Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 51 February 2014 ISSN 0735-1933

A e
ELSEVIER

International Communications in

I.IEAT and MASS
TRANSFER

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights


http://www.elsevier.com/authorsrights

International Communications in Heat and Mass Transfer 51 (2014) 18-24

journal homepage: www.elsevier.com/locate/ichmt

Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer

An evaporation model for oscillating spheroidal drops*

S. Tonini, G.E. Cossali *

Engineering Department, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy

@ CrossMark

ARTICLE INFO ABSTRACT

Available online 19 December 2013

Keywords:
Spheroidal drop
Evaporation
Oscillating drop

The evaporation process of a liquid spheroidal drop floating in a gaseous atmosphere has been modelled, ac-
counting for the oscillation between oblate and prolate states. A previously developed exact solution for the
heat and mass transfer equations has been extended to investigate the effect of oscillation on drop evaporation
under the assumption of quasi steady-state conditions and the results are compared with approximate models
from the open literature. The validity of the quasi steady-state assumption is discussed, deriving, for different
fluids, the range of drop temperature and size and gas temperature where it is reasonably acceptable.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The growing practical interest in spray evaporation and combustion
has motivated the request of a detailed understanding of the different phe-
nomena taking place when a liquid droplet floats in a gaseous atmosphere,
with an associated increasing demand for analytical/empirical correlations
describing the interphase transfer of mass, momentum and energy [1].

The process of liquid drop vaporization has attracted the researchers
since the nineteenth century. The simplest model for the droplet evap-
oration rate was proposed by Maxwell back in 1877 [2], which sug-
gested that the driving force for liquid evaporation is the difference in
vapour concentration between the drop surface and the free stream
and the process is exclusively controlled by the diffusion mechanism.

Since then, a variety of different models have been proposed in order
to capture the complexity of the physical phenomena involved in the
process, including the bulk motion of the gas surrounding the droplet
(Stefan flow) [3], the heat and mass diffusion in the droplet interior
[4], the liquid composition [5,6], gas stream effect [7] and high-
pressure effect [8,9]. Refer to [10] for a recent review of the main devel-
opments in modelling droplet heating and evaporation.

One assumption that yet prevails in most of the theoretical/empirical
models widely used in commercial CFD codes for dispersed phase (like
sprays, or particle laden flows) application is that liquid droplets main-
tain spherical shape while interacting with the gaseous phase [7]. How-
ever, significant shape deformations are expected and observed while
liquid drops interact with the carrier phase, and these deformations
are of fundamental importance for understanding many natural and in-
dustrial processes involving spray droplets [11,12].

Non-spherical liquid drops are unstable and the opposing effects of
surface tension and inertia cause periodic or non-periodic variation of
the drop shape, which is referred to as drop oscillation and it is found
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to strongly influence heat, momentum and mass transfer between lig-
uid drops and the surrounding gas [13]. Oscillation can become impor-
tant in atomisation systems where the liquid is first disintegrated into
small ligaments, which then oscillate towards the asymptotic attain-
ment of an equilibrium spherical shape [14].

One of the pioneering works on non-spherical droplet dynamics was
that of Lamb [15], which led to an expression for the natural frequency
of infinitesimal amplitude oscillations of an inviscid drop immersed in
an inviscid quiescent environment.

Afterwards, a considerable amount of work has been done on the dy-
namics of oscillating drops; refer to [16-22] for reviews on numerical
and experimental contributions to this field. Effect of viscosity was con-
sidered by many researchers, among other results it was shown that vis-
cosity effects are responsible of a relatively quick damping of the highest
oscillation modes, then living only the oblate-prolate mode (n = 2) to
survive [23].

All these works address the issue of oscillating drop/ligament dy-
namics under non-evaporating conditions. When the drops are exposed
to hot gas, the heat transfer and the consequent evaporation could affect
and be affected by oscillations [24-26].

Despite the large amount of work done over the last decades on non-
evaporating liquid drop oscillation, to the best of authors' knowledge
only few papers can be found in the open scientific literature addressing
the effect of evaporation on oscillating drops [27-29], and the few avail-
able experimental data-sets do not report all the necessary information
for model comparison.

