 1.1.18, if the state space is finite

and if for some i the limit exists for all j, then it must be an invariant dis-
tribution. But, the limit does not always exists.

Let us call a state i aperiodic if p(n)
ii > 0 for all sufficiently large n. Note

that i is aperiodic if and only if the set {n ≥ 0 : p
(n)
ii > 0} has no common

divisor than 1.

Lemma 1.1.22. Suppose P is irreducibile and has an aperiodic state i. Then, for
all states j and k, p(n)

jk > 0 for all sufficiently large n. In particular, all states are
aperiodic.

Here is the main result of this section.

Theorem 1.1.23. Convergence to the equilibrium. Let P be irreducible and
aperiodic, and suppose that P has an invariant distribution π. Let λ be any distri-
bution. Suppose that (Xn)n≥0 is Markov(λ, P ). Then

P(Xn = j)→ πj as n→∞ for allj.
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In particular,

p
(n)
ij → πj as n→∞ for alli, j.

Proof. See Norris (1998) [52], Theorem 1.8.3

Theorem 1.1.24. Let P be irreducible. There is an integer d ≥ 1 and a partition

I = C0 ∪ C1 ∪ · · · ∪ Cd−1

such that (setting Cnd+r = Cr)

• p
(n)
ij > 0 only if i ∈ Cr and j ∈ Cr+n for some r;

• p
(nd)
ij > 0 for all sufficiently large n, for all i, j ∈ Cr, for all r.

Proof. See Norris (1998) [52], Theorem 1.8.4

We call d the period of P. The theorem just proved shows in particular

for all i ∈ I that d is the greatest common divisor of the set {n ≥ 0 : p
(n)
ii >

0}. This is sometimes useful in identifying d.

Finally, here is a complete description of limiting behavior for irreducible

chains. This generalizes theorem 1.1.23 in two respects since we require

neither aperiodicity nor the existence of an invariant distribution.

Theorem 1.1.25. Let P be irreducible of period d and let C0, C1, . . . , Cd−1 be the
partition obtained in theoremm 1.1.24. Let λ be a distribution with

∑
i∈C0

λi = 1.
Suppose that (Xn)n≥0 is Markov (λ, P ). Then for r = 0, 1, dots, d−1 and j ∈ Cr
we have

P(Xnd+r = j)→ d/mj as n→∞

where mj is the expected return time to j. In particular, for i ∈ C0 and j ∈ Cr we
have

pnd+r
ij → d/mj as n→∞.

Proof. See Norris (1998) [52], Theorem 1.8.5



1.2. THE MARKOV APPROXIMATION OF EXPONENTIAL LÉVY PROCESSES 21

1.2 The Markov Approximation of Exponential
Lévy processes

During the last decade continuous stochastic processes have become
very popular for modeling market fluctuation. They describe the time
evolution of random phenomena, as the daily price of a risky asset. As
random walks are the simplest example of stochastic processes in discrete
time, their continuous time relatives processes called Lévy processes in
honor to the French mathematician Paul Lévy provide key examples of
stochastic processes in continuous time.
There are several empirical investigations (for example Fama(1965) [23]
and Mandelbrot(1963) [46] which show how the behavior of the logreturns
is more skew with tails fatter than the Normal distribution.
Since Lévy processes are able to capture the skewness and kurtosis of ob-
served asset log returns, their use in finance is becoming very widespread.

1.2.1 Definition of Lévy process

In this section we present the class of stochastic processes, also knows
as Lévy processes. At the same time will look to their properties. We refer
to general works on Lévy processes given by Cont and Tankov (2004) [11],
Sato (1999) [62], and Schoutens (1999) [64].

Definition 1.3. A stochastic process {Xt}t≥0 on Rd adapted to the filtered
space (Ω,=, P,=tt≥0) that satisfies the usual conditions is a Lévy process
if:

1. For any choice of n ≥ 1 and 0 ≤ t0 ≤ t1 · · · ≤ tn, random variables
Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent (indepen-
dent increments property).

2. X0 = 0 a.s.

3. The distribution of Xs+t −Xs does not depend on s (temporally ho-
mogeneity or stationary increments property).
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4. It is stochastically continuous.

5. There is Ω0 ∈ = with P |Ω0| = 1 such that, for every ω ∈ Ω0, Xt(ω) is
right-continuous in t ≥ 0 and has left limits in t > 0.

A Lévy process on Rd is called a d-dimensional Lévy process. Any pro-
cess satisfying (1)-(4) is called a Lévy process in law. We define an additive
process as a stochastic process satisfying the conditions (1), (2), (4) and (5).
Dropping condition (5), an additive process in law is a stochastic process sat-
isfying (1), (2) and (4).
The conditions (1), (2) and (3) express that the stochastic process {Xt} has
independent and stationary increments. Under the conditions (2) and (3),
the condition (4) can be replaced by:

lim
s→t

P [| Xs −Xt |> ε] = 0 (1.4)

for every t ≥ 0 and ε > 0. Equation 1.4 does not imply that the stochastic
process {Xt} is continuous but it serves to exclude processes with jumps
at fixed times. It means that a discontinuity at a fixed time t has probabil-
ity zero, in other words {Xt} is discontinuous at random times. Finally,
condition (5) is usually recalled saying that the stochastic process {Xt} is
cádlág . We can say the process is cádlág, from the French ’continue á
droite et limites á gauche’; the term RCLL(right continuous left limit) is
sometimes also used.

In order to define the characterization of Lévy process, an important
role is that one of the infinitely divisible distributions.

Definition 1.4. A probability distribution µ on Rd is said to be infinitely
divisible if for any integer n ≥ 2, there exists n i.i.d random variables
Y1, . . . , Yn such that Y1 + · · ·+ Yn has distribution µ.

Since the convolution of two probability measure of µ1 and µ2 denoted
as µ1 ∗ µ2, is the distribution of the sum of two independent random vari-
ables with distribution µ1 and µ2, respectively, then the infinite divisibility
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of µ implies that, for each n, there are n independent and identically dis-

tributed random variables Y1, . . . , Yn such that Y1 + . . . Yn has distribution

µ.

Thus, if X is a Lévy process, for any t > 0 the distribution ofXt is infinitely

divisible. This is a constraint on the possible choice of the distributions for

Xt: the distribution of increments of a Lévy process has to be infinitely di-

visible.

Conversely, given an infinitely divisible distribution µ, for any n ≥ 1 di-

viding it into n i.i.d components we can construct a random walk model

on a time grid with step size 1/n such that the law of the position at t = 1

is given by µ. This procedure can be used to construct a continuous time

Lévy process {Xt}t≥0 such that the law of X1 if given by µ:

Proposition 1.2.1. Let {Xt}t≥0 be a Lévy process. Then, for every t, Xt has an
infinitely divisible distribution. Conversely, if µ is an infinitely divisible distri-
bution, then there exists a Lévy process {Xt} such that the distribution of X1 is
µ.

Proof. See Cont and Tankov (2004) [11], Proposition 3.1

Given an infinitely divisible distribution µ on Rd, it is possible to prove

(see Sato (1999) [62], Lemma 7.6) the existence of an unique continuous

function ψ(z) from Rd into C such that ψ(0) = 0 and

φµ(z) =

∫
Rd
ei〈z,x〉µ(dx) = eψ(z), z ∈ Rd

where φµ(z) is the characteristic function of µ. Further, for every t ∈ [0,∞)

there exists the infinitely divisible distribution µt with characteristic func-

tion φµt(z) = etψ(z) (see Sato (1999) [62], Lemma 7.9). So, if {Xt}t≥0 is

a Lévy process and PX1 = µ, then it is possible to prove that PXt = µt

(see Sato (1999)[62] Theorem 7.10). Then, the characteristic function of the

Lévy process is given by:

φXt(z) = E[ei〈z,Xt〉] = etψ(z), z ∈ Rd (1.5)
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where φXt(z) is the characteristic function of Xt and ψ(z) is called the char-
acteristic exponent of {Xt}. Further, given the definition of cumulant gen-
erating function of a random variable, we see that ψ is the cumulant gen-
erating function of X1:ψ = ΨX1 and that the cumulant generating function
of Xt varies linearly in t: ΨXt = tΨX1 = tψ. So, from equation 1.5 we
obtain the knowledge of the law of Xt is determined by the knowledge of
the law of X1.

Now, we discuss compound Poisson processes, which are the simplest
examples of the Lévy processes. They can be considered as Poisson pro-
cesses with random jump sizes and allow us to introduce two important
theoretical tools. First, the Lévy-Khinchin formula that permits us to study
distributional properties of Lévy processes and second, the Lévy-Ito de-
composition that describes the structure of their sample paths.

Definition 1.5. A compound Poisson process with intensity λ > 0 and
jump size distribution F is a stochastic process {Xt}t≥0 defined as:

Xt =
Nt∑
j=1

Yj

where jump sizes Yj are independent and identically distributed with dis-
tribution F and {Nt}t≥0 is a Poisson process with intensity λ and indepen-
dent from {Yj : j = 1, 2, . . . }.

We deduce from the definition that, the sample paths of X are cadlag
piecewise constant functions. Further, the jump times {Ti}i≥1 have the
same law as the jump times of the Poisson process Nt. They can be ex-
pressed as partial sums of indipendent exponential random variables with
parameter λ. Finally, the jump size {Yi}i≥1 are independent and identically
distributed with law F.

Since any cadlag function may be approximated by a piecewise con-
stant function, one can expect that the compound Poisson process gives a
good approximation for general Lévy processes. Therefore, by studying
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compound Poisson processes one can assume some of the properties of
Lévy processes. They allow us to describe the important tool of the Lévy
measure.

Proposition 1.2.2. Let {Xt}t≥0 be a compound Poisson process on Rd. Its char-
acteristic function has the following representation:

E[ei〈z,Xt〉] = exp(tλ

∫
Rd

(ei〈z,x〉 − 1)F (dx)), z ∈ Rd (1.6)

where λ denotes the jump intensity and f the jump size distribution.

Let us introduce a new measure ν(A) = λF (A), then the formula 1.6
becomes:

E[ei〈z,Xt〉] = exp(t

∫
Rd

(ei〈z,x〉 − 1)ν(dx)), z ∈ Rd (1.7)

ν is called the Lévy measure of process {Xt}t≥0. ν is positive measure on
R but not a probability measure.

The compound Poisson process is the unique Lévy process whose sam-
ple paths are piecewise constant functions (see Cont and Tankov (2004)
[11] Proposition 3.3).

Let us consider the behaviour of jumps of a compound Poisson process,
using the random measure. Since we know that to every compound Pois-
son process {Xt} on Rd we can assign a random measure on [0,∞)×Rd to
describe the jumps of X defined by

JX(B) = #{(t,Xt −Xt−) ∈ B},

where B is measurable subset of [0,∞) × Rd. So, for every measurable
set A ⊂ Rd, JX([t1, t2] × A) counts the number of times between t1 and
t2 such that the size of jumps of {Xt} belongs to A and JX is exactly a
Poisson random measure on Rd × [0,∞) with intensity measure µ(dx ×
dt) = ν(dx)dt = λF (dx)dt (see Cont and Tankov (2004) [11] Proposition
3.5), that is for every measurable set B ⊂ Rd × [0,∞),

P [JX(B) = k] = e−µ(B)µ(B)k

k!
, ∀k ∈ N (1.8)
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From equation 1.8 the Lévy measure of a compound process is given as
the average number of jumps per unit of time:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd),

where ∆Xt = Xt − Xt−. Every compound Poisson process can be repre-
sented by

Xt =
∑
s∈[0,t]

∆Xs =

∫
[0,t]×Rd

xJX(ds× dx), (1.9)

where JX is a Poisson random measure with intensity measure ν(dx)dt.

Let {X0
t } be a Lévy process with piecewise constant paths. Since every

piecewise constant Lévy process is a compound Poisson process, it can be
represented in the form 1.9:

X0
t =

∫
[0,t]×Rd

xJX(ds× dx)

where JX is a Poisson random measure with intensity measure ν(dx)dt

and ν is a finite measure defined by

ν(A) = E[#{t ∈ [0, 1] : ∆X0
t 6= 0,∆X0

t = A}], A ∈ B(Rd).

Moreover, consider a Brownian motion with drift γt + Wt indipendent of
X0. Then, the sum Xt = γt + Wt + X0

t is another Lévy process which can
be expressed as

Xt = γt+Wt +
∑
s∈[0,t]

X0
s = γt+Wt +

∫
[0,t]×Rd

xJX(ds× dx). (1.10)

An expression 1.10 can be proved for every Lévy process. Further, given
a Lévy process {Xt}, we can define its Lévy measure as we have only just
done for a compound Poisson process, that is:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt = A}], A ∈ B(Rd).

So, the measure ν is finite (ν(A) < ∞) for any compact set A ⊂ Rd�{0},
otherwise the process would have an infinite number of jumps with size
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in A on [0, T ]. But it contradicts the cadlag property. ν defines a Radon
measure on Rd�{0}. But it is not a necessarily a finite measure,indeed
the process X could have an infinite number of small jumps on [0,T]. This
means that the sum of jumps becomes an infinite series. To guarantee the
convergence, we impose some conditions on the measure ν, under which
we obtain a decomosition of X as follows:

Proposition 1.2.3. (Lévy-Ito decomposition). Let {Xt} be a Lévy process on Rd

and ν its Lévy measure. Then

• ν is a measure on Rd�{0} and verifies∫
|x|≤1

| x |2 ν(dx) <∞
∫
|x|≥1

ν(dx) <∞.

• The jump measure of X, denoted by JX , is a Poisson random measure on
[0,∞)× Rd with intensity measure ν(dx)dt.

• There exist a vector γ and a d-dimensional Brownian motion {Wt} with
covariance matrix A such that

Xt = γt+Wt +X l
t + limε↓0X̃

ε
t (1.11)

where
X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx),

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

x{JX(ds× dx)− ν(dx)ds}

=

∫
ε≤|x|<1,s∈[0,t]

xJ̃X(ds× dx).

The terms in 1.11 are indipendent and the convergence in the last term is almost
sure and uniform in t on [0, T ].

Proof. See Cont and Tankov (2004) [11], Proposition 3.7.
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From the Lévy-Ito decomposition a Lévy process is uniquely deter-
mined by a vector γ, a positive definite matrix A and a positive measure
ν. The triplet (A, ν, γ) is called characteristic triplet or Lévy triplet of the
process {Xt}.
Let us comment the meaning of the terms in 1.11, which give the impor-
tance of this result. The first term, γt + Wt is a continuous Gaussian Lévy
process. So, when a Lévy procces is continuous it must be a Brownian
motion with drift γ and covariance matrix A.
Then, the two terms {X l

t} and {X̃ε
t } represent the jumps of {Xt} and are

described by the Lévy measure ν, where {X l
t} is a compound Poisson pro-

cess, while {X̃ε
t } a compensated compound Poisson process (see Cont and

Tankov Proposition 2.16). From the condition
∫
|x|≥1

ν(dx) <∞ we deduce
that a Lévy process must have a finite number of jumps with absolute
value larger than 1.
Therefore, the Lévy-Ito decomposition implies that every Lévy process is a
combination of a Brownian motion with drift and a possible infinite sum
of independent compound Poisson process. In other words, this means
that every Lévy process can be approximated by a jump-diffusion process,
which is useful both in theory and in practice.

Finally, using the Lévy-Ito decomposition, we can express the char-
acteristic function of a Lévy process in terms of its characteristic triplet
(A, ν, γ).

Theorem 1.2.4. . Let {Xt} be e a Lévy process on Rd with characteristic triplet
(A, ν, γ). Then

E[ei〈z,Xt〉] = etψ(z), z ∈ Rd

with

ψ(z) = −1

2
〈z, Az〉+ i〈γ, z〉+

∫
Rd

(ei〈z,x〉 − 1− i〈z, x〉1|x|≤1)ν(dx)

Proof. See Cont and Tankov (2004) [11], Theorem 3.1.

The Lévy-Khintchine representation characterizes the characteristic func-
tion of any infinitely divisible distribution, because any infinitely divisible
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distribution is the distribution of a Lévy process at time t=1. From the char-
acteristic triplet, we deduce some properties of the sample paths of Lévy
process. Some paths properties of a Lévy process can be deduced by the
characteristic triplet. The next result gives conditions which characterize
Lévy processes of finite variation, that is whose trajectories are functions
of finite variation with probability 1.

Proposition 1.2.5. A Lévy process is of finite variation if and only if its charac-
teristic triplet (A, ν, γ) satisfies:

A = 0 and
∫
|x|〈≤1|x|

ν(dx) <∞

Proof. See Cont and Takov (2004) [11], Proposition 3.9

In this case we recall that the Lévy-Ito decomposition and Lévy-Khintchine
representation can be simplified as follows:

Corollary 1.2.6. Let {Xt}t≥0 be a Lévy process of finite variation with Lévy
triplet given 0, ν, γ. Then, {Xt} can be expressed as the sum of its jumps between
0 and t and a linear drift term:

Xt = bt+

∫
[0,t]×Rd

xJX(ds× dx) = bt+

∆Xs 6=0∑
s∈[0,t]

∆Xs,

and its characteristic function can be expressed as

E[ei〈x,Xt〉] = exp(t(i〈z, b〉+

∫
Rd

(ei〈z,x〉 − 1)ν(dx))), z ∈ Rd,

where b = γ −
∫
|x|≤1

xν(dx).

See Corollary 3.1 Cont and Takov (2004) [11].

Usually, a pure jump Lévy process (i.e the one with no Brownian com-
ponent (σ2 = 0)) is said of finite activity when

∫ 1

−1
ν(dx) < ∞ and thus

there are finitely many jumps in any finite interval. Instead when
∫ 1

−1
ν(dx) =

∞ the Lévy process is called of infinite activity and in this case there are
infinitely many jumps in any finite interval.
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We conclude the section with the notion of completely monotone Lévy

density. Given a Lévy measure with density, i.e ν(dx) = k(x)dx, the Lévy

density k(x)is called completely monotone if it can be written in the form

k(x) =

∫ ∞
0

e−axζ(da)

for some positive measure ζ . Thus, a completely monotone Lévy density

relates arrival rates of large jump sizes to smaller jump sizes in such a way

that large jumps arrive less frequently than small jumps.

1.2.2 Lévy processes as Markov processes

An important property of Lévy processes is the Markov property. This

property states that conditionally on Xt, the evolution of the process after

time t is independent on its past before this moment. In other words, for

every random variable Y depending on the history =t1 of Xt one must

have

E[Y |=t] = E[Y |Xt]

In this section we define Markov processes by using transition functions,

and then recall a theorem which characterize Lévy processes with spa-

tially homogeneous transition functions.

Definition 1.6. A mapping Ps,t(x,B) of x ∈ Rd and B ∈ B(Rd) with 0 ≤
s ≤ t <∞ is called a transition function on Rd if:

1. it is a probability measure as a mapping of B for any fixed x;

2. it is a measurable in x for any fixed B;

3. Ps,s(x,B) = δx(B) for s ≥ 0;

1We assume that filtration is the same generated by the process and satisfies the usual
conditions.
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4. it satisfies∫
Rd Ps,t(x, dy)Pt,u(y,B) = Ps,u(x,B) for 0 ≤ s ≤ t ≤ u

This property is known as the Chapman-Kolmogorov identity.

If, in addition,

5. Ps+h,t+h(x,B) does not depend on h,
then it is called a temporally homogeneous transition function and
it is given by Pt(x,B) such that
Pt(x,B) = Ps,s+t(x,B) s ≥ 0

In the case of temporally homogeneous transition function, the prop-

erty (4) is written as∫
Rd
Ps(x, dy)Pt(y,B) = Ps+t(x,B) for s ≥ 0 and t ≥ 0. (1.12)

(see Sato (1999) [62], Definition 10.1)

In order to define Markov processes, let us recall the celebrated Kol-

mogorov’s extension theorem which is a fundamental for the theory of

stochastic processes. Let Ω = (Rd)[0,∞), the collection of all functions

ω = (ω(t))t∈[0,∞) into Rd and define Xt(ω) = ω(t). A set

C = {ω : Xt1(ω) ∈ B1, . . . , Xtn ∈ Bn}

for 0 ≤ t1 < · · · < tn and B1, . . . , Bn ∈ B(Rd) is called a cylinder set. Let =
be the σ-algebra generated by the cilinder sets.

Theorem 1.2.7. (Kolmogorov’s extenstion theorem). Suppose that, for any choice
of n and 0 ≤ t1 < · · · < tn, a distribution µt1,...,tn is given and that, ifB1, . . . , Bn ∈
B(Rd) and Bk = Rd, then

µt1,...,tn(B1 × · · · ×Bn)

= µt1,...,tk−1,tk+1,...,tn
(B1 × · · · ×Bk−1 ×Bk+1 × · · · ×Bn).

(1.13)
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Then, there exists an unique probability measure P on = such that

P [B1 × · · · ×Bn] = µt1,...,tn(B1 × · · · ×Bn),

for any choice of n, 0 ≤ t0 < · · · < tn, and B1, . . . , Bn ∈ B(Rd).

Proof. See Sato (1999) [62], Theorem 1.8

If a temporally homogeneous transition function Pt(x,B) onRd is given,
then, for any a ∈ Rd we can construct a stochastic process {Yt}t≥0 follow-
ing the theorem given above. Let Ω0 = (R)[0,∞), the collection of all func-
tions ω from [0,∞) into Rd, Yt(ω) = ω(t) for t ≥ 0, and =0 be the σ-algebra
generated by Yt, t ≥ 0. Define, for any 0 ≤ t0 < · · · < tn and B0, . . . , Bn,

µat0,...,tn(B0 × · · · ×Bn)

=

∫
Pt0(a, dx0)1B0(x0)

∫
Pt1−t0(x0, dx1)1B1(x1)∫

Pt2−t1(x1, dx2)1B2(x2) . . . Ptn−tn−1(xn−1, dxn)1Bn(xn)

The function µat0,...,tn can be uniquely extended to a probability measure on
(Rd)n+1 and, moreover, the family {µat0,...,tn} satisfies the condition 1.13 by
equation 1.12. Therefore, by theorem 1.2.7 there exists a unique probability
measure P a extending this family.
An important definition is that one of temporally homogeneous Markov
process.

Definition 1.7. A stochastic process {Xt}t≥0 defined on a probability space
(Ω,=, P ) is called a temporally homogeneous Markov process with tempo-
rally homogeneous transition function {Pt(x,B)} and starting point a, if it
is identical in law 2 with the process {Yt}t≥0 define above on (Ω0,=0, P a).

The process {Yt} is the path space representation of the process {Xt}. If,
in addition, the transition function is temporally homogeneous, then {Yt}
is called a temporally homogeneous Markov process.

2Two stochastic processes {Xt} and {Yt} are called identical in law if, for any choice
of n, 0 ≤ t1 < · · · < tn and B1 . . . Bn ∈ B(Rd),

P [Xt1 ∈ B1, . . . , Xtn ∈ Bn] = P [Yt1 ∈ B1, . . . , Ytn ∈ Bn]
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Further, the transition function Ps,t on Rd is said to be spatially homo-
geneous if

Ps,t(x,B) = Ps,t(0, B − x)

for any s,t ,x and B, where B − x = {y − x : y ∈ B}.
The next theorem characterizes Lévy processes as temporally homoge-

neous Markov processes with spatially homogeneous transition functions.

Theorem 1.2.8. • Let µ be an infinitely divisible distribution on Rd and let
{Xt} be the Lévy process corresponding to µ. Define Pt(x,B) by

pt(x,B) = µt(B − x)

Then pt(x,B) is a temporally and spatially homogeneous transition func-
tion and {Xt} is a Markov process with the transition function and starting
point 0.

• Conversely, any stochastically continuous, temporally homogeneous Markov
process on Rd with spatially homogeneous transition function and starting
point 0 is a Lévy process.

Proof. See Sato (1999) [62], Theorem 10.5.

Markov process satisfy an important property that simplifies their tractabil-
ity. The so-called Markov property is given by the following:

Proposition 1.2.9. Consider {Yt : t ≥ 0}, the path space representation of a
temporally homogeneous Markov process with the a transition function Pt(x,B).
Let 0 ≤ t0 ≤ · · · < tn and let f(x0, . . . , xn) be a bounded measurable function.
Then Ea[f(Yt0 , . . . , Ytn)] is measurable in a and

Ea[f(Yt0 , . . . , Ytn)] =

∫
Pt0(a, dx0)

∫
Pt1−t0(x0, dx1)∫

Pt2−t1(x1, dx2) . . . Ptn−1−tn(xn−1, dxn)f(x0, . . . , xn).

Moreover, for any 0 ≤ s0 < · · · < sm ≤ s and for any bounded measurable
function g(x0, . . . , xm), we have

Ea[g(Ys0 , . . . , Ysm)f(Ys+t0 , . . . , Ys+tn)]

= Ea[g(Ys0 , . . . , Ysm)EYs [f(Ys+t0 , . . . , Ys+tn)]].

(1.14)
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Proof. See Sato (1999) [62], Proposition 10.6.

Let us define a filtration a set of σ-algebras =t such that =s ⊆ =t, for
s ≤ t, and Yt is measurable with respect to =t. Let =t the σ-algebra gener-
ated by the random variables Ys such that s ≤ t, then the family {=t} is
the smallest filtration associated to {Yt}.
Equation 1.14 is the Markov property and is generally expressed by the
filtration of a stochastic process {Yt}. It says that if we consider the condi-
tional expectation of f(Ys+t0 , . . . , Ys+tn) with respect to =s, then it is equal
to the conditional expectation of f(Ys+t0 , . . . , Ys+tn) with respect to Ys:

E[f(Ys+t0 , . . . , Ys+tn)|=s] = E[f(Ys+t0 , . . . , Ys+tn)|Ys].

More in general, Lévy process satisfy the strong Markov property, where
it is present the notion of stopping time. A stopping time T is a mapping
from Ω into [0,∞] such that {T ≤ t} ∈ =t for every t ∈ [0,∞). From a
stopping time T, we could define a σ-algebra =T and a random variable
YT , and further prove

E[f(YT+t0 , . . . , YT+tn)|=T ] = E[f(YT+t0 , . . . , YT+tn)|YT ]. (1.15)

Equation 1.15 is called the strong Markov property, and we have the Markov
property when T is equal to a constant time t.

1.2.3 Exponential Lévy processes and their estimation

In this section we describe some popular Lévy processes. We start with
the increasing Lévy processes, so-called subordinators. This processes can
be used as time changes for other Lévy processes. We spend some time
looking at density function, characteristic function, Lévy triplets and some
of their properties. Then, we compute moments, variance, skewness and
kurtosis, if possible. At the same time we look at the semi-heaviness of
the tails.

Below is given the definition of the subordinators:
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Proposition 1.2.10. Let {Xt}t≥0 be a Lévy process on R. The following condi-
tions are equivalent:

• i) Xt ≥ 0 almost surely for some t > 0.

• ii) Xt ≥ 0 for every t > 0.

• iii) Sample paths of {Xt} are almost surely nondecreasing:
t ≥ s⇒ Xt ≥ Xs almost surely.

• iv) The characteristic triplet of {Xt} satisfiesA = 0, ν((−∞, 0]) = 0,
∫∞

0
(x∧

1)ν(dx) <∞ and b ≥ 0, that is, has no diffusion components, only positive
jumps of finite variation and positive drift.

Proof. See Cont and Tankov (2004) [11], Proposition 3.10.

Let {St}t≥0 be a subordinator on R with Lévy measure ρ and drift b as
defined in the above proposition. For any time t, St is a positive random
variable and thus we can describe it by its Laplace transform:

LSt(u) = E[euSt ] = etl(u), u ≤ 0,

where
l(u) = bu+

∫ ∞
0

(eux − 1)ρ(dx). (1.16)

The function l(u) is called Laplace exponent of {St}. The process St is
increasing and the next theorem justifies the use of a subordinator {St} as
time change of another Lévy process.

Theorem 1.2.11. Fixed a probability space (Ω,=, P ). Let {St}t≥0 a subordinator
with Lévy measure ρ, drift b, and Laplace exponent l(u), and let {Xt}t≥0 be a
Lévy process on Rd with Lévy triplet (A, ν, γ) and characteristic exponent ψ(z).
Then the process {Yt}t≥0 defined for each w ∈ Ω by Yt(w) = XSt(w)

(w) is a Lévy
process and its characteristic function is

φYt(z) = E[ei〈z,Yt〉] = etl(ψ(z)), z ∈ Rd (1.17)

The Lévy triplet (A∗, ν∗, γ∗) of {Yt} is given by

A∗ = bA,
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ν∗(B) = bν(B) +

∫ ∞
0

PXs(B)ρ(ds), ∀B ∈ B(Rd),

γ∗ = bγ +

∫ ∞
0

ρ(ds)

∫
|x|≤1

xPXs(dx),

where PXt is the distribution of Xt.

Proof. See Cont and Tankov (2004) [11], Theorem 4.2

A way to find a subordinator is to define a Lévy triplet which satisfies
the condition (iv) of Proposition 1.2.10. The tempered stable subordinator
is defined assuming that its drift b is zero and its Lévy measure is

ρ(dx) =
ce−λx

xα+1
1x>0dx

where c and λ are positive and 0 ≤ α < 1. By equation 1.16 the Laplace
exponent of the tempered stable subordinator is given by{

l(u) = cΓ(−α){(α− u)α − λα} α 6= 0

l(u) = −clog(1− u/λ) α = 0.
(1.18)

For financial applications two important subordinators are the Gamma
process, α = 0, and the Inverse Gaussian process, α = 1/2, which have
probability density function in explicit form. If α = 0 in 1.18, then we
have the Gamma (G) process {X(G)

t }t≥0 with parameters a > 0 and b > 0,
where a = c and b = λ. The Laplace transform and probability density
function of XG

t are, respectively

L
X

(G)
t

(u) = (i− u/b)−at, u ≤ 0.

f
X

(G)
t

(x : a, b) =
ba

Γ(a)
xa−1exp(−xb)1x>0.

The Lévy triplet of the Gamma process {X(G)
t } is

[
a(1− exp(−b))

b
, 0,

a exp(−bx)

x
1x>0dx]

Instead, if α = 1/2 in 1.18, then we have the Inverse Gaussian (IG) process
{X(IG)

t : t ≥ 0} with parameters a > 0 and b > 0, where a = c
√

2π and
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b =
√

2λ. The Laplace transform and probability density function of X(IG)
t

are, respectively,

L
X

(IG)
t

(u) = exp(−at(
√
b2 − 2u− b)), u ≤ 0.

f
X

(IG)
t

(x : a, b) =
ta

x3/2
√

2π
exp(tab)exp(−1

2
((ta)2x−1 + b2x))1x>0.

The Lévy triplet of the Inverse Gamma process {X(IG)
t } is

[
a

b
(2N(b)− 1), 0,

a

x3/2
√

2π
exp(

b2

2
x)1x>0dx]

Brownian Motion

The celebrated Black & Scholes model assumes that the underlying

asset follows a geometric Brownian motion, that is

St = S0e
Xt

where Xt = (µ − 1
2
σ2)t + σWt is a Brownian motion with drift. There-

fore, the volatility σ, that is the standard deviation of the log return over a

time unit, is constant. But, the volatility should depend on the number of

transactions occurred during a time unit, that is it should be stochastic. A

way to include this other element of randomness is just to model the asset

log-return as a subordinated Brownian motion with drift:

Xt = µZt + σWZt

where {Zt} is a subordinator. In this way we obtain the stochastic volatil-

ity σ
√
Z1.

Two important subordinated Lévy processes in finance are the Variance

Gamma and Normal Inverse Gaussian processes, that we illustrate in the

following.
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Variance Gamma process

The Variance Gamma (VG) process can be defined subordinating a
Brownian motion with drift {Xt = θt+ σWt} by a Gamma process {Z(G)

t }
with parameters a = 1/ν > 0 and b = 1/ν > 0, where θ ∈ R and σ > 0:

XV G
t = θZG

t + σWZGt

By equation 1.17 characteristic function of XV G
t is

φXV G
t

(z;σ
√
t, ν/t, θt) = (1− izθν +

1

2
σ2νz2)−t/ν

The probability density function of XV G
t is known in explicit form and is

given by

fXV G
t

(z;σ
√
t, ν/t, θt) =

2e θx
σ2 ( x2

2σ2/ν+θ2 )
t

2ν
− 1

4

νt/ν
√

2πσΓ(t/ν)
×K t

2ν
− 1

2
(

1

σ2

√
x2(2σ2/ν + θ2)),

where K t
2ν
− 1

2
(x) is the modified Bessel function of the third kind with in-

dex t
2ν
− 1

2
. It is possible to show that this density is leptokurtic and with

semi-heavy tails. The parameters of the model have the following inter-
pretation: σ dictates the overall variability of the log returns of the asset,
parameters ν and θ control the kurtosis or tail heaviness and the skewness
of the log returns, respectively.
In particular, at time t=1 we have the following characteristics:
mean θ

variance σ2 + νθ2

skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

kurtosis 3(1 + 2ν − νσ4(σ2 + νσ2)−2).

We consider an alternative definition of the Variance Gamma process
for determining the Lévy triplet. Madan et al (1998) [43] showed that the
VG process is also equal to the difference of two independent Gamma
process:

XV G
t = XG1

t +XG2

t ,
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where XG1

t is Gamma process with parameters a = C and b = M , and
XG2

t is an independent Gamma process with parameters a = C and b =

G. The relation between the two definitions is given by the following
parametrization:

C = 1/ν > 0

G = (

√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν)−1 > 0,

M = (

√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν)−1 > 0.

With this second definition the Lévy triplet is immediately given by [γ, 0, νV G(dx)],
where νV G(dx)] is given by:

νV G(dx) =

{
Cexp(Gx) | x |−1 dx, x < 0,

Cexp(−Mx)x−1dx, x > 0,

γ =
−C(G(exp(−M)− 1)−M(exp(−G)− 1))

MG
.

With the parametrization in terms of C, G and M, the characteristic func-
tion of X(V G)

1 reads as follows:

φV G(u : C,G,M) = (
GM

GM + (M −G)iu+ u2
)C .

In terms of the CGM parameters this read as follows:

Table 1.1: Variance Gamma (σ, ν, θ)

VG(σ, ν, θ)

mean θ

variance σ2 + νθ2

skewness θν(3σ2 + 2νσ2)3/2/(σ2 + νθ2)

kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2)
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For further details we refer to Schoutens (2003) [64] and Madan and

Seneta (1990)[44].

The Normal Inverse Gaussian process

The Normal Inverse Gaussian(NIG) process is defined subordinating

the Brownian Motion with drift {Xt = βδ2t+δWt} by an Inverse Gaussian

process {ZIG
t } with parameters a = 1 and b = δ

√
α2 − β2, where α >

0,−α < β and δ > 0:

X
(NIG)
t = βδ2ZIG

t + δWZIGt
.

By equation 1.17 the characteristic function of X(NIG)
t is

φXNIG
t

(z;α, β, tδ) = exp(−tδ(
√
α2 − (β + iz)2 −

√
α2 − β2))

The Lévy triplet [γ, o, νNIG] is computed using Theorem 1.2.11 where,

γ = µ+
2δα

φ

∫ 1

0

sinh(βx)K1(αx)dx,

νNIG(dx) =
δα

φ

exp(βx)K1(α|x|)
|x|

dx,

where K1(x) is the modified Bessel function of the third kind with index

1.