Deng et al. [30] proposed one of the early numerical studies on this
subject with a two-dimensional numerical model investigating the dy-
namics of non-evaporating and evaporating liquid ligaments undergo-
ing deformation/breakup and oscillations under viscous convective
flows. The results showed that the dynamics of ligament deformation
was basically unaffected by vaporization, however the evaporation
rates (per unit area) are greater for deformed drops.

Mashayek [31] suggested a correlation for the rate of evaporation of
deformed drop based on the results from numerical simulations, which
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Nomenclature

Greek symbols

o thermal diffusivity m?/s
B surface area ratio -

v specie flux kg/m?s
€n non-dimensional disturbance amplitude -

€ deformation parameter £ = & -

¢, 0,0  spheroid coordinates -

p density kg/m®
o surface tension kg/s?
T oscillation period S

X mass fraction -

(0] oscillation frequency 1/s

r evaporation enhancement -

A relative difference -

¢] non-dimensional evaporation rate parameter —

=4 mean curvature -

I non-dimensional vapour flux -

Roman symbols

a perturbation parameter -

a, a, spheroid axes m

G specific heat J/kgK
D, diffusivity m?/s
k thermal conductivity W/mK
Mey evaporation rate kg/s
n oscillation mode -

P, Legendre polynomials -

R drop radius m

t time s

T temperature K

U velocity m/s

x

Y, Z Cartesian coordinates -

Subscripts

a species index -
conv convective

dif f diffusive

cd convective—diffusive
evap evaporation

g gaseous

l liquid

oscil oscillation

0,s surface

v vapour

o infinity

Superscripts

~ non-dimensional

H heat transfer

showed that the mass flux varies along the surface of the deformed
drop. The Author proposed a correlation to express the mass flux as a
function of the surface curvature, based on the suggestion of Lian and
Reitz [32] who studied the instability of evaporating liquid jets, postu-
lating that the deformed surface may be locally considered as the sur-
face of a spherical drop having the same mean curvature as that of the
deformed surface, and that the local flux would be that of a spherical
drop with that curvature radius.

Recently [33], it has been shown that an analytical solution of the
steady state heat and mass transfer equations exists for spheroidal (ob-
late and prolate) drops floating in a gaseous atmosphere, and the local
evaporation rate was exactly correlated with the local surface curvature.

The evaporation from free oscillating particles was investigated in
[34], showing that the increase in the evaporation rate of an oscillating
drop is proportional to the square of the surface disturbance amplitude
and is larger for higher oscillation modes, and that the period of oscilla-
tion is decreased by evaporation, while the dominant mode of oscilla-
tion remains the same as that for a non-evaporating drop.

The present work was motivated by the necessity to include the
above described complex drop evaporation mechanisms in spray nu-
merical simulations, using relatively simple sub-models for predicting
the inter-phase phenomena taking place during the spray evolution.
The following sections report the mathematical model, the derivation
of analytical expressions for the instantaneous and average evaporation
rate and heat rate from oscillating spheroidal liquid drops, the compar-
ison against the predictions of previously available models and the der-
ivation of conditions for model applicability for different fluids. The
main conclusions are then briefly summarised.

2. The instantaneous vapour flux and heat rate for spheroidal drops

For a liquid drop made of a single component floating in a gaseous
atmosphere, the species conservation equations can be written [35]:

PUN iXo =V (PDijXa) M

where o = v, g refers to the vapour and gaseous phases respectively,
while y,, = % is the mass fraction and D, is the binary diffusion coeffi-
cient; the symmetry of the diffusion coefficients D, = D, = Dy, for a
binary mixture is imposed according to [35].

In the following, gas density is assumed to be constant, according to
the majority of evaporation models for spray simulations [36]. Account-
ing for density gradient effect on spherical droplet evaporation [37] led
to the conclusion that the constant gas density assumption may become
questionable for very high gas temperature evaporating conditions.