Table 1.2: Variance Gamma (C,G,M)

VG(C,G,M)

mean C(G−M)/(MG)

variance C(G2 +M2)/(MG)2

skewness 2C−1/2(G3 −M3)/(G2 +M2)3/2

kurtosis 3(1 + 2C−1(G4 +M4)/(M2 +G2)2))
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Then, the probability density function of X(NIG)
t is known in explicit form

and is given by

fXNIG
t

(z;αβ, tδ) =
αtδ

π
exp(tδ

√
α2 − β2 + βx)×

K1(α
√

(tδ)2 + x2)√
(tδ)2 + x2

where K1(x) is the modified Bessel function of the third kind with index 1.
Thus, we have a leptokurtic density function with semi-heavy tails.
Parameters α and β describe the tail behavior and symmetry of the den-
sity function respectively, whereas δ is a scale parameter. The steepness
increase monotonically with an increasing α. This has implications for the
tail behavior, by the fact that large values of α imply lighter tails while
smaller values of α imply heavier tails. At time t = 1

mean δβ/
√
α2 − β2

variance α2δ(α2 − β2)−3/2

skewness 3βα−1δ−1/2(α2 − β2)−1/4

kurtosis 3(1 + α2+4β2

δα2
√
α2−β2

)

For further details see Schoutens (2003) [64] and Barndorff-Nielsen (1995)[3].

Table 1.3: The Normal Inverse Gaussian (α, β, δ)

NIG(α, β, δ)

mean δβ/
√
α2 − β2

variance α2δ(α2 − β2)−3/2

skewness 3βα−1δ−1/2(α2 − β2)−1/4

kurtosis 3(1 + α2+4β2

δα2
√
α2−β2

)

The Meixner Process

The density of the Meixner distribution Meixner(α, β, δ) is given by

fMXN(x;α, β, δ) =
(2cos(β/2))2δ

2απΓ(2d)
exp(

bx

a
)|Γ(δ +

ix

α
)|2,
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where α > 0,−π < β < π, δ > 0.

The Meixner(α, β, δ) distribution has semi-heavy tails (see Grigelionis 2000

[28]),

fMeixner(x : α, β, δ) ∼

{
C−|x|ρ−exp(−η−|x|) as x→ −∞
C+|x|ρ+exp(−η+|x|) as x→ +∞

where ρ− = ρ+ = 2δ − 1 η− = (π − β)/α, η+ = (π + β)/α and for

some C−, C+ ≥ 0. Moments of all order of this distribution exists and at

time t = 1

mean αδtan(β/2)

variance 1
2
α2δ(cos−2(β/2))

skewness sin(β/2)
√

2/δ

kurtosis 3 + (2− cos(β))/δ

Table 1.4: The Meixner (α, β, δ)

Meixner(α, β, δ)

mean αδtan(β/2)

variance 1
2
α2δ(cos−2(β/2))

skewness sin(β/2)
√

2/δ

kurtosis 3 + (2− cos(β))/δ

We can clearly see that the kurtosis of the Meixner distribution is al-

ways greater than the Normal kurtosis, which always equals 3.

The characteristic function of the Meixner(α, β, δ) distribution is given

by

φMXN(u;α, β, δ) = (
cos(β/2)

cosh((αu− iβ)/2)
)2δ
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The Meixner distribution is infinitely divisible:

φMXN(u;α, β, δ) = (φMeixner(u;α, β, δ))n.

We can thus associate with it a Lévy process, which we call the Meixner
process. More precisely, a Meixner process

X(MXN) = {X(MXN)
t , t ≥ 0}

is a stochastic process which starts at zero, i.e X(Meixner)
0 = 0, has indipen-

dent and stationary increments, and where the distribution of X(Meixner)
t

is given by the Meixner distribution Meixner(α, β, δt).
We can show (see Grigelionis 1999 [28]) that Meixner process has no Brow-
nian part and a pure jump part governed by the Lévy measure

ν(dx) = δ
exp(βx/α)

xsinh(πx/α)
dx

The first parameter in the Lévy triplet equals

γ = αδtan(β/2)− 2δ

∫ ∞
1

sinh(βx/α)

sinh(πx/α)
dx.

Because
∫ +1

−1
|x|ν(dx) =∞, the process is of infinite variation.

The Meixner process was introduced in Schoutens and Teugels(1998) [65].
Schoutens applied this stochastic process to describe the random behavior
of asset prices. For more details see Schoutens (2003) [64] and the refer-
ences therein.

α-Stable Lévy Process

The characteristic function of the α- Stable distribution, Sα(σ, β, µ) is:

φS(u : σ, β, µ) =

{
exp{−σα(|θ|)α(1− iβ(signθ)tanπα

2
) + iµθ} if λ 6= 1

exp{−σ(|θ|)(1 + iβ 2
π
(signθ)ln|θ|+ iµθ} if λ = 1

Here α is the characteristic exponent and lies in the range (0,2] (α = 2 rep-
resents the Gaussian case), σ ≥ 0 is the scale parameter, β determines the
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skewness of the distribution and should lie in range [-1,1] and µ ∈ R is the
location parameter. There exist several estimators of the parameters (see
Rachev and Mittnick (2000)[59]) and the fast Fourier transform allows us
to obtain the density distribution in satisfying computational time. Fur-
ther details on the properties of stable Paretian distributions can be found
in Samorodnitsky and Taqqu (1994) [61].

Estimation

In above section we described some Lévy processes. Now we propose
a computationally efficient method to approximate their parameters.

In particular, we use the method of moments for the estimation of
the parameters of Brownian Motion, NIG, Variance-Gamma, and Meixner
processes,3 while for the estimation of the stable Paretian parameters we
apply the consistent quantile McCulloch’s method (see McCulloch (1986)
[49]). McCulloch’s method requires the knowledge of 5%, 25%, 50%, 75%,
95% quantiles to obtain these estimates in an acceptable computational
time for any portfolio. Moreover, these methods are computationally fast
and they can be used in proper portfolio optimization models. If Θ is the
sample of parameters to estimate, the method of moments (MME) con-
cerned with choosing Θ̂ such that the population moments are equal to
the sample moments.
The MME is obtained by solving the system of equations resulting from
substituting the central moments of each process. However, solving this
system is not straightforward and, in some cases, one will need to rely on
a numerical solution of the system. In Tables 1.5 and 1.6 we report respec-
tively the central moments 1.5 and the parameter estimation 1.6 (of some
well known Lévy processes that we present here in the following.

3For the estimation of NIG and Variance-Gamma see Figueroa and López(2011) [24]
and for the estimation of Meixner see Mazzola and Muliere (2011) [48]
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1.3 Markov regime switching models

Recent decades have seen extensive interest in time-varying parameter

models of macroeconomic and financial time series. Due to events such

as financial crisis (Hamilton 2005)[33] or abrupt changes in government

policy Hamilton (1988) [29], many of these economic time series exhibit

dramatic breaks in their behavior. For example, the macro economy pe-

riodically switches from boom to recession and back again, and the dy-

namics differ between these two regimes. Financial markets periodically

switch from a low-volatility regime to a high-volatility regime and then

back again. Model instability is sometimes defined as a occasional jump

in a regression equation from one regime to another. It is attractive to

model such transitions as a Markov process.

Initially, this process was used for modeling non-stationarities due to abrupt

changes of regime in the underlying economy that generate the data. Stud-

ies treading this non-stationarity include different approaches. First, based

on the assumption that first differences of the observed series follow a

linear stationary process: that is, in Beveridge and Nelson (1981)[4], Nel-

son and Plosser (1982) [51], and Campbell and Mankiw (1987) [9] , op-

timal forecasts of variables are assumed to be a linear function of their

lagged values. Second, a modest alternative to these currently popular

approaches is suggested by Hamilton (1989) [30], exploring the conse-

quences of specifying that first differences of the observed series follow

a non-linear stationary process rather than a linear stationary process. His

model can be viewed as an extension of Goldfeld and Quandt’s (1973)[26]

model to the important case of structural changes in the parameters of an

autoregressive process.

Further, he introduces the Expectation Maximization (EM) algorithm to

obtain maximum likelihood estimates of the parameters for time series

processes subject to discrete regime shifts.

In the following Kim and Nelson(1999)[38] developed this new frame-

work, casting the Markov-switching model into a state space form which
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allows a much broader class of models to be estimated than before. More-
over, his algorithm proves to be much more efficient than the previous
one.
In this section, the details on the Markov regime switching models and
their estimation are based on the main literature of the subject, Hamilton
(1994)[32] and Kim and Nelson(1999)[38].
It proceeds with a brief description of Markov regime switching frame-
work. In the following, the evaluation of likelihood function and the EM
algorithm are described. It is given a characterization of the optimal fore-
casts of the future for the level of a series generated by this model and the
Maximum likelihood estimates (MLE) of parameters.

1.3.1 Description of the Markov Switching framework

The following description of the Markov regime switching framework
follows closely that of Hamilton(1994) [32].
Consider the following process given by:

yt = µSt + εt

εt ∼ N(0, σ2
St),

(1.19)

where St = 1, 2...k and εt follows a Normal distribution with zero mean
and variance given by σ2

St
.

This is the simplest case of a model with switching dynamic. For this
model, the intercept is switching states given an indicator variable St. This
means that if there are k states, there will be k values for µ and σ2.
If there is only one state of the world (St = 1), formula 1 takes the shape of
yt = µ1 + εt and can be treated as a simple linear regression model under
general conditions.
We assume that the model has two states (k=2). An alternative representa-
tion is:

yt = µ1 + εt for State 1

yt = µ2 + εt for State 2
(1.20)
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where

εt ∼ (0, σ2
1) for State 1

εt ∼ (0, σ2
2) for State 2

(1.21)

This representation clearly implies two different processes for the depen-

dent variable yt.

When the state of the world for time t is 1(2), then the expectation of the

dependent variable is µ1 (µ2) and the volatility of the innovations is σ2
1 ,

(σ2
2).

Note that we do not identify the states. In general, the St variable simply

index the states, where the interpretation is given by looking at parame-

ter’s values.

Further, we haven’t said exactly the switching from one state to the other

happens. For instance, how is that one should now which state of the

world is for each point in time.

Suppose that we had assumed a deterministic transition of states where

state 1 is true for time t. This greatly simplifies the model as each state is

observable, and, therefore, we can treat the model given before as a regres-

sion with dummy variables. This will take the shape of

yt = Dt(µ1 + ε1,t) + (1−Dt)(µ2 + ε2,t) (1.22)

whereDt is the dummy variable taking value of 1 if yt > 0 and 0 otherwise.

For a markov regime switching model, the transition of states is stochas-
tic (and not deterministic). This means that one is never sure whether

there will be a switch of state or not. But, the dynamics behind the switch-

ing process is known and driven by a transition matrix. This matrix will

control the probability of making a switch from one state to the other. It
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can be represented as:

P =

p11 . . . pk1
... . . . ...
p1k . . . pkk

 (1.23)

For the matrix P, the element in the row j, column i pij controls the proba-
bility of a switch from state i to state j.
Since we assumed above that the model has two state and the transition
probabilities between states are governed by the markov chain6,we get:

Pr[St = 1|St−1 = 1] = p11 = p

Pr[St = 2|St−1 = 1] = p12 = 1-p

Pr[St = 2|St−1 = 2] = p22 = q

Pr[St = 1|St−1 = 2] = p21 = 1-q,

(1.24)

and

P =

[
p11 p21

p12 p22

]
(1.25)

In general, the row j, column i element of the P is the transition probability
pij ; for example, consider that for some time t the state of the world is 2.
This means that the probability of a switch from state 2 to state 1 between
t and t+1 will be given by p21. Likewise, a probability of staying in state 2
is determined by p22.

6Let st be a random variable that can assume only an integer value {1, 2, ...,M}.
Suppose that the probability that st equals some particular value j depends on the past
only through the most recent value st−1:

P{st = j|st−1 = i, st−2 = k, ...} = P{st = j|st−1 = i} = pij :

Such a process is described as an M-Markov Chain with transition probabilities
{pij}i,j=1,2,...M .
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These transition probabilities are restricted so that p11 +p12 = p22 +p21 = 1.
This is one of the central points of the structure of a Markov regime switch-
ing model, that is, the switching of the states of the world is a stochastic
process itself.

The model given by (1.19), in conjunction with the assumptions regard-
ing the transition probabilities (1.25), will be referred as an Markov regime
switching (MRS)(1) model.

1.3.2 Evaluation of Likelihood Function and EM algorithm

Optimal Inference About the Regimes

A general MS model can be estimated with two different methods,
maximum likelihood or Bayesian inference (Gibbs-Sampling). In this sec-
tion the models are estimated using maximum likelihood as follows.
Let consider θ as a vector of population parameters that includes {µ1, µ2, σ1, σ2}
and various transition probabilities pij .
One important objective will be to estimate the value of θ based on ob-
servation of YT . But for the moment let suppose that the value of θ is
somehow known with certainty. Even if we know the value of θ, we will
not know which regime the process was in at every time of the sample.
Recalling the assumption that the state variable St, t = 1, 2, 3 . . . , T , is
known a priori, that is, if the dates of the switching or structural are
known a priori, the above is nothing more than a dummy variable model,
where the dummy variable, St, equals 0 in regime 1 and 1 in regime 2.
In this case, the log-likelihood function is given by:

lnL =
T∑
t=1

ln(f(yt|St, θ)), (1.26)

where

f(yt|St, θ) =
1√

2πσ2
St

exp(−{yt − µSt}
2

2σ2
St
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A major problem with the models arises when St, t = 1, 2, . . . , T , is not

observed. The best we can do is to form a probabilistic inference about the

value of St.

Let Pr[St = j|Yt, θ] be the inference about the value of St based on data

obtained through date t and based on knowledge parameters θ.

This inference takes the form of a conditional probability that we assign

to the possibility that the t-th observations was generated by the regime j.

We focus on the model (1.19) using two steps to determine the log likeli-

hood function:

STEP 1: First, consider the joint density of yt and the unobserved St

variable which is the product of the conditional and marginal densities:

f(yt, St|Yt−1; θ) = f(yt|St, Yt−1, θ)f(St|Yt−1, θ), (1.27)

where Yt−1 refers to information up to time t-1 and the conditional density

of yt is given by:

ηt =

[
f(yt|St = 1, Yt−1, θ)
f(yt|St = 2, Yt−1, θ)

]
=

 1√
2πσ2

1

exp(−{yt−µ1}2
2σ2

1
)

1√
2πσ2

2

exp(−{yt−µ2}2
2σ2

2
)

 (1.28)

STEP 2: Then, to obtain the marginal density of yt, integrate the St

variable out of the above joint distribution by summing over all possible

values of St:
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f(yt|Yt−1, θ) =
1∑

St=1

f(yt, St|Yt−1, θ)

=
1∑

St=1

f(yt|St, Yt−1, θ)f(St|Yt−1, θ)

=
1√

2πσ2
1

exp(−{yt − µ1}2

2σ2
1

)× Pr[St = 1|Yt−1, θ]

+
1√

2πσ2
2

exp(−{yt − µ2}2

2σ2
2

)× Pr[St = 2|Yt−1, θ].

(1.29)

The log likelihood function then is given by

lnL =
T∑
t=1

ln{
1∑

St=1

f(yt|St, Yt−1, θ)Pr[St|Yt−1, θ]}

The marginal density given above can be interpreted as a weighted av-
erage of the conditional densities given St = 1 and St = 2, respectively.
To derive the marginal density of yt ,and thus, the likelihood function, we
need to calculate appropriately the weighting factors, Pr[St = 1|Yt−1, θ]

and Pr[St = 2|Yt−1, θ].
Two different cases can be deal with different assumptions about the stochas-
tic behavior of the St variable. The first case is when the variable St

evolves independently of its own past value, and the second one when
it follows a Markov chain. We focus on this case.
Consider the simplest case of a two-state, first-order Markov switching
process for St with the transition probabilities given in 1.25. Under this as-
sumptions, we adopt the following filter for the calculation of the weight-
ing terms:

STEP 1: Given Pr[St−1 = i|Yt−1, θ], i = 1, 2, at the beginning of time t
or the t-th iteration, the weighting terms Pr[St = j|Yt−1, θ], j = 1, 2, are
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calculated as

Pr[St = j|Yt−1, θ] =
2∑
i=1

Pr[St = j, St−1 = i|Yt−1, θ]

=
2∑
i=1

Pr[St = j|St−1 = i]Pr[St−1 = i|Yt−1, θ]

=
2∑
i=1

pij × Pr[St−1 = i|Yt−1, θ],

(1.30)

where Pr[St = j|St−1 = i] = pij i = 1, 2, j = 1, 2, are the transition proba-
bilities.

STEP 2: Once yt is observed at the end of time t, or at the end of the
t-th iteration, we can update the probability term in the following way:

Pr[St = j|Yt, θ] = Pr[St = j|Yt−1, yt, θ]

=
f(St = j, yt|Yt−1, θ)

f(yt|Yt−1, θ)

=
f(yt|St = j, Yt−1, θ)Pr[St = j|Yt−1, θ]∑2
j=1 f(yt|St = j, Yt−1, θ)Pr[St = j|Yt−1, θ]

(1.31)

where Yt = {Yt−1, yt}

The above to steps may be iterated to get Pr[St = j|Yt−1], t = 1, 2, ..., T.

Following the notation used in Hamilton(1994) [32], we can simplify the
optimal inference for each date t in the sample founded precedent equa-
tions in:

ξ̂t|t =
(ξ̂t|t−1Θηt)

1′(ξ̂t|t−1Θηt)
(1.32)

where ξ̂t|t = Pr[St = j|Yt, θ] and ηt = represents the conditional density in
(1.28), 1

′ is a vector of 1s, and the symbol Θ denotes element-by-element
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multiplication.

To start the above filter at time t = 1, however, we need Pr[S0|Y0] =

ξ̂0|0.
Several options are available for choosing the starting value.
One approach is by computing the following steady-state or unconditional
probabilities of St that the process will fall into each regime at an arbitrary
date:

πj ≡ Pr[St = j|Y0] for j = 1, 2. (1.33)

These are found by solving the following set of equations:

πj = p1jπ1 + p2jπ2 quadfor j = 1, 2.

π1 + π2 = 1
(1.34)

The solution are:

π1 = Pr[S0 = 1| Y0] =
1− p22

2− p11 − p22

π2 = Pr[S0 = 2|Y0] =
1− p11

2− p11 − p22

(1.35)

Another option is to set Pr[S0|Y0] = ρ , where ρ is a fixed (N × 1) vector of
nonnegative constants summing to unity, such as ρ = N−11.

Alternatively, ρ could be estimated by maximum likelihood subject to the
constraint that 1

′
ρ = 1 and ρij ≥ 0 for j=1,2,...N.

Given a starting value Pr[S0|Y0] = ξ0|0 and assumed value for popula-
tion parameter θ, one can iterate on (1.31) , for t = 1, 2, ...T to calculate the
values of ψt|t for each date t in the sample.
The log likelihood function lnL(θ) of the observed data YT evaluated at
the value of θ that was used to perform the iterations can also be calcu-
lated as a by-product of this algorithm from (1.29)
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lnL(θ) =
T∑
t=1

lnf(yt|Yt−1, θ),

where f(yt|Yt−1, θ) is given by (1.29).

In general, the inference problem in a Markov regime switching model

consists

• estimating the parameters of the model by maximizing the likeli-

hood function,

• making inferences about St, t = 1, 2, ..., T .

In the approach we followed, inferences on St are usually made condi-

tional on the parameter estimates of the model given known.

Depending on the amount of information used in making inferences on St
we have filtered probabilities and smoothed probabilities. Filtered proba-

bilities refer to inferences about St conditional on information up to t: Yt.

These are obtained by the filter provided in this section. Smoothed prob-

abilities refer to inferences about St conditional on all the information in

the sample: YT .These are obtained by the filter provided in the next step.

Smoothed Inferences for the Regime

Given parameter estimates of the model, we can make inferences on

St using all information on the sample. This gives us Pr[St = j|YT , θ] for

(t = 1, 2, ..., T ), which is the smoothed probability as opposed to the fil-

tered probability.

Here, it is assumed that we have a model with 2-Markov-Switching and

calculate the smoothed inferences using an algorithm developed by Kim

and Nelson(1999) [38]. Consider the following derivation of the joint prob-

ability that St = j and St+1 = k based on the full information:
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Pr[St = j, St+1 = k|YT ] = Pr[St+1 = k|YT ]× Pr[St = j|St+1 = k, YT ]

= Pr[St+1 = k|YT ]× Pr[St = j|St+1 = k, Yt]

=
Pr[St+1 = k|YT ]× Pr[St = j|St+1 = k, Yt]

Pr[St+1 = k|Yt]

=
Pr[St+1 = k|YT ]× Pr[St = j|Yt]× Pr[St+1 = k|St = j]

Pr[St+1 = k|Yt]
(1.36)

and

Pr[St = j|YT ] =
2∑

k=1

Pr[St = j, St+1 = k|YT ] (1.37)

Again, in vector form, as in Hamilton (1994) [32], this algorithm can be

written as

ψ̂t|T = ψ̂t|tΘ{P
′ · [ψ̂t+1|T (÷)ψ̂t+1|t]}, (1.38)

The smoothed probabilities Pr[St = j|YT ] are found by iterating on

(1.36) backward for t = T − 1, T − 2, ...1. This iteration is started with

Pr = [ST |YT , θ], which is obtained from (1.20) for t=T.

Once the parameter estimates are obtained, we usually compute all the

filtering probabilities Pr[St|Yt] and the smoothed probabilities Pr[St|YT ].

These probabilities can help us to decide which regime yt belongs to at

each point of time.

We will generally infer that yt is in state j if Pr[St = j|Yt] = maxkPr[St =

k|Yt] or Pr[St = j|YT ] = maxkPr[St = k|YT ].

In most applications filtering probabilities and smoothed probabilities would

lead to very similar conclusions.

Given that we know in each state we are currently St = j , it could be in-

teresting to define how long, on average, will the regime last. This is what

we are going to discuss in the next section.
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Expected Duration of a Regime

Some important information on the expected duration of a state or

regime, are given us by the matrix of the transition probabilities.

First of all, we put the transition probabilities for a first-order, k-state

Markov-Switching process St in equations (1.23), in the following matrix

notation.

P ∗ =


p11 p21 . . . pk1

p12 p22 . . . pk2
...

... . . . ...
p1k p2k . . . pkk

 (1.39)

where i′kP
∗ = i

′

k, with

ik =
[
1 1 . . . 1

]′
. If we let πt be a vector of k × 1 steady-state probabili-

ties, we have

πt =


Pr[St = 1]
Pr[St = 2]
· · ·

Pr[St = k]

 =


π1t

π2t
...
πkt

 (1.40)

i
′
Mπt = 1.

Then according to the definition of steady state probabilities, we have

πt+1 = P ∗πt and πt+1 = πt, and thus

πt = P ∗πt ⇒ (Ik − P ∗)πt = 0k

where 0k is an k × 1 matrix of zeros. Combining the above equations we

have: [
Ik − P ∗
i
′

k

]
πt =

[
0k
1

]
, or Aπt =

[
0k
1

]
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Multiply both sides of the above equation by (A
′
A)−1A

′ . Then,

πt = (A
′
A)−1A

′
[
0k
1

]
That is the matrix of steady-state probabilities, πt, is the last column of
the matrix (A

′
A)−1A

′ . The diagonal elements of the matrix of the transi-
tion probabilities contain important information on the expected duration.
Note that if we define D as the duration of the state j, we have:

D = 1, ifSt = j, and St+1 6= j; Pr[D = 1] = (1− pjj)
D = 2, ifSt = St+1 = j, and St+2 6= j; Pr[D = 2] = pjj(1− pjj)
D = 3, ifSt = St+1 = St+2 = j, and St+3 6= j; Pr[D = 3] = p2

jj(1− pjj)
D = 4, ifSt = St+1 = St+2 = St+3 = j, and St+4 6= j; Pr[D = 3] =

p3
jj(1− pjj)

...
Then, the expected duration of regime j can be derived as

E(D) =
∞∑
j=1

jPr[D = j] = 1× Pr[St+1 6= j|St = j]

+ 2× Pr[St+1 = j, St+2 6= j|St = j]

+ 3× Pr[St+1 = j, St+2 = j, St+3 6= j|St = j]

+ 4× Pr[St+1 = j, St+2 = j, St+3 = j, St+4 6= j|St = j]

+ . . .

= 1× (1− pjj) + 2× pjj(1− pjj) + 3× p2
jj(1− pjj) + ...

=
1

1− pjj
(1.41)

Forecasts for the regime

In order to complete our analysis, one could also imagine forming fore-
casts of how likely the process is to be in regime j in period t+1 given ob-
servations obtained through date t. Collect these forecasts in a vector ξ̂t+1|t,
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which is the vector whose j-th element represents Pr = [St+1 = j|Yt, θ].
We will work on vector forms and let to the reader to see Hamilton (1989)[30]
for more details.
Before that, we need to recall some notation on Markov chain. A useful
representation of a Markov chain is given in the form:

ξt+1 = Pξt + υt+1

This expression implies that

ξt+m = υt+m+ Pυt+m−1 + P 2υt+m−2 + · · ·+ Pm−1υt+1 + Pmξt (1.42)

where Pm indicates the transition matrix multiplied by itself m times. It
follows from (1.42) that m-period-ahead forecasts for a Markov chain can
be calculated from

E(ξt+m|ξt, ξt−1, . . . ) = Pmξt (1.43)

Since, the jth element of ξt+m will be unity if st+m = j and zero otherwise,
the jth element of the (Nx1) vector E(ξt+m|ξt, ξt−1, . . . ) indicates the proba-
bility that st+m takes on the value j, conditional on the state of the system
at date t.
If the process is in state i at date t, then (1.43) asserts that


Pr[st+m = 1|st = i]
Pr[st+m = 2|st = i]

...
Pr[st+m = k|st = i]

 = Pmei (1.44)

where ei denotes the ith column of Ik.
The above expression indicates that the m-period-ahead transition prob-
abilities for a Markov chain can be calculated by multiplying the matrix
P by itself m times. Specifically, the probability that an observation from
regime i will be followed m periods later by an observation from regime j,
P [st+m = j|st = i], is given by the row j, column i of the matrix Pm.
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Now, in order to find the optimal m-period-ahead forecast of ξt+m, let take
the expectations of both sides of (1.42) conditional on information avail-
able at date t, Yt:

E(ξt+1|Yt) = PmE(ξt|Yt) (1.45)

or

ξ̂t+m|t = Pmξ̂t|t.

It works in the same way as optimal inference for the regime. Given
a starting value ξ̂0|0, one can iterate the above expressions to calculate the
optimal forecasts for each date t in the sample, where the ξ̂t|t is given in
(1.32).

Forecasts for the Observed Variables

Starting from the conditional density f(yt|st = j, Yt, θ it is straightfor-
ward to forecast yt+1 conditional on knowing Yt and St+1. For example, for
specification,

yt+1 = µSt+1 + εt+1 (1.46)

such a forecast is given by:

E(yt+1|St+1 = j, Yt, θ) = µj + yt. (1.47)

We have consider the case of 2 state Markov switching, so there are 2 dif-
ferent conditional forecasts associated with these possible values for St+1.
It is very interesting the relation between conditional forecasts and the un-
conditional forecasts based on actual observable variables. Note:
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E(yt+1|Yt, θ) =

∫
yt+1 · f(yt+1|Yt, θ) dyt+1

=

∫
yt+1 · {

2∑
j=1

f(yt+1, St+1 = j|Yt, θ)} dyt+1

=

∫
yt+1 · {

2∑
j=1

[f(yt+1|St+1 = j, Yt, θ)Pr[St+1 = j|Yt, θ]]} dyt+1

=
2∑
j=1

Pr[St+1 = j|Yt, θ]
∫
yt+1 · f(yt+1|St+1 = j, Yt, θ) dyt+1

=
2∑
j=1

Pr[St+1 = j|Yt, θ]E(yt+1|St+1 = j, Yt, θ)

(1.48)

Thus, the forecast appropriate for the jth regime, is simply multiplied by
the probability that the process will be in the jth regime, and the 2 differ-
ent products are added together.
If, the j=1,2 forecasts are collected in a vector h′t then

E(yt+1|Yt, θ) = h
′

tξ̂t+1|t. (1.49)

Note that although the Markov chain itself admits the linear representa-
tion, the optimal forecasts of yt+1 is a nonlinear function of observables,
since the ξ̂t|t depends nonlineary on Yt.
Although one may use a linear model to form forecasts within a given
regime, if an observation seems unlikely to have been generated by the
same regime as preceding observations.
The Markov chain is clearly well suited for forming multi period forecasts
as well.

MLE of parameters

In the iteration for the optimal inference and forecasts, the parameter
θ was taken to be fixed, a known vector. Once the iteration has been com-
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pleted for t = 1, 2, ...T for a given fixed θ, the value of the loglikehood
implied by that value of θ is then known. The value of θ that maximizes
the log likelihood can be found numerically using the methods described
in Hamilton(1994) [32]. If the transition probabilities are restricted only by
the conditions that pij ≥ 0 and (pi1 + pi2 + ...+ piN) = 1 for all i and j, and
if the initial probabilities ξ̂0|0 is taken to be a fixed value ρ unrelated to the
other parameters, then it is shown in Hamilton (1990) that the maximum
likelihood estimates for the transition probabilities satisfy

p̂ij =

∑T
t=2 Pr[St = j, St−1 = i|YT ; θ̂]∑T

t=2 Pr[St−1 = i|YT ; θ̂]
(1.50)

where θ̂ denotes the full vector of maximum likelihood estimates. Thus,
the estimated transition probability p̂ij is essentially the number of times
state i seems to have been followed by state j divided by the number of
times the process was in state i. These counts are estimated on the basis of
the smoothed probabilities.
If the vector of initial probabilities ρ is regarded as a separate vector of
parameters constrained only by 1

′
ρ and ρ ≥ 0, the maximum likelihood

estimates of ρ turns out to be the smoothed inference about the initial state:

ρ̂ = ξ̂1|T (1.51)

The maximum likelihood estimate for the vector denoted λ = {µ1, µ2, σ
2
1, σ

2
2}

that governs the conditional density of yt is characterized by

T∑
t=1

(
∂logf(yt|St = j, Yt−1, λ)

∂λ′
)ξ̂t|T = 0. (1.52)

The second step consists in maximizing the log likelihood with respect to
θ.
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If the transition probabilities are restricted only by Pij ≥ 0 and (pi1 +pi2) =

1 for all i, and if the initial probability ξ̂1|0 is assumed to be fixed value ρ,

then the maximum likelihood estimates of the transition probabilities are

p̂ij =

∑T
t=2 P (St = j, St−1 = i|YT ; θ̂)∑T

t=2 P (St−1 = i|YT ; θ̂)

where θ̂ is the maximum likelihood estimate of θ. p̂ij is the number of

times that state i seemed to be followed by state j divided by the number

of times the process was in state i.

The maximum likelihood estimates of the other parameters governing the

conditional density above are given by:

T∑
t=1

(
∂logηt
∂α′

)′ ˆξt|T = 0 (1.53)

where α is equal to θ without the transition probabilities. Let consider the

initial model (1.19). Condition (1.53) yields for

µ̂j =

∑T
t=1 ytPr(St = j|YT , θ∑T
t=1 Pr(St = j|YT , θ

and for

σ̂2 = T−1

T∑
t=1

N∑
j=1

(yt − µ̂j)2Pr(St = j|YT ; θ)

Recalling the Markov switching regression model of the (1.20)

yt = µSt + εt (1.54)

where εt is i.i.d N(0, σ2
St

). The coefficient vector for this regression is

µ1, σ2
1 when the process is in regime 1, µ2 and σ2

2 when the process is in
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regime 2. For this example, the vector ηt would be

ηt =

[
1√
2πσ

exp{−(yt−µ1)2

2σ2
1
}

1√
2πσ

exp{−(yt−µ2)2

2σ2
2
}

]
(1.55)

and for λ = (µ1, µ2, σ
2
1, σ

2
2), condition on (1.53) becomes

T∑
t=1

(yt − µj) · Pr[st = j|YT ; θ̂] = 0 for j = 1, 2, ...N (1.56)

σ̂2 = T−1

T∑
t=1

N∑
j=1

(yt − µj)2 · Pr[st = j|YT ; θ̂]. (1.57)

The estimate of σ2 in (1.56) is just (1/T) times the combined sum of
squared residuals from these N different regressions.
Again, this suggests an appealing algorithm for finding maximum likeli-
hood estimates.
For the case when ρ is fixed a priori, given initial guess for the parameter
vector θ(0) one can evaluate (1.53) and (1.56) to generate a new estimate
θ(1). This estimate of θ(1) can be used to reevaluate and recalculate the
above expressions, producing a new estimate θ(2).
One continues iterating this fashion until the change between θ(m+1)andθ(m)

is smaller than some specified convergence criterion. This again turns out
to be an application of the EM algorithm. Alternatively, if ρ is to be esti-
mated by maximum likelihood, equation ρ̂ = ξ̂1|T would be added to the
equations that are reevaluated with each iteration. See Hamilton (1990)
[31] for details.



Chapter 2
First passage times distributions

with Lévy processes and portfolio

application

Most of the parametric processes used in portfolio theory are Markov

processes such as Lévy processes. Several empirical works (see Lamantia

et al (2006) [41]) have shown that we cannot reject the Markovian hypoth-

esis of asset returns.

On the one hand a Markov chain should be a good model do describe the

evolution of the distributional support of a given portfolio. On the other

hand, since its application to predict future wealth presents a high compu-

tational complexity, the Markovianity has not been opportunely used in

portfolio theory (see Leccadito et al (2007) [42]).

In this chapter we proposed some algorithms that reduce the complexity

of the portfolio selection problems based on this hypothesis. In particu-

lar, we distinguish two different methods to build the transition matrixes

(see Angelelli and Ortobelli (2009)[1]. With parametric portfolio selection

models the transition matrix depends on the parameters of the underlying

Markov process and the parameters are functions of the portfolio weights.

Instead, with non parametric Markov models the transition matrix de-

pends directly on the portfolio weights. Hence, the transition probabilities

66
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are strictly linked to historical observations.

Since we are interested to value the impact of Markovianity in the port-

folio strategies, we apply the method discussed by Duan and Simonato

(2001) [20] to approximate the Markovian evolution of the portfolio wealth

with a proper Markov chain. Then, using the same logic of Iaquinta and

Ortobelli’s [35] algorithm we are able to propose a new algorithm for com-

puting the distribution of first passage times of the portfolio wealth.

This chapter is organized as follows: In section 2.1 we show how to

model parametric and non parametric Markov chains. The Markovian

evolution of the portfolio wealth with a proper Markov chain is given in

section 2.2. Section 2.3 formalizes a methodology to compute the distribu-

tion of bounded stopping times. In Section 2.4 we compare the ex-post

wealth obtained optimizing some parametric timing portfolio selection

strategies.

2.1 Modeling Markov Processes

In this section we analyze the time evolution of the process when the

portfolios dynamics is described by a homogeneous Markov chain. We

distinguish between non parametric Markov processes and parametric

Markov processes. In both cases we propose a distributional analysis of

the time evolution of the process. We first treat with the non parametric

case and then the parametric case.

Since the empirical analysis will focus on the latter kind of processes we

will treat the class of Levy processes among all possible parametric Markov

processes in the next section.
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Consider n risky asset with gross returns 1zt+1 = [z1,t+1, . . . , zn,t+1]
′. If

we denote by x = [x1, . . . , xn]′ the vector of positions taken in the n risky

assets, then the portfolio return during the period [t, t+ 1] is given by:

z(x),t+1 = x′zt+1 =
n∑
i=1

xizi,t+1.

2.1.1 Nonparametric Markov processes

In this subsection, we formalize the Markovian nonparametric approach.

As in Angelelli and Ortobelli(2009) [1], we describe the behavior of port-

folios through a homogeneous Markov chain.

Let us assume that the portfolio of gross returns has support on the

interval (minkz(x),k; maxkz(x),k), where z(x),k is the k-th past observation

of the portfolio z(x). The states are denoted by N gross return z
(i)
(x) where

i ∈ {1, 2, . . . N}. Without loss of generality we assume that z(i)
(x) > z

(i+1)
(x) for

i = 1, . . . N − 1. Assuming that the initial wealth W0 is given and equal to

1, the wealth Wt at time t = 1, . . . , k is a random variable with a number

of possible values increasing exponentially with time t.