Setting to constant values the vapour mass fraction at drop surface
(xv = Yws) and at infinite distance from the drop (¥, = Yi.), an ana-
lytical solution of (1) was proposed in [33], through the use of prolate
and oblate spheroidal coordinate systems, defined as:

x =a A(§)sin(0)cos(©)
¥ =a A@)sin(0)sin(¢)
z=a B(§)cos(6)

where:

A() = cosh(§); B(§) = sinh(&);
A(€) = sinh(§); B(§) = cosh(&);

for oblate case
for prolate case”

In these coordinate systems, the spheroid surface equation is § = &,
and the above-mentioned B.C. are:
X0(60,0.0) = s Xu(®,0,0) = )y

The steady state analytical solution of the balance Eq. (1) provides
the following form for the local instantaneous vapour flux:

oD, 23

Vs = 1_}(v,w
"Ry {1—(1—82)51'112(9)}1/2

n
]_)(v.s

I(e)l

@)

where the deformation parameter ¢ is defined as:

£=-"~
ar



20 S. Tonini, G.E. Cossali / International Communications in Heat and Mass Transfer 51 (2014) 18-24

and a, and a, are respectively the axial and radial spheroid axes, see
Fig. 1 for reference, and the parameter I'(¢) is defined as follows:

1 & =1,Sphere
(1-¢?)
73 - £<1,Oblate
I'(e) = g3 (m—2arctan(/(12))) (3)
(e2—1

&>1,Prolate

Integration of the vapour flux over the entire drop surface yields the
value of the evaporation rate, that in non-dimensional form is:

L my, 1-Yw
Mev = ZnRyDyp ()10 (1 —xv,s> ‘ @

To notice that the non-dimensional evaporation rate for a spherical
droplet is simply:

1-Yyw

~ sphere v,

m =In .
¢ (1_)(%5)

In an analogous way [33] the non-dimensional sensible heat rate as-
sumes the following form:

= Q B = e :‘;m mif;here
Q—W—F(S)(Ts 1)(T}ZM>T (5)

being Le the Lewis number, Le = & and T° = T,/T..

From Egs. (3) and (4), it can be seen that the evaporation rate of a
prolate spheroid is always larger than that of an oblate spheroid having
both the same volume and the same surface (see [33]).

An approximate model for evaporation from a deformed drop was
proposed by Mashayek in [31] and it was used to estimate the evapora-
tion rate from oscillating droplets. Following a method suggested by
Lian and Reitz [32], a correlation was proposed to express the instanta-
neous local mass flux as a function of the local mean curvature of the
surface:

Mashayek[31] kg
v

i
v,s =~

~ sphere
2R G, )

where X is the mean curvature [38], which for a spheroid is equal to:

(82 —1)sin2 0)+2

4/3
[(82—1>sin2(9)+1]3/2. 7

H=¢

Fig. 2 shows the comparison between the exact solution for spheroi-
dal drops, Eq. (2), and the approximate model [31] in terms of the non-
dimensional local vapour flux along the drop surface, defined as:

v
e (®)
kg msphere

2RoCpg ' €V

1=

To be noticed that for the approximate model [31], I'T reduces to
the value of the mean curvature Z. Three values of the surface ratio 3,
defined as:

&ln (”VEHZ)
1+—m——7 1
B= Aspheroid _ 1 + V1—g2 Oblate 9)
Asphere  26%3 garctan < 21 )
14—~ 7 Prolate
g2—1

are selected equal to 1.05, 1.1 and 1.2, which correspond to different
values of the deformation parameter ¢ for the corresponding iso-
surface oblate and prolate drops. The graphs are presented as function
of the azimuthal coordinate 6 between — /2 and /2. The results en-
lighten that the approximate model predicts larger variations of the va-
pour flux along the surface, compared to the exact solution.

However the non-dimensional evaporation rate, obtained by the va-
pour flux integration along the drop surface, calculated by the approxi-
mate model differs from the exact value by less than 15%, as reported in

the figure by the non-dimensional parameter @ = ..,

3. The evaporation model for oscillating drops

The frequency of the oscillation modes of a liquid drop in gaseous
environment can be described (for small oscillation amplitude) by the
generalised Lamb equation [15].

> _nn+1)n-1)n+2)0
T (n+Dp+npg RS

(10)

where p; and p, refer to the densities of the liquid and gas fluids respec-
tively, and the index n refers to the oscillation modes: n = 0 stands for a
pure expansion (only for bubbles), n = 1 refers to translation mode,

Fig. 1. Oblate (left) and prolate (right) spheroids and definition of axial (a,) and radial (a,) spheroid semi-axes.
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Fig. 2. Non-dimensional vapour flux along the drop surface, predicted by the exact solu-
tion [33] and the approximate method of Mashayek [31] as function of the surface ratio
B, for both oblate and prolate drops.

without a corresponding frequency, n = 2 refers to oblate-prolate
mode, and finally n > 2 describes more complex modes.

Considering the effect of liquid viscosity, according to [16], the
higher modes, for liquid drops oscillating in a gaseous environment,
are quickly damped and the mode n = 2 is the only long lasting one.
Under the conditions that p; > p, Eq. (10) for the mode n = 2 yields
the oscillation frequency:

o |50
’ PR

It should be noticed that the linear theory predicts for the mode
n = 2 a shape that is only approximately an oblate or prolate spheroid,
although the difference for small oscillation amplitude (i.e. for the range
where the linear theory holds) is almost negligible. Moreover, non line-
ar theory [23] yields more accurate (but more complex) results, and
among others the fact that the time spent by a drop in the oblate
shape is larger than the time spent in a prolate one.

Remaining in the framework of linear theory, the drop shape varia-
tion of an axis-symmetric oscillating drop can be expressed through a
perturbation parameter ap(t) = alei®t by the equation [39]:

an (€)
n

R(9) =R, <1 + ZH2 ~7 Pl cosO))

where P,(x) are the Legendre polynomials.

The ratio between the surface of the spheroid and that of the iso-
volumic spherical drop can be calculated as function of time by the fol-
lowing approximation:

A i 2 2 . ;
spheroid _ 4, & (ag) sz(a)zt) =1+ A[%smz(wzt)
sphere 5

B(t) = (11)

where AB is the non-dimensional maximum excess area from the
spherical state.

Referring to Eqs. (3) and (9), the factor I' in Eqgs. (4) and (5) can be
considered a function of 3.

Under the assumption of quasi-steady drop evaporation, the non-
dimensional instantaneous evaporation rate depends on time by the
relation:

fitg, = [(B(t))In (17 ) = I(B(t)mE" (12)

where [(t) is given by Eq. (11). The analogous relation for the non-
dimensional sensible heat rate can be written:

~ sphere

Q=Tr(p)(T—1) () e
1—e %

(13)

— ey
e

Fig. 3 reports an example of time variation of evaporation rate,
in terms of the above defined parameter ©, over an oscillation period
(Toscin)- The drop oscillates between a prolate shape and an oblate
shape. As above-mentioned, non-linear analysis found that drops,
which are released from an initially two lobed configuration, spend
less time in prolate form than in oblate one [23]. However, in the
present investigation it will be assumed, following the results of linear
theory, that the time spent in prolate state is equal to the time spent
in oblate state. In Fig. 3 the maximum value of the parameter 3 during
the oscillation period is fixed equal to 1.1, which corresponds to a max-
imum value of ¢ equal to ~2.2 in the prolate state and a minimum value
equal to ~0.49 in the oblate one. The results enlighten that, for the
chosen values of AB, the maximum evaporation rate exceeds that of
an iso-volumic spherical drop of about 6% and 4% when the drop is in
the prolate and oblate states, respectively.

Mashayek [34] proposed a correlation for the instantaneous non-
dimensional evaporation rate of oscillating drop, derived from numeri-
cal simulations:

1= Yy
ity "~ [G (1 + cos(2000)) + 1]ln< Xy, > (14)

1_)(%5

where G, is function of the oscillation mode and it is found to be equal to
0.6 for mode n = 2 [34], while the surface disturbance amplitude is cal-
culated as a function of the drop surface ratio 3:

The ratio between the instantaneous non-dimensional evaporation
rate of oscillating drop calculated by the correlation of Mashayek [34]
(Eq. (14)) and the corresponding one from an iso-volumic spherical
drop is also plotted in Fig. 3, over an oscillation period. The graph en-
lightens that this approximated model does not take into account the
different evaporation rates from oblate and prolate drops and, except
when the drop approaches the spherical shape, it always over-
estimates the results, with a maximum deviation from the present
model of about 10%.