Let us assume that the initial wealth W0 at time 0 is equal to 1, while

for each possible wealth Wt at time t we have N possible different val-

ues Wt+1 = Wt · (z(i)
(x)(i = 1, . . . , N) at time t + 1; by indexing as it the

realized state at time t, the possible values Wt at time t are described by

W0 ·z(i1)
(x) ·z

(i2)
(x) · · · ·z

(it)
(x) . The sequence 〈i0, i1, i2, . . . it〉 is the path followed by

the process up to time t where i0 represents the initial state of the process.

1We define the gross return between time t and t+1 of asset i as

zi,t+1 =
Si,t+1 + di,[t,t+1]

Si,t
,

where Si,t is the price of the i-th asset at time t and di,[t,t+1] is the total amount of cash
dividends paid by the asset between t and t+1. We distinguish the definition of gross
return from the definition of return, i.e., zi,t − 1 or alternatively, definition of log-retuns
ri,t=logzi,t .
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In order to get the portfolio distribution in a reasonable time, as in the al-
gorithm proposed by Iaquinta and Ortobelli (2006)[35], we first divide the
portfolio support (minkz(x),k; maxkz(x),k) in N intervals (a(x),i; a(x),i−1 where
a(x),i is decreasing with index i and it is given by:

a(x),i =

(
minkz(x),k

maxkz(x),k

)i/N
·maxkz(x),k, i = 0, 1, . . . , N.

Then, we compute the return associated to each state as the geometric
average of the extremes of the interval (a(x),i; a(x),i−1), that is

z
(i)
(x) :=

√
a(x),ia(x),i−1 = maxkz(x),k

(
maxz(x),k

minz(x),k

)( 1−2i
2N )

, i = 1, 2, . . . , N.

As a consequence, z(i)
(x) = z

(1)
(x)u

1−i where u =
(

maxz(x),k

minz(x),k

)1/N

> 1 and the

wealth obtained along a path 〈i0, i1, . . . , it〉 is given byW0·(z(1)
(x)u)t·u(i1+i2+···+it)

which can only assume 1 + t(N − 1) distinct values instead of N t. In par-
ticular note that (i1 + i2 + · · ·+ it) ranges from t to tN and the final wealth
Wt does not depend on the specific path followed by the process, but on
the sum of the indices of the states traversed in the first t steps only. We
denote such property of a Markov chain as recombining effect. Thanks to
the recombining effect of the Markov chain on the wealth W, the possi-
ble values after k steps of Wk(z(x) are 1 + k(N − 1). They are given by
w

(i,k)
(x) = (z

(1)
(x))

ku(1−i) (i = 1, . . . , (N − 1)k + 1), where the i-th node at time
k of the Markovian tree corresponds to wealth w(i,k)

(x) . Moreover, the whole
set of possible values of the random variables Wt(t = 1, . . . , k) can be
stored in a matrix with k columns and 1 + k(N − 1) rows resulting in
k + k2(N − 1) = O(Nk2) memory space requirement. Secondly, we build
the transition matrix Pt = [pi,j:t]1≤i,j≤N valued at time t where the prob-
ability pi,j:tpoints out the probability (valued at time t) of the transition
process from the state z(i)

(x) at time t to state z(j)
(x) at time t+ 1. Since we only

consider homogeneous Markov chains, the transition matrix does not de-
pend on time and it can be simply denoted by P. The entries pi,j of matrix P
are estimated using the maximum likelihood estimates p̂i,j =

πij(K)

πi(K)
where

πij(K) is the number of observations (out of K observations) that transit
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from the i-th state to the j-th state and πi(K) is the number of observations

(out of K observations) in the i-th state (see among others D’Amico and

Petroni (2012a,b) [15],[16]. Since we are interested to the inter temporal

behavior of the return portfolios we need the m-step transition probabil-

ity matrix Pm = [p
(m)
i,j ] whose element p(m)

i,j represent the probability to

transit from the i-th state to the j-th state in m-steps. Clearly the estimates

of the probabilities p(m)
i,j are given by the elements of P̂m = [p̂

(m)
i,j ]. We refer

to D’Amico (2003) [13] for the statistical properties of these estimators.

2.1.2 Markov Transition matrix associated to a given Lévy
process

Many Lévy processes have been used to approximate the log return

distributions in financial literature. The most used is the Brownian motion.

Since Lévy process are particular Markov processes, we propose a distri-

butional approximation of a parametric Lévy process by using a proper

Markov chain. In particular, we use the method discussed by Duan and

Simonato (2001) [20] and Staino and Ortobelli (2011) [67] for parametric

Lévy processes, to build the transition matrix.

Consider n risky assets with log-returns 2rk+1 = [r1,k+1, ..., rn,k+1]′. Then,

the portfolio of log-returns during the period [k, k + 1] is given by:

r(x),k+1 = x′rk+1 =
n∑
i=1

xiri,k+1, (2.1)

where x = [x1, ..., xn]′ is the vector of the positions taken in the n risky

assets at time t. Moreover, we assume that the initial wealth W0(x) =∑n
i=1 xi = 1, and thus, the weights are subject to the constraint

∑n
i=1 xi = 1.

2In the paper we adopt the standard definition of log-return between time t and time
t+1 of asset i, as ri,t+1 = ln

(
Si,t+1+di,[t,t+1]

Si,t

)
where Si,t is the price of the i-th asset at time

t and di,[t,t+1] is the total amount of cash dividends paid by the asset between time t and
time t+1.
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Varying k we generally assume to have m i.i.d. observations of the log-
returns (i.e., k=1,...,m ). Under this assumption, the log wealth S(x),t =∑t

k=1 r(x),k obtained by a given portfolio x follows a process with station-
ary independent increments. Let us recall the Staino and Ortobelli’s al-
gorithm [67] to describe the Lévy behaviour of the log wealth process
{St}0≤t≤T . The task of this algorithm is to approximate the log-wealth pro-
cess {S(x),t}0≤t≤L, at discrete times {0,∆t, 2∆t, . . . , s∆t = L} by a Markov
chain {Yk∆t, k = 0, 1, 2, . . . , s} with state space {p1, p2, . . . , pN} and tran-
sition probability matrix P = [qi,j]1≤i,j≤N , where N is an odd integer. In
order to determine the states pi, i = 1, .., N , of the Markov chain, we define
the interval [S(x),0 − I(N), S(x),0 + I(N)] such that

Pr(S(x),L ∈ [S(x),0 − I(N), S(x),0 + I(N)]) ≈ 1.

The quantity I(N) must depend on the number of states N and, precisely,
it must satisfy the following conditions:

I(N)→∞ and I(N)/N → 0 as N →∞.

Under these conditions, we can guarantee that the Markov chain {Yk∆t, k =

0, 1, 2, . . . , s} converges weakly at times {0,∆t, 2∆t, . . . , s∆t = L} to the
log-wealth process {S(x),t}0≤t≤L as N → ∞. Given I(N), the N states of
the Markov chain are defined as:

pi = S(x),0 −
2i−N − 1

N − 1
I(N), i = 1, . . . , N.

Note that the states are decreasing in value such that p1 = S(x),0 + I(N),
p(N+1)/2 = S(x),0, and pN = S(x),0− I(N). In our numerical applications the
quantity I(N) is given by:

I(N) = z + ln(ln(N)),

where z = max(|z0.01|, |z0.99|), and z0.01, z0.99 are respectively the 1% and
99% quantiles of the S(x),∆t distribution. Our construction of the Markov
chain goes on defining the cells (cj+1, cj], j = 1, . . . , N , where c1 = +∞,
cj = (pj + pj−1)/2, j = 2, . . . , N , and cN+1 = −∞. From a computational
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point of view, we have to establish a fixed value for∞, and in our applica-
tions we set c1 = p1 + I(N) and cm+1 = pN − I(N). Given the cells (cj+1, cj ],
j = 1, . . . ,m, we define the transition probability qij between the state i
and state j as:

qij = Pr
(
pi + S(x),∆t ∈ (cj+1, cj]

)
= (2.2)

=

∫ cj−pi

cj+1−pi
fS(x),∆t

(u)du,

where fS(x),∆t
(·) is the density function of S(x),∆t. Moreover, the initial dis-

tribution of the Markov chain that gives the probability to be in each state
is simply given by:

qj = Pr
(
S(x),∆t ∈ (cj+1, cj]

)
=

∫ cj

cj+1

fS(x),∆t
(u)du. (2.3)

Thus, our construction of the Markov chain characterized by the state
space {p1, p2, . . . , pN}, the transition matrix P = [qij] and the initial proba-
bility q = [q1, ..., qN ] is finally complete. Observe that Staino and Ortobelli
(2011) [67] suggest a computationally efficient method to approximate in-
tegrals (2.3) and (2.2) for those Lévy processes we know either the density
fS(x),∆t

or at least the characteristic function that allows us to determine
the density with the fast Fourier transform.

2.2 On the approximation of the wealth distribu-
tion

In this section we examine the algorithm to approximate the final wealth
distribution.
Assume the increment time L = 1 (i.e., s = 1, L = ∆t = 1) in the tran-
sition matrix of log wealth process. Observe that two adjacent states of
the gross returns differ by the multiplicative factor u = exp(pi − pi+1) =

exp( 2
N−1

I(N)). Then, we use the algorithm proposed by Iaquinta and Or-
tobelli (2006)[35] to compute the wealth distribution at a given future time
kL. This algorithm (differently from the Mijatović and Pistorius’ (2013)
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[50] one) allow us to approximate the wealth distribution with a Marko-
vian tree whose number of nodes increase linearly with the time. Thus,
we do not generally need to approximate the first step distribution wealth
with a big number of states, so reducing the computational time for build-
ing the Markov transition matrix. In this context, the wealth process after
k periods Wk(x) = exp(S(x),k) assumes (N − 1)k + 1 values (nodes) given
by the formula:

w
(i,k)
(x) = (z1

(x))
k.u(1−i) for i = 1, . . . , (N − 1)k + 1,

where z(j)
(x) = exp(pj) are the possible states of the wealth. Thus, w(i,k)

(x) is the
wealth at time k in the i-th node of the Markovian tree. Note that whereas
the distribution function depends on the initial state, the wealth do not
depend on the initial state of the process, but only on the portfolio compo-
sition x. The procedure to compute the distribution function of the future
wealth Wk(x) at any time k = 1, 2, . . . , T is strictly connected to the recom-
bining feature of the Markovian tree. We can compute the unconditional
distribution in a computationally efficient way considering directly a se-
quence of matrixes {Q(k)}k=0,1,...,T where Q(k) = [qki,j ]1≤i≤(N−1)k+1,1≤j≤N and
qki,j is the unconditional probability at time k to obtain the wealth w

(i,k)
(x)

and to be in the state z
(j)
(x) . We call the matrix Q(k) unconditional evolu-

tion matrix of the Markov chain or simply evolution matrix. The evolu-
tion matrixes Q(k)(for k = 0, 1, . . . , T ) are defined recursively as follow:
Q(0) = [q1, . . . , qN ], p(0) = 1 = Q(0)1N , where 1N is the N-dimensional
column vector with 1 in each component and

Q(k) = diagM(Q(k−1)P )

p(k) = Q(k)1N ,

where p(k) is the vector of the unconditional probability at time k for all
nodes. The diagM operator can be defined for anym,n ∈ N as diagM:Rmn →
R(m+n−1)n, where to anym×nmatrixA = [aij ] associates the (m+n−1)×n
matrix obtained by simply shifting down the j-th column by (j − 1) rows.
In particular, we follow two steps:
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1. create a new null matrix D = [dij] of dimension (m+ n− 1)× n;

2. copy aij in di+(j−1),j for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Each zero inserted in the diagonalization process represents the null prob-

ability of the respective nodes to be reached. Since diagM:Rmn → R(m+n−1)n

is a linear operator, we can always find a representative matrix V that for

any vector belongingRmn (i.e them×nmatrixA = [aij ] written as a vector)

associate a vector in R(m+n−1)n corresponding to the new (m + n − 1) × n
matrix D = [dij].

As proved by Iaquinta and Ortobelli (2006) [35], the algorithm to compute

the probabilities of the Markovian tree after k steps has a computational

complexity of O(N3k2). This algorithm is the starting point to determine

the distribution of passage time using the tree of the wealth. The following

example practically shows three steps of the wealth evolution algorithm.

Example 1: Assume the wealth process evolves following a simple tri-

nomial tree, where the initial wealth is equal to 1 (i.e., W0 = 1) and the

Markovian chain is homogenoeous with three wealth states: {1.2; 1; 0.9}.
Let P be the 3× 3 transition matrix given by:

P =

 p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

p3,1 p3,2 p3,3

 =

 0.1% 39.9% 60%
25% 50% 25%
40% 59% 1%


Suppose the matrixQ(0) is given byQ(0) = [q1; q2; q3] = [1%; 95%; 4%]. Thus,

Q(1) =diagM(Q(0) ·P ) =diagM(q1p11+q2p21+q3p31; q1p12+q2p22+q3p32; q1p13+

q2p23 + q3p33) =diagM(0.2535, 0.5026, 0.2439) and applying the diagM oper-

ator we get the (3× 3) matrix: Q(1) =

 0.2535 0 0
0 0.5026 0
0 0 0.2439

 .
The probability at each wealth node {1.2, 1, 0.9} after one period is given

by the vector p(1) = Q(1) · 13 = [0.2535; 0.5026; 0.2439].
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The (5× 3) matrix Q(2) is given by

Q(2) = diagM(Q(1) · P ) = diagM

 0.00025 0.10115 0.15210
0.12565 0.25130 0.12565
0.09765 0.14390 0.00244



=


0.00025 0 0
0.12565 0.10115 0
0.09765 0.25130 0.15210

0 0.14390 0.12565
0 0 0.00244


Therefore, after two periods, the probabilities on the five wealth nodes
{1.44, 1.2, 1.08, 0.9, 0.81} of the Markovian tree are given by the vector:

p(2) = Q(2) · 13 =


0.00025
0.22680
0.50096
0.26955
0.00244

 .
After three periods, the probabilities on the seven wealth nodes are given
by:

p(3) = Q(3) · 13 =



2.54E − 07
0.02551
0.22462
0.44123
0.26994
0.03867

2.44E − 05


.

Figure 2.1 reports the trinomial tree of Example 1 where the wealth value
and the associated probability (w(i,k), p

(k)
i ) are given in each node.
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Figure 2.1: Final probabilities of the nodes at the 2nd step

2.3 On the approximation of the first passage times

We often have to deal with events happening at random times (i.e a
positive random variable T ≥ 0 which represents the time at which some
event is going to take place). One can determine whether the event hap-
pened (τ ≤ t)) or not (τ > t), given the information in the information
flow (=t). If the answer is yes, the random time τ is called a nonantici-
pating random time or stopping time. In other words, T is a nonanticipating
random time ((=t)-stopping time) if

∀t ≥ 0, {T ≤ t} ∈ =t

If T1 and T2 are stopping times then T1∧T2 = inf{T1, T2} is also a stopping time
(for further details, we refer to Karatzas and Shreve (1997) [36] and Cont
and Tankov (2004) [11]). The term ’stopping time’ seems to imply that
something is going to stop at the τ : given a stopping time τ and a nonan-
ticipating process {Xt} one can define a new process Xτ∧t, the process X
stopped at τ , by:

Xτ∧t = Xt if t < τ Xτ∧t = Xτ if t ≥ τ.
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An example of stopping times are the hitting times: given a nonantici-
pating cadlag process X, the hitting time of an open set A is defined by the
first time when X reaches A:

TA = inf{t ≥ 0, Xt ∈ A}.

At any given time t, it is enough to know the past positions of Xt to see
whether the set A has been reached (TA ≤ t) or not (TA > t).

Ta = inf{t > 0, Xt > a}.

An example of a random time which is not a stopping time is the first
instant t ∈ [0, T ] when X reaches its maximum:

Tmax = inf{t ∈ [0, T ], Xt = sups∈[0,T ]Xs}.

Obviosly in order to know the value of the maximum one must first wait
until T to observe the whole path on [0,T]. Therefore given the informa-
tion =t at time t < T one cannot decide whether Tmax has occured or not.
Given an information flow=t and a nonanticipating random time τ , the in-
formation set =τ can be defined as the information obtained by observing
all nonanticipating (cadlag) processes at τ , i.e., the σ−algebra generated
by these observations: Fτ = σ(Xτ , Xnonanticipating cadlag process). It
can be shown that this definition is equivalent to the following one:

=τ = {A ∈ =,∀t ∈ [0, T ], A ∩ {t ≤ τ} ∈ =t}.

(see Cont and Tankov (2004) [11].
The assumption that the wealth evolves following a Markovian tree

allows us to compute the distribution of several bounded stopping times
in a recursive way. Considering that the investors with temporal horizon
(0, T ] want to minimize the time to reach an high level of wealth and want
to maximize the time to reach a low level of wealth, then the first time the
wealth reaches a given closed set A is a stopping time extremely useful in
portfolio problems. Therefore, let us consider the following first passage
time of portfolio wealth Wk(x):

τA(x) = inf{k ≥ 0 | k ∈ N0;Wk(x) ∈ A ⊆ R} ∧ T,
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where A is a closed set in R and T is an integer greater or equal to 1.
As for the wealth distribution we can easily evaluate the unconditional
distribution of the stopping time3 τA using two sequences of matrixes
Q̄

(k)
A = [q̄

(k)
l,s ]1≤l≤(N−1)k+1

1≤s≤N
and Q̃

(k)
A = [q̃

(k)
l,s ]1≤l≤(N−1)k+1

1≤s≤N
for k = 0, 1, . . . T .

Entries q̃(k)
l,s represent the unconditional probability of obtaining, at time k,

a wealth w(l,k) being in the state s (i.e z(s)) while never obtaining wealths
belonging to A in previous periods t = 0, . . . , k − 1.
Entries q̄(k)

l,s represent the unconditional probability of obtaining, at time
k, a wealth w(l,k) /∈ A being in the state s (i.e z(s)) while never obtaining
wealths belonging to A in previous periods t = 0, . . . , k − 1. Accordingly,
q̄

(k)
l,s = 0 if w(l,k) ∈ A.

The sequence of matrixes can be computed as follows. By definition, Q̃(0)
A =

[q1, . . . , qN ] whereas Q̄(0)
A = [q1, . . . , qN ] if w(1,0) /∈ A, otherwise Q̄

(0)
A =

[0, . . . , 0] (qs is the probability of being in state s at time 0). The other
matrixes can be computed using recursion:

Q̃
(k)
A = diagM(Q̄

(k−1)
A · P ),

Q̄
(k)
A = ZeroA(Q̃

(k)
A );

for k = 1, 2, . . . , T ; where P is the transition matrix, diagM is the linear
operator introduced above and the ZeroA replicates matrix Q̃(k)

A and then
sets to 0 all entries in the rows l corresponding to a wealth w(l,k) ∈ A. The
idea is to calculate the probability to reach a node w(l,k) of the wealth-tree
as the sum of probabilities of each path reaching it from w(1,0) while ex-
cluding from the summation all paths hitting A at a previous time. Doing
so, we are able to describe the probability to reach A the first time using
the recursive sequence of evolution matrixes. Finally, the distribution of
stopping time τA can be computed as follow or in a more compact formu-
lation:

P (τA = k) =


y

(k)
A · Q̃

(k)
A · 1N for k = 1, . . . , T − 1

1
′

(N−1)k+1 · Q̃
(k)
A · 1N for k = T

0 otherwise,

3In the following we omit (for simplicity) the portfolio composition x in the notation
for the stopping time τA, the states z(j), and the wealth nodes w(i,k).
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where y
(k)
A is a (N − 1)k + 1 row vector whose l-th component is 1 if

w(l,k) ∈ A, and 0 otherwise.

This algorithm has the same computational complexity of Iaquinta and Or-

tobelli’s [35] one and it’s convergence properties are the same as D’amico

(2003) [13] and Mijatović and Pistorius (2013) [50]. Note that, as for the

case of wealth, the distribution of stopping time conditioned to the initial

state s can be easily computed by simply setting qj = 1 for j = s and qj = 0

for j 6= s in matrix Q̃(0)
A . The following example practically shows three

steps of the first passage time algorithm.

Example 2: Assume the wealth process evolves following the same

trinomial tree of Example 1. Suppose T = 3, A = [1.2,+∞) and τA =

inf{k ≥ 0 | k ∈ N0;Wk ≥ 1.2} ∧ 3. If at the starting point the wealth is

equal to 1 (i.e, w(1,0) /∈ A), then Q̄
(0)
A = Q̃

(0)
A = [q1; q2; q3] = [1%; 95%; 4%].

Thus, the matrix Q̃(1)
A is given by:

Q̃
(1)
A = diagM(Q̄

(0)
A · P ) =

 0.2535 0 0
0 0.5026 0
0 0 0.2439

 ,
and

Q̄
(1)
A = ZeroA(Q̃

(1)
A ) =

 0 0 0
0 0.5026 0
0 0 0.2439

 .
Similarly, Q̃(2)

A is given by:

Q̃
(2)
A = diagM(Q̄

(1)
A · P ) =


0 0 0

0.12565 0 0
0.09765 0.25130 0

0 0.14390 0.12565
0 0 0.00244


and

Q̄
(2)
A = ZeroA(Q̃

(2)
A ) =


0 0 0
0 0 0

0.09765 0.25130 0
0 0.14390 0.12565
0 0 0.00244

 .



80 2. FIRST PASSAGE TIMES DISTRIBUTIONS WITH LÉVY PROCESSES AND PORTFOLIO APPLICATION

Finally, in T=3, the matrix Q̃(3)
A = diagM(Q̄

(2)
A · P ) is given by:

Q̃
(3)
A = diag M


0 0 0
0 0 0

0.0629 0.1646 0.1214
0.0862 0.1461 0.0372
0.0010 0.0014 2.44E − 5

 =



0 0 0
0 0 0

0.0629 0 0
0.0862 0.1646 0
0.0010 0.1461 0.1214

0 0.0014 0.0372
0 0 2.44E − 5


.

Since the wealth nodes after one period are given by {1.2; 1; 0.9}, then
y

(1)
A = [1; 0; 0] and the probability the stopping time τA = 1 is:

P (τ[1.2,+∞) = 1) = y
(1)
A · Q̃

(1)
A · 13 = 0.25351.

After two periods the five wealth nodes are {1.44; 1.2; 1.08; 0.9; 0.81},
then y(2)

A = [1; 1; 0; 0; 0] and the probability the stopping time τA = 2 is:

P (τ[1.2,+∞) = 2) = y
(2)
A · Q̃

(2)
A · 13 = 0.12565.

In the last step, when T=3, the probability the stopping time τA = 3 is
given by:

P (τ[1.2,+∞) = 3) = 1′7 · Q̃(3)
A · 13 = 0.62084.

Observe that, as we expected, P (τ[1.2,+∞) = 1)+P (τ[1.2,+∞) = 2)+P (τ[1.2,+∞) =

3) = 1.

2.4 Practical timing portfolio strategies on the US
stock market

In this section we propose an empirical comparison based on some tim-
ing portfolio strategies on the US market. In particular, we compare the
ex-post wealth we obtain maximizing either the classic Sharpe ratio or a
performance measure obtained using the average of proper first passage
times. The main objective of this empirical experiment is to show that
the techniques previously presented can be applied in practical portfolio
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problems and they could furnish alternative interesting portfolio function-
als. Moreover the ex-post comparison among different distributional as-
sumptions could give some indications on the best process to use in timing
portfolio strategies.

The classic static portfolio selection problem when no short sales are al-
lowed, can be represented as the maximization of a functional f : (Ω,=, P ) 7−→
R applied to the random portfolio of gross returns z(x), subject to the port-
folio weights belonging to the (n − 1)-dimensional simplex S = {x ∈
Rn|

∑n
i=1 xi = 1;xi ≥ 0}, i.e.,

max
x∈S

f(z(x)).

Typically, the functional f(.) is a performance measure or an utility func-
tional. In both cases the functional f(.) should be isotonic with a particu-
lar ordering of preference �, that is, if X is preferred to Y (X � Y ), then
f(X) ≥ f(Y ). Probably the most known performance measure used in fi-
nancial choices is the Sharpe ratio (see, among others, Sharpe (1994) [66]):

f(z(x)) = SR(z(x)) =
E(z(x) − zf )

σz(x)

, (2.4)

which evaluate the excess return with respect to the riskless gross return
zf for unity of risk where the risk is the standard deviation σz(x)

. The
choice of the functional f(.) plays a crucial role in the portfolio strategy.
Isotonic utility functionals with non satiable and risk averse preferences
(such as the Sharpe ratio) have been used in several financial applications.
However, as suggested in behavioural finance all investors prefer more to
less and they could be neither risk averse nor risk lover. For this reason
it makes sense to consider functionals that are monotone, even though
they are not consistent with an uncertainty/aggressive order (see, among
others, Rachev et al. (2008)[60]). In this work we order the choices with re-
spect to their timing. Thus, we use and describe only functionals that con-
sider the forecasted first passage times of the wealth before the investor’s
temporal horizon T . Since investors want to maximize the first time they
lose wealth and minimize the first time their wealth increases enough, we
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suggest to optimize the average of two first passage times under different
distributional assumptions of the wealth process. In particular, using the
algorithm presented in the previous section, we are able to compute the
distributions of the following stopping times:

τd(x) = inf{k ∈ N|Wk(x) ≤ 0.98} ∧ T

τu(x) = inf{k ∈ N|Wk(x) ≥ 1.2} ∧ T,

where we consider the first time the future wealth loses 2% and the first
time the future wealth increases 20% . The choice of these percentages
(2% and 20%) also depends on the temporal horizon T, that in our exper-
iments is equal to 1 month (20 trading days). We choose these percent-
ages because the index S&P 500 presents positive probability to increase
more than 20% and decrease more than 2% in 1 month in all the examined
period. Then, under different distributional assumptions, we suggest to
maximize the following timing portfolio performance:

f(τd, τu, T ) =
E(τdI[τd<T ] + 1000I[τd≥T ])

E(τuI[τu<T ] + 1000I[τu≥T ])
, (2.5)

where I[ω∈B] =

{
1 if ω ∈ B
0 otherwise

. In performance measure (2.5) we penal-

ize4 the case the first passage time τu overcome the temporal horizon T
(i.e. τu ≥ T ) while we reward the possibility that the first passage time τd
overcome the temporal horizon T (i.e. τd ≥ T ).

2.4.1 The Dataset: ex-ante empirical evidence

In this section, we use the historical observations of the components
of the S&P5005 (which were components at time 03/10/2013)) from July

4Optimizing the functional (2.5) among the components of the S&P 500, we could
observe that the optimal portfolio components do not change using penalty values 1000,
10 000 or 100 000 in formula (2.5). For this reason we use and fix the penalty value 1000.

5 We download the historical series from Thomson Reuter Datastream.
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3, 2002 to October 3, 2013 for a total of 2832 daily observations. Let us
describe the statistical characteristics of the used returns. First we test the
different distributional assumptions for which we evaluate the impact of
timing portfolio strategies (Gaussian, NIG, VG, Meixner and α Stable dis-
tributions). For this ex-ante empirical analysis we use the same window
of daily observations used in the ex-post analysis. Thus, as for the port-
folio problem, every 5 trading days (starting from December 31, 2002) we
compute the statistics for each asset based on the previous 125 observa-
tions. Then, we compute the average results over the time and among
all the log-returns. In particular, Table 2.1 reports the average values for
the parameter estimates of each distribution and the average results of the
Jarque-Bera, and Kolmogorov-Smirnov tests with a 95% confidence level.

Generally the log returns present heavy tails as suggested by the av-
erage of the kurtosis (bigger than 3) and the other heavy tails parameters
(α). Moreover, Table 2.1 reports that the log returns are (in average) asym-
metric (as suggested by all the skewness parameters which are different
from zero).
To test whether log returns follow a normal distribution, we compute the
Jarque-Bera statistic. Similarly, we employ Kolmogorov-Smirnov statistic
to test whether log returns follow a NIG, VG, Meixner or α-Stable distribu-
tion. In Table 2.1 we report the percentage of assets whose distribution is
rejected either for the JB test or for the KS tests. It is clear that the Gaussian
distribution is rejected for most of the assets while the other distributions
present much better results (in average).

2.4.2 An ex- post comparison among timing portfolio strate-
gies

In the out of sample portfolio analysis we determine and re-calibrate
weekly the optimal portfolio (every 5 trading days) using a window of
six months historical observations (125 trading days). Since the number
of observations should increase proportionally with the number of assets
(see Papp et al. (2008) [57], Kondor et al.(2007) [40]), it is necessary to
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Table 2.1: Statistics on the ex-ante log returns

Average of ex-ante parameters

Mean St.deviation Skewness Kurtosis
0.0004 0.0205 −0.0412 6.3931

NIG(α, β, δ)

α = 55.17 β = −0.176 δ = 0.0165

Variance Gamma(σ, ν, θ)

σ = 0.020 ν = 1.9161 θ = 1.58e− 05

Meixner(α, β, δ)
α = 1.4838 β = 0.0088 δ = 1.770

Sα(σ, β, µ)

α = 1.729 σ = 0.0121 β = 0.0329 µ = 0.0004

Average of statistic tests on the used assets

JB test 95% KS-Stable KS-NIG KS-VG KS -Meixner
0.6375 0.00867 0.03196 0.1719 0.0579

find the right trade-off between a statistical approximation of the historical

series depending only on a few parameters and the number of historical

observations. Therefore, we suggest to reduce the dimensionality of this

large scale portfolio problem preselecting the 10% most relevant stocks (50

assets) according to the highest Sharpe ratio (see, among others, Ortobelli

et al (2011) [53]). This procedure is applied at any recalibration time and

implies that there is a very high turnover. In all the empirical analysis we

assume that:

1. the temporal horizon T=20, in order to have a large number of nodes

of the final wealth;
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2. the performance (2.5) is optimized for all the Lévy processes of Sec-

tion 2 (Brownian motion, NIG, VG, Meixner and α Stable processes);

3. the approximating Markov chains have N=9 states (this number of

states is the right trade-off between the computational complexity

of the algorithm and the proper approximation of the underlying

process6);

4. the initial wealth W0 is equal to 1 at the date December 31, 2002;

5. there are proportional transaction costs7 of 5 basis points 8;

6. we cannot invest more than 20% in a single asset (i.e. xi ≤ 0.2) in

order to guarantee a proper diversification.

Portfolio optimization leads to different results depending on the adopted

distribution for the process. For each strategy, we have to compute the op-

timal portfolio composition exactly 548 times and at the k-th optimization

three main steps are performed to compute the ex-post final wealth:

1. Step 1. Preselect the first 50 assets with the highest Sharpe ratio

among all those active in the last six months.

6On the computational complexity of Markovian portfolio problems see Angelelli and
Ortobelli (2009b) [2].

7The portfolio selection problem with transaction costs has been studied in several
papers. See, among others, Dumas and Luciano (1991) [21] and the references therein.
In this paper we optimize strategies with transaction costs using the same methodology
proposed by Ortobelli et al. (2010) [54].

8We consider these transaction costs level since in some international
trading platforms are payed about 10 basis points with some maximum
transaction costs for order (see for example IB platform on the web site:
https://www.interactivebrokers.com/en/index.php?f=commission&p=stocks2). Thus
(using the limits of IB platform) we could test and find that the level of proportional
transaction costs are lower than 5 basis points on average optimizing the Sharpe ratio
for any initial wealth bigger than 250,000 USD.
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2. Step 2. Determine the optimal portfolio x(k)
M that maximizes a perfor-

mance ratio ρ(x(k)) (either the Sharpe ratio (2.4) or the timing portfo-
lio performance (2.5)) associated to the strategy, i.e. the solution of
the following optimization problem:

max
x(k)

ρ(x(k))

s.t.
n∑
i=1

x
(k)
i = 1; 0 ≤ x

(k)
i ≤ 0.2; i = 1, ..., n

Clearly, the computational complexity of the problem with portfolio
performance (2.5) is much more higher than optimizing the Sharpe
ratio, because in the first case the problem present more local op-
tima. Therefore, we suggest to use the function patternsearch of Mat-
lab 2013 with starting point the optimal solution of (2.5) obtained
with the heuristic (for global optimization) proposed by Angelelli
and Ortobelli (2009) [1].

3. Step 3. Compute the ex-post final wealth given by:

Wtk+1
= (Wtk − tctk)(x

(k)′

M )z
(ex post)
(tk+1) ,

where tctk are the proportional transaction costs we get changing the
portfolio, z(ex post)

(tk+1) is the vector of observed gross returns between tk

and tk+1.

Steps 1, 2, and 3 are repeated for the two performance ratios (2.4) and
(2.5), and all the distributional assumptions until some observations are
available. The results of this ex-post empirical analysis are reported in
Figures 2.2, 2.3 and Tables 2.2 and 2.3.

In Figure 2.2 all the timing portfolio strategies outperform the strategy
based on the optimization of the Sharpe ratio (that, however, performs
better than the S&P 500 index in the same analyzed period). Moreover,
we observe that the timing portfolio strategies based on a non-Gaussian
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Figure 2.2: Ex post final wealth obtained with different portfolio strategies

Lévy process outperforms the one based on the Brownian Motion. Graph-
ically the "NIG strategy" seems the most promising in terms of ex-post
final wealth.
Figure 2.3, examines the portfolio diversification and turnover for the NIG
strategy. Since we obtain similar portfolio diversification and turnover for
all the other portfolio strategies, we report the analysis only of the "NIG
strategy". In particular, Figure 2.3 a) shows the changes of the portfolio
composition of the “NIG” strategy. As we see these percentage propor-
tions are not concentrated on their maximum value 0.2. Therefore, we wit-
ness a good diversification for each optimal portfolio. Figure 2.3 b) points
out the percentages ϕk (k=1,...,548) of the portfolio that change every 5
trading days by the formula:

ϕk =
500∑
i=1

∣∣∣x(k)
M,i − x

(k−1)
M,i

∣∣∣ , (2.6)

where the vector x(0)
M = [x

(0)
M,1, ..., x

(0)
M,500]

′ is a vector with all the compo-
nents equal to zero. This turnover measure belongs to the interval [0,2],
where a value of 0 means that the portfolio composition has never been
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Figure 2.3: Turnover and Diversification

changed during the period [tk−1, tk], while a value of 2 corresponds to

the case in which the portfolio would be re-structured completely. Since

the values are in average around to 0.87, we can say that the “NIG on

preselected” strategy (as the other optimization strategies) presents a sig-

nificant turnover in the portfolio composition. Clearly, the relatively high

turnover adversely impacts portfolio return because of transaction costs.

For this reason, we have computed the ex-post wealth and the total re-

turn for all the strategies considering proportional transaction costs. The

last Figure 2.3 c) shows (for each optimization) the number of: assets with

positive proportions; the new assets in the optimal composition; and the

assets leaving the optimal composition. This figure confirms the previous

results that the NIG strategy almost uses more than 10 assets in its opti-

mization. Table 2.2 reports some descriptive statistics of the ex-post log-

returns obtained maximizing the performance ratios under different dis-

tributional assumptions. In particular, we report the mean, the standard

deviation, the skewness, the kurtosis, the average value at risk AV aR5%
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(where AV aRα(X) = −1
α

∫ α
0
F−1
X (u)du ) and the Sharpe ratio of the ex-post

log-returns .