1.2
present model
— - = Mashayek model [34]
- mean curvature method [31]
i ‘ .
l \ I. \
' ]‘ \
@ 1.1 y
? prolate : 1 oblate
L \ : / )
[} \ 3 y \
/ W
" ; A \
10 &2 N 3
0 1
744

oscill

Fig. 3. Instantaneous non-dimensional evaporation rate, during a drop oscillation period,
predicted by the present model, the correlation of Mashayek [34] and the mean curvature
method [31]. Bpax = 1.1
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Fig. 3 also shows the results obtained assuming that the drop evap-
oration rate can be calculated using the mean curvature model of
Mashayek [31], integrating Eq. (6) along the drop surface:

Mashayek(31] e’ sphere
Mgy v = 4 Tmes (15)
where:
oblate V1—g?
T =2+ arctan
ev1—g? €
Tprolate —24 1 E+V e2—1
evel—1  e—Ver—1

The mean curvature model clearly distinguishes between the two
drop shapes and it overestimates, respect to the exact solution, the
evaporation rate along the whole oscillation period, with a maximum
deviation of about 7% during the prolate state and about 4% during the
oblate one.

Finally Fig. 4 shows the average evaporation rate, along one oscilla-
tion period, in terms of the parameter © as a function of AS, as predicted
by the present model, which is based on the instantaneous vapour flux
calculation from the exact solution of Eq. (1) for spheroidal drops, and
by the two approximate models from Mashayek, [31,34]. The excess
area AB has been increased up to 100%, which corresponds to a
maximum and a minimum value of ¢ equal to about 16.2 and 0.14,
respectively.

The results show that the present model estimates a monotonic in-
crement of the average evaporation rate, where the maximum excess
surface (Af) increases. The maximum increment of the evaporation
rate is up to about 30% for AB equal to 100%.

The approximate model of Mashayek [34] and the mean curvature
model, based on the assumption that the evaporation mass flux is pro-
portional to the mean drop curvature [31], are in close agreement up
to an excess area of about 50%, above which the mean curvature
model significantly overestimates the evaporation rate.

Both models [31,34] predict higher increment of average evapora-
tion rate due to drop oscillation, with a rising deviation from the present
model as AB increases, up to 20% (with the approximate model [34])
and 30% (with the curvature method [31]) for AB equal to 100%. To no-
tice that an analogous curve can be obtained for the average sensible
heat rate, along one oscillation period, as function of AB.

1.6+ present model
— - = Mashayek model [34]
1.5+ = mean curvature method [31]

100

10
4B (%)

Fig. 4. Average non-dimensional evaporation rate, along an oscillation period, as a function
of the excess area AB, predicted by the present model, the correlation of Mashayek [34]
and the mean curvature method [31].

4. The applicability of the quasi-steady state assumption

All evaporation models for liquid drop oscillating in a gaseous
environment assume that the process occurs under quasi-steady state
conditions. To the best of authors' knowledge the only numerical
model relaxing this hypothesis is proposed in [12], and no in-
vestigations are available in the open literature discussing such
approximation.

In the present investigation the estimation of the instantaneous va-
pour flux from an oscillating drop by Eq. (2) is based on a quasi-
steady-state assumption. Such hypothesis may hold when the charac-
teristic time scale of the oscillation process is much larger than that of
the evaporation one.

The characteristic time scale of the oscillatory process (assuming
n = 2) can be defined as the inverse of the oscillation frequency:

3
~ PR
T oscill = o

and this should be compared to the evaporation time scale to check the
validity of the quasi-steady-state assumption, that may be acceptable
when:

tevap < tosa'll' (16)

Evaporation is an overlapping of mass and thermal diffusive phe-
nomena (driven by the coefficients D, and ¢, respectively) and a con-
vective one (i.e. the Stefan flow, driven by a characteristic velocity

iy b .
Up = Rl = e o). From these two parameters and the drop size, three

different (but not independent) characteristic times can be defined for
both mass and heat transfer processes:

Characteristic times Mass transfer Heattransfer
. R R
convective teony = ﬁo o ﬁo
2 2
R tqi
diffusive far > 2 the ~ ~0 = “dift
aft = p, diff ¥ o = e
2
. . . D t, o
convective—diffusive tg = 5= th ~ — = tqle
Us  tuig U

and a re-arrangement yields:

Mass transfer Heat transfer

. BRS _ Plags

tconv ~ 2 tconv ~ 5
meva Mgy nzz"
22 2 2. H
¢ B°Ry  Btyy o B tais
cd ™~ ] N o~ T
miD, (@)
Le

and since L1 (for € < 42.7, that stems from Eq. (4)), then:

ev

ev

(%) ’ (ms"+§?)2Dv max[1, Le] = max {tcd. tfd] >max [tmm,, tCH,,,W} >max [td,-f,, tZ’,ff} .

The evaporation characteristic time scale t,,q, may be one of the
three above-mentioned characteristic times, but the condition (16) is
certainly satisfied if max[teq,th] << tosci.

To quantify the applicability of the quasi-steady state assumption,
consider the case with y,. = 0, and Prs = Pr... Since:

Py P, Mm,

- Ps - Pv.stv + (PT.w_Pv,s>Mmg

XV,S
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and after observing that 1<{;;<1.2 (for & 2 0.2, which is a reasonable
value for the maximum drop deformation in realistic application test
cases), the limiting condition is:

Da (Tﬁlm>plln4 1 _)(v.s)
2.0740(T,)

= Rim<<Ry

where Tg,, = 2=, according to the “1/3rd rule” suggested by [40]. The
mass diffusivity in the gas phase is a function of the temperature, with

m
an empirical correlation proposed by [41] D, (Tﬁ,m> =D, (%) ,
0

where m = 3 then:

1.2'0(T,)Rymax 1, Le? ’

== 3T0 Dg‘oplln‘l(]_)(v.s)

—2T.

N

yielding a relation between the gas temperatures at free stream condi-
tions, T, and at drop surface, T, for each value of the drop radius Ry,
allowing to define a region on a T.. — T graph where the assumption
(16) may be accepted.

The graphs of Fig. 5 report for different drop species (water, methanol,
ethanol, acetone, benzene, hexane, octane, dodecane and hexadecane)
the range of drop and gas temperatures, relative to each drop size,
where the above discussed condition may hold: for any curve relative
to a given drop size, the gas temperature must be larger than the reported
limit, as a function of the drop temperature.

An inspection on the values of such characteristic times shows that
the inequality may acceptably hold for small drops (few tenths of mi-
cron) in hot gaseous environment and for high volatility fluids.

These results show that the proposed model offers a rather easy-to-
implement analytical expression for the instantaneous and average
evaporation rate and vapour flux from oblate and prolate oscillating
spheroidal liquid drops, making it suitable for more complex spray
simulations.

5. Conclusions

The evaporation of spheroidal drop in gaseous atmosphere has been
investigated, calculating the exact solution for the instantaneous vapour
flux and sensible heat rate under steady-state conditions as function of
the increment of surface area respect to iso-volumic spherical drops.

The effect of drop oscillation between oblate and prolate states on
evaporation was taken into account deriving a model based on the

2000
—R, = 5um
mm R = 10um
1500 1 © Ry,=S0um [
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- i RM=200L|I‘H
~ o R, =400um
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Fig. 5. Maps, for different liquids, of gas and drop temperature and drop size for the validity of the quasi-steady-state assumption.
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linear theory and assuming quasi steady-state drop evaporation. The
model calculates the instantaneous and average, over an oscillation pe-
riod, mass and heat rates, function of the oscillating frequency and drop
deformation. The results have been compared with the predictions from
approximate models available in the literature.

The present model, which is able to capture the different evaporat-
ing mechanisms from oblate and prolate drops, estimates a monotonic
increment of the average evaporation rate as the maximum excess sur-
face area increases. Moreover it predicts an increment of average evap-
oration rate and sensible heat rate due to drop oscillation, up to 20% for a
maximum excess surface area equal to 100%.

The quasi steady-state assumption is finally discussed calculating for
different fluids the range of drop size and temperature, and gas tempera-
ture where the assumption may be acceptable. The results enlighten that
itis valid for small, high volatility liquid drops, evaporating under high gas
temperature conditions, typical of spray combustion applications.
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