Table 2.2: Descriptive Statistics on the ex-post logreturns

Ditribution Mean St.Dev Skewn Kurtosis Final Wealth AVaR 5%

Sharpe 0.00050 0.0141 -0.141 8.189 3.896 0.002016
Brownian Motion 0.00064 0.0143 -0.168 7.815 5.589 0.002192
Meixner 0.00072 0.0175 -0.185 6.082 7.072 0.002625
NIG 0.00088 0.0182 -0.301 5.761 10.902 0.002823
Stable 0.00082 0.0171 -0.334 8.286 9.280 0.002686
VG 0.00075 0.0176 -0.313 7.504 7.728 0.002671
S&P500 0.00024 0.0128 -0.307 13.532 1.925 0.001632

First, we observe that the ordering of the mean and the risk AV aR5%

of the log-returns is the same we have in terms of the ex-post final wealth

(that is, from the biggest to the smallest are: NIG, α−Stable, VG, Meixner,

Brownian Motion, Sharpe, and the index S&P500). Moreover, the α−stable

Paretian hypothesis shows a lower variability (standard deviation) than

the other non-Gaussian Lévy distributional assumptions, probably because

it is able to capture the asymptotic behavior of the log-return series. How-

ever, from the Sharpe Ratio of the ex-post log-returns we deduce that

the Brownian Motion strategy presents higher reward-risk performance

of Variance Gamma and Meixner strategies. Secondly, we observe that

all the ex-post log-return series are asymmetric and leptokurtic, since they

present a small negative skewness and a kurtosis significantly higher than

the Gaussian one.

In Table 2.3 we report the ex-post wealth obtained with the used strategies

in three different equidistant times: 01-Aug-06, 03-Mar-10, 03-Oct-2013.

This table suggest that:



90 2. FIRST PASSAGE TIMES DISTRIBUTIONS WITH LÉVY PROCESSES AND PORTFOLIO APPLICATION

Table 2.3: Ex-post wealth of timing portfolio strategies

Distribution Wealth 01-Aug-06 Wealth 03-Mar-10 Final Wealth 03-Oct-13

Sharpe 2.58 3.17 3.90
Brownian Motion 2.77 4.25 5.59
Meixner 3.89 5.81 7.07
NIG 4.88 7.45 10.90
Stable 3.85 6.40 9.28
VG 3.37 5.13 7.73
S&P500 1.44 1.27 1.93

• NIG and Meixner strategies present the best performance in the pe-

riod before the crisis (Jan, 2003- Aug, 2006);

• During the sub-prime crisis (Aug, 2006 - Mar, 2010) the Stable pare-

tian and the Brownian Motion strategies present the best performance;

• During the credit risk crisis (Mar, 2010 - Oct, 2013) all the strategies

present similar performance and are not able to outperform the S &

P 500 index;

• During the crises (Aug, 2006 - Oct, 2013) the Stable, NIG, VG and

Sharpe strategies maintain a constant behavior even if much differ-

ent from the one before the crisis (Jan, 2003 - Aug, 2006). Brown-

ian Motion strategy outperforms the Meixner one during both crises

(Aug, 2006 - Oct, 2013), but present much lower final wealth before

the crisis (Jan, 2003- Aug, 2006). This last observation justifies the

better ex-post Sharpe ratio of the Brownian Motion strategy with re-

spect to the Meixner one observed in Table 2.3.

Finally, with this ex-post empirical analysis we demonstrate that:
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• timing portfolio strategies based on the average of proper first pas-
sage times can be practically used in portfolio selection problems;

• timing portfolio strategies present better performance than the U.S.
market stock index (S&P 500) and than the classic strategy based on
the maximization of the Sharpe ratio;

• the better distributional approximation could have an important im-
pact in the optimal portfolio choices and, in particular, the NIG pro-
cess and the α−Stable process seem to better capture the log-return
behaviour in the U.S. stock market of the decade 2003-2013.

In conclusion, in this chapter we described an algorithm to approxi-
mate the distributions of first passage times of some Lévy processes and
proposes a practical empirical analysis to evaluate, under different distri-
butional hypotheses, the impact of new timing portfolio strategies in port-
folio theory. In particular, we assume that investors minimize the time to
reach a high level of wealth and maximize the time to reach a low level
of wealth. Therefore, we describe how to approximate the distribution of
some stopping times using the underlying parametric transition matrix of
a given Lévy process. Finally, we propose an ex post empirical compar-
ison among timing portfolio strategies based on different distributional
hypotheses.



Chapter 3
Timing portfolio selection with

non-Lévy processes

In this chapter we deal with non-Lévy processes. We consider the

Markov Regime switching model and the log-Student-t model, which are

not based on Lévy processes. In particular, we suppose that the daily log-

returns distributions are approximated by these distributions. Then, we

assume a Markovian evolution of the portfolio processes and we estimate

some proper stopping times.

We extend the application of Chapter 2, proposing an empirical compar-

ison based on some timing portfolio strategies on the US market. The

main objective of this empirical experiment is to show that the techniques

previously presented can be applied in practical portfolio problems not

only for Lévy processes but for other processes as well (when we assume

a Markov evolution of the process). Moreover, the ex-post comparison

among different distributional assumptions could give some indications

on the best process to use in timing portfolio strategies. The chapter is

organized as follows: In the first section the Markov approximation of the

Regime Switching model and the log-Student-t model is given. Section 2

discusses an ex-post comparison among timing portfolio strategies using

these non-Lévy processes.

92
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3.1 Financial application with alternative mod-
els

Since the publication of the Black and Scholes (1973) [5] option pricing

model, a vast amount of literature has been dedicated to describe the the-

ory and practice of pricing. Important assumptions of the Black-Scholes

model are that the underlying asset distribution is log-normal and that the

volatility is a fixed constant.

However, empirical evidence suggests that Black-Scholes model fails to

react the stochastic variability in the market parameters. In particular the

findings of fat tails and volatility clustering are contrary evidence.

Empirical distributions of asset and index returns are typically ’fat tailed’

with large asset price movements having higher probability than predicted

by normality. Alternative models, based on non-normal, more realistic dis-

tributional assumptions, have been developed.

In this section, we will focus in two different classes of models, to better

understand asset returns behavior.

For this reason in this chapter, we use the log-Student-t model and the

Markov Regime Switching model.

3.1.1 The Markov approximation of Regime Switching model

Consider n risky assets with log-returns rk+1 = [r1,k+1, ..., rn,k+1]
′. We

adopt the standard definition of log-return between time t and time t+1 of

asset i, as ri,t+1 = ln
(
Si,t+1+di,[t,t+1]

Si,t

)
where Si,t is the price of the i-th asset at

time t and di,[t,t+1] is the total amount of cash dividends paid by the asset

between time t and time t+1.

The empirical evidence suggests that the log-returns exhibits fat tails

and skewness, behavior that deviates from normality. Therefore, models

that accurately fit return distributions are needed. Recently, attention has

been placed on regime switching models. In such models, the stochastic
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process remains in one regime for a random amount of time before switch-
ing over into a new regime.
Markov Regime Switching model assumes there are two ’regimes’ or states
with different mean and volatility levels. This specification can be inter-
preted as a mixture distribution with dynamics generated by a Markov
chain.
In this model the Gaussian distribution is generalized by introducing two
regimes with different moments. Leptocurtosis is obtained here because
the variance in the two regimes differs.
So, the mixture distribution generates the leptocurtosis and the Markov
chain is responsible for the nonlinear dynamics. It has been recognized
that the dynamics of asset return can be adequately described by the regime
switching model.

Suppose, the dynamics of the log-returns are modeled by a Markov
Regime Switching process in which prices remain in one regime for a ran-
dom amount of time before switching over into a new regime.
Let us simplify their tractability by considering a variable yt which de-
pends on random shocks εt and some regime process, St. Regimes are
generally modeled through a discrete variable, St ∈ {0, 1, . . . , k}, tracking
the particular regime inhabited by the process at a given point in time. Al-
though regimes could affect the entire distribution, they are often limited
to affect the intercept, µSt and the volatility σSt , of the process. Let us recall
the MRS model illustrated in section 1.3, chapter 1.

yt = µSt + σStεt εt ∼ iid(0, 1) (3.1)

To complete the model, the process governing the dynamics of the un-
derlying regime, St, needs to be specified. We have supposed that the
dynamics of the underlying switch between two regimes, but we haven’t
said how this switching between states happens.
The crucial point in the structure of a Markov Regime Switching model is
that,the switching of states is stochastic process itself.
We assume that the transition probabilities between states is governed by
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the homogeneous first-order Markov chain Pr(St = j|St−1 = i) = pij . For
example, in the common case with two regimes, St = 1 or 2

Pr(St = 1|St−1 = 1) = p11 and Pr(St = 2|St−1 = 2) = p22. (3.2)

It is often convenient to collect the transition probabilities in an (2 × 2)

matrix P known as the transition matrix:

P =

[
p11 p21

p12 p22

]
(3.3)

In general, the row j, column i element of the P is the transition proba-
bility pij ; for example, the row 2, column 1 element gives the probability
that state 1 will be followed by state 2. These transition probabilities are
restricted so that p11 + p12 = p22 + p21 = 1.

A key issue in regime switching model is whether the same regimes
repeat over time, as in the case of repeated recession and expansion peri-
ods, or if new regimes always differ from previous ones. If’history repeats’
and the underlying regimes do not change, all regimes will occur at some
time. With only two regimes this will happen if pii < 1, i = 1, 2. Models
with recurring regimes have been used to characterize bull and bear mar-
kets, calm versus turbulent markets, and recession and expansion periods.

In practice, if the process is not irreducible and not all states are visited
with non-zero probability in the steady state, then the moment analysis
can simply be conducted on the subset of states occuring with non-zero
stationary probability. The higher is pii the longer the process is expected
to remain in the state i. For this reason we shall refer to pii as measuring
the ’persistence’ of the mixing of the underlying state densities. This per-
sistence parameters are very important in determining the higher order
moments of the Markov switching process.
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Estimation techniques

Different econometric methods can be used to estimate regime switch-
ing models. Maximum likelihood and EM algorithms are outlined by
Hamilton (1988, 1989)[29], [30] and Gray(1996)[27]. The maximum likeli-
hood algorithm involves a Bayesian updating procedure which infers the
probability of being in a regime given all available information up until
that time, Pr(St|Yt), where Yt is the information set at time t.

An alternative to the maximum likelihood estimation is the method of
moment. We will concentrate on this.
Let π = (π1, . . . , πk)

′ be the k-vector of steady state probabilities that solve
the system of equations P ′π = π. These probabilities can be computed as
the eigenvector (scaled so that its elements sum to one) associated with the
unit eigenvalue of P’. π is the vector of unconditional probabilities apply-
ing to the k states (see equation in chapter 1). The following proposition
provides the moments of the basic Markov switching model.

Proposition 3.1.1. Suppose the stationary Markov Switching process 3.1 e 3.2
started from its steady state characterized by the set of unconditional probabilities
(π). Then the centered moments of the process are given by

E[(yt − µ)n] =
k∑
i=1

πi

n∑
j=0

nCjσ
j
iE[εjt ](µi − µ)n−j (3.4)

where nCj = n!
(n−j)!j! . When εt follows a normal distribution we have

E[(yt − µ)n] =
k∑
i=1

πi

n∑
j=0

nCjσ
j
i bj(µi − µ)n−j, (3.5)

where

bj =

j/2∏
h=1

(2h− 1), provided j is even and (3.6)

bj = 0, otherwise. (3.7)

Proof. See Timmerman (2000).
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An attractive feature of regime switching model is that they capture

central statistical features of asset returns. To illustrate this, consider the

model given above, where the (unconditional) probability that St = 1 is π1

and St = 2 with probability 1− π1.

The mixture of the two normals produces pronounced negative skewness.

Timmerman(2000) derives the moments of a general regime-switching pro-

cess with constant transition probabilities. As a special case, it can be

shown that the first four central moments of the process in equation 3.1

are given by:

E[yt] = π1µ1 + (1− π1)µ2

Var[yt] = π1(1− π1)(µ1 − µ2)2 + π1σ
2
1 + (1− π1)σ2

2

Skew[yt] = π1(1− π1)(µ1 − µ2)[(1− 2π1)(µ1 − µ2)2 + 3(σ2
1 − σ2

2)]

Kurt[yt] = π1(1− π1)(µ1 − µ2)2[((1− π1)3 + π3
1)(µ1 − µ2)2 + 6π1σ

2
2 + 6(1− π1)σ2

1]

+ 3π1σ
4
1 + 3(1− π1)σ4

2.

Differences in means across regimes, µ1−µ2, enter the higher moments

such as variance, skew and kurtosis. In particular, the variance is not sim-

ply the average of the two variances across the two regimes: the differ-

ence in means also imparts an effect because the switch to a new regimes

contributes to volatility. Intuitively, the possibility of changing to a new

regime with a different mean introduce an extra source of risk. Skew only

arises in this model if the means differ across two regimes (µ1 6= µ2).

Importantly, differences in means in addition to differences in variances

can generate persistence in levels as well as squared values-akin to volatil-

ity persistence observed in many return series.

Again differences in means play an important role in generating autocorre-

lation in first moments-without such differences, the autocorrelation will

be zero. In contrast, volatility persistence can be induced either by differ-

ences in means or by differences in variances across regimes. In both cases,

the persistence tend to be greater, stronger the combined persistence of the

regimes, as measured by p11 + p22 − 1.
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We use the method of moments to approximate the Markov Regime
Switching model.

3.1.2 The log-Student-t Model

In this section, an alternative approach to model asset prices is ana-
lyzed. This approach is based on the subordination principle introduced
by Bochner (1955) [?]. The option pricing theory based on a subordinated
return was developed by Hurst et al (1997) [34].

The general version of the subordinated asset price model is given by:

St+s = Stexp{µs+ σ[W (T (t+ s))−W (T (t))]}, t, s ≥ 0, (3.8)

where W (t) is a Wiener process, which is subordinated to the intrinsic
time process, T(t) (see Rachev and Mittnik (2000) [59], chapter 13). Taking
the natural logarithm, the process can be written in the equivalent form:

∆Lt,s = Lt+s − Lt = µs+ σ[W (T (t+ s))−W (t))]. (3.9)

By using a stochastic time scale, the subordinated model allows for time
periods of high and low volatility (measured in the physical time scale),
depending on the specification of the directing process {T (t), t ≥ 0}. For
example, one could specify the intrinsic time process such that the intrin-
sic time process is equal to the physical time, on average, i.e E[∆Tt,s] = s.
Calm periods of low volatility with a slow information flow and low trad-
ing volume in the markets would occur if ∆Tt,s < s, i.e, intrinsic time
passes more slowly than physical time. On the other hand, periods where
unexpected information arrives with a high rate combined with high vol-
ume and volatility are compatibile with ∆Tt,s > s, i.e, operational time
passes more quickly than physical time.
Subordinated processes of the form in 3.8 can therefore interpreted as
stochastic volatility processes. We assume that {T (t), t > 0} is a process
with stationary independent increments.
The probabilistic features of the returns can be studied by combining the
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constant volatility parameter σ with the subordinated process W (T (t)) to

get the new process:

Z = W̃ (T (t)) = σW (T (t)), (3.10)

where W̃ (t) is a Wiener process having stationary independent increments

∆W̃t,s = W̃ (t+ s)− W̃ (t) ∼ N(0, σ2s), s, t > 0. (3.11)

In this section to describe the log-Student t model we follow Praetz(1972)

[58], Blattberg and Gonedes (1974) [6].

The t distribution belongs to a larger class of probability distribution the

so-called ’scale mixture of normals’. These distributions are constructed

by multiplying a normal random variable Y with zero mean with an in-

dependent and positively distributed random variable T. In log-Student t

model the unit time increments are governed by an ’inverse’ Chi-square

distribution, i.e.

∆Tt,1 ∼
ν

χ2
ν

, ν > 0,

where χ2
ν denotes a Chi-square distribution with ν degrees of freedom.

The probability density function of ∆Tt,1 is given by

fT,1(x) =
ν̃ ν̃

Γ(ν̃)
x−ν̃−1exp(− ν̃

x
), ν̃ =

ν

2
, x > 0,

where Γ(u) =
∫∞

0
xu−1e−xdx denotes the Gamma function. The expected

value of a unit time increment is then:

µT,1 =
ν

ν − 2
for nu > 2

If ν ≤ 2, the mean does not exist.

The probability density function of the increments ∆Zt,1 of Z has the

following form:

fZ,1 =
1

σ
fν(

x

σ
), x ∈ R
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Here, fν(u) denotes the probability density function of a Student -t dis-

tributed random variable with ν degrees of freedom:

fν(u) =
Γ(ν+1

2
)

Γ(ν
2
)

(1 + u2

ν
)−

ν+1
2

√
νπ

, u ∈ R (3.12)

Hence, the unit increment ∆Zt,1 follows a scaled t-distribution, i.e.

∆Zt,1 ∼ σtν , ν > 0,

where tν denotes a t-distributed random variable with ν degrees of free-

dom. The mean and the variance of the increments of Z are therefore

µZ,1 = 0 for ν > 1 and σ2
Z,1 = σ2 ν

ν−2
for ν > 2. As the degrees of free-

dom increase ν → ∞, the inner time process converges asymptotically to

the deterministic physical time process, so that thus model nests the Gaus-

sian model as a special case. In particular, for ν →∞ the increments ∆Zt,1

converge to a normal distribution with variance σ2.

In the empirical analysis, we use the maximum-likelihood method to

estimate the degrees of freedom ν at each portfolio.

t based estimator

Suppose variable Z has a t distribution with ν degrees of freedom. The

density function is given by 3.12. Let ui i = 1, 2, ..., n be the observed

values in a sample of size n. The log likelihood is

L = −ν + 1

2

n∑
i=1

log(1 +
u2
i

ν
)− nlog(

Γ(ν+1
2

)

Γ(ν
2
)
· 1√

νπ
) (3.13)

Since, the degrees of freedom will be estimated for all the itearations of the

optimization problem, it is important to have an estimator in reasonable

time. Using maximum likelihood estimates of ν degrees of freedom we

easly reach the solution with the function fminunc in Matlab.
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3.2 An empirical comparison among timing port-
folio strategies applied to preselected assets

Following the application in Chapter 2, we propose an empirical com-
parison based on some timing portfolio strategies on the US market. In
this section we consider a portfolio selection procedure that is divided in
two phases. In the first phase we preselect some assets that satisfy some
performance criteria. Moreover, we define the ’good’ assets considering
performance ratios based on a Markovian evolution of the assets (see An-
gelelli and Ortobelli (2009) [1], In the second phase we assess some port-
folio selection strategies based on the optimization of functionals that con-
sider the forecasted first passage times of the wealth before the investor’s
horizon T. In particular, we compare the ex-post wealth we obtain maxi-
mizing either the classic Sharpe ratio or a performance measure obtained
using the average of proper first passage times.
The main objective of this empirical experiment is to show that the tech-
niques previously presented can be applied in practical portfolio prob-
lems not only for the Lévy processes but for other processes as well. More-
over, the ex-post comparison among different distributional assumptions
could give some indications on the best process to use in timing portfolio
strategies.

3.2.1 Pre-selection criteria

In this section we deal with the pre-selection criteria in the portfolio
problems. The preselection has a very important impact on the portfolio
choices (see Ortobelli et al (2011) [53]). Further, since the number of ob-
servations should increase proportionally with the number of assets (see
Papp et al. (2008) [57], Kondor et al.(2007)[40]), it is necessary to find
the right trade-off between a statistical approximation of the historical se-
ries depending only on a few parameters and the number of historical
observations. Therefore, we suggest to reduce the dimensionality of this
large scale portfolio problem preselecting the most relevant stocks (150
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assets) according to different criterio. (see, among others, Ortobelli et al

(2011)[53]). This procedure is applied at any recalibration time and im-

plies that there is a very high turnover.

In particular at each recalibration time we preselected no more than

150 assets among m ones for each optimization problem. The results ob-

tained with different pre-selection criteria are merged in order to identify

the assets with common characteristics appealing for investors.

As in Ortobelli et al (2011) [53], we suggest to select those asset that satisfy

some optimality criteria, considering several properties of the wealth be-

haviour, either that Markovian or asymptotic. Another factor we should

consider as preselecting criteria is the timing (i.e., we consider that in-

vestors want to maximize the time the wealth arrive to a given lower

bound or to minimize the time the wealth arrive to a given upper bound.)

The association with the market stochastic bounds is important as well

(for further details see Ortobelli and Tichy (2009, 2010) [69], [55]. Since the

investors want to increase their wealth, their portfolios are concordant as

much as possible with the upper stochastic market bound. Similarly, they

want to reduce their losses and their portfolio are concordant as much as

possible with the lower stochastic market bound.

Therefore we take account of these investors preferences to select a resticted

number of assets.

Let us recall that the classic static portfolio selection problem when no

short sales are allowed, can be represented as the maximization of a func-

tional f : (Ω,=, P ) 7−→ R applied to the random portfolio of gross returns

z(x), subject to the portfolio weights belonging to the (n− 1)-dimensional

simplex S = {x ∈ Rn|
∑n

i=1 xi = 1;xi ≥ 0}, i.e.,

max
x∈S

f(z(x)).

The approach to the future wealth could be generally considered static

or dynamic:



3.2. AN EMPIRICAL COMPARISON AMONG TIMING PORTFOLIO STRATEGIES APPLIED TO
PRESELECTED ASSETS 103

• i) with the static approach we assumes that historical observations
are equally distributed. Moreover the investor maximize a func-
tional of the future wealth that is independent from his temporal
horizon [0,T], i. e he solves problems of the type:

maxx∈Sf(z(x),t+1)

• ii)with the dynamic approach we consider that the gross returns fol-
low a Markov chain. Therefore the investor maximizes a functional
of the future wealth, that should be determined under this hypothe-
sis, i.e. he solves problems of the type:

maxx∈Sf(WT (z(x)))

where WT (z(x)) is the predicted wealth obtained after T working
days investing in the portfolio z(x) = x′z.

Starting from the static approach (i) we represent the classic myopic ap-
proach that does not use the time evolution of the wealth process. In the
dynamic context (ii) we rather consider all admissible wealth Markovian
processes W (z(x)) = (W (z(x))t≥0

). They are defined on the filtered proba-
bility space that depends by an initial portfolio of wights x ∈ S.

In the preselection criteria of our work we consider both the approaches.
We select some assets assuming approach (i) and other assets assuming
approach (ii). Then the union of these assets is used for the portfolio selec-
tion.
In order to select some desirable assets, both the selection approaches are
based on following procedure. First, we select a desirable ordering cri-
terion (we will discuss in details some ordering criteria in the following
section). Then, the assets are ordered by this ordering criterion. Lastly, we
select the best assets satisfying the criteria of the dynamic approach and
the best assets satisfying the criteria of the static approach.

In order to deal with the preselection methodology we first argue how
to approximate the Markovian evolution of the wealth, then we discuss
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three ordering criteria with the static approach and five criteria with the
dynamic approach.

Some consequences of the Markovian hypothesis

When we assume that the portfolios follow a Markov chain we can dis-
tinguish different types of possible strategies. According to the definition
given in Angelelli and Ortobelli (2009)[1] we call OA expected utility the
above functional E(u(WT (z(x)))) when it is computed under the assump-
tion that the gross return of each portfolio follows a Markov chain with N
states. The OA expected utility is given by:

E(u(WT (z(x)))) = u(ŴT (z(x))) ·Q(T ) · 1N = u(Ŵ (z(x))) · p(T ) (3.14)

where ŴT (z(x)) = [w
(1,T )
(x) , . . . , w

((N−1)T+1,T )
(x) ] is the (N-1)T+1 dimensional

vector of the final wealth and u(ŴT (z(x))) = [u(w
(1,T )
(x) ), . . . , u(w

((N−1)T+1,T )
(x) )]

is the utility valued on the final wealth. Formula 3.14 is a logical conse-
quence of the methodology to describe the Markovian tree. As a matter of
fact, p(T ) = Q(T ) · 1N gives the distribution of the final wealth.

Pre-selection criteria with the static approach

With the preselection criteria of the static approach we only account
the consistency with investors’ preference, and the association with the
market stochastic bounds. In particular, we order the assests considering
the following three criteria:

1. the wealth obtained in the last 120 working days, i.e., the assets are
ordered with respect to the ration

P

Pt−120

(3.15)

where Pt and Pt−120 are, respectively, the adjusted prices at time t
and t− 120(where 120 working days are about six month of data)
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2. the Sharpe ratio:
E(zi − zf )
St.dev(zi)

(3.16)

where the mean and the standard deviation of the i-th asset are ap-

proximated by the empirical mean and the standard deviation of the

last 120 working days (we assume that the riskless is null, that is

zf = 1):

E(zi) ∼=
1

120

120∑
t=1

zi,t

and

St.dev(zi) ∼=

(
1

120

120∑
t=1

(zi,t − E(zi))
2

)0.5

.

3. the Gini performance ratio:

γ(zi,maxi≤mzi)
1.1 + γ(zi,mini≤mzi)

(3.17)

This ratio is based on the Gini γ concordance measure; the sample

estimation of this measure is given by:

γ(X, Y ) =
1[
n2

2

] n∑
i=1

|pi − qi − n− 1| − |p1 − q1| (3.18)

where n = 120 is the number of observations, pi and qi are, respec-

tively, the ranks of the random variables X and Y.

The first two criteria are consistent with choices of non-satiable in-

vestors. While maximizing the Gini performance ratio, we maximize the

concordance between the portfolio and the upper stochastic bound and

we minimize the concordance between the portfolio and the lower stochas-

tic bound. Using three criteria, we preselect 50 desirable assets for non sa-

tiable investors. In particular, the choice includes the first 50 assets, among

m, with the best common performance measure (Sharpe ratio, wealth ob-

tained in the last six months, and Gini performance ratio).
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Pre-selection criteria with the dynamic approach

With the preselection criteria of the dynamic approach we account the
consistency with investors’ preferences, the timing of the choices, the asso-
ciation with the market stochastic bounds, the Markovian and asymptotic
behavior of the wealth. In particular, we assume that each portfolio of re-
turns follows a Markov chain. Then, we preselect the assets considering
these five ordering criteria:

1. The expected power utility

E (u(WT (zi))) (3.19)

this is the predicted wealth WT (zi) obtained after T = 20 working
days investing in the i-th asset (for any i = 1, . . . , n). In formula 3.19
u(W ) = W g

g
with the g = 0.9.

2. The Sharpe ratio:
E(WT (zi))− 1

St.dev(WT (zi))
(3.20)

where WT (zi) is the predicted wealth obtained afte T = 20 working
days investing in the i-th asset (for any i = 1, . . . , n).

3. The Pearson performance ration, based on the Pearson linear corre-
lation (τ):

τ (WT (zi),WT (maxi≤mzi))

1.1 + τ (WT (zi),WT (mini≤mzi))
(3.21)

4. The timing ratio:
E(π1)

E(π2)
(3.22)

where π1 and π2 are two stopping times of the filtration defined as:

π1(zi) = min(T, inf{k ∈ [0, T ]|Wk(zi) ≤ 0.98})

and

π2(zi) = min(T, inf{k ∈ [0, T ]|Wk(zi) ≥ 1.2})
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These stopping times give the first time (belonging to [0,T] the wealth
produced by the i-th asset reaches, respectively, the bounds 0.98 and
1.2.

5. The OA-stable ratio:

δWT (zi)

ETLβ(WT (zi)− E(WT (zi)))
(3.23)

where δWT (zi) is the location parameter of the best quantile, stable
Paretian approximation of the wealthWT (zi), the denominatorETLβ
(expected tail loss or average value at risk for β = 0.05) is computed
under the distributional assumption using the Stoyanov et al algo-
rithm (2006) [68].

Therefore we choose the first 100 assets (amongm = 500) with the high-
est common performance measures of the predicted wealth: the expected
power utility, Sharpe, association type ratio, timing ratio and stable ratio.
Together with the 50 assets selected with the static approach, the total of
the pre-selected desirable assets is between 100 and 150. As a matter of
fact, some assets could be selected with both approaches (static and dy-
namic).

3.2.2 An ex- post comparison among timing portfolio strate-
gies applied to preselected assets

In our analysis, we use the historical observations of the components
of the S&P5001 (which were components at time 22/07/2014)) from Jan-
uary 1, 2000 to July 22, 2014 for a total of 3662 daily observations.
We considered all the equities active during the last six months (120 work-
ing days) of the market. The data source is DATASTREAM. We recali-
brate the portfolio every month (T=20 working days) to be coherent with
dynamic preselection analysis. At each recalibratin time there are about
500 active assets that can be selected for the portfolio. For the evaluation

1The data source is DATASTREAM.
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we consider only the observations of the last six months (120 working
days), because they are supposed to have the highest impact in the future
choices.

Typically, the functional f(.) is a performance measure or an utility
functional. In both cases the functional f(.) should be isotonic with a par-
ticular ordering of preference �, that is, if X is preferred to Y (X � Y ),
then f(X) ≥ f(Y ). The benchmark performance measure used in finan-
cial choices is the Sharpe ratio (see, among others, [66]):

f(z(x)) = SR(z(x)) =
E(z(x) − zf )

σz(x)

, (3.24)

which evaluate the excess return with respect to the riskless gross return
zf for unity of risk where the risk is the standard deviation σz(x)

. In Chap-
ter 2, we described functionals that consider the forecasted first passage
times of the wealth before the investor’s temporal horizon T . Since in-
vestors want to maximize the first time they lose wealth and minimize the
first time their wealth increases enough, we suggest to optimize the aver-
age of two first passage times under different distributional assumptions
of the wealth process. In this empirical analysis we propose an alternative
experiment where we use the historical observations of the components
of the S&P 500. In particular, under different distributional assumptions
given in Section 3.1 , we suggest to maximize the following timing portfo-
lio performance:

f(τd, τu, T ) =
E(τdI[τd<T ] + 1000U[τd≥T ])

E(τuI[τu<T ] + 1000I[τu≥T ])
, (3.25)

where I[ω∈B] =

{
1 if ω ∈ B
0 otherwise

. In performance measure (3.25) we pe-

nalize2 the case the first passage time τu overcome the temporal horizon T
(i.e., τu ≥ T ) while we reward the possibility that the first passage time τd
overcome the temporal horizon T (i.e., τd ≥ T ).

2Optimizing the functional (3.25) among the components of the S&P 500, we could
observe that the optimal portfolio components do not change using penalty values 1000,
10 000 or 100 000 in formula (3.25). For this reason we use and fix the penalty value 1000.
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In all the empirical comparison, we optimize each performance mea-
sure monthly (using 20 days) using six month of daily historical observa-
tions (120 working days) to compute the performance measures we have
to optimize. Thus, at any optimization time, every 20 trading days, we use
a moving window of 120 working days which are used in the optimization
process. The principal parameters used in the optimization process are:

1. the investors have a temporal horizon T=20 trading days,

2. the performance (3.25) is optimized for the processes in Section 2
(Markov regime switching model and log-Student t);

3. Markov chains have N=9 states, so the final wealth W20 presents
161 nodes in the Markov tree. On the computational complexity of
Markovian portfolio problems see [1].);

4. the initial wealth W0 is equal to 1 at the date December 31, 1999;

5. two significant constraints were introduced in the optimization func-
tion: a) the maximum share of the portfolio that can be invested in a
single title is 20% ; b) short sales are not allowed, in other words, the
percentage wight of each security in the portfolio can’t be negative
(i.exi ∈ [0, 0.2]).

The first constraints aims to achieve a well-diversified portfolio and
not overly concentrated; while the second constraints excludes the
possibility of short selling, since the securities sale not owned di-
rectly is a technique not easily implementable by a private investor.

Portfolio optimization leads to different results depending on the adopted
distribution for the process. For each strategy, we have to compute the op-
timal portfolio composition exactly 183 times and at the k-th optimization
three main steps are performed to compute the ex-post final wealth:

1. Step 1. Preselect the first 150 assets as discussed in the previos sec-
tion.
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2. Step 2. We implement an optimization function on 150 pre-selected
assets. The optimization aim to identify which of these assets, and
what percentage , should compose the portfolio that maximizes the
performance measure. Therefore, we determine the optimal portfo-
lio x(k)

M that maximizes a performance ratio ρ(x(k)) (either the Sharpe
ratio (3.24) or the timing portfolio performance (3.25)) associated to
the strategy, i.e. the solution of the following optimization problem:

max
x(k)

ρ(x(k))

s.t.
n∑
i=1

x
(k)
i = 1; 0 ≤ x

(k)
i ≤ 0.2; i = 1, ..., n

Clearly, the computational complexity of the problem with portfolio
performance (3.25) is much more higher than optimizing the Sharpe
ratio, because in the first case the problem present more local op-
tima. Therefore, we suggest to use the function patternsearch of Mat-
lab 2013 with starting point the optimal solution of (3.25) obtained
with the heuristic (for global optimization) proposed by [1].

3. Step 3. Compute the ex-post final wealth given by:

Wtk+1
= (Wtk − tctk)(x

(k)′

M )z
(ex post)
(tk+1) ,

where tctk are the proportional transaction costs we get changing the
portfolio, z(ex post)

(tk+1) is the vector of observed gross returns between tk

and tk+1.

Steps 1, 2, and 3 are repeated for the two performance ratios (3.24) and
(3.25), and all the distributional assumptions until some observations are
available. The results of this ex-post empirical analysis are reported in
Figure 3.1, and Table 3.1

In Figure 3.1 we report the ex-post wealth obtained optimizing the
Sharpe ratio and the timing portfolio strategies based on different distribu-
tional hypothesis. In particular we observe a growing trend of the wealth



3.2. AN EMPIRICAL COMPARISON AMONG TIMING PORTFOLIO STRATEGIES APPLIED TO
PRESELECTED ASSETS 111

Figure 3.1: Ex post final wealth obtained with non-Lévy processes

that involves the entire period of the analysis.

In Figure 3.1 both the timing portfolio strategies outperform the strategy

based on the optimization of the Sharpe ratio. Moreover, we observe that

the timing portfolio strategies based on log Student t model outperforms

the one based on the Regime switching model. As a matter of fact, the Stu-

dent t strategy allows to reach a final wealth equal to 15 times the initial

one and the MRS strategy 9 times. The Sharpe strategy, instead leads to a

final wealth equal to 4.5 times the initial one.

Graphically the "Student-t strategy" seems the most promising in terms of

ex-post final wealth.

In Figure 3.1 we observe that all the strategies present a growing trend

before the crisis (1999-2007) a decreasing trend during the sub-prime cri-

sis (2008-2009) and a slightly increasing trend during the credit risk cri-
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Table 3.1: Descriptive Statistics on the ex-post log-returns (annual basis)

Ditribution Mean St.Dev Skewn Kurtosis Final Wealth

Sharpe 10.25% 19.94% -0.3725 7.1458 4.553
Markov Switching 15% 28.18% -0.2039 7.6900 9.067
Log-Student t 18.50% 25.44% -0.3473 6.2008 14.793

sis (2009-2014). In particular, we observe that both investment strategies

present similar ex-post wealth until 2004, then there is a high improve-

ment of the Student-t strategy during the crisis.

In Table 3.1, first, we observe that the ordering of the mean of the log-

returns is the same we have in terms of the ex-post final wealth (that is,

from the biggest to the smallest are: Student t, Markov regime Switching

and Sharpe). Moreover, the Student t hypothesis shows a lower variability

(standard deviation) than the other distributional assumptions. Secondly,

we observe that all the ex-post log-return of optimal strategies are asym-

metric and leptokurtic, since they present a small negative skewness and

a kurtosis significantly higher than the Gaussian one.

Finally, in this empirical analysis we demonstrate that timing portfolio

strategies have a strong impact on the final wealth. Further, a better dis-

tributional approximation could have an important impact in the optimal

portfolio choices and, in particular, the Student t distribution seems to bet-

ter capture the log-return behavior in the U.S. stock market of the decade

1999-2014.

The fundamental contribution of this experiment consists in the com-

putational accessible methodology to solve dynamic portfolio strategies

without making too strong distributional assumptions. Moreover, the idea

developed in the thesis can be extended to several other possible timing
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portfolio strategies which can be imported by the option theory.
We believe this is the starting point for future discussions, analyses and
empirical comparisons.
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